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Abstract. We present an automatic technique to transform a subclass
of featured transition systems into modal transition systems with ad-
ditional sets of variability constraints in the specific format accepted
by the variability model checker VMC. Both formal models are widely
used in the field of software product line engineering and both come
with a dedicated model checker. The transformation serves two purposes.
First, it contributes to a better understanding of the fundamental differ-
ences between the two approaches, basically concerning the way in which
variability constraints are represented (in terms of features and actions,
respectively). Second, it paves the way to compare the modelling and
analysis of product line behaviour in two different settings.

1 Introduction

Modern software systems come in many variants in order to satisfy multiple
varying user requirements [24]. Such variant-rich, configurable systems are de-
veloped and managed by techniques from the field known as software product
line engineering (SPLE) [23]. Feature-oriented software development (FOSD) [1]
is currently one of the most widely used approaches for modelling variability. A
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feature characterises a stakeholder visible piece of functionality or aspect of a sys-
tem and a feature diagram models all possible products of a configurable system
(e.g. a software product line) in a compact way in terms of their features [25].

Basically, a feature diagram is a hierarchical tree structure of features that
defines their presence in products (thus defining the valid product configura-
tions): optional features may be present provided their parent is, mandatory
features must be present provided their parent is, exactly one of the features
involved in an alternative relation must be present provided their parent is, and
at least one of the features involved in an or relation must be present provided
their parent is. Additional cross-tree constraints may be used to indicate that
the presence of one feature requires that of another or excludes the presence of
another feature (i.e. they are mutually exclusive).

Featured transition systems (FTS) were introduced in [14] as a semantic
model for the concise description of the behaviour of variability-intensive sys-
tems. An FTS is a doubly-labelled transition system (L2TS) with an additional
feature diagram. Each state is labelled with an atomic proposition while each
transition is labelled with an action and, using the improved definition from [13],
an associated feature expression (a Boolean formula defined over the set of fea-
tures) that needs to hold for this specific transition to be part of the executable
product behaviour. Hence an FTS models a family of labelled transition systems
(LTS), one per product, which can be obtained by projection.

Modal transition systems (MTS) were originally introduced in [21] to model
successive refinements (implementations) of partial specifications. They were
first proposed for the compact description of all possible operational behaviour
of the products of a product line in [18] and form the basis of numerous succes-
sive approaches in SPLE [2, 3, 17, 20, 22]. An MTS is an LTS that distinguishes
between admissible (may) and necessary (must) transitions. In this paper, we
use a specific variant that will be introduced in Sect. 3.

Variants of FTS and MTS are widely used in SPLE and they come with
dedicated model checkers. FTS model checkers like SNIP [12], now integrated
in the product line of model checkers ProVeLines [15], allow efficient family-
based SPL model checking capable of relating errors and undesired behaviour
to the exact set of products in which they occur. Such verification techniques
operate on an entire product line using variability knowledge about valid feature
configurations to deduce results for products, as opposed to enumerative product-
based verification in which individually generated products (or at most a subset)
are examined [26]. The MTS-based variability model checker VMC (fmt.isti.
cnr.it/vmc) [9, 10] combines elements of both analysis strategies.

There is an obvious trade-off between brute-force product-based analysis
with highly optimised model checkers for single product engineering, like SPIN
(spinroot.com), NuSMV (nusmv.fbk.eu) and mCRL2 (www.mcrl2.org), and
dedicated family-based analysis with SPL model checkers, like SNIP [12] and
the NuSMV extension of [11]. One of the goals of this paper is to set the stage
for a full-fledged comparison between SNIP and VMC.



In this paper, we present an automatic technique to transform FTS3 into
MTS (with additional sets of variability constraints and in the specific format
accepted by VMC). The transformation serves two purposes. First, it contributes
to a better understanding of the fundamental differences between the two models,
basically concerning the way in which variability constraints are represented (in
terms of features and actions, respectively). Second, it paves the way to compare
the modelling and analysis of product line behaviour in two different frameworks.

The paper starts with a running example in Sect. 2. In Sect. 3 we provide
the necessary background on MTS, after which we point out the differences with
respect to FTS in the way each deals with variability (constraints) in Sect. 4. The
main contribution of this paper, the transformation from FTS to MTS, is defined
in Sect. 5. Some model-checking features of VMC are presented in Sect. 6. In
Sect. 7, the transformation is performed on an FTS from the literature, after
which VMC is applied to the result. Conclusions and future work close the paper.

2 Running Example

We illustrate our transformation technique on a small running example (we
will present a larger example from the SPL literature in Sect. 7). We assume a
product line with three features (F, G, and H) and the feature diagram depicted
in Fig. 1, which defines the four valid product configurations depicted alongside.

Fig. 1. Feature diagram of running example

p1 = {F, G, H}
p2 = {F, H}
p3 = {G, H}
p4 = {G}

The allowed behaviour of the four products is modelled by the FTS in Fig. 2.
Formally, an FTS is a transition system with an associated feature diagram and
a labelling function that labels the transitions with an action and an additional
feature expression (i.e. a Boolean expression over the features). For instance, the
transition 1

a/F∧G
// 2 means that a only occurs in products having both features

F and G (i.e. in p1). We moreover require any action occurring more than once in
an FTS to be tagged with one and the same feature expression. Note that this
can easily be achieved by renaming or indexing possible multiple occurrences.
The specific behaviour of each of the products is modelled by the LTS in Fig. 2.

3 We consider a subclass of action-based FTS in which we ignore their state labels
(atomic propositions) and consider only their transition labels (actions).
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Fig. 2. FTS of running example and LTS of product configurations p1, p2, p3, and p4

3 Modal Transition Systems with Variability Constraints

We assume some familiarity with the principles of labelled transition systems
(LTS), model checking and action-based computation tree logic (ACTL) [4,6,16].

Recall that an MTS is an LTS that distinguishes admissible (may) from nec-
essary (must) transitions. By definition, every necessary transition is also an
admissible transition, while admissible but not necessary transitions are called
optional. Graphically, solid edges model necessary transitions while dotted edges
model optional transitions. Here we focus on the elaboration of MTS into a mod-
elling and analysis framework for the specification and verification of behavioural
variability in SPLE in [2,3,5]. This concerns a different semantics for refinement
of MTS into LTS (implementations) and the addition of an associated set of
so-called variability constraints. Next we explain this in more detail and from
now on we always intend this specific type of MTS when we speak of MTS. Some
commonalities and differences with the FTS of [14] are discussed in [3].

Like FTS, also an MTS models a family of LTS (one per product) which
can be obtained by turning each optional transition into a necessary transition
or by removing it; this differs fundamentally from the classical definition of re-
finement [21]. An MTS has to respect the notion of coherence (i.e. the set of
labels of the necessary transitions and that of the optional transitions must be
disjoint) and the refinement operation has to respect the notion of consistency
(i.e. the decision to turn one optional a-transition into a necessary one must be
repeated for all other optional a-transitions). Moreover, an MTS does not have
an associated feature diagram. Instead, it has an associated set of variability
constraints (expressed over action labels rather than over features), which each
product must satisfy. Let a range over LTS actions. Given an LTS L the fol-
lowing six different kind of variability constraints may be defined over L (where
“occurrence of an action a in L” is defined as “a being the label of a reachable
transition in L”):

a1 ALT · · · ALT an : precisely one of the n ≥ 2 actions a1, ..., an must occur in L;



a1 OR · · · OR an : at least one of the n ≥ 2 actions a1, ..., an must occur in L;
a1 EXC a2 : at most one of the actions a1 and a2 may occur in L;
a1 REQ a2 : action a2 must occur in L whenever a1 occurs in L;
a1 IFF (a2 ALT · · · ALT an) : precisely one of the n ≥ 2 actions a2, ..., an must

occur in L if and only if a1 occurs in L;
a1 IFF (a2 OR · · · OR an) : at least one of the n ≥ 2 actions a2, ..., an must occur

in L if and only if a1 occurs in L.

These constraints express exactly the standard type of relations that may be
modelled by means of a feature diagram (expressed in terms of actions, though).

VMC [9,10] is a dedicated model checker for this type of MTS modelling prod-
uct line variability. It accepts the specification of an MTS in process-algebraic
terms together with an optional set of variability constraints, upon which it
allows to perform two kinds of behavioural variability analyses (cf. Sect. 6):

1. The actual set of all valid product behaviour can explicitly be generated and
the resulting LTS can all be verified against one and the same logic property
(expressed in ACTL, cf. Sect. 6 for a definition).

2. A logic property (expressed in variability-aware ACTL, cf. Sect. 6 for a
definition) can directly be verified against the MTS, relying on the fact that
under certain syntactic conditions validity over the MTS guarantees validity
of the same property for all its products (cf. Theorems 2 and 3 in Sect. 6).

4 From Feature Constraints to Action Constraints

We use a simple example to show the role that reachability plays when trans-
forming an FTS (with constraints in terms of features and action labels tagged
with feature expressions) into an MTS with variability constraints (expressed in
terms of actions). Consider the FTS in Fig. 3 (left) and imagine that the feature
diagram gives rise to the constraint A requires C. It is immediate that a product
that contains the features A and C but not B is valid. The FTS projection for this
product (obtained by first removing all transitions whose feature expression is
not satisfied by A∧ C∧¬B and then all states and transitions that are no longer
reachable from the initial state) results in the LTS in Fig. 3 (right).

However, it is far from trivial to obtain this LTS in Fig. 3 (right) among
the valid products of an MTS with constraints on its actions, since this LTS
apparently violates the obvious translation of the (feature) constraint A REQ C
into the (action) constraint a REQ c, meaning that whenever action a occurs
(i.e. is reachable) then so does action c. The solution we propose is to introduce:

1. a new action for each feature (which allows to handle more complex feature
expressions);

2. a dummy transition for each action (which is used to verify the constraints).

The resulting MTS would be the one shown in Fig. 4 (left), where 1
{a,b,c,A,B,C}

// s

actually is a shorthand notation for a separate (may) transition for each action



and each feature. This MTS actually has the LTS in Fig. 4 (right) among its
valid products (note that a REQ c is now satisfied).

It is important to underline that our transformation is such that we are able
to ignore all dummy transitions when model checking. It is the combination of the
presence of dummy transitions and the aforementioned notion of consistency (cf.
Sect. 3), that makes this solution work. In the example, consistency guarantees
that whenever a c-labelled may transition from the initial state is preserved in the
LTS, then also any other reachable c-labelled may transition must be preserved.

1**
a/A

// 2
b/B

// 3
c/C

// 4 1**
a // 2

Fig. 3. FTS (left) and a valid product LTS (right)

1**
a //

{a,b,c,A,B,C} ((

2
b // 3

c // 4 1**
a //

{a,c,A,C} ((

2

s s

Fig. 4. MTS (left) and a valid product LTS (right)

5 Model Transformation

We assume, without loss of generality, that any action occurring more than once
in an FTS is tagged with one and the same feature expression (cf. Sect. 2).

Step 1: definition of valid products in terms of features. The type of variability
constraints accepted by VMC (cf. Sect. 3) and the fact that (in step 3) we
will add dummy transitions labelled with actions that represent features (as
anticipated in Sect. 4) allow to directly translate the feature diagram in a set
of variability constraints on features. For our running example we obtain the
following constraints: F OR G and F REQ H.

Step 2: definition of valid products in terms of actions. We define a logic formula
of the form a↔ φ for each transition a/φ−−→ in the FTS, i.e. we link each action with
its associated feature expression via a biconditional (iff). Moreover, all feature
expressions not directly translatable in one of the type of variability constraints
accepted by VMC (cf. Sect. 3) are transformed into conjunctive normal form
(CNF). For our running example we obtain the following propositional formulae:

a↔ (F ∧ G) ≡ (~a ∨ F) ∧ (~a ∨ G) ∧ (a ∨ ~F ∨ ~G)
b↔ (~F ∨ ~G) ≡ (b ∨ F) ∧ (b ∨ G) ∧ (~b ∨ ~F ∨ ~G)
c↔ H

d↔ F

e↔ G



To be able to accept any formula in CNF, we have slightly extended the set of
variability constraints accepted by VMC. In VMCv6.1, the constraint concerning
OR, i.e. a1 OR · · · OR an, can contain either ai (as before) or its negation ~ai.

Step 3: definition of valid products in MTS and additional variability constraints.
We define the FTS depicted in Fig. 2 in a process-algebraic setting, which can be
seen as the natural encoding of the graph (FTS) of Fig. 2, with the process terms
corresponding to the nodes of the graph and all actions ‘tagged’ with may rather
than with a feature expression. Actions in the FTS without an associated feature
expression are not tagged with may, i.e. they are considered ‘must’ actions.

We moreover create a dummy action for each resulting ‘may’ action and for
each non-mandatory feature, whose executions all result in a deadlock. Finally,
we create a new initial process from which the execution of a special action
behaviour leads to the FTS encoding, whereas a special action signature leads
to the execution of dummy actions.

In process algebra, the basic mechanism for constructing behavioural expres-
sions is action prefixing. The process a.P executes a and subsequently behaves
as process P. The process P+Q non-deterministically chooses to behave as either
process P or process Q. Finally, nil stands for both successful termination and
deadlock. We use net SYS to indicate the initial process of a process model. For
our running example, we obtain the process-algebraic definition of an MTS with
an additional set of variability constraints given in Fig. 5 (on the left-hand side).

Step 4: definition of live action sets and transformation into must transitions.
We present two optimisations for model-checking purposes: the explicit definition
of additional live action sets (explained in more detail in the next section) and
the transformation of may transitions into must transitions. For both, we explore
the behaviour process created in step 3.

1. For each subprocess T that can be reached from n other subprocesses by
performing one of the actions a1, . . . , an (possibly tagged with may) while
from T itself a ‘may’ action a(may) can be executed, the latter is substituted
by ‘must’ action a whenever

∧
1≤i≤n (ai → a) is a tautology with respect

to all other constraints. Furthermore, the corresponding dummy action is
eliminated together with the associated constraints.

2. For each subprocess T (corresponding to a node in the FTS) from which n > 1
‘may’ actions a1(may), . . . , an(may) (and no ‘must’ actions) can be executed,
a1 ∨ · · · ∨ an is added to the set of variability constraints (if not already
present) whenever it is a tautology with respect to all other constraints.

In our running example, no action can be transformed, while a OR b and d OR e
are added to the set of variability constraints according to 2.

These optimisations help the model checker to understand a model’s live
states and to take full advantage of the specificities of variability-aware ACTL
(i.e. the so-called ‘boxed’ operators). Both will become more clear in Sect. 6.



Behaviour = behaviour.T1
T1 = a(may).T2 + b(may).T2
T2 = c.T3
T3 = d(may).T4 + e(may).T4
T4 = nil

Signature = signature.(
-- may actions
a(may).nil + b(may).nil +
c(may).nil + d(may).nil +
e(may).nil +
-- optional features
F(may).nil + G(may).nil +
H(may).nil

)

net SYS = Behaviour + Signature

Constraints {
-- Directly from the feature diagram
F OR G
F REQ H
-- Relating feature expressions to actions:
-- a IFF (F AND G) in CNF:
not a OR F
not a OR G
a OR not F OR not G
-- b IFF (~F OR ~G) in CNF:
not b OR not F OR not G
b OR F
b OR G
--
c IFF H
d IFF F
e IFF G

}

Fig. 5. VMC input model for the running example of Sect. 2 (left) and VMC generated
MTS of vending machine product line of Sect. 7 (right)

Soundness of model transformation. Given an FTS S and an MTS S′, let JSK
denote the set of valid product configurations for S, and let FTS(S) and MTS(S′)
denote the set of LTS products of S and S′, respectively.

Theorem 1 (Soundness of model transformation). Let S be an FTS and
S′ be the MTS obtained by the model transformation procedure described above.



1. There exist a bijection between JSK and MTS(S′) such that each p ∈ JSK is
associated to an LTS that contains a (dummy) transition with label F for
each feature F ∈ p and no transitions labelled with a feature not in p.

2. The set FTS(S) and the set of LTS obtained by omitting the dummy transi-
tions from the LTS in MTS(S′) are equal.

Proof (sketch). Each valid product configuration p ∈ JSK determines an LTS Sp,
called FTS projection.

1. Let p be a valid product configuration for S. Consider the LTS P obtained by
extending Sp with a transition for each action a in Sp (labelled by a) and for
each selected feature F ∈ p (labelled by F), whose executions result in a dead-
lock. Then, P ∈ MTS(S′) because the MTS variability constraints mimic
(by construction) the feature constraints of S and from the way in which
the MTS process generation is carried out. On the other hand, given an LTS
P ′ ∈MTS(S′) it is straightforward to recover a valid product configuration,
by dummy transitions labelled by features which occur in P ′.

2. Straightforward, reasoning as above. ut

Patently, removing the dummy transitions in the LTS in MTS(S′) may collapse
some LTS. This happens exactly when the FTS S is ambiguous (i.e. there are
at least two different valid product configurations that generate the same LTS).

6 Model Checking

The model transformation described in Sect. 5 allows to use VMC to verify prop-
erties over the entire product line or over its individual products alike. These
properties can be specified in the action-based branching-time temporal modal
logic ACTL (for products, i.e. LTS) or one of the fragments of its variability-
aware extension v-ACTL (for product lines, i.e. MTS) defined next. ACTL de-
fines action formulae (denoted by ψ), state formulae (denoted by φ), and path
formulae (denoted by π). Action formulae are Boolean compositions of actions.

Definition 1. Action formulae are built over a set {a, b, . . .} of atomic actions:

ψ ::= true | a(e) | ¬ψ | ψ ∧ ψ

Definition 2. The syntax of ACTL as accepted by VMC is defined as follows:

φ ::= true | ¬φ | φ ∧ φ | [χ]φ | 〈χ〉φ | E π | Aπ | µY.φ(Y ) | ν Y.φ(Y )
π ::= [φ {χ}U {χ′} φ′] | [φ {χ}U φ′] | [φ {χ}W {χ′} φ′] | [φ {χ}W φ′] |

X {χ} φ | F φ | F {χ} φ | Gφ

where Y is a propositional variable and φ(Y ) is syntactically monotone in Y .

In VMC, propositional operators ¬, ∨, ∧, and the least and greatest fixed-point
operators µ and ν are written as not, or, and, min, and max, respectively.



We provide some intuition for the less common (action-based) operators.
The action-based until operators [φ {χ}U φ′] ([φ {χ}U {χ′} φ′]) say that φ′
holds at some future state of the path (reached by a final action satisfying χ′),
while φ holds from the current state until that state is reached and all the
actions executed meanwhile along the path satisfy χ. The action-based weak
until operators [φ {χ}W φ′] and [φ {χ}W {χ′} φ′] (also called unless) hold on
a path either if the corresponding strong until operator holds or if for all states
of the path the formula φ holds and all actions executed on the path satisfy χ.

To make ACTL variability-aware, for the box, diamond and F operators we
defined also an interpretation that takes the modality of the transitions (may
or must) into account, resulting in v-ACTL. The intuitive interpretation of the
different variants of these operators is as follows. [χ]φ: in all next states reachable
by a may transition executing an action satisfying χ, φ holds. [χ]2 φ: in all next
states reachable by a must transition executing an action satisfying χ, φ holds.
F φ: there exists a future state in which φ holds. F2 φ: there exists a future
state in which φ holds and all transitions until that state are must transitions.
F {χ} φ: there exists a future state, reached by an action satisfying χ, in which
φ holds. F2 {χ} φ: there exists a future state, reached by an action satisfying χ,
in which φ holds and all transitions until that state are must transitions.

We now present two fragments of v-ACTL, called v-ACTL2 and v-ACTLive2,
which suffice for the specification of many interesting properties for product lines
and, moreover, enjoy some convenient properties concerning the preservation of
results from MTS to LTS (elaborated on below) which allow to perform a type
of family-based verification with linear complexity.4

Due to space limitation, we only present the syntax of these logics. We refer
to [5,8,9] for their semantics (and for proofs of the preservation theorems below5).
Definition 3. The syntax of the fragment v-ACTL2 of v-ACTL is defined as:

φ ::= false | true | φ ∧ φ | φ ∨ φ | [χ]φ | 〈χ〉2 φ |
EF2 φ | EF2 {χ} φ | AF2 φ | AF2 {χ} φ | AGφ | ¬ψ

where
ψ ::= false | true | ψ ∧ ψ | ψ ∨ ψ | 〈χ〉ψ | EF ψ | EF{χ} ψ | ¬φ

Note that v-ACTL2 consists of two parts. The first part is such that any formula
expressed in it that is true for the MTS, is also true for all products. The second
part (which in v-ACTL2 appears negated) is such that any formula expressed
in it that is false for the MTS, is also false for all products.

For the sequel, let S be an MTS. A formula φ is said to be preserved by
refinement if S |= φ implies Sp |= φ, for all products (i.e. refinements) Sp of S.
Theorem 2 (Preservation by refinement). Any formula φ expressed in v-
ACTL2 is preserved by refinement.
4 The complexity of verification with either v-ACTL2 or v-ACTLive2 in VMC is linear
with respect to the size of the state space and with respect to the size of the formula.

5 Actually, the results presented in Theorems 2 and 3 are slight extensions of those
presented in [5,8,9] by including the neXt and Until operators not considered there.



We also define a wider fragment of v-ACTL, which again has two parts, but with
a slightly different characteristic: all formulae expressed in it that are valid over
a live MTS preserve their validity for all valid products of that MTS. An MTS is
live if all its states are live. Intuitively, a live state of an MTS is a state that does
not occur as a final state in any of its products. So-called live action sets are
used to define such states. For instance, a state q with two outgoing transitions
whose actions labels a and b are in an or relation, is a live state based on the
fact that a OR b gives rise to a live action set {a, b}: it guarantees that in any
product in which q occurs, q has at least one outgoing transition.

Definition 4. The syntax of the fragment v-ACTLive2 of v-ACTL is defined as:

φ ::= false | true | φ ∧ φ | φ ∨ φ | [χ]φ | 〈χ〉2 φ | EF2 φ | EF2 {χ} φ |
A[φ {χ}U {χ′} φ′] | A[φ {χ}U φ′] | A[φ {χ}W {χ′} φ′] | A[φ {χ}W φ′] |
AX {χ} φ | AF φ | AF {χ} φ | AF2 φ | AF2 {χ} φ | AGφ | ¬ψ

where

ψ ::= false | true | ψ ∧ ψ | ψ ∨ ψ | 〈χ〉ψ | E [φ {χ}U {χ′} φ′] | E [φ {χ}U φ′] |
E[φ {χ}W {χ′} φ′] | E[φ {χ}W φ′] | EX {χ} φ | EF ψ | EF {χ} ψ | ¬φ

A product Sp of S is said to be a live refinement (of S) if Sp |= AG 〈true〉 true,
i.e. Sp has only infinite (full) paths. A formula φ is said to be preserved by live
refinement if S |= φ implies Sp |= φ, for all live refinements Sp of S.

Theorem 3 (Preservation by live refinement). Any formula φ expressed
in v-ACTLive2 is preserved by live refinement.

VMC notifies the user whenever preservation of a verification result is applicable.
The preservation of v-ACTLive2 formulae obviously is an important improve-

ment over the preservation of v-ACTL2 formulae, since it allows family-based
verification in a lot more cases. Finally, it is worthwhile to remark that an MTS
in which every path is infinite is by definition live and while this might seem
a rather strong condition, many reactive systems actually exhibit infinite be-
haviour, so the class of live MTS includes many models of practical interest.

If we want to actually verify a v-ACTL formula φ over the behavioural MTS
model that encodes the original FTS behaviour, it suffices to verify the formula
[behaviour]φ. This guarantees that the signature is ignored.

7 Example in VMC

In this section, we illustrate the transformation on the beverage vending machine
example SPL from [13]. The feature diagram in Fig. 6 models its valid products,
defining 12 vending machines based on the features Soda, Tea, FreeDrinks and
CancelPurchase. The allowed product behavior is modelled by the FTS in Fig. 7.

Figure 8 shows the input model in VMC after having applied the transfor-
mation described in Sect. 5 to the FTS in Fig. 7. The corresponding MTS, as



Fig. 6. Feature diagram of vending machine product line from [13]

4return/c

��

5
serveSoda/s

((1**
pay/v∧¬f

//

free/f

��
2

change/v
// 3

soda/s
66

tea/t ((

cancel/c
oo

7
open/v∧¬f

//

take/f
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close/v
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Fig. 7. FTS of vending machine product line from [13]

generated by VMC, is shown in Figure 5 (on the right-hand side). Note that we
have omitted all dummy actions in the signature part (for ease of presentation).

Some sample formulae/properties that can be verified over the example are:

1. [behaviour] AG AF {pay or free} true: Infinitely often, either action pay
or action free occurs.

2. [behaviour] AG [open] AF {close} true: It is always the case that action open
is eventually followed by action close.

3. [behaviour] AG AF { cancel or serveSoda or serveTea } true: Infinitely
often, either action cancel or action serveSoda or action serveTea occurs.

4. [behaviour] not E [true {not tea}U{serveTea} true]: It is not possible
that action serveTea occurs without being preceded by action tea.

5. [behaviour] [pay] AF {takePaid} true: Whenever action pay occurs, even-
tually action takePaid occurs.

Figure 9 shows the result of verifying formula 4 over the MTS. We see that this
formula is true and, since it is a v-ACTLive2 formula, VMC reports that this
result is preserved by all products of the product line (hence in particular by
the valid ones). VMC can also generate all valid products, upon which it lists
all 12 valid products of the input model, providing for each a list of the action
labels of all may transitions that have been preserved (as must transitions) in
that product. These can then be used to perform product-based verification.

Figure 10 shows the result of verifying the v-ACTLive2 formula 5 over all
valid products. We see that this formula is true for all products, except for those



Fig. 8. VMC input model of vending machine product line

that allow to cancel a payment, i.e. those that have the CancelPurchase feature
but at the same time lack the FreeDrinks feature.

Clicking one of these products, VMC loads it and opens a new window with
the product’s process model. Subsequently, the corresponding LTS can be visu-
alised or properties can be verified directly over this product.

8 Conclusions and Future Work

We have presented an automatic technique to transform FTS into the con-
strained form of MTS accepted by VMC. The crux of this transformation is
to go from variability constraints expressed in terms of features to variability
constraints expressed in terms of actions. This paper thus contributes to a bet-
ter understanding of the fundamental characteristics of the two models. Finally,
we have showed how a well-known FTS example from the literature can be
transformed and analysed with VMC.

VMC is a product of the KandISTI family of model checkers developed at
ISTI–CNR in Pisa [7,19]. This modelling and verification framework is publicly
accessible online at the URL http://fmt.isti.cnr.it/kandisti. KandISTI



Fig. 9. Formula 4 verified by VMC over vending machine product line

Fig. 10. Formula 5 verified by VMC over all products of vending machine product line

is an experimental analysis environment whose target is not primarily full-scale
industrial-sized system/software verification, but rather the development of and
experimentation with new ideas and approaches concerning the analysis of sys-
tem designs. KandISTI is a framework in continuous evolution. VMC is its most
recent extension developed for the purpose of exploring verification strategies for
configurable systems (such as product lines). The basic idea underlying VMC
is the use of ‘constrained’ MTS for the modelling of variability. Since FTS are
the input model of other highly successful approaches to modelling (and model
checking) variability-intensive systems, it is important to understand the relation
between these two approaches in detail. This involves comparing them on larger
examples, and comparing also their analysis capabilities. This paper is another



step in this direction, after the preliminary comparison in [3]. In the future, we
intend to perform a quantitative evaluation of the expressivity, complexity and
scalability of both approaches, as well as of the complexity of the transformation.
Finally, we intend to consider also the state labelling of FTS by switching from
a purely process-algebraic description of MTS in VMC to a richer modelling
language. Other KandISTI members, with whom VMC shares the underlying
verification engine, in fact have both an action and a state labelling [6].
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