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To highlight different transcriptional behaviors of the phytoplasma in the plant and animal host, expression of 14 genes of “Can-
didatus Phytoplasma asteris,” chrysanthemum yellows strain, was investigated at different times following the infection of a
plant host (Arabidopsis thaliana) and two insect vector species (Macrosteles quadripunctulatus and Euscelidius variegatus). Tar-
get genes were selected among those encoding antigenic membrane proteins, membrane transporters, secreted proteins, and
general enzymes. Transcripts were detected for all analyzed genes in the three hosts; in particular, those encoding the antigenic
membrane protein Amp, elements of the mechanosensitive channel, and two of the four secreted proteins (SAP54 and TENGU)
were highly accumulated, suggesting that they play important roles in phytoplasma physiology during the infection cycle. Most
transcripts were present at higher abundance in the plant host than in the insect hosts. Generally, transcript levels of the selected
genes decreased significantly during infection of A. thaliana and M. quadripunctulatus but were more constant in E. variegatus.
Such decreases may be explained by the fact that only a fraction of the phytoplasma population was transcribing, while the re-
maining part was aging to a stationary phase. This strategy might improve long-term survival, thereby increasing the likelihood
that the pathogen may be acquired by a vector and/or inoculated to a healthy plant.

Phytoplasmas are wall-less plant-pathogenic bacteria, classified
as “Candidatus Phytoplasma” spp. (1). They belong to the

class Mollicutes and infect a wide variety of plants, causing heavy
crop losses in many different countries (2). Phytoplasmas are
phloem limited in the infected plant, and they cause severe symp-
toms (yellowing, dwarfism, and phyllody), often leading to plant
death. They are transmitted by phloem-feeding Hemipteran vec-
tors (leafhoppers, planthoppers, and psyllids) in a persistent prop-
agative manner (3).

Phytoplasmas are obligate parasites that depend on host cells
for the uptake of essential compounds such as sugars, amino acids,
ions, and nucleotide precursors (4). Consistent with this lifestyle,
phytoplasmas have very small, A/T-rich genomes, ranging from
530 to 1,350 kb in size (5), that lack essential metabolic pathways,
such as ATP synthesis. This genome condensation reflects the
phytoplasma adaptation to nutrient-rich environments such as
the plant phloem (6) and helps explain why these pathogens are
not cultivable under axenic conditions (7).

Although the pathogenicity mechanisms are still largely un-
clear, phytoplasmas influence plant metabolism both directly,
through a set of membrane proteins acting as molecular carriers
(6), and indirectly, through secretion of effector proteins (8, 9). In
vitro studies have also shown that phytoplasma immunodomi-
nant membrane proteins interact with vector proteins (10, 11)
and plant proteins (12) and are subjected to strong positive selec-
tion (13–15). Moreover, phytoplasmas can modulate their ge-
nome expression according to the infection stage and the infected
host species, as suggested by microarray analysis (16) and gene
expression study of pathogen transcription factors (17) and of
genes lying within potential mobile units (18).

Real-time reverse transcription-quantitative PCR (RT-qPCR)
is routinely employed for gene expression studies due to its high
sensitivity and accuracy (19–22). Strategies employed for bacterial

transcript quantification through qPCR are currently based on
relative (23–26) or absolute (27–29) quantification approaches.
Phytoplasmas live their lives inside very different environments:
the plant and the insect vector. The recent availability of phyto-
plasma genome sequences has provided tools to investigate phy-
toplasma-host relationships, but little is known about the molec-
ular mechanisms involved in host switching and in the pathogen
cycle in the two environments. These points are extremely impor-
tant, both to provide the first insights into functional genomics of
these pathogens and to start devising new tools for fine-tuned
control strategies of these important plant pathogens for integra-
tion into the current control of vector populations by insecticide
treatments. The aim of this work was to identify phytoplasma
genes potentially involved in sensing the host environment,
thereby discriminating between plant and insect hosts and, in an
even more subtle way, between different insect vectors. As phyto-
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plasma colonization of the host is a continuous process from the
original low-quantity inoculum to the final high-density popula-
tion at the end of the infection cycle, a study was designed to
measure transcript levels over time in the plant and in two vector
insects. qRT-PCR protocols were set up to study the transcription
profile of 14 “Ca. Phytoplasma asteris” chrysanthemum yellows
phytoplasma (CYP) genes, during infection of Arabidopsis thali-
ana (L.) Heynh and of the two leafhopper vector species Eusce-
lidius variegatus Kirschbaum and Macrosteles quadripunctulatus
Kirschbaum. The two vectors were selected on the basis of their
different characteristics with respect to transmitting CYP, as sum-
marized in references 30 and 31: M. quadripunctulatus acquires
(100% versus 88%) and transmits (100% versus 82%) CYP with
higher efficiency than E. variegatus and supports multiplication of
the phytoplasma at a rate higher than that seen with E. variegatus.
Consequently, the CYP latent period in the former species is
shorter than in the latter one (16 to 18 days versus 30 days). CYP
genes were selected for transcript analyses from among predicted
secreted proteins, known effectors, and general metabolism en-
zymes. In the absence of a phytoplasma endogenous control
mRNA, the expression level of each pathogen transcript was cor-
related to the bacterial population measured by qPCR for each
experimental date. Absolute quantification of bacterial transcripts
was performed (27–29). For each phytoplasma gene, an expres-
sion index (EI) was calculated, indicating the transcript copy
number per phytoplasma cell at each sampling date and in each
infected host, according to the guidelines published for cultivable
bacteria (27, 29). Regression analyses were also performed to
compare the gene expression trends over time among the three
hosts, irrespective of the absolute levels of the individual gene
expression.

MATERIALS AND METHODS
Phytoplasma isolate, host plant, and insect vector. Chrysanthemum yel-
lows phytoplasma (CYP) was originally isolated in Italy from Argyranthe-
mum frutescens (L.) Schultz-Bip and maintained by insect transmission on
daisy, Chrysanthemum carinatum Schousboe, the phytoplasma source
plant in this work. Arabidopsis thaliana ecotype Col-0 seeds were sown in
single pots and kept at 4°C for 3 days. Pots were then placed in a growth
chamber at 22 to 24°C with a photoperiod representing a short day (light,
9 h; dark, 15 h [L9:D15]) and were maintained under this condition dur-
ing the whole experiment. Healthy colonies of Euscelidius variegatus and
Macrosteles quadripunctulatus, vectors of CYP (32), were maintained on
oat, Avena sativa L., inside plastic and nylon cages in growth chambers at
25°C and a photoperiod of L16:D8. To evaluate phytoplasma gene expres-
sion profiles in A. thaliana, experimental plants were inoculated with CYP
by the use of M. quadripunctulatus vector. About 100 M. quadripunctula-
tus nymphs were fed on infected daisies for an acquisition access period
(AAP) of 7 days and were then transferred on oat (immune to CYP) for a
25-day latency period (LP). Thirty-six A. thaliana plants were singly ex-
posed to three infective insects for a 72-h inoculation access period (IAP)
and were then treated with insecticide. Leaf samples were collected from
10 A. thaliana plants at 10, 14, 21, and 28 days postinoculation (dpi) for
nucleic acid extraction. To evaluate the phytoplasma gene expression pro-
file in insect vector, CYP-infected E. variegatus and M. quadripunctulatus
were used. About 200 nymphs of each species were collected from healthy
colonies, caged together for a 7-day AAP on CYP-source daisies, and then
maintained on healthy oat plants. About 15 insects of each species were
collected at 7, 14, 21, 28, and 35 days postacquisition (dpa) for nucleic acid
extraction.

Extraction of nucleic acids. Plant samples (about 200 mg of leaves),
collected at different dpi, were pooled and divided into 100-mg aliquots
stored at �80°C before DNA and RNA extraction.

Total DNA was extracted from 100 mg of plant material using a mod-
ified cetyltrimethyl ammonium bromide (CTAB) procedure originally
described in reference 33, and the final DNA pellet was dissolved in 50 �l
of sterile double-distilled water (ddH2O). Total RNA from plant tissue
was extracted using TRIzol reagent (Invitrogen, Carlsbad, CA, USA) fol-
lowing the manufacturer’s instructions. Insect samples collected at differ-
ent dpa were stored at �80°C before DNA and RNA extraction. Both total
DNA and total RNA were extracted from single insects. A few liquid ni-
trogen drops were spilled into a 1.5-ml tube containing single leafhopper
and the insect was then quickly crushed using a sterile micropestel in 200
�l of TE buffer (10 mM Tris, 1 mM EDTA) prepared with diethyl pyro-
carbonate (DEPC) (0.1%) water. The resulting homogenate suspension
was rapidly divided for DNA and RNA extraction; 100 �l was added to 400
�l of 3% CTAB buffer and treated as detailed before for DNA extraction,
whereas 100 �l was added to 400 �l of TRIzol reagent (Invitrogen, USA)
for RNA extraction following the manufacturer’s instructions. Total RNA
samples, extracted from both plants and insects, were treated with RNase-
free DNase I (Life Technologies, Monza, Italy) in the supplied buffer to
avoid residual DNA contamination. Following the digestion, the DNase
was inactivated by phenol-chloroform extraction according to the man-
ufacturer’s instructions. RNA was finally suspended in 30 �l of RNase-
free water containing 0.1% DEPC. Nucleic acid extracts were analyzed in
a NanoDrop spectrophotometer to evaluate the concentration and purity
and stored at �80°C.

Phytoplasma detection and quantification. The presence of CYP in
A. thaliana, E. variegatus, and M. quadripunctulatus samples was verified
by qPCR using the protocol described in reference 34. The DNA extracts
from 10 infected plants and from 8 infected insects of both species for each
sampling date (a total of 40 samples for each of the three species) were
used as the template in qPCR to measure the absolute number of phyto-
plasma genome units (GU) per nanogram of host DNA (35). The quan-
tification of phytoplasma cells was achieved by comparing the quantifica-
tion cycles (Cqs) of the samples with those of three dilutions of pOP74
plasmid, containing a fragment of the CYP 16S rRNA gene (35). One fg of
pOP74 contains 194 molecules of plasmid, with each containing a single
copy of the CYP 16S rRNA gene. Because this gene is present in two copies
in phytoplasma genomes, 1 fg of pOP74 corresponded to 97 CYP cells.
The final concentration of CYP cells was expressed as CYP GU/100 mg of
leaf sample or as CYP GU/insect.

cDNA synthesis and mRNA quantification. For absolute quantifica-
tion of phytoplasma mRNAs during A. thaliana and insect vector infec-
tion, standard curves were produced using serial dilutions of recombinant
plasmids carrying a fragment of the corresponding genes (recombinant
plasmid DNA [recDNA]). CYP genes were selected based on sequences
from a whole-genome shotgun sequencing project that have been depos-
ited at DDBJ/EMBL/GenBank under accession number JSWH00000000.
In the absence of a phytoplasma endogenous control mRNA, the expres-
sion level of each pathogen transcript was correlated to the bacterial pop-
ulation measured by qPCR for each experimental date. Fragments of 14
selected genes were amplified by conventional PCRs driven by specific
primers designed through the use of Primer Express software v3.0.1 (Ap-
plied Biosystems, Branchburg, NJ, USA) and of sequences obtained by
Illumina sequencing of the CYP genome according to the method de-
scribed in reference 36 (Table 1). Amplicons were subjected to gel purifi-
cation using a GeneClean Turbo kit (MP Biomedicals, Solon, OH, USA),
cloned into pGEM-T Easy vector (Promega, Madison, WI, USA), and
transformed in Escherichia coli DH5�. Plasmids were purified using a Fast
Plasmid minikit (Eppendorf AG, Hamburg, Germany) and sequenced
with universal primers M13F and M13R. The number of plasmid copies
per microliter was derived from the concentration measured at the Nano-
Drop spectrophotometer, using the following formula: M � C � N/S,
where M is the number of molecules per microliter, C the RNA concen-
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tration (in ng/�l), S the molecular weight of the fragment, and N a factor
derived from the Avogadro constant. recDNA was diluted, distributed in
aliquots, and stored at �20°C to be used as a standard for qPCR. Standard
curves were constructed by linear regression analysis of the Cq value of
each standard dilution replicate over the log of the number of plasmid
copies present in each sample. Data acquisition and analysis were handled
by the use of CFX Manager software, version 3.0, which automatically
calculates the Cq values and the parameters of the standard curves. qPCR
efficiency (E) was calculated by the formula E � eln10/�s � 1, where e
represents the base of the natural logarithm and a slope (s) value of
�3.322 (E � 2) represents 100% efficiency. For each sampling date,
cDNA was synthesized from total RNA (500 ng) using a High Capacity
cDNA reverse transcription kit (Applied Biosystems, USA) according to
the manufacturer’s instructions and was stored in sterile microtubes until
the qPCRs were performed. SYBR green-based qPCR protocols were op-
timized for each selected gene by adjusting the concentrations of forward
and reverse primers from 100 �M to 300 �M. The final qPCR mix con-
tained 1 �l of cDNA, 1� iQ SYBR green Supermix (Bio-Rad/Life Science
Research, Hercules, CA, USA), 100 to 300 nM (each) primers (Table 1),
and sterile double-distilled water added to reach a final volume of 25 �l.
Reaction conditions were as follows: 5 min at 95°C and 45 cycles of 15 s at
95°C, 30 s at 59°C, and 30 s at 72°C. On each plate, samples were run in
duplicate together with four 10-fold serial dilutions of the corresponding
standard plasmid. The use of DNA standard curves for transcript quanti-
fication allowed comparisons of expression data from different genes (29,
38). Complete qPCR mix with total RNA and sterile distilled water instead
of cDNA were used as negative controls in each plate. Reactions were
carried out in a CFX Connect real-time PCR detection system (Bio-Rad,
USA) supported by CFX Manager software, version 3.0. Melting curves
were produced at the end of the PCR to assess the reaction specificity.

Data analysis. Absolute quantification of bacterial transcripts was
performed. For each phytoplasma gene, an expression index (EI) was
calculated, indicating the transcript copy number per phytoplasma cell at
each sampling date and in each infected host, according to the guidelines
published for cultivable bacteria (26, 28). Regression analyses were also
performed to compare the gene expression trends over time among the
three hosts, irrespective of the absolute levels of the individual gene ex-
pression. To compare the phytoplasma population sizes as well as the EI
values of the genes at different times in each host, analysis of variance
(ANOVA) was performed on ranks (Kruskal-Wallis test), followed by
Tukey or Dunn tests for multiple comparisons. For each gene, in all the
three host species, decreased expression from the early to the late sampling
dates was observed. To compare the decreases in expression of genes
within each functional category in the three host species, linear regression
was calculated on the basis of the log-transformed EI of each gene and the
sampling times. For A. thaliana samples, the first sampling date (10 dpi)
was omitted from regression analysis, due to the high variances among the
EI values measured at the initial phase of infection. To compare CYP gene
expression levels among the different host species, the EI values from the
first two sampling dates (10 and 14 dpi and 7 and 14 dpa for the plant and
insect samples, respectively) were pooled, as they did not differ signifi-
cantly, and were analyzed by ANOVA performed on ranks (Kruskal-Wal-
lis test), followed by the Dunn test for multiple comparisons. For each
gene, in all three species, decreased expression was observed from the early
to the late sampling dates; to compare the decreases in expression of the
genes within each functional category in the three species, linear regres-
sion was calculated on the basis of the log-transformed EI of each gene and
the sampling times. For A. thaliana samples, the first sampling date (10
dpi) was omitted from regression analysis, due to the high variances
among EI values measured at the initial phase of infection. All statistical
analyses were performed with SigmaPlot 11.0 (SyStat).

Nucleotide sequence accession numbers. The strain CYP gene se-
quences from the whole-genome shotgun sequencing project have been
deposited at DDBJ/EMBL/GenBank under accession number JSWH0000
0000.

RESULTS
Phytoplasma detection and quantification. Diagnostic assays
confirmed the presence of CYP in all A. thaliana plants at each
sampling date. The phytoplasma population, expressed as CYP
cells/100 mg of plant tissue, significantly increased from 10 dpi to
21 dpi (Fig. 1), and calculated values ranged from 2.23E�06 at 10
dpi to 2.93E�09 at 21 dpi (see Table S1 in the supplemental ma-
terial). Diagnostic assays confirmed the presence of CYP in more
than 80% of the E. variegatus samples at each sampling date and in
all M. quadripunctulatus samples irrespective of the sampling date.
The phytoplasma population increased from 7 to 21 dpa in both
species (Fig. 1), and calculated values ranged from 1.75E�03 and
3.30E�03 at 7 dpa to 1.17E�07 and 3.57E�07 at 35 dpa for E.
variegatus and M. quadripunctulatus, respectively (see Table S1 in
the supplemental material).

Optimization of qPCR assays. For each target gene, specific
primers were designed using CYP sequences. The primer list and
the corresponding amplification conditions (annealing tempera-
ture and primer concentration) are reported in Table 1. A specific
signal was obtained following melting analysis of the qPCR am-
plicons, while no amplification was obtained from no-reverse-
transcribed-RNA and from no-template controls. Melting peak
temperatures ranged from 76.5°C (sap54) to 83.5°C (zntA).

To estimate the expression levels of different CYP genes, the
mRNA absolute quantity was divided by the phytoplasma titer
measured in the corresponding sample. A plasmid standard curve,
ranging from 10E�8 to 10E�4 gene copies, was set up for each
target gene. Efficiencies of qPCRs ranged between 74.8% and
96.0% for primers amplifying the tengu and imp genes, respec-
tively, whereas correlation coefficients ranged from 0.992 (sap67)
to 1.000 (imp) (Table 1). Unbalanced primer final concentrations
were optimized to improve the efficiency of reactions of primers
amplifying amp-, imp-, ftsY-, zntA-, and sap67-specific amplicons
(Table 1).

Phytoplasma transcript levels in Arabidopsis thaliana. Mean
copy numbers of transcripts per CYP cell in leaf tissues of Arabi-
dopsis thaliana sampled at 10, 14, 21, and 28 dpi are presented in
Table S2 in the supplemental material.

Immunodominant membrane proteins. amp showed the
highest transcript level among the analyzed CYP genes in A. thali-
ana challenged over time by phytoplasma infection (see Table S2
in the supplemental material). As with most of other CYP genes,
amp transcripts decreased significantly in the late phase of infec-
tion (28 dpi) (Fig. 2 and Table 2). The mean expression level of
amp was always higher than that of imp. On the other hand, imp
transcript levels were constant from 10 to 28 dpi, imp being the
most stable CYP gene during phytoplasma infection of A. thaliana
as confirmed by the regression analyses (Fig. 2 and Table 2).

Generic transporters. mscL transcripts were the most abun-
dant within this functional category, showing a mean expression
level about 30 times higher than that of mdlB at each sampling
date, from 70 to over 100 times higher than that of ftsY, and from
70 to over 500 times higher than that of oppC from 10 to 28 dpi
(Fig. 2; see also Table S2 in the supplemental material). In line with
this observation, oppC showed a rapid decrease of expression over
time, as evidenced by the regression analysis (Fig. 2 and Table 2).
Indeed, the oppC slope (absolute value) was the highest among
those of the analyzed CYP genes in A. thaliana. Transcript levels of
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the other generic and specific transporter genes significantly de-
creased over time but at lower rates (Fig. 2).

Specific transporters. The transcript levels of zntA were higher
than those of artI under all conditions and time points (Fig. 2; see
also Table S2 in the supplemental material). Mean expression lev-
els of both artI and zntA decreased significantly in the late phase of
infection (28 dpi). Regression analysis (Fig. 2 and Table 2) con-
firmed a significant decrease of transcript levels for both genes
over time, indicating a correlation with sampling time for zntA
stronger than that seen with artI and all other generic transporter
genes except oppC.

Secreted proteins. Considering all 14 CYP genes analyzed,
tengu and sap54 were the second and the fourth most abundant
transcripts under the A. thaliana host conditions, following amp
and mscL, respectively. The tengu transcripts were the most abun-
dant in this category (Fig. 2; see also Table S2 in the supplemental
material), and tengu showed the second lowest regression slope
after that of imp (Fig. 2 and Table 2). In contrast, a drop in the
transcript levels of the other secreted proteins was clearly evident
in the regression analysis, as slopes for these genes (absolute val-
ues) were the highest among the CYP genes analyzed in A. thali-
ana, just below the slope of oppC. sap54 showed the second highest
transcript level and the most evident expression decrease over
time (Fig. 2 and Table 2).

General metabolism. The ribosomal rpsU gene showed a
mean transcript level about five times higher than that of pgsA, at
each sampling date (Fig. 2; see also Table S2 in the supplemental
material). Mean EI values of both rpsU and pgsA decreased signif-
icantly in the late infection phases. Regression analysis (Fig. 2 and
Table 2) also showed a significant decrease in the transcription of
both genes, characterized by very similar slopes.

Phytoplasma gene transcript levels in Euscelidius variegatus.
Mean copy numbers of transcripts per CYP cell in individual E.
variegatus sampled at 7, 14, 21, 28, and 35 dpa are presented in
Table S3 in the supplemental material.

Immunodominant membrane proteins. amp showed the
highest EI among the analyzed CYP genes in E. variegatus individ-
uals (see Table S3 in the supplemental material). amp and imp EI
values did not change significantly during the infection in this
vector species as confirmed by the regression analyses (Fig. 2 and
Table 2).

Generic transporters. Among the transporter genes, mscL
produced the most abundant transcripts (see Table S3 in the sup-
plemental material). Also, CYP generic transporter genes did not
show significant changes of EI during phytoplasma infection of E.
variegatus individuals (see Table S3). Regression analysis con-
firmed this result, as the EI values of all genes but mscL did not vary
with time, and the regression of mscL transcript levels over time
was barely significant (Fig. 2 and Table 2).

Specific transporters. The transcript levels of zntA were always
higher than those of artI (see Table S3 in the supplemental mate-
rial). The mean EI of zntA, but not that of artI, decreased signifi-
cantly in the late phase of infection (35 dpa; see Table S4 in the
supplemental material), and its regression showed the highest
slope (absolute value) among the other CYP generic and specific
transporter genes in the E. variegatus host condition (Fig. 2 and
Table 1).

Secreted proteins. The transcripts of tengu and sap54 were the
second and the third most abundant under the E. variegatus host
conditions, following those of amp. Indeed, tengu was the most

FIG 1 CYP population measured in leaf tissues of Arabidopsis thaliana (A) as
a function of sampling time (10, 14, 21, and 28 days postinoculation [dpi]) and
in individuals of Euscelidius variegatus (B) and Macrosteles quadripunctulatus
(C) as a function of sampling time (7, 14, 21, 28, and 35 days postacquisition
[dpa]). In all cases, error bars indicate standard errors of the means.

CYP Transcription in One Plant and Two Vector Species

April 2015 Volume 81 Number 7 aem.asm.org 2595Applied and Environmental Microbiology

 on A
ugust 27, 2015 by U

niversity of T
orino

http://aem
.asm

.org/
D

ow
nloaded from

 

http://aem.asm.org
http://aem.asm.org/


FIG 2 Plot of linear regression analysis of log copy number of transcripts per phytoplasma cell (log expression index [LOG EI]) of chrysanthemum yellows
phytoplasma (CYP) genes encoding immunodominant membrane proteins (A), generic transporters (B), specific transporters (C), secreted proteins (D), and
proteins involved in general metabolism (E) measured in leaf tissues of Arabidopsis thaliana as a function of sampling time (14, 21, and 28 days postinoculation
[dpi]) and in individuals of Euscelidius variegatus and Macrosteles quadripunctulatus as a function of sampling time (7, 14, 21, 28, and 35 days postacquisition
[dpa]). In all cases, error bars indicate standard errors of the means.
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highly transcribed gene within its functional category (see Table
S3 in the supplemental material). sap54 was the only gene showing
a significant decrease of its transcript levels over time (see Table
S3), while regression analyses indicated a significant negative cor-
relation of EI and time for all analyzed secreted protein genes (Fig.
2 and Table 2).

General metabolism. The ribosomal rpsU and pgsA genes
showed analogous transcript levels in the early phase of infection
(Fig. 2; see also Table S3 in the supplemental material). While the
rpsU EI did not change over time (see Table S3 in the supplemental
material), transcript levels of pgsA decreased significantly from the
early to late infection phases (Fig. 2 and Table 1).

Phytoplasma gene transcript levels in Macrosteles quad-
ripunctulatus. Mean copy numbers of transcripts per CYP cell in
individual M. quadripunctulatus samples collected at 7, 14, 21, 28,
and 35 dpa are presented in Table S4 in the supplemental material.

Immunodominant membrane proteins. In M. quadripunctu-
latus, amp showed the highest EI of all the analyzed CYP genes (see
Table S4 in the supplemental material). The transcript levels de-
creased significantly in both late phases of infection (28 and 35
dpa; see Table S4), and regression analyses confirmed this result
(Fig. 2 and Table 2). Mean transcript levels of amp were about 400
times higher than those of imp (see Table S4).

Generic transporters. mscL was the third most highly tran-
scribed CYP gene in infected M. quadripunctulatus, following amp
and tengu, and its transcripts were the most abundant within this
functional category (see Table S4 in the supplemental material).
All generic transporter genes showed a significant decrease of
transcript levels over time (see Table S4), with oppC showing the
lowest (absolute value) regression slope over time of all CYP genes
in the M. quadripunctulatus host (Fig. 2 and Table 1).

Specific transporters. zntA and artI showed similar transcript
levels in infected M. quadripunctulatus samples (see Table S4 in
the supplemental material). The mean EI values of both genes
decreased significantly in the late infection phase (Fig. 2 and Table
2). A more severe drop of transcript levels was recorded for zntA
than for artI.

Secreted proteins. As seen in A. thaliana, tengu and sap54 were
the second and the fourth most highly expressed CYP genes in
infected M. quadripunctulatus samples, and the tengu transcripts
were the most abundant within this category (see Table S4 in the
supplemental material). As seen in A. thaliana, all secreted pro-
tein-coding genes showed a significant EI decrease over time (see
Table S4), with similar slope values in the regression analysis (Fig.
2 and Table 2).

General metabolism. As seen in E. variegatus, the ribosomal
rpsU and pgsA genes showed similar transcript levels at the earliest
sampling date (see Table S4 in the supplemental material). Regres-
sion analysis showed a stronger decrease over time for pgsA, with
the highest (absolute value) slope of all the analyzed CYP genes in
the M. quadripunctulatus host environment (Fig. 2 and Table 1).

Comparison of gene transcript levels among species. To
compare CYP gene transcript profiles among the three hosts (see
Table S5 in the supplemental material), the transcript levels of all
analyzed CYP genes at the first two sampling dates (10 and 14 dpi
and 7 and 14 dpa, for plant and insect samples, respectively) were
pooled within each species, as they did not differ significantly (see
Tables S2 to S4). Generally, CYP transcript levels were higher in
the plant hosts than in the insect hosts and, for the two insect
species, were higher in E. variegatus than in M. quadripunctulatus.
However, CYP transcript levels did not significantly differ be-
tween A. thaliana and E. variegatus samples, except for amp, mscL,
artI, and tengu. Transcripts of those four genes, together with
mdlB and rpsU, were present at similar levels in the two insect
vectors. The EI value for most CYP genes was significantly lower in
M. quadripunctulatus than in A. thaliana, with the exception of
sap67 and pgsA (see Table S5 in the supplemental material). amp,
tengu, and mscL were always the most abundant CYP transcripts in
each host species (see Table S5). On the other hand, sap68, pgsA,
and sap67 produced the three least abundant CYP transcript levels
in A. thaliana, while artI, oppC, and ftsY or zntA showed the lowest
transcript levels in E. variegatus and M. quadripunctulatus, respec-
tively. The timing and rate of decrease in CYP gene transcript
levels over time differed among the three host species (Table 2).

TABLE 2 Regression analysis parameters of log expression index values in function of sampling times of chrysanthemum yellows phytoplasma
genes, grouped by functional category and measured in Arabidopsis thaliana, Euscelidius variegatus, and Macrosteles quadripunctulatus samplesa

Functional category
Gene
name

Arabidopsis thaliana Euscelidius variegatus Macrosteles quadripunctulatus

Slope R2 P n Slope R2 P n Slope R2 P n

Immunodominant membrane
proteins

amp �0.085 0.634 �0.001 30 �0.007 0.023 0.357 39 �0.048 0.611 �0.001 40
imp �0.040 0.164 0.026 30 �0.004 0.009 0.576 38 �0.040 0.586 �0.001 39

Generic transporters mscL �0.079 0.497 �0.001 30 �0.015 0.134 0.028 36 �0.036 0.488 �0.001 39
mdlB �0.081 0.560 �0.001 30 �0.011 0.101 0.055 37 �0.036 0.489 �0.001 40
oppC �0.120 0.752 �0.001 30 �0.006 0.023 0.364 38 �0.023 0.314 �0.001 39
ftsY �0.089 0.665 �0.001 30 �0.013 0.082 0.089 36 �0.035 0.477 �0.001 39

Specific transporters artI �0.087 0.655 �0.001 29 �0.006 0.012 0.604 25 �0.024 0.210 0.003 39
zntA �0.099 0.680 �0.001 29 �0.020 0.281 �0.001 37 �0.036 0.524 �0.001 39

Secreted proteins sap54 �0.118 0.613 �0.001 30 �0.032 0.330 �0.001 38 �0.048 0.630 �0.001 40
sap67 �0.099 0.522 �0.001 30 �0.021 0.234 0.004 34 �0.043 0.555 �0.001 36
sap68 �0.107 0.680 �0.001 30 �0.017 0.150 0.018 37 �0.047 0.645 �0.001 38
tengu �0.069 0.470 �0.001 30 �0.025 0.300 �0.001 36 �0.053 0.661 �0.001 40

General metabolism pgsA �0.084 0.555 �0.001 29 �0.024 0.371 �0.001 36 �0.058 0.843 �0.001 38
rpsU �0.081 0.639 �0.001 30 �0.006 0.037 0.264 36 �0.030 0.519 �0.001 40

a Nonsignificant (P 	 0.05) regression data are indicated in bold.
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Generally, transcript levels of CYP analyzed genes dropped more
severely after infection in the plant (regression slopes ranging
from �0.081 to �0.120; Table 2) relative to colonization of the
insects (regression slopes ranging from �0.004 to �0.580; Table
2) and more severely in M. quadripunctulatus (regression slopes
ranging from �0.024 to �0.058; Table 2) than in E. variegatus
(regression slopes ranging from �0.004 to �0.032; Table 2). In-
deed, only seven CYP genes showed significantly decreased tran-
script levels related to increasing time in the latter species. How-
ever, for all the phytoplasma genes analyzed in A. thaliana and M.
quadripunctulatus, decreased transcript levels were significantly
related to increasing time after infection (Table 2). Secreted pro-
tein coding genes on average showed the strongest decrease of
transcript levels in both vector and plant species, with the excep-
tion of tengu in A. thaliana. The transcript levels of oppC and
zntA transporters decreased with time in A. thaliana, while the
drop in the EI values of generic and specific transporter genes was
less evident in the vector species. The pgsA and rpsU EI values
displayed very similar decreases over time in A. thaliana samples,
whereas, in insects of both species, that pgsA transcript level
dropped more severely than that of rpsU (for pgsA and rpsU in E.
variegatus and M. quadripunctulatus, regression slopes of �0.024
and �0.006 and regression slopes of �0.058 and �0.030, respec-
tively, were determined; Table 2). Finally, while both the amp and
the imp EI values decreased over time in A. thaliana and M. quad-
ripunctulatus, the transcript levels of both genes did not vary in E.
variegatus.

DISCUSSION

We report a comparison of transcript levels of selected phyto-
plasma genes in plant and vector species at different moments of
the infection cycle. Target genes were selected according to litera-
ture analyses (16) and their potential role in phytoplasma adapta-
tion to different environments: the plant and the insect.

Target gene transcript levels were measured over time by re-
verse transcription (RT) and qPCR, which allows the quantifica-
tion of mRNA levels in bacteria (39–42). For data normalization,
the transcript levels of bacterial target genes may be related to the
number of cells obtained through cell culture (28), to the total
RNA mass input in the RT-PCR, or to the internal reference con-
trol genes (43). Normalization of bacterial transcripts in relation
to genomic DNA (gDNA) from cell culture or recombinant plas-
mid DNA (recDNA) has also been used (22, 27, 29). For phyto-
plasmas, methods based on cell culture are not available and total
RNA input in the qPCR is always contaminated by large amounts
of host RNA. Although the use of internal reference genes has been
suggested for phytoplasma transcript normalization (18), this
may not be suitable for gene expression analyses over time and in
different hosts, as evidenced in other studies of relative quantifi-
cations of bacterial gene expression levels (22, 28). In this work,
quantification of CYP transcripts was performed through the use
of standard recDNA curves (29, 44) and an EI, calculated by di-
viding the gene transcript copy number and phytoplasma cell
number measured at the same sampling date.

The multiplication pattern of CYP in A. thaliana was similar to
that in C. carinatum (45), with active phytoplasma multiplication
at up to 3 weeks postinoculation, followed by the maintenance of
a stationary phytoplasma population size until the end of the ex-
periment (28 dpi).

All selected CYP gene transcripts were present at detectable

levels in the three hosts at every sampling date, suggesting their
active role in phytoplasma cell cycles. The presence of less than
one transcript copy number per CYP cell recorded for all host
species, usually at late sampling dates, indicates that not all CYP
cells contained each gene transcript at that time of the infection.
Generally, transcript levels of most of the 14 selected genes de-
creased more significantly in the plant and in M. quadripunctula-
tus from early to late samplings, while the decrease in E. variegatus
was less evident. In the former species, phytoplasma multiplica-
tion is very active (30) and is associated with some degree of
pathogenicity (46). In E. variegatus, transcript levels of most of the
selected target genes did not vary significantly during the infection
cycle. In this species, phytoplasma multiplication is less efficient
(30); in fact, CYP population sizes were always below those mea-
sured in M. quadripunctulatus at each sampling date, and no
pathogenic effects were recorded (46). In the case of CYP, due to
the low phytoplasma population in the infected vectors and plant,
the first sampling points were set at 7 and 10 days postinfection
of the insect and plant hosts, respectively. Under these conditions,
the transcript levels of most analyzed genes decreased with time
irrespective of the host species, and our experimental conditions
did not allow us to arrive at any conclusion with respect to the very
early phases of infection.

Antigenic membrane protein genes. Phytoplasmas within the
“Ca. Phytoplasma asteris” species carry genes that encode two
immunodominant membrane proteins, Imp and Amp (14), and
both of the genes encoding those proteins are objects of positive
selection (13, 47). The amp transcripts were the most abundant of
all the analyzed gene transcripts in all three host species, and the
amp transcript levels decreased in A. thaliana and M. quad-
ripunctulatus during the CYP infection cycle. Amp interacts spe-
cifically with the M. striifrons actin vector (10), possibly to enable
phytoplasma motility (11). Indeed, amp transcript levels were sta-
ble during infection of E. variegatus, possibly implying a continu-
ous need of the gene product to reach stable colonization of the
insect body. Actually, CYP colonization of E. variegatus is slower
than that of M. quadripunctulatus (30). Accordingly, amp tran-
script levels decreased during infection of M. quadripunctulatus.
There is no information on the possible role of phytoplasma Amp
in plant, but the low EI in M. quadripunctulatus at 28 dpa (when
infective insects were caged for inoculation of healthy plants) and
the high EI in A. thaliana at the first sampling date (10 dpi) suggest
a role for Amp in the host switching for the colonization of the
plant. Irrespective of the host species, amp transcripts were always
more actively abundant than imp transcripts during the infection
cycle, and this was in line with a previous finding determined for a
closely related phytoplasma strain (13). Imp transcript levels were
constant over time in E. variegatus, but not in M. quadripunctula-
tus, suggesting different gene regulation patterns in the two vector
environments. imp was also the most stable gene with respect to
transcripts among the 14 studied in A. thaliana. Nothing is known
of the role of “Ca. Phytoplasma asteris” imp in the plant, although
this gene is under positive selection in different phytoplasmas (13,
15). Imp of “Ca. Phytoplasma mali” binds to plant actin with a
suggested role in phytoplasma motility (12).

Transporter genes. The “Ca. Phytoplasma asteris” genome in-
cludes several transporter genes (48, 49). Transcripts of genes in
this category were abundant in the plant host on average, and, in
particular, transcripts of mscL and artI were significantly more
abundant in A. thaliana than in the two vectors. Also, the mscL

Pacifico et al.

2598 aem.asm.org April 2015 Volume 81 Number 7Applied and Environmental Microbiology

 on A
ugust 27, 2015 by U

niversity of T
orino

http://aem
.asm

.org/
D

ow
nloaded from

 

http://aem.asm.org
http://aem.asm.org/


gene transcripts were the most abundant transporter gene tran-
scripts during the CYP infection cycle in the three hosts. Microbial
cells constitutively express the large mechanosensitive (MS) con-
ductance channel that opens in response to stretch forces in the
lipid bilayer, and the gene is upregulated in the presence of os-
motic downshocks to protect from cell lysis (50). Phytoplasmas
move from the plant to the vector body during feeding and are
therefore subjected to severe osmotic stresses, as the osmotic pres-
sure of the plant phloem is, on average, two to five times higher
than that of insect body fluids (51). mscL transcription might be
induced in the plant, when phytoplasma cells are exposed to high
osmolarity, to prepare for the eventuality of hypo-osmotic stress
conditions when phytoplasma cells are acquired by the vector.
Indeed, de novo gene expression cannot modulate the levels of MS
channel proteins on a short time scale (50). Moreover, Oshima et
al. (16) showed that phytoplasma growth in planta was partially
suppressed by gadolinium chloride, an inhibitor of the MscL os-
motic channel, emphasizing its additional role in facilitating phy-
toplasma growth in plant. Transcripts of other genes in this cate-
gory (artI and oppC) were among the least abundant during the
CYP infection cycle in both vectors. In bacteria, Opp transport
systems participate in a wide range of biological events, including
biofilm formation (52), antimicrobial-compound production
(53), and adaptation to different environments (54–57), through
the modulation of the cell membrane lipid profile (58). In bacte-
ria, artI is the periplasmic binding component of the arginine
transporter system, specifically binding arginine and ornithine.
Arginine is a key amino acid for the bacterial cell, and its metab-
olism and regulation are linked to the virulence of several patho-
genic bacterial species such as Mycobacterium tuberculosis, M. bo-
vis, Listeria monocytogenes, and Legionella pneumophila (59–62).
Phloem sap has, in general, a lower concentration of essential
amino acids than that found in optimal diets for some phloem
feeders (63). We can speculate that the presence of arginine in the
insect hosts downregulates the transcription of CYP artI and that
the transcription resumes upon inoculation of the phytoplasma in
the plant host. Interestingly, oppC, artI, ftsY, and mdlB transcript
levels were also stable during the CYP infection cycle in E. varie-
gatus and were among those that decreased least in M. quad-
ripunctulatus. This suggests that basal transcription of these genes
occurs in the insect milieu. In contrast, genes in this category were
subjected to severe transcript reduction over time in the plant,
oppC being the most dramatically affected. Zinc, together with
iron, manganese, and copper, is required by all living organisms,
and maintaining adequate intracellular levels of transition metals
is fundamental to the survival of all organisms. Transcript levels of
zntA, predicted to encode the soluble periplasmic metallochaper-
one that captures zinc and delivers it to the transmembrane com-
ponent of the transporter, decreased in the three hosts during
infection. Pathogens use low-metal conditions as a signal to rec-
ognize and respond to the host environment (64), and Salmonella
exploits the ZnuABC zinc transporter to maximize zinc availabil-
ity during growth within the infected animal under conditions
where amounts of free metals available for bacterial growth are
limited (65). The zntA EI value was lower for M. quadripunctulatus
than for E. variegatus, and the transcript levels increased by 10
days after phytoplasma inoculation in the plant host, suggesting a
role of zinc in the infection process. There is no information on
the possible role of phytoplasma transporter genes in plant host,
although the low EI value for M. quadripunctulatus at 28 dpa

(when infective insects were caged on healthy plants for IAP) and
the high EI value for all of the genes, except ftsY, in A. thaliana at
the first sampling date (10 dpi) suggest a role in the colonization
of the plant host. Recently, the involvement of transport proteins
as additional bacterial cell sensors has been explored (66), as these
proteins are well informed about the presence of substrates out-
side the cell. FtsY protein is involved in cellular secretion, as part of
the internal channel of the Sec secretion system that is functional
in the “Ca. Phytoplasma asteris” OY strain (67) and in the viru-
lence of Rickettsia spp. (68) and Pseudomonas aeruginosa (69).

Secreted proteins. Effector proteins are secreted from phyto-
plasmas via the Sec translocation system and function directly in
the host cells (70). About 50 putative secreted proteins are present
in phytoplasma genomes, and these effector genes differ from
those found in other plant-pathogenic bacteria (71). Some of
these have been shown to encode functional effectors, including
SAP11, SAP54, SAP67, SAP68, and TENGU (8). SAP11, known to
induce a bushy morphology and to enhance vector fitness by
blocking jasmonic acid biosynthesis in plants (72), was not found
in the draft genome of CYP, and it was not detected by PCR with
specific primers designed for the closely related AY-WB phyto-
plasma (73). Transcripts encoding the four secreted proteins were
all present in the three hosts, suggesting a role of these effectors
during the CYP life cycle in both plant and insect hosts. Interest-
ingly, sap67 transcripts were present at the same levels in A. thali-
ana and in the two vector species, while the tengu and sap54 tran-
scripts were among the most abundant transcripts in the two
insect vectors. SAP54 and its homolog, PHYL1, of “Ca. Phyto-
plasma asteris” AY-WB and OY, respectively, induce phyllody-
like flower abnormalities (74), probably through the ubiquitin-
mediated proteasome-dependent degradation of MADS domain
proteins involved in floral development (75, 76). TENGU is a
small, secreted peptide encoded by OYP that affects plant mor-
phology with the production of typical phytoplasma witches’
broom symptoms, through the inhibition of the auxin-related
pathways (77). The high EI values of sap54 and tengu during the
infection cycle of the two vectors together with the comparable EI
values of sap67 in plant and in the two insects indicate that these
genes must have a role in the infection of the animal host.

General metabolism. Transcripts encoding PgsA, the limiting
enzyme in the synthesis of phosphatidylglycerol, the major con-
stituent of bacterial membranes, were present at comparable levels
at early phases of infection of the plant and both insect species,
supporting its role in the maintenance of essential bacterial phos-
pholipids irrespective of the host species. Transcripts of rpsU, cod-
ing 30S ribosomal subunit protein S21, were more abundant in A.
thaliana than in M. quadripunctulatus, this being in line with pre-
vious results determined for OYP (16). Nevertheless, rpsU tran-
script levels in A. thaliana and in E. variegatus were similar and
were constant in the latter species at all analyzed time points. This
gene is known to be stably transcribed at different time points
through the entire in vitro life cycle of Bacillus cereus (78), and it
can be considered, together with the general and specific trans-
porter genes mdlB, oppC, ftsY, and artI, a candidate for future
normalization of CYP gene expression in E. variegatus.

Expression of 14 CYP phytoplasma genes at different times
postinfection of A. thaliana and the leafhopper vectors M. quad-
ripunctulatus and E. variegatus was addressed to highlight the dif-
ferent transcription profiles of the bacteria in the plant and animal
host. The transcription patterns of genes within the four analyzed
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categories differed according to the host species, suggesting that
the bacteria are able to sense diverse environments and respond
accordingly. Moreover, CYP transcript profiles of genes within the
same category differed between the two leafhoppers, indicating
the ability of CYP to distinguish between leafhopper host environ-
ments. Transcripts encoding Amp and the four secreted proteins
were present in the three hosts, suggesting the important role of
this immunodominant protein and unpredicted functions of
these secreted phytoplasma proteins also during leafhopper infec-
tion. To explain the observed decrease of phytoplasma transcript
levels during the CYP infection cycles in the plant and insect hosts
starting from 7 to 10 days postinfection onwards, we might spec-
ulate that, during host colonization, new phloem elements and
insect cells or organs are progressively invaded, possibly by ac-
tively multiplying and transcribing phytoplasma cells, while the
transcriptional activity of older cells may slow down. In this hy-
pothesis, phytoplasmas invading the plant phloem would form
aggregates (79) that might enter a stationary phase, possibly to
improve long-term survival, thereby increasing the likelihood of
transmission. In this hypothesis, the number of cells (EI denomi-
nator) entering the stationary phase would increase with time af-
ter inoculation, while the number of new colony-forming cells
would be low on average (as it would represent only a fraction of
the measured total phytoplasma DNA). A similar mechanism may
happen during colonization of the insect vectors, when phytoplas-
mas would not be able to escape the vector body and invade new
tissues without inoculation to a new plant. In line with this hy-
pothesis, phytoplasmas, being obligate parasites of plant and in-
sects, sense the environment and switch their metabolism accord-
ingly. Despite obvious differences, a very recent pioneer study has
proposed that the xylem-limited bacterium Xylella fastidiosa
switches its life style from adhesive cells capable of insect trans-
mission to an “exploratory” lifestyle for systemic spread within the
plant by production of outer membrane vesicles (80). Interest-
ingly, the release of these vesicles is suppressed by a diffusible
signal factor-dependent quorum-sensing system (80).
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