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oscillations, we then applied Multichannel SSA. Tempera-
ture variations on time scales longer than 600 years appear 
in our analysis as a dominant trend component, which 
shows climate features consistent with the Medieval Warm 
Period and the Little Ice Age. Statistically significant NH-
wide peaks appear at 330, 250 and 110  years, as well as 
in a broad 50–80-year band. Strong variability centers in 
several bands are located around the North Atlantic basin 
and are in phase opposition between Greenland and West-
ern Europe.

Keywords  Space-and-time domain analysis · Multi-scale 
analysis of time series · Climatic oscillations · Recent 
paleoclimate  · Temperature proxy records · Past two 
millennia · Solar forcing

1 � Introduction and motivation

Recent years have seen significant progress in understand-
ing late Holocene spatial and temporal climate variabil-
ity thanks to new studies based on different proxy types, 
including tree-ring width and density records, along with 
δ18O in ice cores, terrestrial and marine sediment records, 
as well as in speleothems (Wanner et al. 2008; Ljungqvist 
et  al. 2012; PAGES 2k Consortium 2013). Progress has 
also been achieved by comparing and integrating informa-
tion from proxy data with simulations from global climate 
models (Masson-Delmotte et al. 2013; Fernández-Donado 
et al. 2013; Moberg 2013).

Many analyses of the last one-to-two millennia rely on 
large sets of records coming from different types of prox-
ies. These analyses often provide multi-proxy temperature 
reconstructions on a hemispheric or global scale, although 
they are usually heavily biased towards tree-ring width 

Abstract  Aiming to describe spatio-temporal climate 
variability on decadal-to-centennial time scales and longer, 
we analyzed a data set of 26 proxy records extending back 
1,000–5,000 years; all records chosen were calibrated to 
yield temperatures. The seven irregularly sampled series in 
the data set were interpolated to a regular grid by optimized 
methods and then two advanced spectral methods—namely 
singular-spectrum analysis (SSA) and the continuous wave-
let transform—were applied to individual series to separate 
significant oscillations from the high noise background. 
This univariate analysis identified several common periods 
across many of the 26 proxy records: a millennial trend, 
as well as oscillations of about 100 and 200 years, and a 
broad peak in the 40–70-year band. To study common NH 
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records [e.g., Mann et  al. 2009]. In the attempt to collect 
as many series as possible, one must, however, avoid insuf-
ficiently careful temperature calibration of the proxy data 
(Tingley et al. 2012). The difficulties in transforming proxy 
data into quantitative temperature series are numerous and 
depend on the type of proxy—whether obtained from tree 
rings, speleothems or ice cores—and they are also related 
to the region from which the proxy comes, in particular to 
its climate type.

For this reason, our data set contains only series with 
at least decadal resolution, which satisfy in addition the 
requirement that the temperature calibration of each proxy 
record be provided by the authors who published the record 
itself. Støve et al. (2012) discussed at length the way that 
parametric and nonparametric, as well as linear and non-
linear, transfer functions between one or more proxies and 
a single climate variable, like temperature, can be applied 
and calibrated. This multiplicity of possible calibrations 
makes it that much more desirable to rely on the familiarity 
of the record’s original authors with the local and regional 
characteristics of the proxy. Moreover, in order to be able 
to study in a reliable way multi-decadal to centennial vari-
ability, we only considered series that extend back at least 
to AD 1000.

An important point of our work is that we try to preserve 
the regional information carried by each time series, not 
only by using single-series spectral methods but also by 
applying a multivariate method. This dual approach, sup-
ported by a robust spectral analysis, differentiates our work 
from other recent studies aimed at distinguishing among 
regional expressions of past global climate changes; see, 
for instance PAGES 2k Consortium (2013). Thus, our aim 
is not to use our data set to produce an averaged multi-
proxy temperature series for the Northern Hemisphere 
(NH) but to look for common modes of variability, as well 
as for differences among geographical areas.

For the single-record analyses we use two advanced 
spectral methods—singular spectrum analysis [SSA: Vau-
tard and Ghil 1989; Ghil et  al. 2002] and the continuous 
wavelet transform [(CWT: Torrence and Compo 1998]—
while for the multi-record analyses we use multichannel 
SSA [MSSA: Keppenne and Ghil 1993; Plaut and Vautard 
1994]. Both SSA-based methods and wavelet-based meth-
ods have been used already extensively in the paleocli-
mate, as well as in the modern-climate literature (Ghil et al. 
2002).

In fact, paleoclimate applications motivated to a large 
extent the original development of SSA as a spectral 
method (Vautard and Ghil 1989), while MSSA has already 
been used by Jiang et al. (1995) to study the spatio-tempo-
ral patterns of the sea surface temperature (SST) and zonal 
wind fields associated with the El Niño–Southern Oscil-
lation, by Unal and Ghil (1995) to investigate sea surface 

height variations from tide gauge records, and by Moron 
et  al. (1998) to analyze global SST variations over the 
twentieth century, among many others. We refer the inter-
ested reader to the “Appendix” and to the references for 
technical details.

This paper is organized as follows: Sect. 2 describes 
the data set; Sect. 3 presents the results of SSA and CWT, 
performed on single time series; while Sect. 4 provides 
the MSSA results. Concluding remarks follow in Sect. 5, 
and the spectral methods employed in Sects. 3 and 4 are 
described in the “Appendix”.

2 � The proxy data set and its pre‑processing

2.1 � The data set

As mentioned above, the proxy records that we selected for 
our analysis were calibrated to temperature by the authors 
who published the records themselves and, in addition, had 
time coverage that extended back to at least AD 1000. All 
the records retained are from the extratropical NH.

The data set so obtained contains 19 regularly spaced 
time series, mostly with a sampling interval of �t = 1 
year, and seven irregularly spaced time series. The geo-
graphic distribution of the 26 time-series is shown in Fig. 
1 and their properties are listed in Table 5. Figure 2 allows 
us to compare the different lengths of the series, which are 
ordered by increasing latitude and whose amplitude is plot-
ted in arbitrary units. This data set has been analyzed by 
single-series spectral methods (SSA and CWT), in Sect. 3, 
as well as by MSSA, in Sect. 4; in both approaches, uni-
formly spaced time series are needed. Therefore, we pre-
processed the seven irregularly spaced proxy records as 
described in the next subsection.

All quantitative temperature proxy records—extending 
back to at least AD 1000 and calibrated by their origi-
nal authors—that were available to us by June 2012 were 
included. Some records were available to us in digital form 
but only as standardized values and not as temperature-
calibrated reconstructions, e.g., the Taimyr tree-ring width 
record of Naurzbaev et al. (2002) and the Mongolian tree-
ring width record of D’Arrigo et  al. (2001); these, too, 
were excluded. Moreover, we only gained access to the last 
1,000 years of the 2,485-year–long tree-ring width temper-
ature reconstruction from the central-eastern Tibetan Pla-
teau (Liu et al. 2009). In order to increase the spatial cover-
age, we included two regional multi-proxy composites of 
annual mean temperature in our data set: the Russian Plains 
record of Sleptsov and Klimenko (2003) and the whole-
China reconstruction of Yang et al. (2002).

These proxy records have different spectral biases, since 
not all proxy types can capture the variability on all time 
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scales equally well. Records with less-than-annual resolu-
tion cannot capture variability on an interannual and pos-
sibly decadal time scale. Tree-ring records might have cer-
tain limitations when it comes to preserving the variability 

at very low, multi-centennial to millennial frequencies, cf. 
Cook et al. (1995). Tree-ring records of maximum density 
seem to represent better temperature variability at both high 
and low frequencies than tree-ring width records (Franke 

Fig. 1   World map showing the location of the 26 proxy records in 
our study. The rectangles indicate groups of records that were used 
in the regional multichannel analysis described in Sect. 4. Please see 

Table 5 for a summary description of each record. The regions are 
labeled AR1, AR2, ..., NA2, as described in Table 3 of Sect. 4

Fig. 2   Time coverage of the 26 
proxy records in our data set. 
The records are identified by the 
two-letter acronyms introduced 
in Table 5 and they have been 
centered to zero mean and 
normalized to unit variance; 
the different colors represent 
latitude belts, namely 30–60°N 
(orange), 60–90°N (green)
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et  al. 2013). Maximum-density records also have, in gen-
eral, much higher correlation r with temperature than ring-
width records—typically r ∼ 0.7 versus ∼ 0.4—and over a 
longer seasonal window (Briffa et al. 2002).

Several proxy records in our data set are derived from 
other types of archives than tree rings or historical docu-
mentary records, and are affected by dating uncertainties. 
The uncertainty is often difficult to quantify; the estimate 
for the Donard Lake varved sediment record (Moore et al. 
2001) is up to ±20  years; for the Lower Murray Lake 
varved sediment record (Cook et al. 2009) it is ±16 years; 
for the Iceberg Lake varved sediment record (Loso 2009) it 
is ±32 years; for the Shi Hua Cave speleothem layer thick-
ness record (Tan et al. 2003) it is ±5 years. Moreover, the 
age model in the Hallet Lake sediment record (McKay 
et al. 2008) is insufficiently constrained and hence it con-
tains significant uncertainties.

Some of the temperature proxy records were already 
spectrally analyzed by their original authors or in subse-
quent studies. Tan et  al. (2003) identified peaks of about 
206 and 325 years in their Shi Hua Cave speleothem 
record. Martín-Chivelet et  al. (2011) found oscillations of 
about 440, 900 and 1,300 years in their speleothem δ13C 
record from Northern Spain. Salzer and Kipfmueller (2005) 
used the Blackman-Tukey method to find in their Southern 
Colorado Plateau tree-ring width record, oscillations of 
about 41 and 178 years. Using the 2,485-year–long temper-
ature reconstruction of Liu et al. (2009), based on tree-ring 
widths from the central-eastern Tibetan Plateau, Liu et al. 
(2011) identified significant cycles of 110, 199, 800 and 
1,324 years.

In the Gulf of Alaska tree-ring width record, Wilson 
et al. (2007) identified cycles of 10–11, 13–14 and 18–19 
years by applying the multi-taper method of Mann and 
Lees (1996) and cycles of 18.7, 50.4, 38.0, 91.8, 24.4, 15.3 
and about 150 years by using SSA, as we shall do here. The 
multi-taper method also yielded spectral peaks of about 
225, 135 and 105 years in the Finnish Lapland tree-ring 
width record of Helama and Macias Fauria (2010). Lind-
holm and Jalkanen (2012) found periodicities of 33, 23 
and 11 years in a Fourier spectrum of their Fennoscandian 
(Laanila) tree-ring height-increment record (Lindholm 
et  al. 2011) and a Morlet wavelet spectrum thereof. Sicre 
et al. (2008, 2011) identified spectral peaks of 50–150 and 
20–25 years in their U37′

K  alkenone-based sea surface tem-
perature reconstruction from the North Icelandic Shelf, by 
means of a Morlet wavelet analysis and by the multi-taper 
method.

These studies on single series have thus obtained a 
substantial number of decadal-scale and lower-frequency 
peaks. These results, however, were obtained by using 
spectral-analysis methods different from series to series. 
In order to obtain a more reliable and robust analysis of 

the entire set, we decided to analyze all the records, one 
by one, by using the two complementary methods of SSA 
and CWT, accompanied by stringent tests of statistical 
significance.

2.2 � Pre‑processing the unevenly sampled time series

In order to apply SSA and CWT, we had to transform the 
seven unevenly sampled series—measured at irregular 
times t1, t2, . . . , tN—into evenly spaced series, by means of 
data interpolation onto a uniform grid. For each record, we 
chose the optimal regular sampling time �t∗, by requiring 
that the spectrum of the synthesized evenly spaced series 
be as similar as possible to the spectrum of the original 
series. For each record, we considered the full time span 
tspan = tN − t1, except for the Vøring Plateau foraminiferic 
record (see Table 5), whose earlier parts were discarded due 
to their exceedingly sparse sampling. In order to explore 
the full range of variability on all time scales in the data, no 
trends were removed prior to data processing.

The Lomb-Scargle periodogram (Lomb 1976; Scargle 
1982; MacDonald 1989) is a common tool in the spec-
tral analysis of unequally spaced data. This method is 
equivalent to a linear least-squares fit of a sum of sine and 
cosine functions to the observed time series, and it can be 
applied to both unevenly and evenly spaced data: when 
the data are regularly spaced, it is analogous to a Fourier 
analysis.

Hocke and Kämpfer (2009) proposed an approach for 
dealing with unevenly sampled data in the time domain, 
based on the Lomb-Scargle periodogram. We did not adopt 
their approach here, however, for two reasons: first, as the 
above authors themselves concluded, the proposed algo-
rithm does not perform in a robust and reliable way; and 
second, their algorithm does not provide the optimal sam-
pling interval, given the unevenly sampled data.

We proceeded instead as follows, for each individual 
time series:

•	 (i) calculate the Lomb-Scargle periodogram LSirr of the 
original, irregular record;

•	 (ii) resample the irregular series at regular sampling 
intervals �treg in a plausible range (say, between 1 and 
30 years in steps of 0.01 year);

•	 (iii) calculate for each �treg the corresponding peri-
odogram LSreg;

•	 (iv) identify the LSreg that best reproduces the features 
of LSirr, say LS

reg
∗ ; and

•	 (v) choose the corresponding �t∗ as the optimal sam-
pling time for the interpolation.

•	 The vicinity of each LSreg to LSirr was quantified by the 
root-mean-squared error (RMSE): Assume that we sam-
ple both LSirr and LSreg at N ′ frequencies fi = f1, . . . , f ′

N,  
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and choose LS
reg
∗  as the one that minimizes the square 

root of the sum of the squares of the residuals divided 
by the number N ′ of comparison frequencies. The 
RMSE R is thus defined, as usual, by

To produce the evenly spaced time series, we used both lin-
ear and cubic-spline interpolations. We recall that, in linear 
interpolation, the data is fitted by a straight line in the �t 
interval between each pair of data points, also called nodes; 
therefore the resulting curves are continuous but their first 
derivative may be discontinuous at each node.

Cubic-spline interpolation fits instead a cubic polyno-
mial over each subinterval; the fitted interpolation curve is 
piecewise cubic, with (at least) two continuous derivatives 
at the nodes; in this way, it is possible to obtain a smoother 
interpolated curve. Cubic splines, however, produce curves 
that often have overshoots and need, therefore, to be care-
fully checked for the accuracy of their fit to the data. The 
question of which of the two interpolation methods, linear 
or cubic, is the most appropriate in each specific case was 
dealt with by determining which of the two methods pro-
vides the best spectral match with respect to LSirr.

In summary, for each time series and for each of the two 
interpolation methods, we calculated a set of spectra LSreg 
for many values of �t, varying from 1 to 30 years, and the 
respective RMSE values R, by comparing each LSreg with 
the original LSirr, taken as the reference periodogram. The 
results were expressed graphically as curves of R versus �t.  
Finally, the optimum sampling interval �t∗ was chosen as 
the one that gives the best spectral match, corresponding to 
the minimum value R∗ of R.

Table 1 summarizes the results of this procedure, and 
gives the interpolation method chosen for each series, the 
optimal sampling interval �t∗ and the number of sam-
ples N of the interpolated series. The sampling interval 

(1)R =

{

∑

i(LSirr(fi) − LSreg(fi))
2

N ′

}1/2

.

optimization applies to those time series that, to start with, 
are irregular but have no gaps, as well as to those that were 
regularly spaced but had gaps.

As is customary when no a priori information is availa-
ble, we assume stationarity of the time series in the follow-
ing analysis, but point out that SSA has proven quite effi-
cient at capturing linear, as well as nonlinear, data-adaptive 
trends (Ghil et al. 2002 and references therein), while CWT 
is specifically designed to capture frequency modulation 
of a signal, cf. Torrence and Compo (1998) and the entire 
wavelet literature.

3 � Analysis of single records

On each of the 26 time series—now all uniformly spaced—
we performed spectral analysis by SSA and CWT. When 
the length of the series allowed it, we used for SSA a win-
dow length of 600 years, in order to be able to reliably 
detect multi-decadal and even lower-frequency cycles, 
without missing possible decadal variations. The Monte 
Carlo significance tests are performed at the 99  % confi-
dence level, unless otherwise stated.

In SSA, oscillatory modes are captured by a pair of 
nearly equal eigenvalues of the lag-covariance matrix, and 
by the associated eigenvectors: the eigenvalues correspond 
to variances in the phase-space directions given by the 
eigenvectors, as explained in the “Appendix” here and in 
the references (Vautard and Ghil 1989; Vautard et al. 1992; 
Ghil et al. 2002).

As for CWT, all series were analyzed by using a Mor-
let complex wavelet with parameter ω0 = 6 as the mother 
wavelet (or generating function), and significance tests 
were run according to the guidelines suggested by Torrence 
and Compo (1998). We refer the interested reader to the 
“Appendix” for technical details on both SSA and CWT.

The highly significant periodicities found by one or both 
methods in the individual series are reported in Table 6. 
Unless noted otherwise, all oscillations in the table are sig-
nificant at the 99 % level and above. Only a few of the peri-
odicities in the table are significant at the 95 % or the 90 % 
level; the corresponding significance level is indicated in 
parentheses next to the periodicity.

The range of detected oscillations has been divided into 
three classes: (a) decadal and multidecadal, of about 10, 
20–30, and 40–70 years; (b) centennial and multi-centen-
nial, of about 100, 200, 300, 400, and 500–700 years; and 
(c) a millennial trend.

Several common periods have been found: in particular, 
the majority of the series show a millennial trend, with a 
time scale longer than 800 years, as well as oscillations of 
about 100 and 200 years, along with a broad peak in the 
40–70-year band. The millennial trend is present in all but 

Table 1   Uniform spacing of the seven irregularly sampled time 
series: �t∗ is the sampling interval obtained as explained in the text, 
and N is the number of samples in each evenly spaced series

Acronym Interpolation method �t∗ (year) N

EC Linear 18.17 109

NS Linear 6.10 648

SC Cubic spline 3.13 647

HL Cubic spline 13.27 143

GD Linear 8.97 220

NI Linear 4.47 1018

VP (883 BC–1995 AD) Cubic spline 10.86 266
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three of the 26 time series, and it is significant at the 99 % 
level in both methods for 15 series.

We also notice an 11-year cycle appearing in five of the 
proxy records, in either SSA only (two records—SV and 
NI) or both SSA and CWT (three records—FE, GA and 
SS). Four of the five proxy records that exhibit a significant 
11-year signal are regularly sampled and have a sampling 
interval of 1 year (FE, SV, GA and SS; see Table 5). Only 
NI had an irregular sampling rate with an average sampling 
interval of 4.47 years; the 11-year oscillation is only sig-
nificant in the SSA results.

The periods of the oscillations detected by both spectral 
methods are highlighted in bold in Table 6. In these cases, 
we verified that the amplitude and phase of the oscillations 
reconstructed separately by SSA and by CWT, and not only 
the frequencies, are in agreement. An example of this situ-
ation is illustrated in Fig. 3 for the ∼200 years oscillations 
of the central-eastern Tibetan Plateau tree-ring width series.

As expected (Lindholm et al. 2011), we notice that the 
Fennoscandian tree-ring height increment record shows 
only sub-centennial variability. Likewise, the Southern 
Sierra Nevada tree-ring width record (Graumlich 1993) 
was studied and published prior to the Regional Curve 
Standardization (RCS) method and thus its low-frequency 
signal may be strongly damped.

4 � Multichannel‑SSA (MSSA) results

4.1 � The last millennium: reconstructed variability

The temperature proxy records under study have a consid-
erable range of temporal coverage; see Fig. 2, as well as 
Tables 1 and 5. We thus applied MSSA to the entire data 
set over the largest-possible common interval, spanning 

AD 1000 to AD 1935. Prior to the analysis, all the time 
series were interpolated to a common annual resolution, as 
described in Sect. 2.2. Furthermore, to avoid the dominance 
of variability in one or several channels, each time series 
was centered to have zero mean and unit variance (Plaut 
and Vautard 1994; Shabalova and Weber 1998; Ghil et al. 
2002).

In this way, we obtained a homogeneous data set with 
L = 26 spatial channels and a common length of N = 936 
years. No other filtering or detrending was applied to the 
data, and the statistically significant oscillations were 
scaled back up to present the results as temperature varia-
tions in °C for each time series.

Selecting the window length M for MSSA—like for sin-
gle-channel SSA—involves a trade-off between the amount 
of spectral information, such as the number of peaks, one 
may gain on the time series, on the one hand, and the 
degree of signal-to-noise enhancement and the associated 
statistical confidence, on the other. The choice of M cor-
responds, therewith, to a compromise between including 
more peaks for larger M—while taking into account that 
periods longer than M cannot be resolved—and achiev-
ing a higher degree of statistical significance for the peaks 
detected, at smaller M.

In general, the stable features of the eigenset—i.e., of 
the set of eigenvalues and eigenvectors—can be evalu-
ated by varying the window size M over a given range, 
M1 ≤ M ≤ M2. Since the use of a given M allows the iden-
tification of oscillations with periods that do not exceed M 
(Vautard et al. 1992), we expect to identify, accurately and 
reliably, periods up to 300 years from data spanning the last 
millennium.

Vautard and Ghil (1989) recommended to choose M 
no larger than ∼ N/3, with N the length of the data set. 
Therefore, we use here a standard window length of 
M = 300 years ≤ N/3 = 312 years. In this way, we obtain 
spatio-temporal principal components (ST-PCs) of length 
N ′ = N − M + 1 = 637 years; see the “Appendix” for 
details on the spectral methods.

The MSSA singular spectrum (not shown) includes sev-
eral pairs of eigenvalues that are approximately equal and 
whose error bars overlap, while the long-term trend is cap-
tured by a single eigenvalue. These pairs may represent 
significant oscillations, but statistical tests are required to 
quantify significance.

The Monte Carlo test for MSSA of Allen and Robertson 
(1996) was thus applied in order to investigate which varia-
bility modes contain more variance than would be expected 
if the data were generated by red noise. Our test against 
red-noise surrogates consisted in 500 Monte Carlo simula-
tions of L independent first-order autoregressive processes 
at the 95 % significance level. Results of this AR(1) test are 
plotted in Fig. 4. In this figure, we show the projection of 

Fig. 3   Example of agreement between reconstructions by SSA and 
CWT: the 200-year oscillation in the central-eastern Tibetan Plateau 
tree-ring width record of Liu et al. (2009)
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the data onto the red-noise basis associated with the AR(1) 
null hypothesis; see also Allen and Smith (1996), Ghil et al. 
(2002) and the “Appendix” here.

High variance appears at both multi-decadal and centen-
nial time scales, relative to what would be expected under 
the red-noise hypothesis. The significant components are 
ST-PCs 1–2 (long-term trend), 6–8 (170 years), 9–10 (110 
years), 12–13 (80 years), 16–17 (45 years) and 18–19 (60 
years). The percentages of variance associated with these 
modes are reported in Table 2, along with the periods. The 
combined variance associated with these six modes is of 
33.3 %, i.e., exactly one-third of the total.

The MSSA results thus confirm the presence of multi-
decadal and centennial oscillations in the data: the perio-
dicities in Table 2 are a representative subset of those cap-
tured by SSA and CWT analysis of the single time series, 
cf. Table 6. As shown in Fig. 5, the two ST-PCs in each of 
the pairs 9–10, 12–13, 16–17 and 18–19 share a very simi-
lar frequency and are in quadrature; these two facts together 
support the oscillatory nature of the four above modes.

The ST-PC pair 1–2 represents the so-called trend 
component, whose period, if any, falls outside the win-
dow length M. Actually, a millennial oscillation is clearly 
present in the longest record of the set (Lower Murray 
Lake, ML), which covers the last 5,000 years; see Table 6. 
Finally, the ST-PC triplet 6–8, with a dominant period of 

roughly 170 years, is statistically significant, although its 
three PCs behave more irregularly than the pairs. We veri-
fied the robustness of all the above results with respect to 
different values of the window length M by repeating the 
Monte Carlo test for MSSA with M = 240 and 360 years.

A few significant components were also found at periods 
below 5 years. In particular, oscillatory pairs with periods 
of about 2.5 and 4.5 years appear to be significant at the 
95 % confidence level in Fig. 4. These periods may be asso-
ciated with the El Niño–Southern Oscillation phenomenon, 
which is a major source of seasonal-to-interannual climate 
variability (Jiang et al. 1995 and references therein). In this 
paper, however, we concentrate on multi-decadal and cen-
tennial periodicities, and will not discuss the latter, high-
frequency modes any further.

The final step of MSSA was the reconstruction of the 
space-time series associated with each oscillatory pair by 
computing the reconstructed components (RCs) associated 
with it; see the “Appendix” for the corresponding methodo-
logical details. The resulting RCs are time series displaying 
the time evolution of each channel on the time scale of the 
corresponding MSSA mode.

Figures 6 and 7 represent the evolution in time of tem-
perature anomalies of all the statistically significant RC 
pairs reconstructed from the MSSA analysis. In the upper 
half of the panel for each RC pair, this evolution is plot-
ted as a function of increasing latitude (Fig. 6a–f) and by 
regional group (Fig. 7a–f); the latter groups are listed in 
Table 3. In the lower half of the corresponding panel we 
show the RC pair averaged over two different latitude 
bands (30–60°N and 60–90°N; Fig. 6a–f) and over the 
eight different regions shown in Fig. 1 (Fig. 7a–f). In all the 
latter plots, the black solid line represents the average over 
the whole NH, i.e. the black solid lines in panels Figs. 6a 
and 7a, etc., are the same.

The trend is well described by the first two MSSA com-
ponents (RCs 1–2) that represent the most energetic mode, 
which carries almost one-fifth of the total variance. This 
millennial oscillation marks the Medieval Warm Period 
(MWP)—also called the Medieval Climate Anomaly 

Fig. 4   Monte Carlo significance test of yearly temperature anomaly 
data in the Northern Hemisphere (NH) for the interval AD 1000–
1935, using all L = 26 time series available as input channels over 
this interval. Shown are projections of the temperature data onto the 
AR(1) null-hypothesis basis, with a 300-year window (M = 300). 
Open squares show the data eigenvalues, plotted against the domi-
nant frequency of the corresponding ST-PC; see the “Appendix” for 
details. The vertical bars give the 95 % confidence interval computed 
from 500 realizations of a noise model consisting of L independent 
AR(1) processes with the same variance and lag-1 autocorrelation as 
the input data channels. The dominant periods of the significant com-
ponents are also indicated. Please see the “Appendix” for technical 
details

Table 2   Significant components according to the Monte Carlo 
MSSA test for L = 26 channels and M = 300 years

Corresponding variances are also shown

ST-PC number Dominant period (years) Variance (%)

1–2 Trend 18.5

6–8 170 6.1

9–10 110 3.3

12–13 80 2.1

16–17 50 1.7

18–19 60 1.6
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(PAGES 2k Consortium 2013)—and the Little Ice Age 
(LIA) and it is present in both latitude belts under consid-
eration, cf. Fig. 6a.

The corresponding lower half-panel shows that the 
average NH temperature variation between the MWP and 
the LIA is of about 0.4 °C, while the temperature differ-
ence at mid-latitudes (30–60°N) is somewhat smaller. This 
is very similar to the amplitude of centennial-scale vari-
ability found in most multi-proxy temperature reconstruc-
tions for the Northern Hemisphere, e.g., Masson-Delmotte 
et  al. (2013). The upper half-panel clearly indicates that 
the cooler temperatures associated with the LIA appear 
first in mid-latitudes and propagate on to higher latitudes. 
The contributions to the net modern temperature rise come 
mainly from the trend and from RCs 6–8 (period 170 years; 
see Table 2).

In Fig. 8 we plot the amplitude pattern for the long-term 
trend at intervals of 175 years over the last millennium. 
We notice that the warm conditions related to the MWP 
are reached at about the same time over the entire NH (see 
maps corresponding to 1050 and 1225 year AD), and so are 
the cold conditions that characterize the LIA (see maps cor-
responding to 1575 and 1750 year AD). Europe and Asia, 
however, seem to be more prompt in cooling toward LIA 
(see the map at 1400 year AD) and in recovering after the 
LIA (see maps at 1750 and 1925 year AD). This fact is 
clearly confirmed by the Asian (red and purple) curves of 
Fig. 7a.

Focusing on the centennial oscillation (RCs 9–10), Fig-
ure 6c indicates that this mode is present—by-and-large, 

except for a few lower-latitude proxies—in the whole data 
set. Visual inspection yields good phase coherence among 
all latitudes, with some signal propagation noticeable 
across latitude belts, over time intervals of the order of a 
century (upper half-panel). A lower amplitude of this oscil-
lation is apparent during the LIA (lower half-panel). Con-
versely, the 50–60-year oscillations (RCs 16–19) are par-
ticularly strong in the second half of the last millennium, 
especially at mid-latitudes.

For the latitude-band-averaged curves in the lower half 
panels of Fig. 6, visual inspection likewise suggests good 
phase agreement of the significant modes of variability, at 
least for the trend and the three leading oscillatory modes; 
the latter four modes together capture about a third of the 
total variance of the data set. This consistency is reduced 
for the last two panels in Fig. 6, as well as when the ampli-
tudes of the oscillations are smaller in its panels (b)–(d); 
it disappears altogether when grouping the series by longi-
tude (not shown) or by geographical regions. This fact sug-
gests that there are regional differences in the phasing of 
the NH-wide oscillations.

We investigate these differences in the oscillations’ spa-
tio-temporal behavior in the next three figures. Figures 9, 
10 and 11 confirm that spatial coherence of temperature 
variations is quite high, for each significant oscillation. We 
plot in each of these figures the amplitude pattern at inter-
vals of half a period over three full cycles, for the 170-, 
110- and 80-year oscillations, respectively.

All three figures show a great spatial uniformity of tem-
perature over Europe—i.e., to be precise, both the EU1 and 

Fig. 5   Time series of MSSA principal component (ST-PC) groups 
1–2, 6–8, 9–10, 12–13, 16–17 and 18–19 of yearly NH temperature 
normalized anomalies; of these six groups, four clearly correspond to 
oscillatory modes with a period of 110, 80, 50 and 60 years, respec-

tively. The MSSA analysis was done for the interval AD 1000–1935, 
and the 637-year time span on the horizontal axis corresponds to 
N

′ = N − M + 1; see text for details
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EU2 regions of Fig. 1—with an amplitude of about 0.4 °C. 
Moreover, the 170-, 110- and 80-year modes in Europe, 
as well as the 60-year mode (not shown), are in anti-phase 
with respect to the AR1 region, namely Greenland and the 
subpolar North Atlantic around Iceland: a warming in EU1 

and EU2 corresponds to a cooling in AR1 and vice versa. 
This behavior is reminiscent of the Greenland–Europe 
seesaw that is well known to synoptic meteorologists, on 
shorter time scales, from instrumental data (Loon and Rog-
ers 1978; Kimoto and Ghil 1993).

Fig. 6   Latitude dependence of 
the significant modes of varia-
bility, in groups of reconstructed 
components (RCs): a RCs 1–2, 
b RCs 6–8, c 9–10, d RCs 
12–13, e RCs 16-17, and f RCs 
18–19; color bar for amplitude 
−0.20 − 0.20 (nondimensional 
units). Upper-half panels RC 
pairs of temperature anomalies 
from the MSSA analysis as a 
function of increasing latitude; 
lower-half panels the same RC 
pairs averaged over two latitude 
bands—30−60°N (orange), 
60–90°N (green) and over the 
entire NH (black)
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To further examine this behavior, we plot in Fig. 12 
the 80-year oscillations for the EU1+EU2 and the AR1 
regions. The phase opposition is clear until about AD 1650. 
Interestingly, Kobashi et  al. (2013) identified a similar 

negative correlation between the reconstructed temperature 
from Greenland ice-core data since AD 1200, on the one 
hand, versus the reconstructed interdecadal variability of 
the rest of the NH and the interdecadal total solar irradiance 

Fig. 7   Same as Fig. 6, but for 
regional dependence
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(TSI), on the other. Larsen et al. (2013) also found that val-
ley glacier fluctuations on Iceland and in the European Alps 
occurred asynchronously during parts of the Little Ice Age.

With respect to the roughly 0.4 °C peak-to-peak ampli-
tude of the temperature oscillations found in the dataset 
(Figs. 9, 10, 11), it is important to note that most calibra-
tion methods underestimate the amplitude of the trend and 
the low-frequency variability of the reconstructed tempera-
ture changes. According to pseudo-proxy experiments, the 
underestimates are of the order of 20–50 % (Christiansen 
et al. 2009 and references therein). We could thus estimate 

the actual amplitude of this low-frequency variability over 
the last millennium to have been of about 0.5  °C or even 
larger.

4.2 � The last millennium: possible causes of variability

Possible causes of climate variability on time scales of dec-
ades to centuries include variations in solar activity and 
ocean circulation. In particular, the oceans play an impor-
tant role in the climate system because of their large heat 
capacity and their slow changes in circulation patterns 
(Ghil 2001; Dijkstra and Ghil 2005). Observational studies 
(Schlesinger and Ramankutty 1994) and coupled ocean–
atmosphere model simulations (Delworth and Mann 2000) 
suggested a multi-decadal spatio-temporal variability pat-
tern with an amplitude of 0.4 °C in the North Atlantic SST 
field. This variability pattern has an approximate periodic-
ity of 50–80 year and it is referred to as the Atlantic Multi-
decadal Oscillation [AMO; Kerr 2000].

Over the instrumental period, i.e. after about AD 1850, 
the AMO exhibits approximately two cycles, with warm 
phases at roughly 1860–1880 and 1930–1960 and cool 
phases during 1905–1925 and 1970–1990 (Jones et  al. 
2012). The SST anomaly associated with the AMO cov-
ers the entire North Atlantic basin, and its mechanism 
is linked with northward heat transport variations in the 

Fig. 8   RC pair 1–2 of temperature anomalies that captures the long-
term trend. The spatial patterns are shown at intervals of 175 years, 
starting from 1050 AD to 1925 AD. The contour interval for the 

anomalies is 0.06 °C, while the maximum and minimum contours are 
at ±0.6 °C, respectively

Table 3   Regional groups of temperature reconstructions

The acronyms stand for AR Arctic, AS Asia, EU Europe, NA North 
America; the regions are outlined on the map in Fig. 1

Group Time series

AR 1 ML-G2-DL-NI-GD

AR 2 ML-G2-DL-NI-GD-VP-TR-FL-SV-FE-RP

AS 1 TI-SH-EC-CS

AS 2 TI-SH-EC-CS-TL

EU 1 CE-FA-NS-SC-AL

EU 2 VP-TR-FL-SV-FE

NA 1 SS-SP

NA 2 HL-GA-IL
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Fig. 9   RC triplet 6–8 of temperature anomalies that captures varia-
bility on the time scale of ∼170 years. The spatial patterns are shown 
at half-period intervals, over three full cycles of the oscillation. The 

contour interval for the anomalies is 0.02 °C; the maximum/minimum 
contours are at ±0.2 °C respectively

Fig. 10   Same as Fig. 9 but for RC pair 9–10, with its ∼110-year time scale
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thermohaline circulation. During its extreme phases, the 
entire North Atlantic Ocean is dominated by monopolar 
SST anomalies. The multi-decadal variations in Atlantic 
SST influence much of the NH climate; they exert, in par-
ticular, a significant influence on regional climates as far 
away as China (Wang et al. 2013).

The results of our analysis, cf. Table 2 and Figs. 7, 11, 
imply that multi-decadal variability on the time scale of 
50–80 years in the North Atlantic may have been active 
over much of the last millennium. It is difficult, though, to 

investigate the detailed relations between the AMO and the 
multi-decadal climate variability in our proxy records, on 
the one hand, and the full pattern of surface temperatures 
over the past millennium, on the other (Mann et al. 2009). 
More importantly, causal links between either of these 
reconstructions and the actual mechanism of the AMO over 
longer times are elusive, due to the lack of reliable proxies 
for changes in the ocean circulation on these time scales.

The extent to which solar-activity variations affect cli-
mate has been a subject of considerable controversy on all 
time scales (Siscoe 1978; Cubasch et al. 1997; Marcus and 
Ghil 1999; Velasco and Mendoza 2008; Gray et  al. 2010; 
Lovejoy and Schertzer 2012). Several authors have reported 
correlations between solar activity—which is reflected in 
sunspot frequency and in various terrestrial proxies—and 
climate proxies, hinting that century-scale oscillations in 
the global mean temperature are linked with similar oscil-
lations in solar activity. Solar-activity proxies are, however, 
masked by climatic variations and by other climate forcing 
agents, such as volcanic sulphate aerosols (Breitenmoser 
et al. 2012).

Among the authors who have claimed solar effects at 
the centennial scale, Ogurtsov et  al. (2013) investigated 
the cyclicity present in tree-ring records from the Swedish 
Scandes to the Kola Peninsula and found two oscillatory 
modes of 55–100 and 100–140 years to be consistent with 
solar variability at the same time scales. Raspopov et  al. 

Fig. 11   Same as Fig. 9 but for RC pair 12–13, with its ∼80-year time scale

Fig. 12   Reconstruction of the 80-year oscillations (RCs 12–13) for 
Europe (EU1+EU2 regions, red) and the Greenland+Iceland region 
(AR1, blue)
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(2008) found approximate 200-year cyclical variations in 
both the precipitation and temperature signal from juniper 
tree-ring width data from Central Asia, and related them to 
the so-called Suess or de Vries solar cycle at roughly 210 
years.

Wiles et  al. (2004) showed evidence for variations in 
glacial activity in the mountains of Southern Alaska con-
sistent with the de Vries solar cycle. The Asian monsoon 
systems also exhibit persistent variability at periodicities 
corresponding to known solar cycles. Ji et al. (2005) could, 
using reflectance spectroscopy of a sediment core, show 
significant periodicities of 123, 163, 200 and 293 years in 
monsoon moisture over the Qinghai-Tibet Plateau for the 
past 18,000 years.

The δ18O and δ13C speleothem data from Dongge Cave in 
southern China studied by Dykoski et al. (2005) has shown 
periodicities of 208, 86 and 11 years in monsoon strength 
over the last 16,000 years. An analysis by Lim et al. (2005) 
of a high-resolution sediment record from Korea revealed 
periodicities of 280, 210 and 137 years in northwesterly 
winter monsoonal winds over at least the last 6,500 years. 
Kitagawa and Matsumoto (1995) examined δ13C variations, 
which they interpreted as a temperature proxy, in Japanese 
cedars (Cryptomeria japonica) in southern Japan over the 
last two millennia and found significant temperature perio-
dicities of approximately 187, 89, 70, 55, and 44 years.

In North America, Springer et al. (2008) found periodic-
ities of ∼200 and ∼500 years of drought in the Sr/Ca ratios 
and δ13C data from a West Virginia stalagmite record. A 
spectral analysis by Yu and Ito (1999) of a 2,100-year–long 
lake sediment from north-central North Dakota showed 
dominant periodicities of drought at intervals of about 400, 
200, 130 and 100 years. Willard et al. (2005) performed a 
multi-taper harmonic and power spectral analyses of pol-
len assemblages from Chesapeake Bay for the past 10,000 
years and found highly significant oscillations of about 
148, 177, 282, 521 and 1429 years.

Our spectral analysis, based on a multichannel approach 
rather than a single-series one, allows avoiding this prolif-
eration of spectral peaks and identifies for the NH a signifi-
cant centennial temperature oscillation. By comparing in 
Fig. 13 the centennial reconstructed mode (RC 9–10) with 
the sunspot number series available since ∼1700 AD, we 
cannot fail but notice an apparent agreement with ampli-
tude modulation of the 11-year Schwabe cycle. This visual 
comparison, however, cannot yield a conclusive answer to 
the question of whether the two distinct oscillations in the 
figure are actually connected, due to the short time interval 
available. It is also important to keep in mind that state-of-
the-art reconstructions of TSI over the Holocene (Steinhil-
ber et al. 2012) do not find the Gleissberg cycle nor the de 
Vries cycle or other periodicities in solar variability to be 
highly significant.

4.3 � The last two millennia

In order to exploit the fact that several proxy records are 
much longer than 1,000 years and to confirm our previ-
ous results, we further applied the MSSA methodology 
to a reduced data set for the common 1820-year interval 
spanning 116 to 1935 AD, i.e. N = 1,820. In this way, we 
obtained a data set with L = 17 series.

In this case, we used a window width of M = 600 years 
and applied the Monte Carlo–MSSA test of Allen and 
Robertson (1996) to this subset of proxy records. The test 
consisted in 200 Monte Carlo simulations of L independ-
ent first-order autoregressive processes AR(1) at the 95 % 
significance level, and its results are illustrated in Fig. 14. 
In this figure, we show the projection of the data onto the 
red-noise null-hypothesis basis.

High variance appears at both multi-decadal and centen-
nial time-scales, relative to what would be expected under 

Fig. 13   Comparison between the sunspot number series (blue) and 
the reconstructed centennial mode (RCs 9–10, red). For presentation 
purposes, the centennial mode is shifted and multiplied by an arbi-
trary factor

Fig. 14   Same as Fig. 4, except for the time interval 116–1935 AD, 
L = 17 time series, M = 600 years, and 200 surrogate time series
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the red-noise assumption. The significant components are 
the trend (RCs 1–2), RCs 10–12 (330 years), RCs 3–5 (250 
years), RCs 13–14 (110 years), RCs 23–24 (80 years), RCs 
31–32 (60 years) and RCs 37–38 (50 years). The percent-
ages of variance associated with these modes are reported 
in the last column of Table 4, and they represent a total of 
almost 40 %, versus only 33 % in Table 2.

Table 4 and Fig. 14 here extend to the last two millen-
nia the results obtained in Sect. 4.1 for the last millennium. 
The greater window width, M = 600 years here versus 
M = 300 years there, allows for greater spectral resolution 
and also for the presence of a greater number of compo-
nents that just capture the continuous spectral background 
between the peaks. Still, the peaks at 50, 60, 80 and 110 
years appear as significant in both analyses—although 
the order of the peaks at 50 and 60 years is inverted with 
respect to Table 2, and the 80-year mode is only significant 
at 90 % here, as is the trend. Recall, though, that in both 
the millennial and bimillennial analysis, the ratio N/M is 
barely higher than three, thus limiting the statistical signifi-
cance (Vautard and Ghil 1989; Ghil et al. 2002).

The greater M and N also allow one to divide the low-
est frequencies into three, rather than only two significant 
modes: trend, 330 and 250 years here vs. trend and 170 
years in the millennial analysis. Clearly, any mode whose 
time scale exceeds 300 years would be absorbed into the 
trend in Table 2, while a mode with period 250 years, i.e. 
approaching 300 years, could be aliased into the 170 years 
mode there. The better spectral resolution, though, comes 
at the cost of lower spatial resolution: clearly 17 records 
provide less of a basis for analyzing regional behavior 
than 26.

5 � Concluding remarks

The purpose of this study was to perform multi-spectral 
analysis to describe the spatio-temporal variability of near-
surface air temperatures over the Northern Hemisphere 
(NH), based on a fairly large set of calibrated proxy records 

(see Figs. 1, 2; Table 5), with an emphasis on variability at 
multi-decadal and centennial time scales.

Our approach differs from previous spectral analyses of 
paleoclimatic data in its choice of analyzing only high-res-
olution proxy records that were calibrated to temperature 
by their original authors. This choice allows one to pre-
serve the optimal information about temperature variations 
at each geographic location.

Using three distinct, single- and multivariate spectral 
approaches (see the “Appendix”), we found persistent and 
highly significant multi-decadal and centennial temperature 
variations in our NH data set (see Figs. 3, 4, 5, 14; Table 2, 
4), with distinct spatial features displaying major areas of 
variability. Variability on longer time-scales is carried by a 
dominant trend component, whose spatio-temporal features 
are consistent with both the Medieval Warm Period (MWP) 
and the Little Ice Age (LIA). These features extend over the 
entire NH, with Europe and Asia somewhat ahead of the 
rest of the hemisphere; see Fig. 8.

The spatio-temporal structure of the oscillations has 
been characterized using latitudinal and regional group-
ings of the reconstructed components (RCs). Grouping the 
proxy records by latitude bands (Fig. 6), we found good 
phase agreement among the significant oscillations in the 
same latitude band, at least for the trend and the secular 
components. Phase propagation from mid to high latitudes 
is observed in certain cases, especially for the trend (RCs 
1-2, Fig. 6a) during the LIA, with a characteristic travel 
time of one-to-two centuries.

The grouping by geographical regions (Table 3; Fig. 7) 
also provides visual evidence of signal propagation from 
one region to another, in particular on the centennial time 
scale (Fig. 7c, d). In fact, spatial maps reconstructed for 
each mode (Figs. 9, 10, 11) strongly suggest that the cen-
tennial and the multi-decadal oscillations in Europe and in 
part of the Arctic region are in anti-phase, with a warming 
in Europe corresponding to a cooling in the Arctic and vice 
versa (see Fig. 12).

Although the same oscillations are present in all the geo-
graphical regions that are represented in our data set, their 
spectral power differs. In particular, the North American 
proxies (regions NA1 and NA2) exhibit a reduced ampli-
tude at all time scales over the last millennium (see lower 
panels of Fig. 7) with respect to the other regions. This is 
in line with the results of Shabalova and Weber (1999), 
who also found the amplitude of multi-decadal temperature 
oscillations to be larger in Europe than in North America 
and even absent altogether in northwestern North America. 
The 110-year oscillation is particularly strong over North-
ern Europe (EU2 region), especially the first half of the last 
millennium (Fig. 7c, lower panel).

Finally, the results in Fig. 13 suggest a possible link of 
the secular temperature variations reflected in our proxies 

Table 4   Significant components identified by Monte Carlo-MSSA 
for L = 17 channels and M = 600 years

ST-PC number Signif. period (year) Variance (%)

1–2 Trend 18.8

10–12 330 4.6

3–5 250 10.2

13–14 110 2.7

23–24 80 1.3

31–32 60 1.0

37–38 50 0.8
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with solar forcing, and in particular with the Gleissberg and 
the de Vries cycles that modulate the 11-year cycle.
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Appendix 1: Singular Spectrum Analysis (SSA)

The SSA methodology involves three basic steps: (1) 
embedding a time series of length N in a vector space of 
dimension M—for the choice of M, see Vautard et  al. 
(1992) and Ghil et  al. (2002; 2) computing the M × M 
lag-covariance matrix CD of the data—see the two differ-
ent approaches of Broomhead and King (1986) and Vautard 
and Ghil (1989); and (3) diagonalizing CD:

where �D = diag(�1, �2, . . . �M), with �1, �2, . . . �M > 0 
the real, positive eigenvalues of the symmetric matrix CD,  
and ED is the M × M matrix having the corresponding 
eigenvectors Ek, k = 1, . . . M, as its columns.

For each Ek we construct the time series of length 
N − M + 1, called the k-th principal component (PC); this 
PC represents the projection of the original time series on 
the eigenvector Ek, also called empirical orthogonal func-
tion (EOF). Each eigenvalue �k gives the variance of the 
corresponding PC; its square root is called a singular value.

Given a subset K = (k∗
1 , k∗

2 , . . . k∗
K ) of eigenvalues, it 

is possible to extract time series of length N, by combin-
ing the corresponding PCs. These time series are called 
reconstructed components (RCs) and capture the variabil-
ity associated with the K eigenvalues of interest. A nonlin-
ear, data-adaptive trend is typically identified by the larg-
est eigenvalue and the associated EOF that has no zero. An 
oscillatory mode is associated with a pair of nearly equal 
eigenvalues, while the corresponding EOFs are in quad-
rature, like a pair of anharmonic, data-adaptive sine and 
cosine.

In order to reliably identify the trend and oscillations in 
a series, the Monte Carlo method (MCSSA) is used (Allen 
and Smith 1996). In this approach, one assumes a model 
for the analyzed time series and one determines this mod-
el’s parameters using a maximum-likelihood criterion; one 
refers to this model commonly as the null hypothesis.

Then a Monte Carlo ensemble of surrogate time series is 
generated from the null hypothesis, and SSA is applied to 
the data as well as the surrogates, in order to test whether 
it is possible to distinguish the original time series from the 
ensemble of surrogates. Since a large class of geophysical 

(2)�D = ET
DCDED,

processes generate series with larger power at lower fre-
quencies (Ghil et al. 2002), we assume AR(1) noise in eval-
uating evidence for trend and oscillations. This is done to 
avoid overestimating the significance of the low-frequency 
peaks in the spectrum, by underestimating the amplitude 
of the stochastic component of the time series in the lower 
part of the frequency range (Allen and Smith 1996; Ghil 
et al. 2002).

Appendix 2: Multichannel SSA (MSSA)

In order to reconcile the different information items con-
tained in each of the data sets under study, it is useful to 
apply the SSA analysis to a combination of all the available 
measurements, and not just to each one separately. Doing 
so may allow us to extract a subset of oscillations that are 
common to all the time series, thus establishing which peri-
odicities are the most dominant for the whole data set.

Multichannel Singular Spectrum Analysis [MSSA; 
Keppenne and Ghil (1993); Plaut and Vautard (1994)] is 
a multivariate extension of the SSA method, with each 
channel corresponding to one of the time series of inter-
est. As in the univariate case, this data-adaptive filtering 
technique can identify nearly periodical oscillating modes 
within a specified spectral window. This method is equiva-
lent, in principle, to extended empirical orthogonal func-
tion analysis [EEOF: Weare and Nasstrom (1982)], but in 
MSSA the focus is on the temporal structure of the vari-
ability, whereas in EEOF it is the spatial variability that is 
emphasized.

Basically, MSSA decomposes a multichannel time series 
X l,i, with i = 1, . . . , N representing time and l = 1, . . . , L 
the channel number, into an orthonormal, data-adaptive 
space-time structure whose elements represent eigenvectors 
grand cross-covariance matrix of size LM × LM, where M 
is the window width. The computation thus results in a set 
of eigenvectors Ek, called space-time EOFs (ST-EOFs), and 
their associated space-time PCs (ST-PCs) ak, computed by 
projecting X onto Ek. The L × M real eigenvalues �k, each 
associated with the k-th eigenvector Ek, equal the variance 
in the ak direction.

The MSSA expansion of the original data series is thus 
given by

Each reconstructed component (RC) allows one to recon-
struct the dynamical behavior in X that belongs to Ek (Plaut 
and Vautard 1994; Ghil et al. 2002).

(3)Xl,i+j =

LM
∑

k=1

ak
i E

k
ij, i = 1, . . . , N; j = 1, . . . , M.
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MSSA shares with single-channel SSA the ability to 
identify robust modulated oscillations in the data with 
period smaller than M by means of pairs of subsequent 
eigenvectors that are in phase quadrature, that is, such that 
the cross-correlation between these pairs is maximum at a 
lag of roughly one quarter the associated period. In order 
to select an oscillatory mode, it is required that the corre-
sponding eigenvalues are nearly equal and that the two ST-
PCs share aprroximately the same frequency (Vautard et al. 
1992; Plaut and Vautard 1994).

As in the case of single-channel SSA, the presence of an 
eigenvalue pair is not sufficient to conclude that they rep-
resent an oscillation in the data. The significance of such 
tentatively identified oscillations has to be additionally 
checked, because also pure white- or red-noise processes 
are able to randomly generate pairs of eigenvectors satisfy-
ing the above-mentioned criteria (Vautard and Ghil 1989; 
Vautard et al. 1992; Allen and Smith 1996).

Allen and Robertson (1996) suggested two different sig-
nificance tests for the presence of oscillations at low sig-
nal-to-noise ratios in multivariate data, based on the same 
null hypothesis. In the first test, the lag-covariance matrix 
is computed from the original, observed data, whereas in 
the second, the lag-covariance matrix is computed from 
the surrogate data generated by Monte Carlo methods. The 
subsequent procedure of projecting the data and the noise 
surrogates onto the ST-EOF basis is similar in both tests. 
The second test is more robust, since the former implic-
itly assumes the existence of a signal before any signal has 
been detected (Allen and Smith 1996).

We have applied both of these tests to determine whether 
the modes associated with pairs of eigenvalues correspond 
to actual oscillatory modes. The following step, given the 
detection of frequencies with significantly more power than 
expected from red noise, is to reconstruct the multivariate 
structure associated with each of them. Variability on time 
scales longer than M is described by the nonlinear, data-
adaptive trend component, which however may also rep-
resent an oscillation with a time scale larger than M (Ghil 
and Vautard 1991; Ghil et al. 2002).

Appendix 3: Continuous Wavelet Transform (CWT)

The Wavelet Transform (WT) allows an evolutionary spec-
tral analysis of a series in the time-scale plan (Foufoula-
Georgiou and Kumar 1994; Percival and Walden 2000). 
The concept of scale is typical of this method: the scale is a 
time duration that can be properly translated into a Fourier 
period, and hence a frequency. The Continuous Wavelet 
Transform (CWT) in spectral applications is discretized by 
computing it at all available time steps and on a dense set 
of scales (Torrence and Compo 1998).

The square modulus of the transform expresses spec-
tral density as a function of time and frequency. A filtered 
version of the signal can then be reconstructed selecting 
only the contributions from a given set of periods. By time 
averaging the CWT at each value of the period (scale), the 
Global Wavelet Spectrum (gws)—and the corresponding 
significance levels, using a background spectrum of red 
noise—can be computed, thus obtaining a time-averaged 
spectral estimate comparable with those obtained by classi-
cal methods. However, CWT is a multiresolution analysis: 
frequency resolution is high at low frequencies and poor at 
high frequencies (Torrence and Compo 1998). It is, there-
fore, particularly suited for determining the frequency of 
the oscillations and to reconstruct them accurately in the 
low-frequency range of the spectrum (Tables 5, 6).
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