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Abstract Some novel strategies have recently been proposed for single hidden
layer neural network training that set randomly the weights from input to hidden
layer, while weights from hidden to output layer are analytically determined by
pseudoinversion. These techniques are gaining popularity in spite of their known
numerical issues when singular and/or almost singular matrices are involved. In
this paper we discuss a critical use of Singular Value Analysis for identification of
these drawbacks and we propose an original use of regularisation to determine the
output weights, based on the concept of critical hidden layer size. This approach
also allows to limit the training computational effort. Besides, we introduce a
novel technique which relies an effective determination of input weights to the
hidden layer dimension. This approach is tested for both regression and classifi-
cation tasks, resulting in a significant performance improvement with respect to
alternative methods.

Keywords pseudoinverse matrix - weights setting - regularisation - supervised
learning

1 Introduction

The training of one of the most common neural architecture, the single hidden layer
feedforward neural network (SLFN) was mainly accomplished in past decades by
methods based on gradient descent, and among them the large family of tech-
niques based on backpropagation (Rumelhart et al., 1986). The start-up of these
techniques assigns random values to the weights connecting input, hidden and
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output nodes that are then iteratively modified according to the error gradient
steepest descent direction. Some common drawbacks with gradient descent-based
learning are anyway the high computational cost because of slow convergence and
the relevant risk of converging to poor local minima on the landscape of the error
function (LeCun et al., 1998).

The idea of using the simple and efficient training algorithms of radial basis
function neural networks, based on matricial pseudoinversion (Poggio and Girosi,
1990), also for SLFN learning was initially suggested in (Cancelliere, 2001); some
appealing techniques were than developed (Nguyen et al., 2010; Kohno et al., 2010;
Ajorloo et al., 2007) and among them the extreme learning machine ELM, (Huang
et al., 2006) which has been successfully applied to a number of real-world appli-
cations (Sun et al., 2008; Wang et al., 2008; Malathi et al., 2010; Minhas et al.,
2010), showing a good generalization performance with an extremely fast learning
speed.

ELM main result states that SLFNs with randomly chosen input weights and
hidden layer biases can learn distinct observations with a desired precision, pro-
vided that activation functions in the hidden layer are infinitely differentiable.

After input weights and hidden layer biases have been randomly set, output
weights are directly evaluated by Moore-Penrose generalised inverse (or pseudoin-
verse) of the hidden layer output matrix: these two steps conclude one training
phase and weights are no more modified, so that their determination is no more
iterative in the sense of back-propagation based techniques.

Besides, all pseudoinversion based methods are multi-start, i.e. the above pro-
cedure is repeated meny times in order to find a good minimum of the error surface.
Each training procedure so implies many random settings of input weights and as
many evaluations of output weights through pseudoinversion.

However, such techniques seem to require more hidden units than typical values
from backpropagation training to achieve comparable accuracy, as discussed in Yu
and Deng (Yu and Deng, 2012). Moreover, pseudoinversion, commonly evaluated
by Singular Value Decomposition (SVD), is a powerful method but some caution
is required, since its numerical instability is a well known issue when singular and
almost singular matrices are involved.

One aim of this paper is the analysis of these instability issues; a preliminary
assessment of the context and our initial results are discussed in (Cancelliere et al.,
2012). Here we present further advances on the theoretical framework and we pro-
pose a novel approach to carry out a more efficient learning, showing how singular
values of SVD can be used to detect the occurrence of numerical instability.

Besides, we prove the existence of a critical hidden layer dimension that allows
a careful tuning of the regularisation parameter and the use of regularisation to
replace unstable, ill-posed problems with well-posed ones. We also propose an
original method to set input weights that links their size to the hidden layer
dimension and we show its effectiveness.

In section 2 we introduce the notation used for describing SLFN architectures,
and the main ideas concerning input weights setting and output weights evaluation
by pseudoinversion. In section 3 we discuss the problem of ill-posedness, and the
basic regularisation concepts.

In section 4 our framework is tested on some applications selected from the UCI
database. A substantial improvement in performance with respect to unregularised
state-of-the-art techniques is shown.
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2 Input and output weights determination

Fig. 1 shows a standard SLFN with P input neurons, M hidden neurons with
non-linear activation functions ¢, and @ output neurons with linear activation
functions.

P input units M hidden units

@ <S——— Q output units
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Fig. 1 A Single Layer Feedforward Neural Network

If we have a training set made by N distinct training samples of (input, output)
pairs (x;,t;), where x; € RT and tj € R%, the training aims at obtaining the matrix
of desired outputs T' € RV*? when the matrix of all input instances X € RV*F is
presented as input.

We emphasise that, in the state of the art pseudoinverse approach, input
weights ¢;; (and hidden neurons biases) are randomly sampled from a uniform
distribution in a fixed interval and no longer modified. Therefore this step gives
the actual input weights values.

After having fixed the input weights matrix C, the use of linear output units
allows to determine output weights w;; as the solution of the linear system

HW =T, (1)

where H € RV*M ig the hidden layer output matrix of the neural network,
H = #(X C). It is important to underline that because usually the number of
hidden nodes is much lower than the number of distinct training samples, i.e.
M << N, H is a rectangular matrix.

The least-squares solution W of the linear system (1), as shown e.g. in (Pen-
rose and Todd, 1956; Bishop, 2006), is W = H*T, where HY is the Moore-Penrose
generalised inverse (or pseudoinverse) of matrix H. It can be computed in a compu-
tationally simple and accurate way by using singular value decomposition (SVD)
(Golub and Van Loan, 1996).

We know that every matrix H € RY*M

can be decomposed as follows:
H=UxvT, (2)

where U € RV*N and vV e RM*M are orthogonal matrices and X € RV*M js
a rectangular diagonal matrix whose elements o;; = o0y, called singular values,



4 R. Cancelliere et al.

are nonnegative (usually the singular values are listed in descending order, i.e.
o1 >09>-->0p>0,p=min {N, M}, so that X' is uniquely determined).
The pseudoinverse matrix HT has the form

HT =vxtuT, (3)

where ¥ is obtained from X by taking the reciprocal of each non-zero element
o;, and transposing the resulting matrix (Rao and Mitra, 1971). The presence of
very small element o; is therefore a potential drawback of this method.

For computational reasons, the elements o; equal to zero or smaller than a
predefined threshold are replaced by zeros (Golub and Van Loan, 1996).

3 Singular value decomposition of regularised problems

To turn an original ill-posed problem into a well-posed one, i.e. roughly speaking
into a problem insensitive to small changes in training conditions, regularisation
methods are often used (Badeva and Morozov, 1991), and Tikhonov regularisation
is one of the most common (Tikhonov and Arsenin, 1977; Tikhonov, 1963).

The error functional to be minimised is characterized by a penalty term Eg
that depends from the so called Tikhonov matrix I":

E=Ep+Eg=|HW - T|3+||TW|]3, (4)

This matrix can for instance derive from the choice of using highpass operators
(e.g. a difference operator or a weighted Fourier operator) to enforce smoothness.

The regularised solution, that we denote by W | is now given by:
W=H"H+1"r) " tHTT. (5)

The penalty term improves on stability, making the problem less sensitive to
initial conditions, and contains model complexity avoiding overfitting, as largely
discussed in (Gallinari and Cibas, 1999).

To give preference to solutions W with smaller norm (Bishop, 2006) a frequent
choice is I = v/AI, so eqgs. (4) and (5) can be rewritten as

E=Ep+Eg=|[HW - T||3 + X[W/|j3, (6)
W=(H"H+X)"'H'T. (7)

The role of the control parameter A is to trade off between the two error terms
Ep and Eg. If A = 0, eq.(7) reduces to the unregularised least-squares solution,
provided that (HTH) ™! exists.
The regularised solution (7) can also be expressed (see e.g. (Fuhry and Reichel,
2012)) as:
W =vbpulr (8)

where V,U are from the singular value decomposition of H (eq.(2)) and D is a
rectangular diagonal matrix with elements

D; = _' . 9)
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Table 1 The UCI datasets and their characteristics

Dataset Type N. Instances  N. Attributes  N. Classes
Abalone Regression 4177 8 -
Cpu Regression 209 6 -
Delta Aileron  Regression 7129 5 -
Iris Classification 150 4 3
Diabetes Classification 768 8 2
Landsat Classification 4435 36 7

obtained using the singular values of H.

It is evident that, when unregularised pseudoinversion is used, the presence
of very small singular values can easily causes numerical instability in HT; on
the contrary, regularisation has a dramatic impact because, even in presence of
very small values o; of the original unregularised problem, a careful choice of the
parameter X allows to tune singular values D; of the regularised matrix, preventing
them from divergence.

It is clear at this point that a suitable value for the parameter A has to derive
from a compromise between the necessity to have it sufficiently large to control
the approaching to zero of o in eq.(9) while avoiding predominance of penalty
term in eq.(6). Its tuning is therefore crucial to simultaneously control numerical
instability and overfitting.

In the next section we propose a strategy to obtain this result showing that we
achieve better performance and more stable solutions.

4 Experiments and Results

Some numerical instability issues have already been evidenced in our previous
investigations (Cancelliere et al., 2012); we provided suggestions on possible mit-
igation techniques like selection of a convenient activation function and normali-
sation of the input weights. Hereafter we show that adding regularisation to the
implementation prescriptions already analysed provides a convenient and effective
approach to deal with such problem.

The use of sigmoidal activation functions has recently been subject of debate
because they seem to be more easily driven towards saturation due to their non-
zero mean value (Bengio and Glorot, 2010), while hyperbolic tangent seems less
sensitive to this problem.

We select therefore both activation functions for a test aiming at comparing
their performance in a context where we also compare our proposed regularised
approach and the unregularised one. Four different experimental settings will be
analysed, namely HypT-reg, Sigm-reg, HypT-unreg and Sigm-unreg.

To further mitigate saturation issues, in our previous work (Cancelliere et al.,
2012) we selected input weights according to a uniform random distribution in
the range (—1/v/M, 1/v/M), where M is the number of hidden nodes. This links
the size of input weights, and therefore of hidden neurons inputs, to the network
architecture, thus forcing the use of the almost linear central part of the hyperbolic
and sigmoidal activation functions when exploring the performance as a function
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of an increasing number of nodes. Such prescriptions are retained in the current
work.

We emphasise that so doing input weights are automatically chosen ”small”,
because the size of interval (—1/v/M, 1/v/M) decreases when the number of hidden
neurons M increases: for instance with 10 hidden neurons, weights values are
roughly selected in the range (—1/3,1/3), with 100 hidden neurons in the range
(—=1/10,1/10), and so on.

Because of the wide use among researchers belonging to ELM-community (see
for instance (Helmy and Rasheed, 2009; Huang et al., 2006; Sun et al., 2008) our
performance is also compared with that from unregularised pseudoinversion, input
weights selected according to a random uniform distribution in the interval (—1,1)
and sigmoidal activation functions (hereafter, ELM).

The numerical experiment compares these frameworks applying them to six
benchmark datasets from the UCI repository (Bache and Lichman, 2013), listed
in Table 1.

For each proposed method the number of hidden nodes is gradually increased
by unity steps, and, for each selected size of SLFN, average RMSE or average mis-
classification rate on the validation set are computed over a set of 100 simulation
trials, i.e. over 100 different initial choices of input weights. All simulations are
carried out in Matlab 7.3 environment.

Figure 2 gives an insight on the performance trend (resp. average RMSE for
regression or average misclassification rate for classification tasks) as a function
of hidden space dimensionality for the cases HypT-reg, HypT-unreg and ELM. In
Figure 3 performance trends are shown for the cases SigmT-reg, Sigm-unreg and,
for the sake of comparison, again ELM; because of their similarity with the HypT
cases, plots are shown for only two datasets (i.e. Abalone and Iris).

It is interesting to note that when unregularised techniques are used, all datasets
except Landsat show a fast error growth; besides, the curves have different char-
acteristics for HypT-unreg and Sigm-unreg on one side and ELM on the other,
showing error peaks in the formers while monotonically increasing error values
are obtained in the latter. We conjecture the presence of two distinct phenomena:
numerical instability and overfitting.

In order to address the former issue, i.e. numerical instability, we evaluate
for each dataset the ratio between the minimum singular value of hidden out-
put matrix H and the Matlab default threshold (below which singular values are
considered too small and therefore treated as zero).

We checked that for each dataset processed with HypT-unreg or Sigm-unreg
methods there is a critical hidden layer size above which the ratio becomes smaller
than one; its trend is plotted in logarithmic units (red line, right scale), in Figure
2 for HypT-unreg case.

When approaching critical size, inversion of singular values causes a wrong
evaluation of H' and therefore a significant growth in the error; when the crit-
ical dimension is reached, singular values under threshold are automatically re-
moved, thus allowing the subsequent decrease of error. The same trend was de-
tected analysing the astronomical dataset in (Cancelliere et al., 2012).

This decrease is anyway not sufficient to reach optimal error values because
of overfitting, which is known to arise when a large amount of hidden neurons is
available to reproduce almost exactly the training data.
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Fig. 2 Performance comparison in the HypT (-reg and -unreg) cases: Abalone (Top Left); Cpu
(Top Right); Delta Ailerons (Mid Left); Iris (Mid Right); Diabetes (Bottom Left); Landsat
(Bottom Right).

An even more severe overfitting affects ELM in fact in this case test error is
a monotonically increasing function of the number of hidden neurons. A possible
explanation is that the setting of input weights in the interval (-1, 1) may al-
low ‘specialisation’ of some hidden neurons on particular training instances, thus
creating a sort of network partition, carried out thanks to saturation. On the con-
trary, when weights are randomly selected in the interval (—1/v/M,1/vVM), as
for HypT-unreg and Sigm-unreg cases, input weights are automatically kept small
when the network size increases, thus exploiting the central part of both activation
functions: consequently saturation is avoided (Cancelliere et al., 2012).

After clarification of the main issues affecting unregularised approaches, we
now discuss the regularised one, derived according to eq.(8).
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Fig. 3 Performance comparison in the Sigm (-reg and -unreg) cases: Abalone (Left); Iris
(Right)

Looking at HypT-reg and Sigm-reg cases in Figures 2 and 3, it appears that
not only numerical instability (i.e. the error peak) is removed, but also that the
penalty term provides control of overfitting, avoiding error growth and allowing
optimal exploitation of the superior potential of larger architectures. The error
curves feature now a monotonic decrease, becoming increasingly smoother.

We obtained this result basing on the implications of eq.(9) that clearly sug-
gests the role of the A\ parameter in preventing instability: our original idea is to
address the issue of its determination with an ‘ad hoc’ tuning whenever growing
error drift is experienced by the unregularised approach, as follows.

We evaluate the validation error trend inside the critical region, looking for its
minimum as a function of A; this allows to select a suitable value for this parameter
for the subsequent experimentation with regularised pseudoinversion.

We then made 100 random input weight choices and evaluated the mean test
error (RMSE or misclassification rate) and the standard deviation S for any num-
ber of hidden neurons. In Table 2 we list for HypT-reg and Sigm-reg the best ones
of these mean values, called Optimal performance, together with the number of
hidden neurons used to reach the associated performance (in parenthesis), and the
corresponding standard deviation, as well as the selected value of .

Error values significantly better, basing on the Student’s t-test evaluation of
statistical confidence intervals, are recorded in bold. We can see that there is
roughly no “winner” between HypT-reg and Sigm-reg.

Some other interesting considerations can be made noting that the regularised
error plots in Figures 2 and 3, after an initial rapid decrease, achieve a nearly
constant regime, with small variation vs. increasing numbers of hidden neurons. We
can thus define a “near optimal” network size in both cases, as the one associated
to a near optimal error level, i.e. an error significantly better than that from
other methods. The assessment is again based on the Student’s t-test evaluation
of statistical confidence intervals.

Table 3 compares the performance of this near optimal network with those
obtained with the other methods, listing the best mean error (with the associ-
ated number of hidden neurons in parenthesis) and the corresponding standard
deviation.

Thus, it appears that regularisation provides, except for Landsat dataset, the
best performance not only in terms of lowest error values (see table 2) but even
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Table 2 Optimal performance for regression (top) and classification (bottom) datasets. For
Delta Ailerons, average errors and standard deviations have to be multiplied by 10—%

Abalone Cpu Delta Ail.

RMSE S A RMSE S A RMSE S A
HypT-reg 2.168 (192)  0.003 10~ 57.0 (78) 2.1 10~ 1.639 (147) 1.9e-3 10713
Sigm-reg  2.150 (240) 0.004 10712  57.3 (88) 1.8 10710 1.636 (244) 2.0e-3 10713

Iris Diabetes Landsat

Err.(%) S(%) A Err.(%) S(%) A Err.(%) S(%) A
HypT-reg  0.02 (66) 0.2 10-1%  20.2 (347) 0.3 10~ 12.65 (486) 0.2 10~10
Sigm-reg 0.2 (19) 1.1 1071*  19.4 (95) 0.6 10712 13.77 (396) 0.3 10-11

Table 3 Method comparison for regression (top) and classification (bottom) tasks. For Delta
Ailerons, average errors and standard deviations have to be multiplied by 10~4

Abalone Cpu Delta Ail.
RMSE S RMSE S RMSE S
HypT-reg (near opt.) 2.181 (32) 0.011 57.55 (22) 6.2 1.642 (62) 3.7e-3

Sigm-reg (near opt.) 2.181 (74) 0.008 57.05 (45) 3.2 1.647 (99) 3.2e-3
HypT-unreg 2.187 (34)  0.012 59.37 (17) 7.2 1.649 (56)  2.8e-4
Sigm-unreg 2.183 (32)  0.013 57.58 (16) 8.9  1.648 (45)  6.5¢-3
ELM 2.186 (33)  0.015 59.48 (19) 9.1  1.649 (75)  8.8¢-3

Iris Diabetes Landsat

Err.(%) S(%)  Err.(%) S(%)  Err.(%) S(%)
HypT-reg (near opt.) 0.56 (37) 0.9 21.0 (146) 0.6 12.65 (486) 0.2
Sigm-reg (near opt.) 0.3 (16) 1.1 20.7 (45) 0.8 13.77 (396) 0.3
HypT-unreg 1.02 (30) 1.1 21.2 (80) 1.2 1294 (205) 0.4
Sigm-unreg 1.00 (29) 1.2 20.8 (86) 14 1278 (377) 04
ELM 2.52 (23) 1.9 21.2 (69) 1.2 10.76 (390) 0.4

with usage of smaller networks, limiting in this way computational cost and model
complexity, and therefore fulfilling the goals set by previous researches (e.g. (Yu
and Deng, 2012)). The smaller standard deviations almost always associated with
the regularised methods also suggest a lower dependence from initial conditions.

We also highlight that the use of small input weights and sigmoidal activation
functions, which characterizes the Sigm-unreg case, allows to obtain error values
lower with respect to the ELM case, so confirming the effectiveness of this choice
in order to contain saturation and overfitting issues.

Landsat dataset constitutes an exception because best performance is reached
using ELM. In this case, regularisation does not seem to be required, because
overfitting and/or numerical instability do not take place, as it appears from un-
regularised error curves. The behaviour of the threshold ratio, which remains al-
ways larger than unity, is consistent with the lack of numerical instability and
with our hypothesis of its relationship with error peaks. The lack of overfitting
appears to be specific to the complexity of the dataset, having input vectors with
size much larger than others, and therefore requiring a significantly larger number
of parameters.

In table 4 are listed the computational times (in seconds) recorded for all
datasets for completing one training step, i.e. one random setting of input weights
and one output weights evaluation through pseudoinversion of the hidden layer
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Table 4 Comparison of training times (s.) for regression (top) and classification (bottom)
tasks at fixed hidden layer size (100 neurons).

Abalone Cpu Delta Ail.
HypT-reg 0.032 0.035 0.093
Sigm-reg 0.029 0.040 0.096
HypT-unreg 0.018 0.018 0.064
Sigm-unreg 0.0151 0.025 0.077
ELM 0.0123 0.015 0.060

Iris Diabetes Landsat
HypT-reg 0.037 0.0158 16.65
Sigm-reg 0.032 0.0155 16.77
HypT-unreg 0.017 0.0139 15.94
Sigm-unreg 0.021 0.0144 15.78
ELM 0.011 0.0116 14.32

output matrix; the number of hidden neurons has been fixed to 100 for the sake
of comparison.

We can see that, for each dataset, the times associated to each method do not
differ significantly, because after having fixed the number of hidden neurons, the
computational load necessary for the processing is comparable.

The interested reader can find, for the common datatsets, a comparison among
training times of ELM and backpropagation in (Huang et al., 2006), and can verify
that ELM turns out to be two or three orders of magnitude faster.

5 Conclusions

We have considered the numerical instability ad overfitting problems for single
hidden layer neural networks trained by pseudoinversion. We have shown how
to use singular value analysis for the diagnosis of numerical instability, and how
to solve this problem through the determination of a critical hidden layer region
from which the regularisation technique benefits. This method also contributes to
reduce the overfitting.

Tests have been performed for both regression and classification tasks. For five
out of six cases, the proposed regularisation is proven necessary and provides a
significant performance improvement with respect to unregularised techniques; it
also allows to built lean architectures which achieve near optimal performance
with a reduced number of hidden neurons.

Moreover the use of sigmoidal activation functions and “small” input weights
(small because their values are linked to the hidden layer size), which characterizes
the Sigm-unreg case, allows to obtain error values lower with respect to the ELM
case, so confirming the effectiveness of this choice in order to contain saturation
and overfitting issues.

Comparing our results on the common regression datasets with the alternative
method proposed by Miche et al. (Miche et al., 2011), we note that our technique
achieves RMSE values lower than those corresponding to their MSE values, with a
somewhat lower number of neurons. Besides, in our opinion, our method is simpler,
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in the sense that it uses a single step of regularisation rather than two in their
method, and we also deal with classification tasks.
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