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Abstract

Background: The dynamics of plant volatile (PV) emission, and the relationship between damaged area and
biosynthesis of bioactive molecules in plant-insect interactions, remain open questions. Direct Contact-Sorptive Tape
Extraction (DC-STE) is a sorption sampling technique employing non adhesive polydimethylsiloxane tapes, which are
placed in direct contact with a biologically-active surface. DC-STE coupled to Gas Chromatography – Mass Spectrometry
(GC-MS) is a non-destructive, high concentration-capacity sampling technique able to detect and allow identification of
PVs involved in plant responses to biotic and abiotic stresses. Here we investigated the leaf topographical dynamics of
herbivory-induced PV (HIPV) produced by Phaseolus lunatus L. (lima bean) in response to herbivory by larvae of the
Mediterranean climbing cutworm (Spodoptera littoralis Boisd.) and mechanical wounding by DC-STE-GC-MS.

Results: Time-course experiments on herbivory wounding caused by larvae (HW), mechanical damage by a pattern
wheel (MD), and MD combined with the larvae oral secretions (OS) showed that green leaf volatiles (GLVs)
[(E)-2-hexenal, (Z)-3-hexen-1-ol, 1-octen-3-ol, (Z)-3-hexenyl acetate, (Z)-3-hexenyl butyrate] were associated with
both MD and HW, whereas monoterpenoids [(E)-β-ocimene], sesquiterpenoids [(E)-nerolidol] and homoterpenes
(DMNT and TMTT) were specifically associated with HW. Up-regulation of genes coding for HIPV-related enzymes
(Farnesyl Pyrophosphate Synthase, Lipoxygenase, Ocimene Synthase and Terpene Synthase 2) was consistent with
HIPV results. GLVs and sesquiterpenoids were produced locally and found to influence their own gene expression
in distant tissues, whereas (E)-β-ocimene, TMTT, and DMNT gene expression was limited to wounded areas.

Conclusions: DC-STE-GC-MS was found to be a reliable method for the topographical evaluation of plant
responses to biotic and abiotic stresses, by revealing the differential distribution of different classes of HIPVs. The
main advantages of this technique include: a) in vivo sampling; b) reproducible sampling; c) ease of execution;
d) simultaneous assays of different leaf portions, and e) preservation of plant material for further “omic” studies.
DC-STE-GC-MS is also a low-impact innovative method for in situ PV detection that finds potential applications in
sustainable crop management.
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Background
In the past ten years, the study of the interaction be-
tween larvae of the Mediterranean climbing cutworm
(Spodoptera littoralis Boisd.) and leaves of the lima bean
(Phaseolus lunatus L.) has provided evidence of both
early and late events, and has been used as a model sys-
tem to decipher plant-insect interactions [1-5]. Upon
herbivory by S. littoralis, the lima bean responds, as do
many other plants, with a cascade of events that lead to
the activation of defense mechanisms. These mechanisms
include the perception of molecular patterns or effectors
of defense [6,7], mitogen-activated protein kinase (MAPK)
activation, and protein phosphorylation [8,9], production
of ethylene and jasmonates [10], expression of late defense
response genes [11], and emission of herbivory-induced
plant volatiles (HIPVs) [12,13].
Even if robotic mechanical wounding can simulate

plant response similar to HIPV [4], the simple mechan-
ical damage (MD) is not fully satisfactory to induce the
same responses if not supported by the application of in-
sect’s oral secretions (OS) [14]. Despite the presence of sev-
eral elicitors in S. littoralis OS (e.g., fatty acid conjugates)
[7,15], it is not clear whether these factors originate from
the salivary glands or other feeding-related organs, such as
the ventral eversible gland [14,16]. However, the plant vola-
tile (PV) blends emitted in response to herbivores differ
markedly with different feeding modes [17-20].
In plant defensive strategies, the release of PVs plays

multiple roles: direct deterrents against herbivores
[21,22], attraction of natural enemies of the attacking
herbivores [23-26], damage and disease long-distance
signaling [27-30], and pathogen resistance priming
[29-32]. Since volatiles are produced from several bio-
synthetic pathways, their qualitative and quantitative
composition is the result of the concerted action of dif-
ferent pathways, triggered by multiple factors. To date,
studies of the emission of PVs in response to herbivory
have been limited to single organs or to the whole plant,
either by destructive methods or by head-space analysis
[33,34], and only one study analyzed PV gradients within
a single leaf [35].
Direct Contact-Sorptive Tape Extraction (DC-STE) is a

fast and easy-to-use sampling technique, developed to
study the effect of cosmetic treatment on sebum com-
position, through in vivo sampling at the human skin
surface [36,37]. The technique employs a thin flexible
non-adhesive polydimethylsiloxane (PDMS) tape, which
is placed directly in contact with a (biological) surface
for a fixed time (Figure 1). Bicchi et al. [38] showed that
this technique can also be applied to plants to monitor
PVs, in both surface-static headspace and direct-contact
(DC) modes. In DC-STE, volatiles produced at the bio-
logical surface are concentrated in the apolar PDMS
layer by sorption (a sampling approach based on the
partition of a compound between the sample and the
bulk of a polymeric retaining phase) in amounts depend-
ing on the compound polarity and volatility. While in
headspace sampling (e.g. static and dynamic headspace,
high concentration-capacity solid phase microextraction)
sorption is applied to the plant surrounding air space
[33], DC-STE interacts directly with leaf surfaces. In
DC-STE, plant-air interaction equilibrium is eliminated
thus limiting the number of phases involved with sam-
pling to two (plant and PDMS) instead of three (plant,
air and PDMS). In this study, a glass coverslip was
placed just above the DC-STE tape in order to exclude
PDMS – air interaction.
Compound recovery from PDMS is achieved either by

thermal desorption and on-line transferred to the in-
jector of a Gas Chromatography–Mass Spectrometry
(GC-MS) system, or by liquid extraction with polar sol-
vents. DC-STE can be used successfully for both qualitative
and quantitative analyses [37] making DC-STE coupled
with GC-MS an efficient approach to characterize the pro-
file and dynamics of PV production in response to both
biotic and abiotic stresses.
In this study, the use of DC-STE combined with GC-

MS was applied in vivo for the first time to evaluate the
dynamics of HIPV release, upon abiotic (MD) and biotic
(herbivory wounding, HW) stresses, by using the model
system S. littoralis/P. lunatus. Furthermore, MD was used
in combination with S. littoralis OS (MDOS). Here we
show that HIPVs are differentially produced in different
parts of the wounded leaf, depending on the biotic or abi-
otic stress applied. The analytical method was compared
to the expression of genes involved in HIPV biosynthesis,
which showed the same HIPV topographical pattern.

Results
In response to herbivory, plants produce PVs, which can
serve as direct deterrents [21] or to attract the herbi-
vore’s predators and parasitoids [23-26,39]. The dynam-
ics of HIPV emission, and the relationship between
damaged area and biosynthesis of bioactive molecules,
remain open questions. An innovative in vivo strategy
was here used to identify compounds actively related to
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Figure 1 DC-STE sampling visualization. A, Spodoptera littoralis larvae feeding on Phaseolus lunatus. B, tape dimension. C, DC-STE tapes placed on
the adaxial lamina of the wounded leaf. Arrows indicate the squared translucent tapes; W, wounded zone. D, Experimental and data analysis
scheme; for every treatment, the number of analyzed samples is reported.
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plant-insect interactions, employing a non-destructive
high concentration-capacity sampling technique to cap-
ture volatiles from lima bean leaves after abiotic and bi-
otic wounding.
DC-STE-GC-MS analysis discriminates herbivory from
mechanical wounding
To analyze the topographical distribution of HIPVs, leaves
from plants grown in a growth chamber treated with HW,
MD and MDOS as well as control intact leaves were sam-
pled with PDMS rectangular tapes (4 × 15 × 0.2 mm) placed
in direct contact with leaves at specific distances from the
damaged areas (0 cm, 1.5 cm, 3 cm) for different sampling
times (2, 6, 24 h). Adaxial and abaxial leaf laminae were
sampled in three different leaf portions: a) close to the dam-
aged area (referred as the wounding zone, 0 cm); b) in the
central portion (referred as the middle zone, 1.5 cm); and c)
in the basal portion of the leaf (referred as the basal zone,
3 cm) (Figure 1). Preliminary trials showed no significant
differences in PV results between adaxial and abaxial epi-
dermises (data not shown). Analysis of camphor variation
supports the repeatability of the method, accounting for
18.3% as relative standard deviation throughout the whole
dataset.
Several PVs were identified by GC-MS analyses including

green-leaf volatiles (GLVs, including aldehydes, alcohols
and acetates), alkyl aldehydes, homoterpenes, mono-
and sesquiterpenoids (Additional file 1). Because of the
large number of samples (337), several Principal Com-
ponent Analyses (PCA) were carried out; the best re-
sults were those obtained with logarithmic scaling as
data pre-treatment [40].
Figure 2A reports the PCA (42% of explained variance)
on the total dataset of samples, discriminating undam-
aged (controls) from damaged leaves. The damaged sam-
ple distribution in Figure 2A showed that HW and MD
seemed divided into two different subsets, while applica-
tion of OS to MD leaves produced intermediate results
between them.
The resulting damage-related discriminant com-

pounds included GLVs [(E)-2-hexenal, (Z)-3-hexen-1-ol,
(Z)-3-hexenyl acetate, (Z)-3-hexenyl butyrate], a linoleic
acid breakdown product (1-octen-3-ol), a monoterpene
[(E)-β-ocimene], two homoterpenes [4,8-dimethyl-1,3,7-
nonatriene (DMNT) and 4,8,12-trimethyl-1,3,7,11-trideca-
tetraene (TMTT)] and a sesquiterpenoid [(E)-nerolidol]
(Figure 2B). These HIPVs were therefore used as variables
for the subsequent PCA to explore the internal differences
in the damaged leaf dataset. A better discrimination (about
71% of total variance explained) was obtained between
HW and MD treatments, whereas MDOS samples showed
a scattered pattern (Figure 3).
DC-STE-GC-MS determines and quantifies the topography
of leaf HIPV production
The ability to discriminate between MD and HW high-
lights the potential of DC-STE-GC-MS as a reliable
technique for in vivo HIPV monitoring. This ability was
used to study the dynamics of volatile production as a
function of topography in lima bean leaf responses to
HW, MD and MDOS.
To visualize HIPV distribution, the damaged leaf data-

set was divided into three different matrices, depending
on the type of damage, each including a smaller but still
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Figure 2 PCA representing the whole set of data. 337 samples are
here plotted in PCA by using all compounds as variables. A, Control
unwounded leaves (C) are well-separated from damaged leaves. HW and
MD show a clear separation. MDOS produced intermediate patterns
between HW and MD. B, Loading plot highlights the discriminant
variables (blue circle). Compound legend: a, n-hexanal; b, (E)-2-hexenal;
c, (Z)-3-hexen-1-ol; d, 1-octen-3-ol; e, 6-methyl-5-hepten-2-one; f, octanal;
g, (Z)-3-hexenyl acetate; h, p-cymene; i, limonene; j, 2-ethyl hexanol;
k, (E)-β-ocimene; l, 1-octanol; m, linalool; n, nonanal; o, DMNT; p,
(Z)-3-hexenyl butyrate; q, decanal; r, tridecane; s, geranyl acetone;
t, (E)-nerolidol; u, TMTT.

A

B

Figure 3 Damage sample dataset PCA. This analysis was done on
the damaged samples with the variables selected in the first PCA.
A, There is a clear distinction between HW (green squares) and MD
(magenta circles) samples. Application of OS to MD (MDOS)
produced scattered results. B, Loading plot. Compound legend:
b, (E)-2-hexenal; c, (Z)-3-hexen-1-ol; d, 1-octen-3-ol; g, (Z)-3-hexenyl
acetate; k, (E)-β-ocimene; o, DMNT; p, (Z)-3-hexenyl butyrate; t,
(E)-nerolidol; u, TMTT.
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considerable number of samples (HW: 54 samples; MD:
53 samples; MDOS: 52 samples). PCA data processing
was performed by using the discriminating variables
identified above (GLVs, homoterpenes, mono- and ses-
quiterpenoids) with the aim of establishing a relationship
between sampling time and leaf portion. A distinctive
distribution of volatiles as a function of the damaged
area was found for both HW and MDOS (Figure 4: A
and C). Compared to controls, HW treated leaves
showed a significantly higher production of the GLVs
(E)-2-hexenal, (Z)-3-hexen-1-ol, (Z)-3-hexenyl acetate
and of 1-octen-3-ol close to the HW damaged leaf por-
tion (Figure 4B). (Z)-3-Hexenyl butyrate, DMNT, TMTT,



Figure 4 HIPV topography. HIPV topography is clearly shown in PCA score plots: wounded areas (WA) are in all cases clearly separated from
other leaf portions. PCAs were carried out using: b, (E)-2-hexenal; c, (Z)-3-hexen-1-ol; d, 1-octen-3-ol; g, (Z)-3-hexenyl acetate; k, (E)-β-ocimene; o,
DMNT; p, (Z)-3-hexenyl butyrate; t, (E)-nerolidol; u, TMTT. A, Score plot for HW leaves (54 samples) shows the distinction between WA samples
(green squares) and other leaf portions. B, HW loading plot suggests that GLVs and terpenoids have the same localization in HIPV topographical
distribution. C, MDOS leaves (52 samples) show a distribution similar to HW leaves (A). D, MDOS loading plot. E, MD score plot (53 samples) shows
the same topographical distribution. F, MD loading plot shows a different distribution between GLVs and the terpenoid groups. The position of (k) and
(o) and the absence of (t) and (u) suggest the non-significant role of terpenoids in MD reaction, unlike the HW and MDOS loading plots (B, D).
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(E)-β-ocimene and (E)-nerolidol were produced in the
same area, close to the HW zone, but also in distant leaf
portions (Figure 4B). A similar pattern was found when
MD plants were treated with OS (Figure 4: C and D).
In MD treated leaves, there was a clear distinction
between the wounded area and the rest of the leaf
(Figure 4E). However, only GLVs and 1-octen-3-ol were
produced in wounded areas, while (E)-β-ocimene and
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DMNT were not discriminant for the different leaf por-
tions (Figure 4F).
The observation of the temporal differences showed

that in all treatments GLVs were always produced early,
whereas production of terpenoids and homoterpenes oc-
curred later. In particular, PCAs highlighted some inter-
esting differences in the temporal patterns between HW
and other damages, with MDOS again showing inter-
mediate values (Additional file 2).
A quantitative evaluation of the main damage-related

compounds were carried out by combining in-tape cam-
phor standardization with an external calibration by Gas
Chromatography - Selected Ion Monitoring - Mass Spec-
trometry (GC-SIM-MS) for all types of damage, reaching
a good linearity for every quantified HIPV (for quantita-
tion parameters see Additional file 3).
In general, GLVs were the most abundant compounds in

the damaged area (Table 1). (Z)-3-hexen-1-ol, (E)-2-
hexenal, and 1-octen-3-ol reach rates of up to 100 ng/cm2.
(E)-β-ocimene and (E)-nerolidol were generally pro-
duced in smaller amounts far from the wounded zone;
however, they were found to exceed 100 ng/cm2 in the
damage area. The homoterpenes, DMNT and TMTT,
were mostly found in low quantities in HW-damaged
leaves (Table 1).

Topographical gene expression analysis and DC-STE-GC-
MS HIPV mapping
Because of the non-destructive DC-STE method of PV
sampling, the different leaf sampled portions producing
HIPVs could be used for gene expression analyses. Far-
nesyl Pyrophosphate Synthase (FPS) [41], P. lunatus
Ocimene Synthase (PlOS) [10] and P. lunatus Terpene
Synthase 2 (PlTPS2) [42] gene expressions were analyzed
and compared to the results obtained by DC-STE for the
related compounds . In addition, Lipoxygenase (LOX)
[41] gene expression was analyzed, to assess any similar-
ity with the observed high formation of GLVs.
Significantly higher expression of PlOS (Figure 5A)

was in all cases coherent with the measured amount of
the related compound (E)-β-ocimene (Figure 5B), with
fold change values > 10 in the wounded zones of leaves
treated by HW, MD or MDOS. Production of the homo-
terpene TMTT was associated with the gene expression
pattern of PlTPS2 only for HW and MDOS treatments,
whereas regulation of the gene was not comparable to
the amount of the homoterpene upon MD treatment
(Figure 5: C and D). Upregulation of FPS gene expres-
sion (Figure 5E) was consistent with (E)-nerolidol
amount in HW and MDOS treatments (Figure 5F). Fi-
nally, the total GLV - production (Figure 5H) was in all
cases higher in wounded zones, and consistent with
LOX upregulation, in particular when referred to HW
(Figure 5G). These results are fully supported by the
Kruskal-Wallis significance test (with Bonferroni adjust-
ment, p < 0.017), as shown in Figure 5.

Discussion
One of the most challenging tasks in multitrophic inter-
action studies is the adoption of advanced analytical
platforms that enable different analyses to be run simul-
taneously using different “omic” methodologies. DC-
STE-GC-MS enabled to characterize the qualitative and
quantitative topographical profile of leaf volatile emis-
sion upon herbivory, while evaluating at the same time
the gene expression of the same sampled tissues.
In general, the HIPVs detected upon biotic and abiotic

stresses in this study agree with those associated with
biological damaging events [9,13,22,43] and with indirect
plant defense [20,25,30,44].
The present results highlight the key role of the dam-

aged area in HIPV production [35], with GLVs associ-
ated with both mechanical damage and herbivory, and
monoterpenoids, sesquiterpenoids, and homoterpenes
specifically associated with herbivory. In particular, MD
treatment appears to be sufficient to induce higher
amount of GLVs, including (E)-2-hexenal, (Z)-3-hexen-1-
ol, 1-octen-3-ol, (Z)-3-hexenyl acetate and (Z)-3-hexenyl
butyrate [20,25,32,45-48]. The DC-STE-GC-MS technique
enabled GLVs to be determined qualitatively and to be
quantified for further comparisons. Furthermore, the
analysis revealed that some GLVs [(E)-2-hexenal, (Z)-3-
hexen-1-ol and 1-octen-3-ol] are more intensively pro-
duced during MD than they are during other stresses.
Conversely, (Z)-3-hexenyl acetate and (Z)-3-hexenyl bu-
tyrate are produced in higher amount in HW leaves, sup-
porting their herbivory-induced production pattern
[23,25,26,49]. GLVs are synthesized via the LOX pathway
from C18 polyunsaturated fatty acids [50], which are
cleaved to C12 and C6 compounds by hydroperoxide lyases
(HPL) [28]. Most plants have several isoforms of LOX
[51], and a specific LOX that is essential to GLV formation
has been identified in a few plant species [52]. In the
present study, upregulation of LOX expression was evenly
distributed throughout the leaf, although GLVs were
mostly found in the wounded area. This discrepancy be-
tween gene expression and GLV production may be due,
on the one hand, to the wide variety of roles played by
LOX [53], and, on the other hand, to the effect of the
GLVs on leaf tissues [30]. For instance, (Z)-3-hexenal in
the vapor phase was taken up by Arabidopsis and con-
verted into its alcohol and acetate in the cells. This sce-
nario was further confirmed by the fact that the isotope
ratios of alcohol and acetate were almost identical to that
of (Z)-3-hexenal when 13C-labeled (Z)-3-hexenal of a
given isotope ratio was used for the exposure [54]. GLVs
produced in the wounded zone may therefore influence
expression of genes in unwounded tissues of the same leaf



Table 1 Phaseolus lunatus HIPV quantitation results

(E)-2-hexenal (Z)-3-hexen-1-ol 1-octen-3-ol (Z)-3-hexenyl acetate (E)-β-ocimene DMNT (Z)-3-hexenyl butyrate (E)-nerolidol TMTT

HW WA 185.4 341.1 152.8 65.8 274.3 62.2 670.0 237.7 63.6

(45.6) (67.5) (51.8) (11.3) (53.2) (8.0) (539.7) (82.2) (23.6)

M nd 38.8 42.6 29.2 111.7 24.7 40.6 40.6 12.6

(9.9) (12.6) (10.7) (38.5) (5.8) (31.0) (30.1) (6.3)

B nd 58.3 28.3 12.2 90.6 24.7 25.5 31.9 6.3

(31.5) (10.0) (2.3) (49.1) (12.2) (22.1) (24.0) (4.6)

MDOS WA 354.6 366.1 195.5 9.0 68 16.3 7.6 63.8 16.2

(98.7) (95.6) (39.1) (1.2) (23.6) (3.7) (5.8) (40.5) (4.5)

M 9.8 18.5 20.6 nd 45.6 3.8 nd nd nd

(9.8) (12.8) (8.4) (19.3) (1.7)

B 7.7 nd 8.2 nd 3.3 0.7 nd nd nd

(7.7) (4.7) (1.8) (0.7)

MD WA 652.3 1436.4 435.1 12.5 277.6 2.5 11.6 7.9 1.8

(157.7) (220.0) (101.4) (1.7) (120.2) (1.3) (5.5) (7.9) (1.8)

M 49.8 71.4 51.3 1.4 26.9 nd nd nd nd

(29.1) (47.2) (35.7) (1.0) (13.1)

B nd 4.1 2.4 nd nd nd nd nd nd

(4.1) (2.4)

Contr T 3.0 nd 1.6 0.2 nd 0.6 nd nd nd

(3.0) (1.1) (0.2) (0.4)

M 4.0 3.6 6.9 nd nd nd nd 15.2 nd

(4.0) (2.5) (2.7) (12.2)

B 13.9 4.0 2.5 0.4 0.3 nd nd nd nd

(9.9) (2.8) (1.4) (0.3) (0.3)

Quantitative analysis of HIPVs produced by Phaseolus lunatus in different stress conditions, and topographical distribution of HIPVs. Results are expressed as ng/cm2 (SEM). Reported results were submitted to ANOVA.
Numbers in bold indicate statistical significance at the Tukey HSD test of the indicated leaf area (p < 0.05) in those cases in which ANOVA (treatments-control) was significant (p < 0.05). WA, wounded area; M, middle
portion of the leaf; B, basal portion of the leaf; T, unwounded tip of the leaf; HW, herbivore wounding; MD, mechanical damage; MDOS, mechanical damage plus application of Spodoptera littoralis oral secretions;
Contr, control undamaged leaves; nd, not detectable.
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Figure 5 HIPV– gene expression comparison. Letters refer to Kruskal-Wallis tests conducted separately for each damage dataset (Bonferroni correction
was applied, only p < 0.017 were accepted as significant). Comparison of HIPV quantitation results, and percentage change versus significance groups,
point to a correlation between HIPVs and their biosynthesis distribution, and thus support the DC-STE-GC-MS results. WA, wounded area; M, middle; B,
base. A, C, E, G: PlOS, PlTPS2, FPS, LOX quantitative real time-PCR (qPCR) calculated fold changes. B, D, F, H: (E)-β-ocimene, TMTT, (E)-nerolidol, total GLV
quantitation results (ng/cm2).
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because of GLV diffusion. In line with what Heil and Land
have been recently reported [30], DC-STE sampling also
highlights that GLVs play a central role in the so-called
plant damage associated molecular pattern (DAMP).
Indeed they seem to be essential to trigger gene expression
required to prepare an adequate damage reaction in the
surrounding tissues and organs. The MD related high
GLV production could be explained with their well-known
anti-microbial activity [32,55]. This is a resistance trait that
is required during pathogen infection, which could occur
after wounding [30], even without the herbivore interaction.
Among monoterpenes, (E)-β-ocimene, a well-known
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damage-related HIPV [5,10,44] is a significant example
of HIPV distribution. Its amount is limited to the dam-
aged area in HW, while in MDOS (E)-β-ocimene also
occurs distant from the wounded tissues. This different
distribution agrees with the pattern of PlOS expression,
demonstrating to produce almost exclusively (E)-β-ocimene
when activated [56]; production is mainly located in the
wounding area [45]. Transgenic Arabidopsis, transformed
with the PlOS promoter GUS fusion constructs, shows that
the activity is restricted to the wounded sites [10]. Lepidop-
teran caterpillars continuously remove leaf tissue after every
bite, even if in a time longer than that one needed for the
induction [57]. Conversely, application of OS to MD en-
ables the elicitor to remain on the leaf longer, at least
throughout the sampling time. This might explain why, in
MDOS treated leaves, PlOS upregulation was observed in
leaf areas distant from the damage.
Homoterpenes and sesquiterpenoids, such as DMNT,

TMTT and (E)-nerolidol, are often associated with
damage-related emission [5,22,26,58]; they have been
studied as indirect defense mediators [25,39]. DMNT
distribution is comparable to that of TMTT, and shows
a general distribution from the damage zone throughout
the leaf. However, their amount is higher in the
wounded zone after both HW and MDOS treatment.
The TPS enzymes have been found to be involved in
DMNT and TMTT precursor production [42,58,59] and
their products have been related to herbivory events
[10,35,58]. The PlTPS2 gene analyzed here showed a dis-
tribution comparable to that of homoterpene amount, in
particular in leaves undergoing HW and MDOS.
Production of (E)-nerolidol is limited to the wounded

zone, in particular in HW and MDOS damage, while MD
does not seem to induce it. The lower amount of this
compound in MDOS compared to HW is of interest be-
cause it shows the inability of OS alone to trigger the same
HW-related leaf emission. Expression of FPS was found to
be upregulated not only in damaged areas but also in leaf
tissues distant from the wounding zone. FPS plays a key
role in HIPV emission since its product, farnesyl pyro-
phosphate, is a basic precursor for sesquiterpenoid biosyn-
thesis [13,60]. FPS is considered an important HW-related
enzyme [43] and its inducibility by HIPVs has also been
discussed and confirmed [61,62]. FPS upregulation was
marked in HW leaves, underlining the relationship be-
tween herbivory and FPS activation [43].

Conclusions
The use of DC-STE-GC-MS provides a clearer picture of
DAMP distribution in lima bean, by showing differential
release of HIPV classes after different kinds of wounding.
DAMPs, which are essential for airborne damage-signals,
were found to be mainly related to disrupted tissues. The
results confirm the role of HIPVs as DAMP signals and
show their role as signals able to quickly spread in the sur-
rounding environment of wounded areas. Upon herbivory
a fast Vm depolarization is known to affect the whole dam-
aged leaf, whereas calcium, potassium, ROS and NO
responses are limited to the wounded zones. DC-STE-
GC-MS results show that GLVs are released almost
immediately and their emission is topographically in con-
comitance with early events such as Vm depolarization and
calcium signaling, as previous data suggested [32,63-69].
The DC-STE-GC-MS results are in agreement with

the present body of knowledge of plant damage recogni-
tion and reaction, and provide a better understanding of
the dynamics of plant responses to damage. The main
advantages of this technique compared to classical PV
sampling methods are: a) in vivo sampling; b) ease of
execution; c) simultaneous assays of different leaf por-
tions, and d) preservation of plant material for further
omic studies.
Methods
Plant and animal material
Feeding experiments were carried out using the lima
bean (Phaseolus lunatus L. cv Ferry Morse var. Jackson
Wonder Bush). Individual plants were grown from seed
in plastic pots with quartz sand at 23°C and 60% humid-
ity, using daylight fluorescent tubes at approximately
270 μE m−2 s−1 with a photophase of 16 h. Experiments
were conducted with 12- to 16-day-old seedlings show-
ing two fully-developed primary leaves, which were
found to be the most responsive [1].
Spodoptera littoralis Boisd. (Lepidoptera, Noctuidae)

larvae were kindly provided by R. Reist from Syngenta
Crop. Protection Münchwilen AG, Switzerland, and were
fed on an artificial diet comprising 125 g bean flour, 2.25 g
ascorbic acid, 2.25 g ethyl 4-hydroxybenzoate, 750 μL for-
maldehyde, 300 mL distilled water and 20 g agar, pre-
viously solubilized in 300 mL of distilled water. The
ingredients (Sigma-Aldrich, St. Louis, MO, USA) were
mixed with a blender and stored at 4°C for not more
than one week. With the exception of plant volatile
(PV) collection (see below), plants were exposed for
2 h to third instar larvae reared from egg clutches in
Petri dishes (9 cm diameter) in a growth chamber
with 16 h photoperiod at 25°C and 60-70% humidity.
The amount of herbivore damage was limited to 30%
of leaf surface, as detected by ImageJ image analysis
[4]. Feeding experiments were always performed between
1 and 3 p.m.
Collection of oral secretions
In order to evaluate the effect of S. littoralis oral secre-
tions (OS), 5-day-old larvae were allowed to feed on lima
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bean leaves for 24 h. Regurgitation was caused by gently
squeezing the larva with a forceps behind the head. OS
was collected in glass capillaries connected to an evacu-
ated sterile vial (peristaltic pump).

PV sampling setup
Biotic stress was caused by S. littoralis (HW); whereas
abiotic stress was performed by mechanically damaging
leaf tissues with a pattern wheel (MD). Furthermore abi-
otic and biotic stresses were connected by combining
MD with S. littoralis oral secretions (MDOS). A large
number of samples were analyzed (337) and multivariate
methods were used to define discriminant variables (i.e.,
HIPVs) and to plot chemical and molecular topograph-
ical maps of leaf areas producing HIPVs in response to
biotic and abiotic stress. In particular, the experiments
were carried out in nine sampling steps, each represent-
ing a specific combination of type of damage (HW, MD,
and MDOS) and sampling duration (2, 6, 24 h). For each
sampling step, three biological replicates were analyzed,
with 12 tapes for each. A control using two tapes was
also sampled. HW was caused by S. littoralis caterpillars;
the damaged area for each plant was as near as possible
equal. MD was done by piercing the leaves manually
with a pattern wheel. The damaged leaf area and the
duration of time of the damaging mechanism were kept
constant. The damage process in MDOS was similar to
that in MD, with the addition on the wounded area of
10 μL of a solution 1:1 of S. littoralis OS and 5 mM
MES (2-(N-morpholino)-ethane-sulphonic acid) buffer
(pH 6.0). The OS quantity was assessed after several tri-
als (from 0.5 to 10 μL) and was found the most appro-
priate to obtain reproducible experiments [43].
At the end of the sampling time, the tapes were removed

and stored at −20°C. Leaves were cut into 3 parts (wounded
area, middle, base) and stored at −80°C for further analyses.

Direct Contact–Sorptive Tape Extraction of PVs
Polydimethylsiloxane (PDMS) tapes (4 × 15 × 0.2 mm,
ca. 33 mg) were placed on different areas of the adaxial
and abaxial leaf lamina of S. littoralis-attacked and of
control leaves. A glass coverslip was placed just above
the DC-STE tape in order to exclude PDMS – air inter-
action. The quantitation of the collected PVs was obtained
by an external standard at known concentration levels, be-
ing difficult to calculate an analyte recovery rate with DC-
STE applied to in vivo plant matrices (unlike it was done in
[37] with standards). Sampling was carried out in triplicate
in the positions on the leaf shown in Figure 1, for the times
reported above (2, 6, 24 h). Camphor (Sigma-Aldrich,
Milan, Italy) was used as internal standard (I.S.) and was
sorbed onto the tapes as proposed by Wang et al. [70] for
Solid Phase Micro Extraction. Preliminary analysis with
tapes with and without camphor I.S. were carried out to
verify any possible interference of camphor with lima bean
PV production (Additional file 4). After sampling, the
PDMS tapes were placed in thermal desorption tubes,
stored in sealed vials, and submitted to automatic thermal
desorption (see below). Sorption tapes were provided by the
Research Institute for Chromatography (Kortrijk-Belgium).

GC-MS analysis
PDMS tape thermal desorption was carried out with a
Thermal Desorption Unit (TDU) from Gerstel (Mülheima/
d Ruhr, Germany). Analyses were driven automatically by
an MPS-2 multipurpose sampler installed on an Agilent
7890 GC unit coupled to an Agilent 5975C MSD (Agilent,
Little Falls, DE, USA). The TDU thermal desorption pro-
gram was: from 30°C to 250°C (5 min) at 60°C/min in split-
less flow mode, and transfer line at 300°C. A Gerstel CIS-4
PTV injector was used to cryofocus compounds thermally
desorbed from the PDMS tapes, and inject them into the
injector GC port. The PTV was cooled to −40°C using li-
quid CO2; injection temperature: from −40°C to 250°C
(5 min) at 12°C/s. The inlet was operating in the splitless
mode. Helium was used as carrier gas at a flow rate of
1 mL/min. Column: HP5MS (30 m× 0.25 mm i.d. ×
0.25 μm; Agilent Technologies). Temperature program:
from −30°C (1 min) to 50°C at 50°C/min, then to 165°C at
3°C/min, then to 250°C (5 min) at 25°C/min. MS operated
in EI mode at 70 eV with a mass range from 35 to 350 amu
in full scan mode.
Quantitative Gas Chromatography – Selected Ion Mon-

itoring – Mass Spectrometry analysis (GC-SIM-MS): ap-
propriate amounts of 2-hexenal, 3-hexenol, 1-octen-3-ol,
3-hexenyl acetate, (Z)-3-hexenyl butyrate, 1-octen-3-ol,
(E)-β-ocimene, 4,8-dimethyl-1,3,7-nonatriene and 4,8,12-
trimethyl-1,3,7,11-tridecatetraene (Sigma-Aldrich, Milan,
Italy) were diluted with cyclohexane (Sigma-Aldrich,
Milan, Italy) to obtain nine different concentrations in the
range 1 to 1000 μg/mL for each component. Calibration
curves were constructed by analyzing the resulting stand-
ard solutions three times, by GC-MS in SIM mode, under
the conditions reported above.

GC-MS data processing
Data were processed with Agilent MSD ChemStation ver.
D.03.00.611 (Agilent Technologies). Components were
identified by comparing their linear retention indices (ITs)
(calculated versus a C9-C25 hydrocarbon mixture) and
their mass spectra to those of authentic samples, or by
comparison with those present in commercially-available
mass spectrum libraries (Wiley, Adams).

RNA extraction from lima bean leaves after HW, MD and
MDOS
After each experiment, leaves were collected and immedi-
ately frozen in liquid nitrogen. Samples from time-course
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experiments were pooled so as to have a single pool of
replicates for each stress condition (HW, MDOS, MD,
undamaged leaves). Fifty mg of frozen leaf material
were ground in liquid nitrogen with mortar and pestle.
Total RNA was isolated using the Agilent Plant RNA
Isolation Mini Kit (Agilent Technologies, Santa Clara,
CA, US) and RNase-Free DNase set (Qiagen, Hilden,
Germany). Sample quality and quantity were checked
using the RNA 6000 Nano kit and the Agilent 2100
Bioanalyzer (Agilent Technologies), following the man-
ufacturer’s instructions. Quantification of RNA was also
confirmed spectrophotometrically, using the NanoDrop
ND-1000 (Thermo Fisher Scientific, Waltham, MA, US).

Quantitative real time–PCR (qPCR) reaction conditions
and primers
First strand cDNA synthesis was run with 1 μg of total
RNA and random primers, using the High-Capacity
cDNA Reverse Transcription Kit (Applied Biosystems,
Foster City, CA, US), and following the manufacturer’s
recommendations. Reactions were prepared by adding
1 μg of total RNA, 2 μL of 10X RT Buffer, 0.8 μL of 25X
dNTPs mix (100 mM), 2 μL 10X RT random primer, 1 μL
of Multiscribe™ Reverse Transcriptase, and nuclease-free
sterile water to 20 μL. Reaction mixtures were incubated
at 25°C for 10 min, 37°C for 2 h, and 85°C for 5 s.
The qPCR experiments were run on a Stratagene

Mx3000P Real-Time System (La Jolla, CA, USA) using
SYBR green I with ROX as an internal loading standard.
The reaction mixture was 10 μL, comprising 5 μL of 2X
Maxima™ SYBR Green qPCR Master Mix (Fermentas
International, Inc, Burlington, ON, Canada), 0.5 μL of
cDNA and 100 nM primers (Integrated DNA Technolo-
gies, Coralville, IA, US). Controls included non-RT con-
trols (using total RNA without reverse transcription to
monitor for genomic DNA contamination) and non-
template controls (water template). Specifically, PCR con-
ditions were the following: P. lunatus Actin1 (PlACT1),
Farnesyl Pyrophosphate Synthase (FPS), Lipoxygenase
(LOX) [41], P. lunatus Ocimene Synthase (PlOS) [10], P.
lunatus Terpene Synthase 2 (PlTPS2) [42]: 10 min at
95°C, 45 cycles of 15 s at 95°C, 30 s at 55°C, and 30 s at
72°C, 1 min at 95°C, 30 s at 55°C, 30 s at 95°C. Fluores-
cence was read following each annealing and extension
phase. All runs were followed by a melting curve ana-
lysis from 55°C to 95°C. The linear range of template
concentration to threshold cycle value (Ct value) was
determined by preparing a dilution series, using cDNA
from three independent RNA extractions analyzed in
three technical replicates. Primer efficiencies for all pri-
mer pairs were calculated using the standard curve
method [71]. Two different reference genes (Actin1
(PlACT1) and the 18S ribosomal RNA) were used to
normalize the results of the qPCR. The best of the two
genes was selected using the Normfinder software [72];
the most stable gene was P1ACT1. Primers used for
qPCR were as described elsewhere [3,41,42] and are re-
ported in Additional file 5.
All amplification plots were analyzed with the Mx3000P™

software to obtain Ct values. Relative RNA levels were
calibrated and normalized with the level of PlACT1
mRNA.

Statistical analyses
Analysis of variance (ANOVA) and the Tukey test were
used to assess difference between treatments and con-
trol. For all other experiments, at least five samples per
treatment group entered the statistical data analysis. PV
chemical data are expressed as mean values ± standard
error of the mean (SEM).
Principal Component Analysis (PCA) was used in

three different steps, each targeting different discrimin-
ation (control-damage, different damage, different leaf
areas). A log-transformation was used as GC-MS data
pre-treatment [40]. Each PCA step was followed by a
significance test for the discriminant compounds. To
compare the different leaf areas, the Kruskal-Wallis test
was applied to both chemical and gene expression data.
Bonferroni adjustment (p/k; k = number of comparisons)
was applied to protect against Type I Error [73,74].
All statistical data analyses were done using SPSS soft-

ware for Windows.

Additional files

Additional file 1: PV DC-STE-GC-MS profile. The typical GC-MS profile of
PVs captured by DC-STE on Phaseolus lunatus leaves wounded by Spodoptera
littoralis obtained after thermal desorption of DC-STE. A compound table is
also provided.

Additional file 2: PCA analysis of time-course experiments on different
damage dataset. Score and loading plots presented in Figure 4 are here
displayed taking into account sampling time of every sample (instead
considering the distance from the wounded area).

Additional file 3: Parameters for the volatiles’ quantitation. A table
reports HIPV quantitation parameters obtained by Gas Chromatography –
Selected Ion Monitoring – Mass Spectrometry (GC-SIM-MS).

Additional file 4: Camphor effects on Phaseolus lunatus. A table and
a barchart report a comparison between PVs in plants analyzed with and
without camphor preloading on tapes.

Additional file 5: Gene-specific primers used for quantitative real-time
PCR. A table collecting GenBank accession number and sequences of every
primer used.
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