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Abstract 

Multiple sclerosis (MS) is an autoimmune inflammatory disease of the central nervous system 

caused by a complex interaction between multiple genes and environmental factors. 

HLA region is the strongest susceptibility locus, but recent huge genome-wide association studies 

identified new susceptibility genes. Among these, BACH2, PTGER4, RGS1 and ZFL36L1 were 

highlighted. Here, a gene expression analysis revealed that three of them, namely BACH2, 

PTGER4 and ZFL36L1, are down-regulated in MS patients’ blood cells compare to healthy 

subjects. Interestingly, all these genes are involved in the immune system regulation with 

predominant anti-inflammatory role and their reduction could predispose to MS development. 
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1. Introduction 

Multiple sclerosis (MS) is a complex autoimmune inflammatory disease of the central nervous 

system in which environmental and genetic factors converge with epigenetic and post-genomic 

regulatory events.  

The leading role of genetic factors is supported by several studies of MS families (Robertson et al., 

1996 ; Ebers et al., 2000). The strongest susceptibility signal maps to the HLA-DRB1 gene in the 

class II region of the major histocompatibility complex (MHC) (Barcellos et al., 2006; Yeo et al., 

2007). Recently, the two largest genome-wide association studies (GWAS) of MS genetics 

confirmed HLA as the major MS susceptibility locus and provided unequivocal evidence for the 

association of additional 110 non-MHC “candidate” genetic variants conferring susceptibility to the 

disease (IMSGC, 2011; IMSGC, 2013). 

Notably, the majority of these novel MS-associated genes played pivotal roles in the workings of 

the immune system and was also associated with other autoimmune diseases, supporting the 

hypothesis that the same processes occur in different autoimmune diseases (Baranzini et al., 2009; 

Cotsapas et al., 2011). 

To investigate the mechanisms behind the regulation of inflammation in MS, we recently conducted 

a genome-wide transcriptional analysis of peripheral blood mononuclear cells (PBMC) obtained 

from treatment-naïve MS women and healthy controls (HC) before, during and after gestation. We 

identified a MS signature including 347 transcripts differently modulated in MS patients compare to 

HC before pregnancy (Gilli et al., 2010). Among these, in this work we focused on those genes 

identified as novel MS risk loci in the GWAS studies (IMSGC, 2011; IMSGC, 2013). This 

approach highlighted 5 matching genes namely as tumor necrosis factor alpha-induced protein 3 

(TNFAIP3), BTB and CNC Homology 1 basic leucine zipper transcription factor 2 (BACH2), 

prostaglandin E receptor 4 (Subtype EP4) (PTGER4), regulator of G-protein signaling 1 (RGS1), 

and zinc finger protein 36-C3H-type-like 1 (ZFP36L1). Interestingly, all these transcripts were 

previously reported as involved in the immune system regulation, mainly with an anti-inflammatory 
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role (Hollinger et al., 2002; Murn et al., 2008; Yao et al. 2009; Esaki et al., 2010; Sanduja et al., 

2011; Roychoudhuri et al., 2013) and associated to several autoimmune diseases (Hunt et al., 2008; 

Medici et al., 2014; Perdigones et al., 2010; Grant et al., 2009).  

Since in our pilot study TNFAIP3 and ZFP36L1 expression reverted to normal in pregnant MS 

women, their levels were further investigated in a second population. Only TNFAIP3 deregulation 

was confirmed (Gilli et al., 2010) and subsequently validated in a larger study including also males, 

showing  a correlation between TNFAIP3 levels and  the disease clinical course (Gilli et al., 2011).  

Here, we aimed to analyzed gene expression of the remaining genes BACH2, PTGER4, and RGS1 

in treatment-naïve MS patients compared to HC. Based on recent encouraging genetic association 

data (IMSGC, 2011; IMSGC, 2013), we decided to include again ZFP36L1 since it was only 

studied in a small pre-pregnancy female population. 

2. Materials and methods 

2.1 Enrolled subjects. Clinical and demographic features of MS patients and HC are summarized 

in Table 1. 49 treatment-naive patients with newly diagnosis of relapsing-remitting MS (RRMS) 

according to the McDonald criteria (McDonald et al., 2001) and 47 HC were enrolled after giving 

written consent. Blood samples were obtained during a 2-years period.  

This study was approved by Piedmont and San Luigi University Hospital Ethical Committee. 

2.2 RNA extraction and real-time PCR analysis. Whole blood samples, collected into a Tempus 

vacuette, were extracted using the ABI Prism 6100 Nucleic Acid Prep Station (Life Technology 

Monza, Italy), following the manufacturer’s instructions. Total RNA was reverse-transcribed at 

final concentration of 10 ng/μL using random hexamer primers. Gene expression analysis was 

performed by real-time PCR using Applied Biosystems’ TaqMan gene expression products (Life 

Technology). Transcriptional expression was normalized using glyceraldehyde-3-phosphate 

dehydrogenase as reference gene. Expression levels of target genes were calculated by the 

normalized comparative cycle threshold (Ct) method (2
-ΔΔCt

), using the Universal Human Reference 

RNA (Stratagene, Santa Clara, California) as calibrator.  

http://www.ncbi.nlm.nih.gov/pubmed?term=Yao%20C%5BAuthor%5D&cauthor=true&cauthor_uid=19465928
http://www.ncbi.nlm.nih.gov/pubmed?term=Esaki%20Y%5BAuthor%5D&cauthor=true&cauthor_uid=20566843
http://www.ncbi.nlm.nih.gov/pubmed?term=Sanduja%20S%5BAuthor%5D&cauthor=true&cauthor_uid=21278925
http://www.ncbi.nlm.nih.gov/pubmed?term=Roychoudhuri%20R%5BAuthor%5D&cauthor=true&cauthor_uid=23728300
http://www.ncbi.nlm.nih.gov/pubmed?term=Perdigones%20N%5BAuthor%5D&cauthor=true&cauthor_uid=20561984
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2.3 Clinical correlation. Patients were clinically monitored at the MS Center of the San Luigi 

University Hospital.  Gene expression levels were correlated with the time span between the disease 

onset and the pharmacological therapy initiation, the relapse rate (RR) in the year before the 

diagnosis and during the follow-up and the Expanded Disability Status Scale (EDSS) score at the 

time of sampling. 

2.4 Statistical analysis. Continuous data are presented as medians and ranges or interquartile 

ranges. Discrete data are given as counts and percentages. Chi-square tests were performed to 

compare groups of categorical data; the Mann-Whitney U test was used to compare continuous 

data.  

Regression models were run to evaluate the association between the presence of the disease, 

adjusted by sex and age, and gene expression levels. To account for non-normality, log or inverse-

gaussian or Gamma link functions were chosen according to the Akaike Information Criterion. 

Associations between expression levels of target genes and clinical parameters were also assessed. 

Statistical significance was considered at p<0.05. All analyses were carried out using R version 

3.02. 

3. Results 

Expression analysis of target genes was performed in whole blood obtained from 49 untreated 

RRMS patients and 47 HC. There were no statistical differences regarding age and gender between 

the two groups. 

Lower transcript levels of BACH2, PTGER4 and ZFP36L1 were observed (p=0.017, p=0.006 and 

p=0.016, respectively) in MS patients with respect to HC (Figure 1), according to our previous data 

(Gilli et al., 2010). Conversely, no statistical significant differences between the two groups were 

determined for RGS1 (Figure 1), while its expression in both MS and HC population increased with 

age (p=0.037) (data not shown). On the contrary, ZFP36L1 expression significantly decreased with 

age (p=0.035) (data not shown). This result could explain why ZFP36L1 down-regulation was not 
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validated in our previous study (Gilli et al., 2011) based on not age-adjusted analyses. No sex-

related differences in gene expression were highlighted for any gene considered. 

A correlation between gene expression and clinical features in MS patients was performed. Patients 

showed a weak negative correlation between BACH2 expression and the EDSS score (p=0.045, 

R=0.095) (data not shown). There were no differences between clinical parameters and the 

expression of the other analyzed genes, perhaps due to the short follow-up. 

4. Discussion 

In the present work, we analyzed the expression of novel MS-associated genes and we 

demonstrated that BACH2, PTGER4 and ZFP36L1 are down-regulated in MS patients’ blood cells. 

Interestingly, all these genes are involved in the immune system regulation with predominant anti-

inflammatory role and in the development of autoimmune diseases (Hollinger et al., 2002; Yao et 

al. 2009; Sanduja et al., 2011; Roychoudhuri et al., 2013; Hunt et al., 2008; Medici et al., 2014; 

Perdigones et al., 2010; Grant et al., 2009). 

BACH2 was demonstrated to be required for efficient formation of T regulatory cells (Treg) 

(Roychoudhuri et al., 2013), whose immune-modulatory functions are impaired in MS (Huan et al., 

2005; Carbone et al., 2014). In addition, BACH2 constrained differentiation of T cell subsets within 

Th1, Th2 and Th17 lineages. These findings identified BACH2 as a key regulator of CD4+ T-cell 

differentiation that prevents inflammatory disease by controlling the balance between tolerance and 

immunity (Roychoudhuri et al., 2013). Consistently, BACH2 variants were linked to several 

autoimmune diseases including vitiligo, celiac disease, type 1 diabetes (Grant et al., 2009) and 

recently MS (IMSGC, 2011; IMSGC, 2013).  

The second gene investigated, PTGER4, encoding for EP4, one of the four prostaglandin E2 

(PGE2) receptors, displays a not well defined role in inflammation. Traditionally, it was considered 

an immunosuppressant due to its inhibitory function on T cell activation (Murn et al., 2008). 

However, several groups demonstrated that PGE2 facilitates Th17 expansion and Th1 

differentiation, functioning as a mediator of immune inflammation (Yao et al. 2009). Finally, 

http://www.ncbi.nlm.nih.gov/pubmed?term=Yao%20C%5BAuthor%5D&cauthor=true&cauthor_uid=19465928
http://www.ncbi.nlm.nih.gov/pubmed?term=Sanduja%20S%5BAuthor%5D&cauthor=true&cauthor_uid=21278925
http://www.ncbi.nlm.nih.gov/pubmed?term=Roychoudhuri%20R%5BAuthor%5D&cauthor=true&cauthor_uid=23728300
http://www.ncbi.nlm.nih.gov/pubmed?term=Perdigones%20N%5BAuthor%5D&cauthor=true&cauthor_uid=20561984
http://www.ncbi.nlm.nih.gov/pubmed?term=Roychoudhuri%20R%5BAuthor%5D&cauthor=true&cauthor_uid=23728300
http://www.ncbi.nlm.nih.gov/pubmed?term=Carbone%20F%5BAuthor%5D&cauthor=true&cauthor_uid=24317118
http://www.ncbi.nlm.nih.gov/pubmed?term=Roychoudhuri%20R%5BAuthor%5D&cauthor=true&cauthor_uid=23728300
http://www.ncbi.nlm.nih.gov/pubmed?term=Yao%20C%5BAuthor%5D&cauthor=true&cauthor_uid=19465928
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studies on MS murine model revealed a dual action of PTGER4. In fact, the administration of a EP4 

antagonist in the pre-clinical phase suppressed disease progression with concomitant inhibition of 

Th1 and Th17 cell development, while its administration at the disease onset had little effect. 

Conversely, EP4 agonist markedly reduced disease severity (Esaki et al., 2010). 

The last down-regulated gene, ZFP36L1, is involved in mRNA rapid degradation and translational 

repression. Through its ability to bind and target AU-rich element (ARE) motifs-containing 

mRNAs, this protein limits the expression of a number of critical genes, thereby exerting anti-

inflammatory and anti-cancer effects (Sanduja et al., 2011). 

The regulator of G-protein signaling 1, known as RGS1, is involved in the trafficking of Treg and 

other immune cells by restricting G-protein signaling duration (Hollinger et al., 2002). Although 

RGS1 variants were associated with autoimmune diseases as arthritis and psoriasis (Hunt et a., 

2008), an alteration of its gene expression was not observed in this work. However, the whole blood 

analysis could mask a possible altered expression in specific cell subpopulations. 

5. Conclusion 

The above mentioned genes identified as down-regulated in the present work exert an anti-

inflammatory role in the immune system. Taken together, these findings corroborate our initial 

statement (Gilli et al., 2011) that MS arises from a deregulation of braking signals in inflammation, 

rather than merely from an overactive pro-inflammatory reaction. 
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Figure legends 

Figure 1. Whole blood gene expression levels in MS patients and HC. Comparison of median 

gene expression levels of (A) PTGER4, (B) BACH2, (C) RGS1, (D) ZFP36L1 between 47 HC and 

49 treatment-naive MS patients. The regression analysis adjusted for sex and age disclosed that 

PTGER4, BACH2 and ZFP36L1 were down-regulated in MS patients compared to HC (p= 0.006, 

p= 0.017 and p= 0.016, respectively). No differences were detected for RGS1. Relative expression 

was calculated by the normalized comparative cycle threshold (Ct) method (2
-ΔΔCt

). 

 

Figure Legend



Table 1. Clinical and demographical characteristics of MS patients and HC. 

Characteristics HC MS patients p value 

Sample size, n 47 49 

 

Women, % (n) 53 (25) 63 (31) 0,32 
a
 

Age, median (interquartile range) 32 (27, 46) 39 (28, 46) 0,28 
b
 

Disease duration at start of therapy, 

months, median (interquartile range)  

17 (10, 72) 

 

Follow up, months, median 

(interquartile range)  

19 (16, 21) 

 

RR one year before therapy, median 

(range)  

1 (0, 3) 

 

RR in the follow up, median (range) 

 

0 (0, 6) 

 

EDSS at start of therapy, median (range)   1 (0, 6.5)   

 

a
 chi-square test, 

b
 Mann–Whitney U test. Abbreviations: RR= relapse rate; EDSS= Expanded 

Disability Status Scale. 
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