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Abstract: We review coupled SU(3)-structures, also known in the literature as restricted
half-flat structures, in relation to supersymmetry. In particular, we study special classes
of examples admitting such structures and the behavior of flows of SU(3)-structures with
respect to the coupled condition.
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1. Introduction

In the physical literature, manifolds endowed with SU(3)-structures have been frequently considered
to construct string vacua [1–10].

In this paper, we are mainly interested in the class of SU(3)-structures that are relevant for N = 1

compactifications of Type IIA string theory on spaces of the form AdS4 × N , where AdS4 is the
four-dimensional anti-de Sitter space and N is a six-dimensional compact smooth manifold. The
requirement of N = 1 supersymmetry implies the existence of a globally-defined complex spinor on
the internal six-manifold N . As a consequence, the structure group of N reduces to SU(3), which is
equivalent to the existence on N of an almost Hermitian structure (h, J, ω) and a complex (3,0)-form Ψ

of nonzero constant length satisfying some compatibility conditions. As shown in [3], in the case where
the two SU(3)-structures are proportional, imposing the Killing spinor equations for four-dimensional
N = 1 string vacua of Type IIA on AdS4 constrains the intrinsic torsion of the SU(3)-structure to lie
in W−1 ⊕ W−2 . Further constraints on the torsion forms are implied by the Bianchi identities for the
background fluxes in the absence of sources. Moreover, all of these constraints are not only necessary,
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but also sufficient to guarantee the existence of solutions. Examples of this kind of solutions were
considered, for instance, in [3,6,11,12].

SU(3)-structures whose torsion class isW−1 ⊕W−2 are known as coupled SU(3)-structures [13] in the
mathematical literature and are characterized by the fact that they are half-flat SU(3)-structures, i.e., both
ψ+ := <(Ψ) and ω∧ω are closed forms, having dω proportional to ψ+. Coupled structures were recently
considered in [14–16]. They are of interest, for instance, because their underlying almost Hermitian
structure is quasi-Kähler and because they generalize the class of nearly Kähler SU(3)-structures, namely
the half-flat structures having dω proportional to ψ+ and dψ− proportional to ω∧ω, where ψ− := =(Ψ).

Up to now, very few examples of manifolds admitting complete nearly Kähler structures are known. In
the homogeneous case, there are only finitely many of them by [17], while new complete inhomogeneous
examples were recently found on S6 and S3 × S3 in [18]. Among the remarkable properties of nearly
Kähler structures in dimension six, it is worth recalling here that the Riemannian metric h they induce
is Einstein, that is its Ricci tensor Ric(h) is a scalar multiple of h. It is then quite natural to ask whether
coupled structures inducing Einstein metrics can exist or if requiring that a coupled structure induces an
Einstein metric implies that it is actually nearly Kähler. An attempt to find coupled Einstein structures
on explicit examples was done in [16], where the existence of invariant coupled Einstein structures was
excluded on the compact manifold S3 × S3 for Ad(S1)-invariant Einstein metrics and on all of the
six-dimensional Einstein solvmanifolds. While writing this paper, we found out that the work [6], which
provides a family of AdS4 vacua in IIA string theory, contains an example of a coupled Einstein structure.
This answers the question and can be used to construct examples of G2-structures with non-vanishing
torsion inducing Einstein and Ricci-flat metrics.

One of the main motivations to study half-flat structures is due to the role they play in the construction
of seven-dimensional manifolds with holonomy contained in G2. More in detail, by a result of
Hitchin [19], on a six-manifold N , it is possible to define a flow for SU(3)-structures, the so-called
Hitchin flow, which can be solved for any given analytic half-flat structure as the initial condition.
A solution to the flow equations consists of a family of half-flat structures depending on a parameter
t ∈ I ⊆ R and allows one to define a torsionless G2-structure on the product manifold I × N . One
question that naturally arises is then whether coupled structures, which are in particular half-flat, are
preserved by this flow.

A generalization of the Hitchin flow can be introduced considering an SU(3)-structure, not necessarily
half-flat, and using it to define a G2-structure with torsion on the product manifold I×N . The evolution
equations for the differential forms defining the SU(3)-structure can then be obtained by requiring that
the intrinsic torsion of the G2-structure belongs to a certain torsion class. Of course, the Hitchin flow
equations can be recovered as a special case of this generalized flow. This idea was considered, for
example, in [20], where the generalized Hitchin flow was used as a tool to study the moduli space
of SU(3)-structure manifolds constituting the internal compact space for four-dimensional N = 1

2

domain wall solutions of heterotic string theory. In that case, the authors considered the non-compact
seven-dimensional manifold defined by combining the direction perpendicular to the domain wall and the
internal six-manifold and observed that it is possible to define on it a G2-structure whose non-vanishing
intrinsic torsion forms can be recovered using the results of [8,9].
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Furthermore, homogeneous spaces admitting coupled structures were used to provide examples of
heterotic N = 1

2
domain wall solutions with vanishing fluxes in [7], and an attempt to generalize this

result in a more general case was done in [9].
The present paper is organized as follows. In Section 2, we review some definitions and properties

regarding SU(3)- and G2-structures. In Section 3, we study coupled structures in relation to
supersymmetry. In Section 4, we describe some explicit examples, and in Section 5, we study the
behavior of flows of SU(3)-structures with respect to the coupled condition.

2. Review of SU(3)-Structures and G2-Structures

An SU(3)-structure on a six-dimensional smooth manifoldN is the data of a Riemannian metric h, an
orthogonal almost complex structure J , a two-form ω related to h and J via the identity ω(·, ·) = h(J ·, ·)
and a (3, 0)-form of nonzero constant length Ψ = ψ+ + iψ−, which is compatible with ω, i.e.,

ω ∧Ψ = 0,

and satisfies the normalization condition:

i

2

(
Ψ ∧Ψ

)
=

2

3
ω3 = 4dVh,

where dVh is the Riemannian volume form of h. At each point p ∈ N , there exists an h-orthonormal
frame (e1, . . . , e6) of T ∗pN , called the adapted frame for the SU(3)-structure, such that:

ω = e12 + e34 + e56,

Ψ = (e1 + ie2) ∧ (e3 + ie4) ∧ (e5 + ie6),

and whose dual frame (e1, . . . , e6) is adapted for J , i.e.,

Jei = ei+1, i = 1, 3, 5.

Remark 1. Here and hereafter, the notation eijk··· is a shortening for the wedge product ei∧ej∧ek∧· · · .
Moreover, we will also use the notation θn as a shortening for the wedge product of a differential form θ

by itself for n-times.

Using the results of [21,22], one can show that an SU(3)-structure actually depends only on the pair
(ω, ψ+); let us recall briefly how. For each p ∈ N , let V := TpN ; denote by A : Λ5(V ∗)→ V ⊗Λ6(V ∗)

the canonical isomorphism given by A(ξ) = v ⊗ Ω, where ivΩ = ξ, and define for a fixed ρ ∈ Λ3(V ∗):

Kρ : V → V ⊗ Λ6(V ∗), Kρ(v) = A((ivρ) ∧ ρ)

and
λ : Λ3(V ∗)→ (Λ6(V ∗))⊗2, λ(ρ) =

1

6
trK2

ρ .

If λ(ρ) 6= 0,
√
|λ(ρ)| ∈ Λ6(V ∗) defines a volume form by choosing the orientation of V for which ω3

is positively oriented. Moreover, whenever λ(ρ) < 0, the following endomorphism defines an almost
complex structure:

Jρ := − 1√
−λ(ρ)

Kρ.
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An SU(3)-structure on N can then be defined as a pair (ω, ψ+), such that the two-form ω is non
degenerate, i.e., ω3 6= 0, the three-form ψ+ is compatible with ω and satisfies λ(ψ+(p)) < 0 for each
p ∈ N , the almost complex structure is J = Jψ+ , the imaginary part of Ψ is given by ψ− := Jψ+, the
normalization condition holds and h(·, ·) := ω(·, J ·) defines a Riemannian metric.

The intrinsic torsion τ of an SU(3)-structure is completely determined by the exterior derivatives of
ω, ψ+, ψ−, as shown in [23]. More in detail, we have:

dω = −3
2
w−1 ψ+ + 3

2
w+

1 ψ− + w3 + w4 ∧ ω,

dψ+ = w+
1 ω

2 − w+
2 ∧ ω + w5 ∧ ψ+,

dψ− = w−1 ω
2 − w−2 ∧ ω + Jw5 ∧ ψ+,

(1)

where w±1 ∈ C∞(N), w±2 ∈ Λ1,1
0 (N), w3 ∈ Λ2,1

0 (N), w4, w5 ∈ Λ1(N) are the intrinsic torsion forms
of the SU(3)-structure. It is then possible to divide the SU(3)-structures into classes by seeing which
torsion forms vanish. For example, if ω, ψ+ and ψ− are all closed, then all of the torsion forms vanish,
and the manifold N is Calabi–Yau. If all of the torsion forms, but w−1 , vanish, the SU(3)-structure is
said to be nearly Kähler, and we write τ ∈ W−1 . If both ψ+ and ω2 are closed, then the torsion forms
w+

1 , w
+
2 , w4, w5 vanish, the SU(3)-structure is said to be half-flat, and we write τ ∈ W−1 ⊕W−2 ⊕W3.

As recently shown in [24], the SU(3)-structures can also be described in terms of a characterizing spinor
and the spinorial field equations it satisfies.

In [25], it was shown that the Ricci and the scalar curvature of the metric h induced by an
SU(3)-structure can be expressed in terms of the intrinsic torsion forms. In particular, if we consider
the projections E1 : Λ2(N)→ Λ1,1

0 (N) and E2 : Λ3(N)→ Λ2,1
0 (N) given by:

E1(β) = 1
2
(β + Jβ)− 1

18
∗ ((∗(β + Jβ) + (β + Jβ) ∧ ω) ∧ ω)ω,

E2(ρ) = ρ− 1
2
∗ (Jρ ∧ ω) ∧ ω − 1

4
∗ (ρ ∧ ψ−)ψ+ − 1

4
∗ (ψ+ ∧ ρ)ψ−,

where ∗ is the Hodge operator defined using h and the volume form dVh, then the traceless part of the
Ricci tensor has the following expression:

Ric0(h) = ι−1(E1(φ1)) + γ−1(E2(φ2)),

where the two-form φ1 and the three-form φ2 depend on the intrinsic torsion forms and their derivatives
and the maps ι : S2

+(N) → Λ1,1
0 (N) and γ : S2

−(N) → Λ2,1
0 (N) are (pointwise) su(3)-module

isomorphisms (see [25] for details). The Ricci tensor of h can then be recovered from the identity:

Ric(h) =
1

6
Scal(h)h+ Ric0(h).

Starting from an SU(3)-structure (ω, ψ+) on a six-manifold N , it is possible to construct a
G2-structure on the seven-manifold I×N , where I ⊆ R is a connected open interval. Before describing
how, we recall that a G2-structure on a seven-dimensional manifold M is characterized by the existence
of a globally-defined three-form ϕ inducing a Riemannian metric gϕ and a volume form dVgϕ given by:

gϕ(X, Y )dVgϕ =
1

6
iXϕ ∧ iY ϕ ∧ ϕ, (2)
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for any pair of vector fields X, Y ∈ X(M). The intrinsic torsion of a G2-structure ϕ is completely
determined by the exterior derivatives of ϕ and ∗ϕϕ, where ∗ϕ is the Hodge operator defined using the
metric gϕ and the volume form dVgϕ . More in detail, it holds [26]:

dϕ = τ0 ∗ϕ ϕ+ 3τ1 ∧ ϕ+ ∗ϕτ3,
d ∗ϕ ϕ = 4τ1 ∧ ∗ϕϕ+ τ2 ∧ ϕ,

(3)

where τ0 ∈ C∞(M), τ1 ∈ Λ1(M), τ2 ∈ Λ2
14(M) = {β ∈ Λ2(M) : ∗ϕ(ϕ ∧ β) = −β}, τ3 ∈ Λ3

27(M) =

{ρ ∈ Λ3(M) : ϕ ∧ ρ = 0 and ∗ϕ ϕ ∧ ρ = 0} are the intrinsic torsion forms of the G2-structure.
Furthermore, in this case, it is possible to classify the G2-structures in terms of the non-vanishing torsion
forms. For example, if ϕ is both closed and co-closed, then all of the torsion forms vanish, Hol(gϕ) ⊆ G2

and the G2-structure is called parallel. If ϕ is a closed form, then all of the torsion forms, but τ2, vanish,
and theG2-structure is said to be calibrated. If the only non-vanishing torsion forms are τ1 and τ2, then at
least locally, the metric gϕ is conformally equivalent to the metric induced by a calibrated G2-structure,
and the G2-structure is called locally-conformal calibrated. If the only vanishing torsion form is τ2, then
the G2-structure is said to be integrable. In this case, there exists a unique affine connection with totally
skew-symmetric torsion preserving the G2-structure by [27].

Consider now (ω, ψ+) and two smooth functions F : I → C − {0} and G : I → R+; the following
three-form defines a G2-structure on I ×N [28]:

ϕ = <(F 3Ψ) +G|F |2ω ∧ dt,

where t is the coordinate on I . Moreover, we have:

gϕ = G2dt2 + |F |2h,
dVgϕ = G|F |6dt ∧ dVh,

∗ϕϕ = G=(F 3Ψ) ∧ dt+
1

2
|F |4ω2.

For some particular choices of the interval I and the functions F and G, we obtain the following
remarkable manifolds:

• the cylinder Cyl(N) with metric dt2 + h, if I = R and G,F ≡ 1,

• the cone C(N) with the metric dt2 + t2h, if I = R+, G ≡ 1 and F (t) = t,

• the sin-cone SC(N) with the metric dt2 + sin2(t)h, if I = (0, π), G ≡ 1 and F (t) = sin(t)ei
t
3 .

Observe that with the choice G ≡ 1, the manifold I ×N with metric dt2 + |F |2h is the warped product
of I and N with warping function |F |. Using the expression of the Ricci tensor of the warped product
metric [29], it is possible to show the following general properties (see also [30]).

Proposition 1. Let (Mm, g) be a Riemannian manifold of dimension m. Then, the cone metric dt2 + t2g

is Ricci-flat if and only if the metric g is Einstein with Ric(g) = (m− 1)g.

Proposition 2. Let (Mm, g) be a Riemannian manifold of dimension m with Einstein metric g, such that
Ric(g) = (m− 1)g. Then, the sin-cone metric dt2 + sin2(t)h is Einstein with Einstein constant m.
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3. Coupled Structures and Supersymmetry

In [3], the authors considered the problem of finding necessary and sufficient conditions for N = 1

compactification of (massive) IIA supergravity to four-dimensional anti-de Sitter space on manifolds
endowed with an SU(3)-structure. As a result, they obtained a set of constraints that the intrinsic torsion
forms of the SU(3)-structure (ω, ψ+) on the internal manifold have to satisfy; we recall them here briefly.
Supersymmetry equations and the Bianchi identities constrain the intrinsic torsion to lie in the space
W−1 ⊕W−2 , i.e., the only non-vanishing intrinsic torsion forms are w−1 and w−2 . Furthermore, in absence
of sources, the Bianchi identities provide a further constraint on the exterior derivative of w−2 :

dw−2 ∝ ψ+, (4)

and the norms of w−1 and w−2 have to satisfy the following inequality [12]:

3(w−1 )2 ≥ |w−2 |2, (5)

where | · | denotes the norm with respect to the metric h induced by the SU(3)-structure. In the
massless limit, the solutions reduce to AdS4 × N , N being a compact six-manifold endowed with an
SU(3)-structure with torsion inW−1 ⊕W−2 and for which Equation (4) holds. Moreover, it was observed
in [12] that Equations (4) and (5) can be relaxed in the presence of sources.

It is then worth studying from the mathematical point of view the properties of this kind of
SU(3)-structures. In what follows, we suppose that the manifold N is connected.

First of all, we recall that SU(3)-structures having torsion class W−1 ⊕ W−2 are known as coupled
structures [13] or restricted half-flat structures [10] in the literature. They can be defined as the subclass
of half-flat structures having w3 ≡ 0. In this case, dω is proportional to ψ+; the intrinsic torsion form w−1
is constant [16] and has to be nonzero if we want the intrinsic torsion τ to belong to the classW−1 ⊕W−2 .
Thus, if we let c := −3

2
w−1 , we have:

dω = cψ+,

dψ+ = 0,

dψ− = −2
3
cω2 − w−2 ∧ ω.

(6)

The two-form w−2 lies in the space Λ1,1
0 (N); therefore, it satisfies the following properties:

w−2 ∧ ω2 = 0, (7)

w−2 ∧ ψ± = 0, (8)

w−2 ∧ ω = − ∗ w−2 . (9)

Using Equation (9) and the expression of dψ−, it is easy to show that the two-form w−2 is co-closed, that
is δw−2 = ∗d ∗ w−2 = 0.

Remark 2. Observe that if a manifold admits a coupled structure (ω, ψ+) with coupled constant c ∈
R − {0}, such that dω = cψ+, then one can choose a nonzero real constant r, define ω̃ := r2ω,
ψ̃+ := r3ψ+ and obtain a new coupled structure (ω̃, ψ̃+) with coupled constant c̃ = c

r
. In particular, it

is always possible to find a coupled structure having a positive coupled constant.
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From the results of [25], we have that the scalar curvature of the metric h induced by a coupled
structure is given by:

Scal(h) =
15

2
(w−1 )2 − 1

2
|w−2 |2. (10)

Moreover, the forms φ1 and φ2 appearing in the traceless part of the Ricci tensor are:

φ1 = 1
4
∗ (w−2 ∧ w−2 ) + 1

4
δ(w−1 ψ+),

φ2 = −2 ∗ J(dw−2 ).
(11)

Let us now focus on Equation (4). It forces the proportionality constant between dw−2 and ψ+ to
satisfy the following result.

Proposition 3. Let (ω, ψ+) be a coupled SU(3)-structure and suppose that dw−2 is proportional to ψ+.
Then it holds:

dw−2 = −|w
−
2 |2

4
ψ+.

Moreover, the norm of w−2 is constant.

Proof. First of all, observe that if dw−2 = kψ+ for some function k ∈ C∞(N), then k has to be constant.
Indeed, taking the exterior derivatives of both sides, we get:

dk ∧ ψ+ = 0,

which implies dk = 0. Now, suppose that dw−2 = kψ+. Then, starting from w−2 ∧ ψ− = 0, taking the
exterior derivatives of both sides and using the previous identities, we have:

0 = dw−2 ∧ ψ− + w−2 ∧ dψ− = kψ+ ∧ ψ− − w−2 ∧ w−2 ∧ ω

= 2
3
kω3 + w−2 ∧ ∗w−2 = 2

3
kω3 + |w−2 |2 ∗ 1

= 2
3
kω3 + |w−2 |2 16ω

3.

Thus, k = − |w
−
2 |2
4
. From the observation made at the beginning of the proof, we also get that |w−2 |

is constant.

From Proposition 3 and the fact that w−1 is constant, we obtain the following constraint.

Proposition 4. Let (ω, ψ+) be a coupled SU(3)-structure, such that dw−2 is proportional to ψ+. Then,
the scalar curvature of the metric induced by the coupled structure is constant.

Proof. Consider Equation (10) of the scalar curvature of h, and conclude using the fact that both w−1
and |w−2 | are constant.

Consider now Equation (5); this implies a further constraint on the scalar curvature.

Proposition 5. Let (ω, ψ+) be a coupled SU(3)-structure whose non-vanishing intrinsic torsion forms
satisfy 3(w−1 )2 ≥ |w−2 |2. Then, the scalar curvature of the metric induced by the coupled structure is
positive. Moreover, it is also constant if dw−2 is proportional to ψ+.
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Proof. Using the expression of the scalar curvature of a coupled structure and the inequality 3(w−1 )2 ≥
|w−2 |2, we get:

Scal(h) =
15

2
(w−1 )2 − 1

2
|w−2 |2 ≥ 2|w−2 |2 > 0.

Moreover, if dw−2 is proportional to ψ+, then the scalar curvature is constant by Proposition 4.

It is also easy to characterize the coupled structures having dw−2 proportional to ψ+ and inducing an
Einstein metric:

Proposition 6. Let (ω, ψ+) be a coupled SU(3)-structure, such that dw−2 is proportional to ψ+. Then,
the induced metric h is Einstein if and only if the following identity holds:

∗(w−2 ∧ w−2 ) = w−1 w
−
2 −
|w−2 |2

3
ω.

Proof. Recall that a Riemannian metric h is Einstein if and only if Ric0(h) = 0. We know that:

Ric0(h) = ι−1(E1(φ1)) + γ−1(E2(φ2)),

where φ1 and φ2 for a coupled structure are given in Equation (11). Now, using the fact that dw−2 is
proportional to ψ+, one gets that also φ2 is proportional to ψ+. Thus, E2(φ2) = 0, since ψ+ belongs to a
subspace of Λ3(N), which is disjoint from Λ2,1

0 (N). Moreover,

φ1 =
1

4
∗ (w−2 ∧ w−2 )− 1

2
(w−1 )2 ω − 1

4
w−1 w

−
2

and
E1(φ1) =

1

4
∗ (w−2 ∧ w−2 )− 1

4
w−1 w

−
2 +

1

12
|w−2 |2ω.

Therefore, Ric0(h) = ι−1(E1(φ1)) is zero if and only if E1(φ1) is zero, and from this, the
assertion follows.

4. Examples

In this section, we examine some examples of six-manifolds admitting an SU(3)-structure satisfying
(all or in part) the properties discussed in Section 3.

4.1. Nilmanifolds

We recall here the definition of a nilmanifold and some useful properties.

Definition 7. Let G be a connected, simply-connected, nilpotent Lie group and Γ a cocompact discrete
subgroup. The compact quotient manifold G/Γ is called nilmanifold.

In the general case, every left invariant tensor on G passes to the quotient defining an invariant tensor
on the nilmanifold G/Γ. Moreover, all of the 34 six-dimensional nilpotent Lie algebras existing up to
isomorphisms [31] satisfy the following result.
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Proposition 8 ([32]). Let g be a nilpotent Lie algebra and suppose there exists a basis of it, such that
the structure constants determined with respect to this basis are rational numbers. Then, if G denotes
the simply connected nilpotent Lie group whose Lie algebra is g, there exists a discrete subgroup Γ of G,
such that G/Γ is a nilmanifold.

It then follows that there is a 1 − 1 correspondence between invariant SU(3)-structures (ω, ψ+) on a
nilmanifold and pairs (ω, ψ+) defining an SU(3)-structure on its nilpotent Lie algebra. This allows one
to work only with SU(3)-structures defined on nilpotent Lie algebras.

Since every nilpotent Lie group is solvable, the following result by Milnor holds in the case we are
considering.

Theorem 9 ([33]). Let G be a solvable Lie group. Then, every left invariant metric on G is either flat or
has strictly negative scalar curvature.

In particular, if a nilpotent Lie algebra is endowed with an inner product h, then Scal(h) is
non-positive. As a consequence, using Proposition 5, it is immediate to show that:

Proposition 10. There are no six-dimensional nilmanifolds admitting an invariant coupled structure
satisfying the condition 3(w−1 )2 ≥ |w−2 |2.

Thus, we can only look for nilpotent Lie algebras endowed with a coupled structure (ω, ψ+) having
dw−2 proportional to ψ+. In [14], we showed that among the 34 non-isomorphic six-dimensional nilpotent
Lie algebras, there are only two of them admitting a coupled structure; we recall the result here.

Proposition 11 ([14]). Let g be a six-dimensional, non-abelian, nilpotent Lie algebra endowed with a
coupled SU(3)-structure (ω, ψ+). Then, g is isomorphic to one of the following nilpotent Lie algebras:

I = (0, 0, 0, 0, e14 + e23, e13 − e24),
N =

(
0, 0, 0, e13, e14 + e23, e13 − e15 − e24

)
.

Remark 3. Recall that the notation I = (0, 0, 0, 0, e14 + e23, e13 − e24) means that there exists a basis
of one-forms (e1, . . . , e6) for I∗, such that de1 = 0, de2 = 0, de3 = 0, de4 = 0, de5 = e14 + e23, de6 =

e13 − e24, where d is the Chevalley–Eilenberg differential.

Observe that the two Lie algebras I and N are isomorphic respectively to the Lie algebras labeled
by n28 and n9 in the work [14]. Here, they are given with different structure equations, since in both
cases, the frame (e1, . . . , e6) is an adapted frame for the coupled SU(3)-structure. We emphasize some
properties of these coupled structures in the following examples.

Example 1. I = (0, 0, 0, 0, e14 +e23, e13−e24) is (isomorphic to) the well-known Iwasawa–Lie algebra,
which is the Lie algebra of the six-dimensional nilmanifold known in the literature as the Iwasawa
manifold (see, for instance, [34] for the definition). Since the frame (e1, . . . , e6) is adapted, we have that
the pair

ω = e12 + e34 + e56,

ψ+ = e135 − e146 − e236 − e245,
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defines an SU(3)-structure on I. In this case dω = −ψ+, and the non-vanishing intrinsic torsion
forms are:

w−1 = 2
3
,

w−2 = −4
3
e12 − 4

3
e34 + 8

3
e56.

It is easy to check that Equation (4) is satisfied:

dw−2 = −8

3
ψ+,

and that −1
4
|w−2 |2 = −8

3
, as we expected from Proposition 3. Finally, the scalar curvature of the metric

h induced by the coupled structure is Scal(h) = −2.

Example 2. Consider the Lie algebra N = (0, 0, 0, e13, e14 + e23, e13 − e15 − e24). Since the frame
(e1, . . . , e6) is adapted, we have that the pair

ω = e12 + e34 + e56,

ψ+ = e135 − e146 − e236 − e245,

defines an SU(3)-structure on N. Moreover, dω = −ψ+, and the non-vanishing intrinsic torsion
forms are:

w−1 = 2
3
,

w−2 = −4
3
e12 − 4

3
e34 + e36 − e45 + 8

3
e56.

In this case dw−2 is not proportional to ψ+, and the scalar curvature of the metric h induced by the
coupled structure is Scal(h) = −3.

The fact that the Iwasawa manifold admits an invariant coupled structure was also observed in [3],
where the authors wrote that it was the unique nilmanifold admitting a coupled structure they knew.
Proposition 11 states that, up to isomorphisms, there are only two non-abelian nilpotent Lie algebras
admitting a coupled structure, one of which is the Iwasawa. Moreover, as observed in Example 1, the
coupled structure on the Iwasawa–Lie algebra satisfies Equation (4), i.e., dw−2 is proportional to ψ+.
Thus, it is a natural question to ask whether N admits a coupled structure satisfying Equation (4) or
not. In [11], the authors looked for the possible nilmanifolds admitting an invariant coupled structure
satisfying Equation (4) and concluded that a systematic scan of all of the possible six-dimensional
nilmanifolds yields two possibilities: the six-torus and the Iwasawa manifold. The six-torus has abelian
Lie algebra, so it is not considered in Proposition 11. Moreover, the intrinsic torsion forms of any
invariant SU(3)-structure defined on it are all zero. Anyway, this result seems to answer negatively our
question, and we can prove this is actually what happens.

Proposition 12. There are no coupled SU(3)-structures on N for which the exterior derivative of the
intrinsic torsion form w−2 is proportional to ψ+.
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Proof. The idea is to describe all of the possible coupled structures on N and to see if there exists one of
these whose intrinsic torsion form w−2 satisfies the required condition. Let us start considering a generic
two-form ω on N; we can write it as:

ω =
∑

1≤i<j≤6

ωije
ij,

where ωij are real numbers. We may think of the 15-tuple (ω12, . . . , ω56) =: (ωij) as a point in the affine
space A15

R − {0}. The homogeneous polynomial P of degree three in the unknowns ωij appearing as
a coefficient of e123456 in the expression of ω3 has to be non-vanishing; this gives a first constraint for
(ωij). Since we want a coupled structure, we consider a three-form ψ+ on N given by ψ+ = cdω, for
some nonzero real number c. Assuming:

λ(ψ+) = −4c4ω2
56(ω36ω56 − ω45ω56 − ω2

46 + ω2
56) < 0,

that is ω56 6= 0 andB := ω36ω56−ω45ω56−ω2
46+ω2

56 > 0, we can compute the almost complex structure
J induced by the stable form ψ+. Now, we change the basis from (e1, . . . , e6) to a basis (E1, . . . , E6),
which is adapted for J . To do this, it suffices to define Ei = ei and Ei+1 = Jei for i = 1, 3, 5. With
respect to (E1, . . . , E6), the matrix associated to J is skew-symmetric with non-vanishing entries given
by J2

1 = 1 = J4
3 = J6

5. We can then compute the new structure equations with respect to the dual
basis (E1, . . . , E6), obtaining:

dEi = 0, i = 1, 2, 3

dE4 =
ω56√
B
E13,

dE5 = −ω46

ω56

E13 +

√
B

ω56

(
E14 + E23

)
,

dE6 = −ω26

ω56

E12 − ω46

ω56

E14 − ω36ω56 + ω45ω56 − ω2
46 − ω2

56

ω56

√
B

E13 − ω56√
B
E15 −

√
B

ω56

E24.

Moreover, we have:

ψ+ = −c B
ω56

(
E135 − E146 − E236 − E245

)
,

ψ− = −c B
ω56

(
E136 + E145 + E235 − E246

)
.

We can write ω with respect to the new basis and impose it to be of type (1, 1) with respect to J ,
obtaining three equations in the variables ωij , which can be solved under the constraint λ(ψ+) < 0. We
can then consider the symmetric matrix H associated with h(·, ·) = ω(·, J ·) with respect to the basis
(E1, . . . , E6) and denote by P ⊂ A15

R the set on which it is positive definite. One can check that P 6= 0

when (ωij) ∈ P . Now, if we let (ωij) vary in the (non-empty) set Q := P ∩ {(ωij) : λ(ψ+) < 0}, we
have all of the possible non-normalized coupled SU(3)-structures on N. The intrinsic torsion form w−1
is always − 2

3c
, while w−2 can be computed from its defining properties and the expression of dψ−. We

are interested in the coupled structures having w−2 , such that dw−2 is proportional to ψ+. Thus, we can
start with a generic two-form w of type (1, 1) with respect to J and write it as:

w = w12E
12 + w34E

34 + w56E
56 + w13(E

13 + E24) + w14(E
14 − E23) + w15(E

15 + E26)

w16(E
16 − E25) + w35(E

35 + E46) + w36(E
36 − E45),
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where wij are real numbers. Then, we have to impose that w is primitive (w ∧ ω2 = 0) and fulfills

dψ− = − 2

3c
ω2 − w ∧ ω

and that dw is proportional to ψ+. The last condition gives rise to a set of polynomial equations in the
variables wij with coefficients depending on ωij , which can be solved in Q. The condition on dψ− gives
13 equations of the same kind as before; we can solve four of them, namely those obtained comparing
the coefficients of E3456, E2356, E1256, E2345, but then we get that some of the remaining equations can
be solved only if c = 0 or λ(ψ+) = 0. The assertion is then proven.

The previous results can be summarized as follows.

Proposition 13. Let g be a six-dimensional, non-abelian, nilpotent Lie algebra endowed with a
coupled SU(3)-structure (ω, ψ+) having dw−2 proportional to ψ+. Then, g is isomorphic to the
Iwasawa–Lie algebra.

4.2. Twistor Spaces

In the work [6], it was observed that on the twistor space Z over a self-dual Einstein four-manifold
(M4, g), there exists a coupled structure. Moreover, for a suitable value of the scalar curvature of g, the
metric induced by this structure is Einstein.

Recall that given a four-dimensional, oriented Riemannian manifold (M4, g), the set of positive,
orthogonal almost complex structures on M4 forms a smooth manifold Z called the twistor space of
M4, which can be viewed as the two-sphere bundle π : Z → M4 consisting of the unit −1 eigenvectors
of the Hodge operator acting on Λ2TM4 [35].

On Z, it is possible to define two almost complex structures (see, for example, [36]), one of which is
never integrable, as shown in [37]. Let us denote it by J .

When the metric g is self-dual and Einstein, Xu showed in [38] that on (Z, J), there exists a basis of
(1, 0)-forms ε1, ε2, ε3, such that the first structure equations are:

d

 ε1

ε2

ε3

 = −

(
α 0

0 −tr(α)

)
∧

 ε1

ε2

ε3

+

 ε2 ∧ ε3

ε3 ∧ ε1

σε1 ∧ ε2

 , (12)

where α is a 2× 2 skew-Hermitian matrix of one-forms and σ := Scal(g)
24

. Using these, it is easy to show
that the following pair of forms defines a coupled SU(3)-structure on Z [6]:

ω = i
2

(
ε1 ∧ ε1 + ε2 ∧ ε2 + ε3 ∧ ε3

)
,

Ψ = i(ε1 ∧ ε2 ∧ ε3).

Observe that J is the almost complex structure induced by <(Ψ) and that the metric induced by ω and J
takes the following form:

h = ε1 � ε1 + ε2 � ε2 + ε3 � ε3.
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Moreover, the non-vanishing intrinsic torsion forms have the following expressions:

w−1 = 2
3
(σ + 2),

w−2 = −2
3
i(σ − 1)

(
ε1 ∧ ε1 + ε2 ∧ ε2 − 2ε3 ∧ ε3

)
,

dw−2 is proportional to ψ+

dw−2 = −8

3
(σ − 1)2ψ+,

and 3(w−1 )2 ≥ |w−2 |2 if and only if 10−6
√
2

7
≤ σ ≤ 10+6

√
2

7
.

We can consider a local frame (e1, . . . , e6) for Λ1(Z), such that ε1 = e1 + ie2, ε2 = e3 + ie4,
ε3 = e5 + ie6, and compute the Ricci curvature of the metric induced by the coupled structure using the
results of [25]. What we get is that the scalar curvature of h is:

Scal(h) = −2σ2 + 24σ + 8

and the traceless part of the Ricci tensor of hwith respect to the considered frame has the following form:

Ric0(h) = −2

3
(σ − 1)(σ − 2)diag(1, 1, 1, 1,−2,−2).

Thus, the metric h is Einstein if and only if σ = 1 or σ = 2, that is if and only if the scalar curvature of g
is 24 or 48, respectively. In the first case, the coupled structure is actually nearly Kähler, since w−2 = 0,
while in the second case, we get an example of a coupled SU(3)-structure inducing an Einstein metric.
More in detail, the latter has the following non-vanishing intrinsic torsion forms:

w−1 = 8
3
,

w−2 = −4
3

(e12 + e34 − 2e56) .

In particular, the coupled constant is c = −4, and the scalar curvature is Scal(h) = 48. Moreover, the
characterization given in Proposition 6 is satisfied by this example.

Recall that when Scal(g) > 0, a compact, self-dual, Einstein four-manifold (M4, g) is isometric either
to S4 or to CP2 with their canonical metrics (Theorem 13.30 in [39]); thus, Z is either CP3 or the flag
manifold SU(3)/T 2.

4.3. G2-Structures with Special Metrics Induced by Coupled Einstein Structures

We can now use the coupled Einstein structure on Z to construct a G2-structure with full
intrinsic torsion inducing an Einstein metric and a locally-conformal calibrated G2-structure inducing
a Ricci-flat metric.

First of all, we rescale the coupled Einstein structure on Z in the following way:

ω̃ = 8
5
ω,

ψ̃+ =
(
8
5

) 3
2 ψ+.

Then, (ω̃, ψ̃+) is a coupled structure with coupled constant c = −
√

10 and inducing the metric h̃ = 8
5
h.

Moreover, Scal(h̃) = 30 and Ric(h̃) = 5h̃.
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As we observed in Section 2, starting from the coupled Einstein structure (ω̃, ψ̃+), we can construct a
G2-structure ϕ on the sin-cone S(Z) inducing the sin-cone metric gϕ = dt2+sin2(t)h̃. By Proposition 2,
we then have that gϕ is Einstein with Einstein constant 6. Moreover, it is not difficult to show that the
intrinsic torsion forms of the G2-structure induced on the sin-cone by a coupled structure with coupled
constant c are:

τ0 = 8c+4
7
,

τ1 =
(
1− c

3

)
cot(t)dt,

τ2 = − sin(2t)
2

w−2 ,

τ3 = c−3
7

(
sin4(t)ψ− − sin3(t) cos(t)ψ+ + 4

3
sin2(t)dt ∧ ω

)
− sin2(t)dt ∧ w−2 .

Thus, the coupled Einstein structure (ω̃, ψ̃+) induces a G2-structure with full intrinsic torsion and
Einstein metric on the sin-cone S(Z).

If we consider theG2-structure ϕ induced on the coneC(Z) by (ω̃, ψ̃+), then the metric gϕ = dt2+t2h̃

is Ricci-flat by Proposition 1. Moreover, the non-vanishing intrinsic torsion forms of the G2-structure
constructed on the cone from a coupled structure with coupled constant c are:

τ1 =
(
1
t
− 1

3t
c
)
dt,

τ2 = −tw−2 .

Therefore, the coupled Einstein structure (ω̃, ψ̃+) induces a locally-conformal calibrated G2-structure on
the cone C(Z) whose associated metric is Ricci-flat.

Remark 4. It is worth observing here that calibrated G2-structures inducing a Ricci-flat metric are
actually parallel [26]. The previous example shows that a result of this kind is not true anymore for
locally-conformal calibrated G2-structures.

5. Flows

In this section, we study the behavior of coupled structures with respect to known evolution equations
(flows) of SU(3)-structures.

The Hitchin flow, introduced in [19] as the Hamiltonian flow of a certain functional, allows one to
construct (non-complete) metrics with holonomy inG2 starting from a suitable SU(3)-structure. The idea
is to consider a six-manifold N endowed with an SU(3)-structure (ω, ψ+) and to define a G2-structure
on M := I ×N for some interval I ⊆ R by:

ϕ = dt ∧ ω + ψ+,

where ω and ψ+ depend on the coordinate t on I . If we require the G2-structure to be parallel, we get
that for each t fixed, the SU(3)-structure has to be half-flat and that, when t is not fixed, the following
evolution equations have to hold:  ∂

∂t
ψ+ = dω

∂
∂t
ω ∧ ω = −dψ−

. (13)
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These equations are the so-called Hitchin flow equations. A solution of them with the initial condition
a given SU(3)-structure (ω(0), ψ+(0)) exists when the latter is half-flat and analytic, but may not exist
when the analytic hypothesis is dropped [40]. Moreover, it is easy to show that an SU(3)-structure
(ω(t), ψ+(t)), which is half-flat for t = 0 and evolves as prescribed in Equation (13), stays half-flat as
long as it exists.

In the work [20], a generalization of the Hitchin flow was used to study the moduli space of
SU(3)-structure manifolds. The starting point to define this flow is to consider the embedding of
an SU(3)-structure into a non-compact manifold endowed with an integrable G2-structure. This is
motivated by the subject the authors are interested in, namely four-dimensional domain wall solutions
of heterotic string theory that preserve N = 1

2
supersymmetry (see also [9]). In this case, the

internal six-dimensional manifold is endowed with an SU(3)-structure, and one can combine it with
the direction perpendicular to the domain wall in the four-dimensional non-compact space time to
get a seven-dimensional non-compact manifold endowed with a G2-structure. The physical setting
provides further constraints on the intrinsic torsion forms of the G2-structure, which we will recall
later. One can then study under which conditions a certain class of SU(3)-structures is preserved by
this generalized flow.

It is then a natural question to ask whether the coupled condition is preserved by the Hitchin flow
and, more generally, which constraints arise requiring that a solution of the generalized Hitchin flow is
coupled as long as it exists. We begin giving the following definition.

Definition 14. Let (ω(t), ψ+(t)) be a solution of the Hitchin flow defined on an interval I ⊆ R
containing 0 and starting from a coupled structure at t = 0. If (ω(t), ψ+(t)) is a coupled structure
for each t ∈ I , that is dω(t) = c(t)ψ+(t) for some smooth function c : I → R, we call it a coupled
solution of the Hitchin flow.

Coupled solutions of the Hitchin flow can be easily characterized and induce an almost complex
structure not depending on t.

Proposition 15. Let N be a six-dimensional manifold, and suppose there exists on it a solution
(ω(t), ψ+(t)) of the Hitchin flow starting from a coupled structure (ω(0), ψ+(0)) and defined on some
interval I ⊆ R containing 0. If (ω(t), ψ+(t)) is a coupled solution, then there exists a smooth function
f : I → R, such that

ψ+(t) = f(t)ψ+(0).

Conversely, if the pair (ω(t), ψ+(t)) is a solution of the Hitchin flow with ψ+(t) = f(t)ψ+(0), then it is
a coupled solution.

Proof. If (ω(t), ψ+(t)) is a solution of the Hitchin flow with ψ+(t) = f(t)ψ+(0), then from the flow
equation ∂

∂t
ψ+(t) = dω(t), we obtain:

dω(t) =
∂

∂t
(f(t)ψ+(0)) =

(
d

dt
f(t)

)
ψ+(0).
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Thus, the solution is a coupled structure with c(t) = d
dt
f(t). Suppose now that the solution is coupled,

dω(t) = c(t)ψ+(t). Then, from the flow equation, we obtain:

∂

∂t
ψ+(t) = c(t)ψ+(t).

Working in local coordinates on N , it is easy to show that

ψ+(t) = f(t)ψ+(0),

where
f(t) = e

∫ t
0 c(s)ds.

Corollary 16. Let (ω(t), ψ+(t)) be a coupled solution of the Hitchin flow on a six-dimensional manifold
N . Then, the associated almost complex structure is J(t) = J(0), that is it does not depend on t.

Proof. We know that ψ+(t) = f(t)ψ+(0); therefore:

J(t) = Jψ+(t) = Jf(t)ψ+(0) = Jψ+(0) = J(0),

since the almost complex structure induced by ψ+ does not change if we rescale ψ+ by a
real constant.

5.1. Coupled Solutions on Six-Dimensional Nilpotent Lie Algebras

Working on six-dimensional nilpotent Lie algebras, it is possible to show that a coupled solution of
the Hitchin flow may not exist. As we recalled in Proposition 11, the only six-dimensional nilpotent Lie
algebras admitting a coupled structure are, up to isomorphisms, I and N. In each case, with respect to
the frame we considered, the pair (ω, ψ+), where:

ω = e12 + e34 + e56,

ψ+ = e135 − e146 − e236 − e245,
(14)

is a coupled structure with dω = −ψ+. For completeness, we observe also that:

ψ− = Jψ+ = e136 + e145 + e235 − e246.

The following result shows our claim.

Proposition 17. Consider the Hitchin flow on the six-dimensional nilpotent Lie algebras N and I. Then,
on I, there exists a coupled solution starting from Equation (14) at t = 0, while on N, there are no
coupled solutions of the Hitchin flow starting from Equation (14).

Proof. Let us start with I; it admits a coupled solution of the Hitchin flow already described in [41]. We
recover it here starting from a suitable pair (ω(t), ψ+(t)) and requiring that it satisfies the Hitchin flow
equations. From Proposition 15, we know that (ω(t), ψ+(t)) is a coupled solution if and only if:

ψ+(t) = f(t)ψ+(0) = f(t)(e135 − e146 − e236 − e245),
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with f(0) = 1. It is also clear that ψ−(t) = f(t) (e136 + e145 + e235 − e246). Moreover, since we already
know the form of the solution, we consider three smooth functions a1(t), a2(t), a3(t) with ai(0) = 1 and
such that:

ω(t) = a1(t)e
12 + a2(t)e

34 + a3(t)e
56.

From now on, we omit the t-dependence of the considered functions. The forms ω(t) and ψ±(t) are
compatible for each t, and from the normalization condition, we get:

f 2 = a1a2a3. (15)

From the first Hitchin flow equation in Equation (13), we obtain:

d

dt
f = −a3, (16)

while from the second one, we have:

d

dt
(a1a3) = 0, (17)

d

dt
(a2a3) = 0, (18)

d

dt
(a1a2) = −4f. (19)

From Equations (17) and (18) and the starting conditions at t = 0, we deduce that:

a1 = a2 =
1

a3
.

Using this result and Equation (15), it holds necessarily:

f =
1
√
a3
.

Thus, the ODE Equation (16) becomes:

d

dt
a3 = 2a23

√
a3

and solving this, we get:
a3 = (1− 3t)−

2
3 .

It is then easy to check that also Equation (19) is satisfied. Then, the pair:

ω(t) = (1− 3t)
2
3 e12 + (1− 3t)

2
3 e34 + (1− 3t)−

2
3 e56,

ψ+(t) = (1− 3t)
1
3 (e135 − e146 − e236 − e245)

is a coupled solution of the Hitchin flow.
We consider now N; we will show that there are no coupled solutions starting from Equation (14). In

this case, we need:
ψ+(t) = f(t)ψ+(0) = f(t)(e135 − e146 − e236 − e245),
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with f(0) = 1, while we consider 15 smooth real valued functions bij(t), 1 ≤ i < j ≤ 6, such that:

ω(t) =
∑

1≤i<j≤6

bij(t)e
ij,

b12(0) = b34(0) = b56(0) = 1 and bij(0) = 0 for the remaining functions. First of all, we impose that the
equations resulting from the compatibility condition ω(t) ∧ ψ+(t) = 0 are satisfied; then, we consider
the first and the second Hitchin flow equation, and we compute the ODEs derived from them. What we
obtain after solving some of these differential equations is that f ≡ 0, which cannot be possible.

5.2. Generalized Hitchin Flow

Since coupled solutions of the Hitchin flow may not exist in general, as Proposition 17 states, we can
consider the generalized Hitchin flow and investigate which properties the intrinsic torsion forms have
to satisfy in order to preserve the coupled condition.

In this case, we start with an SU(3)-structure (ω, ψ+) depending on a parameter t ∈ I ⊆ R, and we
construct a G2-structure on M := I ×N by:

ϕ = νtdt ∧ ω + <(FΨ),

where νt ∈ C∞(M) and F is a complex valued smooth function defined on M and having constant
module one. Observe that the Riemannian metric defined by ϕ is:

gϕ = ν2t dt
2 + h.

As we already recalled, in the case of N = 1
2

domain wall solutions, the non-vanishing intrinsic
torsion forms of the G2-structure are τ0, τ1, τ3. On M = I ×N , τ1 and τ3 can be decomposed as:

τ1 = utdt+ τN1 ,

τ3 = dt ∧ ηt + τN3 ,

where ut is a smooth function on M , τN1 is a one-form on N , ηt is a two-form on N depending on t and
τN3 is a three-form on N . Moreover, the following constraints hold:

ut =
1

2

∂

∂t
φ,

τN1 =
1

2
dφ,

d7τ0 = 0,

where φ is the ten-dimensional dilaton, d7 denotes the exterior derivative on M and d denotes it on N .
A general argument allows one to write down the equations of the SU(3)-structure flow associated

with the embedding and some relations between the torsion forms of the SU(3)-structure and the
G2-structure. In particular:

w4 = 2τN1 .

Therefore, if we have an SU(3)-structure with vanishing w4, we get dφ = 2τN1 = 0.
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Following [20], we work in the gauge F = 1, in this case:

ϕ = νtdt ∧ ω + ψ+.

If we suppose that the structure is coupled for each t, i.e.,

dω(t) = c(t)ψ+(t),

dψ+(t) = 0,

dψ−(t) = −2
3
c(t)(ω(t))2 − w−2 (t) ∧ ω(t),

(20)

where c : I → R is a smooth function, such that w−1 (t) = −2
3
c(t), then the two-form ω(t) evolves as:

∂

∂t
ω(t) = λtω(t) + ht, (21)

where

λt = 2ut − νtw−1 (t), (22)

ht = νtw
−
2 (t)− ∗(dνt ∧ ∗ψ+(t)). (23)

Moreover, it follows from a general argument involving the flow equations that:

dλt = 0

and using one of the constraints recalled earlier, we get:

dut =
1

2
d

(
∂

∂t
φ

)
=

1

2

∂

∂t
(dφ) = 0.

Taking the exterior derivative of both sides of Equation (22), we then have:

dνt = 0.

Thus, νt is actually a function of t, and Equation (23) becomes ht = νtw
−
2 .

Remark 5. With our convention, w−2 here is −w−2 in the work [20].

The flow equations forψ+(t) andψ−(t) determined in [20] reduce to the following in the coupled case:

∂

∂t
ψ+(t) =

3

2
λtψ+(t)− 7

4
τ0νtψ−(t)− νtγ, (24)

∂

∂t
ψ−(t) =

7

4
τ0νtψ+(t) +

3

2
λtψ−(t) + νtJγ, (25)

where γ is a primitive three-form of type (2, 1) + (1, 2) appearing in the expression of the Hodge dual of
τN3 on N .

We derive now all of the conditions that arise requiring these flow equations to preserve the coupled
condition. We may sometimes omit the t-dependence of the forms for brevity.

First of all, suppose that for each t, the coupled condition dω(t) = c(t)ψ+(t) holds. Differentiating
both sides with respect to t, we have:

d

(
∂

∂t
ω

)
= ċψ+ + c

(
3

2
λtψ+ −

7

4
τ0νtψ− − νtγ

)
.
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Moreover, taking the exterior derivative of both sides of Equation (21), using dνt = 0 and the hypothesis
on the coupled condition, we obtain:

d

(
∂

∂t
ω

)
= λtcψ+ + νtdw

−
2 .

Comparing the two equations, it follows:

νtdw
−
2 = ċψ+ +

1

2
cλtψ+ −

7

4
cτ0νtψ− − cνtγ.

Wedging both sides by ψ− and using the fact that γ ∧ ψ− = 0, since γ ∈ Λ2,1 ⊕ Λ1,2, we get:

νtdw
−
2 ∧ ψ− =

2

3
ċ ω3 +

1

3
cλtω

3. (26)

Since for each t it holds dw−2 ∧ ψ− = −|w−2 |2 ω
3

6
, where the norm is induced by h(t),

Equation (26) becomes:

−νt|w−2 |2
ω3

6
=

2

3
ċ ω3 +

1

3
cλtω

3

and the following result is proven.

Proposition 18. Suppose that the generalized Hitchin flow preserves the coupled condition dω(t) =

c(t)ψ+(t). Then, the function c(t) must evolve in the following way:

∂

∂t
c(t) = −1

2
c(t)λt −

1

4
νt|w−2 (t)|2h(t).

Moreover, for each t, it must hold:

dw−2 = −1

4
|w−2 |2ψ+ −

7

4
cτ0ψ− − cγ.

In order to preserve the closedness of ψ+(t), we need:

d

(
∂

∂t
ψ+

)
= 0.

Moreover, taking the exterior derivative of both sides of the flow Equation (24) of ψ+, we have:

d

(
∂

∂t
ψ+

)
= −7

4
τ0νtdψ− − νtdγ.

Comparing the two equations, it then follows:

dγ = −7

4
τ0νtdψ−. (27)

Observe now that dγ ∧ ω = 0, since γ is a primitive form of type (2, 1) + (1, 2). Therefore, wedging
both sides of Equation (27) by ω and recalling that dψ− ∧ ω = −2

3
cω3, we get:

τ0νtc = 0,

and then τ0 = 0, since both c and νt cannot be zero. In particular:

dγ = 0.

We can summarize the results in the following:
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Proposition 19. If the closedness of ψ+ is preserved by the generalized Hitchin flow, then the intrinsic
torsion form τ0 vanishes, and the thee-form γ is closed.

Let us now consider the expression of dψ− in Equation (20) and differentiate it with respect to t,
having in mind the results already obtained:

d

(
∂

∂t
ψ−

)
=

(
−2

3
ċ− 4

3
cλt

)
ω2 +

(
−4

3
cνt − λt

)
w−2 ∧ ω −

∂

∂t
w−2 ∧ ω − νtw−2 ∧ w−2 .

Taking the exterior derivative of both sides of the flow Equation (25) of ψ−(t), we get:

d

(
∂

∂t
ψ−

)
= −λtcω2 − 3

2
λtw

−
2 ∧ ω + νtd(Jγ).

Comparing the two equations, we obtain that the flow of w−2 must obey the following equation:

∂

∂t
w−2 ∧ ω =

1

6
νt|w−2 |2ω2 +

(
−4

3
cνt +

1

2
λt

)
w−2 ∧ ω − νtw−2 ∧ w−2 − νtd(Jγ).

We also know that the following necessary conditions deriving from the Bianchi identity d7Ĥ = 0

must hold:

dSX = 0, (28)

dSt =
∂

∂t
SX , (29)

where Ĥ = dt ∧ St + SX is the component of the ten-dimensional flux along M .

Remark 6. The other constraint obtained from the Bianchi identities was recalled earlier; it is d7τ0 = 0.

Using the previous results, it follows from [20] that for a coupled structure:

SX = ν−1t utψ− + Jγ, St = 0.

From the first identity Equation (28), we then get:

d(Jγ) = −ν−1t utdψ−. (30)

Observe that d(Jγ) ∧ ω = 0. Thus, if we wedge both sides of Equation (30) by ω, we obtain:

ν−1t utc = 0,

from which follows ut = 0 and, as a consequence, d(Jγ) = 0. The second identity Equation (29)
then reads:

∂

∂t
(Jγ) = 0.

We can summarize here some of the results obtained:

(i) The only non-vanishing intrinsic torsion form of the G2-structure after imposing all conditions is
τ3. Moreover, ∗τX3 = γ and ηt = 0.



Symmetry 2015, 7 646

(ii) dνt = 0.

(iii) dγ and d(Jγ) = 0; thus, γ is harmonic.

(iv) λt = 2
3
νtc(t).

In particular, the evolution equations of the differential forms defining the coupled structure become:

∂

∂t
ω(t) =

2

3
νtc(t)ω(t) + νtw

−
2 (t),

∂

∂t
ψ+(t) = νtc(t)ψ+(t)− νtγ,

∂

∂t
ψ−(t) = νtc(t)ψ−(t) + νtJγ.

Moreover, the intrinsic torsion forms of the coupled structure must evolve as:

∂

∂t
c(t) = −1

3
νt(c(t))

2 − 1

4
νt|w−2 (t)|2h(t),

∂

∂t
w−2 (t) ∧ ω(t) =

1

6
νt|w−2 (t)|2h(t)(ω(t))2 − νtc(t)w−2 (t) ∧ ω(t)− νt(w−2 (t))2,

and for each t, it must hold:

dw−2 = −1

4
|w−2 |2ψ+ − cγ.

5.3. The Hitchin Flow as a Particular Case of the Generalized Hitchin Flow

If we suppose that νt = 1 and γ = 0, then:

ϕ = dt ∧ ω + ψ+

is a parallel G2-structure. In this case, the evolution equations of the differential forms
ω(t), ψ+(t), ψ−(t) read:

∂
∂t
ω(t) = 2

3
c(t)ω(t) + w−2 (t),

∂
∂t
ψ+(t) = c(t)ψ+(t),

∂
∂t
ψ−(t) = c(t)ψ−(t),

(31)

the evolution equations of the intrinsic torsion forms of the coupled structure must be:

∂
∂t
c(t) = −1

3
(c(t))2 − 1

4
|w−2 (t)|2h(t),

∂
∂t
w−2 (t) ∧ ω(t) = 1

6
|w−2 (t)|2h(t)(ω(t))2 − c(t)w−2 (t) ∧ ω(t)− (w−2 (t))2,

(32)

and for each t, the two-form w−2 has to satisfy the following property:

dw−2 = −1

4
|w−2 |2ψ+, (33)

which is one of the conditions widely discussed in Section 3.
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A solution of these equations, which is coupled for each t, is also a coupled solution of the Hitchin
flow equations and vice versa. For example, the coupled solution of the Hitchin flow on the Iwasawa–Lie
algebra I obtained in the proof of Proposition 17 satisfies Equations (31), (32) and (33). In the general
case, the presence of w−2 (t) in the flow equations makes rather complicated any attempt to solve them.
However, we can show that a solution of them starting from a coupled SU(3)-structure stays coupled as
long as it exists.

Proposition 20. Let (ω(t), ψ+(t), c(t), w−2 (t)) be a solution of Equations (31), (32) and (33), with the
initial condition a coupled structure (ω(0), ψ+(0)) satisfying dω(0) = c(0)ψ+(0). Then, (ω(t), ψ+(t))

is a coupled structure as long as it exists.

Proof. Consider dω(t) − c(t)ψ+(t); differentiating with respect to t and using the hypothesis, we get
(omitting the t-dependence for brevity):

∂

∂t
(dω − cψ+) = d

(
∂

∂t
ω

)
− ċψ+ − c

∂

∂t
ψ+

=
2

3
cdω + dw−2 +

1

3
c2ψ+ +

1

4
|w−2 |2ψ+ − c2ψ+

=
2

3
c(dω − cψ+).

Thus, if we denote by ρ(t) = dω(t) − c(t)ψ+(t), we have that ∂
∂t
ρ(t) = 2

3
c(t)ρ(t). Therefore, ρ(t) =

q(t)ρ(0), where q(t) = e
∫ t
0

2
3
c(s)ds. However, ρ(0) = dω(0) − c(0)ψ+(0) = 0, since (ω(0), ψ+(0)) is

coupled. Then, 0 = ρ(t) = dω(t)− c(t)ψ+(t), and as a consequence, dψ+(t) = 0.

6. Conclusions

In this paper, we considered from the mathematical point of view the properties of SU(3)-structures,
which are of interest in the case of N = 1 compactifications of Type IIA string theory to
four-dimensional anti-de Sitter space on six-manifolds endowed with an SU(3)-structure, namely
coupled structures satisfying (all or in part) the constraints given in Equations (4) and (5).

First of all, we derived some properties of such structures and some constraints implied by them.
These need to be taken into account when one looks for explicit examples.

We then turned our attention to examples of six-manifolds endowed with this kind of SU(3)-structure.
In the case of nilmanifolds, we already knew that up to isomorphisms, there are two non-abelian nilpotent
Lie algebras admitting a coupled structure from [14]. Here, we showed that for only one of these,
Equation (4) is satisfied, while Equation (5) cannot be ever satisfied. However, since in the physical
setting, Equations (4) and (5) can be relaxed in the presence of sources, the nilmanifolds generated by
I and N may be used to construct examples of the considered type of compactification. This was done
for the Iwasawa manifold in [11]; thus, it would be interesting to see what happens for the nilmanifold
corresponding to N. We also recalled an example firstly described in [6]; this is of particular interest,
not only because it answers a question arising from [16], but also because it allows one to construct
examples of G2-structures with torsion inducing remarkable metrics.

In the last section, we considered the behavior of the coupled condition with respect to the Hitchin
flow and one of its possible generalizations determined starting from four-dimensional domain wall
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solutions of heterotic string theory preserving N = 1
2

supersymmetry. We observed that it is not always
possible to find coupled solutions of the Hitchin flow by working on explicit examples and derived the
conditions implied by requiring that the coupled condition is preserved by the generalized Hitchin flow.
An interesting open question would be to see whether there exist any example of a one-parameter family
of SU(3)-structures that solves the Hitchin flow equations and is coupled for at least one, but not for all t.
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