
1

Analysis of Activity Networks with Phase Type
Distributions by Kronecker Algebra

Alessio Angius1, András Horváth1 and Marcello Urgo2

1 University of Turin, Italy, angius@di.unito.it,horvath@di.unito.it
2 Politecnico di Milano, Italy, marcello.urgo@mecc.polimi.it

Keywords: Activity Networks, Phase Type distributions.

1 Introduction

In the production of complex Manufacturing-to-Order products, uncertainty may stem
from a number of possible sources, both internal and external, affecting the execution of
the scheduled activities. A disrupted schedule incurs high costs due to missed due dates,
resource idleness, or higher work-in-process inventory. Robust scheduling approaches aim
at being able to provide a balanced compromise between expected performance and the
protection against rare but extremely unfavourable events. Tackling this problem entails
the need of estimating the probability distribution associated with a scheduling objective
function. One approach, described in (Urgo 2014), is to use phase type distributions to
approximate generally distributed activity durations.

The aim of this work is to show that an efficient manner to deal with activity networks
in which durations are described by phase type distributions is provided by Kronecker
algebra. This algebra alleviates the state space explosion problem, which is typical when
phase type distributions are used in models where several activities are executed in parallel,
and opens a way to an efficient and modular analysis methodology. The proposed approach
is applied to a simple test case demonstrating how a proper design of the PH approximation
provides a tool to asses the completion time distribution with a good accuracy.

2 Markov Activity Networks

In Markov Activity Networks (MAN) (Kulkarni & Adlakha 1986), given that (i) the
durations of the activities are mutually independent and (ii) exponentially distributed, the
execution of the activity network can be represented through a continuous time Markov
chain (CTMC). Modelling the execution of a network of activities with a Markov chain
provides the capability of exploiting the wide set of tools and approaches available for
Markov models to address stochastic scheduling problems. As an example we consider the
activity network in Figure 1, representing the execution of a set of activities 1, 2, ..., 5 and
their precedence relations. The durations of the activities are exponentially distributed
with parameters λ1, λ2, λ3, λ4, and λ5,, respectively.

The CTMC describing the execution of the set of activities is depicted in Figure 2 where
the on-going activities of a state are indicated inside the circle. The initial state is the state
in which no activities have yet been executed. Assuming that this state is the first state of
the CTMC, the initial probability vector is given as π(0) = |1, 0, ..., 0|. Denoting by Q the
infinitesimal generator of the CTMC, the transient probabilities of the states at time t is
given by the vector π(t) = π(0) exp(tQ) where exp(•) is the matrix exponential function.
Assuming that the last state of the CTMC corresponds to the situation when all activities
are executed, the last entry of π(t) gives the probability that the execution of all activities
took less than t time units. I.e., the last entry of π(t) provides the cumulative distribution
function of the makespan of the underlying stochastic scheduling problem. Note that the
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Fig. 1. An activity network.
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Fig. 2. CTMC of the activity network in Figure 1.

last state of the Markov chain is absorbing and the chain is acyclic. However, the restriction
to exponentially distributed activity durations represents a limiting hypothesis, since the
exponential distribution is quite seldom applicable to real industrial processes.

3 Phase Type Distributions

In the field of Markov models, phase type (PH) distributions are widely used to provide
an approximation of a general distribution. Basically, a set of inter-related exponential
delays are put together to form a distribution to approximate a general one. Formally, a
continuous time PH distribution is the distribution of the time to absorption of a CTMC
and the order of the PH distribution is given by the number of transient states of the
chain. Consequently, the PH distribution is determined by a vector, β, which gives the
initial probabilities of the transient states and a matrix, T , which contains the intensities
of the transitions among the transient state. The cumulative distribution function, the
probability density function and the moments of a PH distribution are given by

F (x) = P{X ≤ x} = 1− βeTx1I, f(x) = βeTx(−T )1I, mi = i!β(−T )−i1I

where 1I is a column vector of ones.
The use of PH distributions is popular because these distributions can be easily used

as building blocks of more complex models. Indeed, if we are given a system in which
all sojourn times are according to PH distributions and the next state distribution is
Markovian then the overall system behavior can be described by a Markov chain.

The class of PH distributions is dense in the field of positive valued distributions, i.e.,
any positive valued distribution can be approximated by PH distributions with any accu-
racy. This fact does not provide however directly a practical method to fit distributions
by PH distributions. Several authors proposed fitting methods and most of these fall into
two categories: maximum likelihood (ML) based estimation of the parameters and mo-
ment matching techniques. One of the first works on ML estimation considered acyclic PH
distributions (Bobbio & Cumani 1992) while an approach for the whole family, based on
the expectation-maximization method, is proposed in (Asmussen, Nerman & Olsson 1996).
Since these early papers, many new methods and improvements have been suggested for
the whole PH family and for its sub-classes. For what concerns moment matching meth-
ods the following results are available. For low order (≤ 3) PH distributions, moment
bounds and moment matching formulas are either known in an explicit manner or there
exist iterative numerical methods to check if given moments can be captured (Telek &
Heindl 2002, Horváth & Telek 2007). For higher order there exist matching algorithms,
but these often result in improper density functions and the validity check is a non-trivial
problem. In (Bobbio, Horváth & Telek 2005) a simple method is provided that constructs
a minimal order acyclic PH distribution given three moments. Tool support is available for
the construction of PH and ME distributions. Specifically, ML based fitting is implemented
in PhFit (Horváth & Telek 2002) and a set of moment matching functions is provided in
BuTools.
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4 Analysis of Activity Networks with Phase Type Distributed Activity Du-
rations by Kronecker Algebra

We assume now that the time to carry out an activity is distributed according to a
PH distribution. We will denote the vector-matrix pair that describes the PH distributions
associated with activity i by (βi, Ti). Then infinitesimal generator of the overall system can
be constructed by blocks. The diagonal blocks describe the parallel execution of a number
of activities and the diagonal block associated with state j is given by

Qj,j =
⊕

i∈A(j)

Ti

where
⊕

denotes the Kronecker sum operator and A(j) is the set of on-going activities
in state j. An off diagonal block describes the finishing of an activity, the initialization of
one or more activities and must maintain the phase of those activities that remain active.
Accordingly, the block that describes the transition from state j to state k (with j 6= k) is
given as

Qj,k =
⊗
i∈A

Ri with Ri =


(−Ti)1I if i ∈ A(j) and i 6∈ A(k)
βi if i 6∈ A(j) and i ∈ A(k)
Ii if i ∈ A(j) and i ∈ A(k)
1 if i 6∈ A(j) and i 6∈ A(k)

where
⊗

denotes the Kronecker product operator and Ii is an identity matrix whose
size is equal to the order of the PH distribution associated with activity i. The four cases
in the above equation correspond to the cases: activity i finishes (described by the vector
(−Ti)1I which contains the “finishing” intensities of the associated PH distribution), activity
i starts (described by βi), activity i remain active (described by Ii), activity i is neither
active in state j nor in state k (scalar 1 in the Kronecker product). The initial probability
vector of the overall system is composed of the initial probabilities of the starting activities:
π(0) = |

⊗
i∈A(1) βi, 0, ..., 0|.

The infinitesimal generator for the model depicted in Figure 1 is as follows

Q =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

T1
⊕
T2 t1

⊗
I2
⊗
β3
⊗
β4 0 0 I1

⊗
t2 0 0 0 0 0 0 0

0 T2
⊕
T3
⊕
T4 I2

⊗
I3
⊗
t4 0 0 I2

⊗
t3
⊗
I4 t2

⊗
I3
⊗
I4 0 0 0 0 0

0 0 T2
⊕
T3 I2

⊗
t3 0 0 0 t2

⊗
I3 0 0 0 0

0 0 0 T2 0 0 0 0 t2
⊗
β5 0 0 0

0 0 0 0 T1 0 t1
⊗
β3
⊗
β4 0 0 0 0 0

0 0 0 I2
⊗
t4 0 T2

⊕
T4 0 0 0 t2

⊗
I4
⊗
β5 0 0

0 0 0 0 0 0 T3
⊕
T4 I3

⊗
t4 0 t3

⊗
I4
⊗
β5 0 0

0 0 0 0 0 0 0 T3 t3
⊗
β5 0 0 0

0 0 0 0 0 0 0 0 T5 0 0 t5
0 0 0 0 0 0 0 0 t4

⊗
I5 T4

⊕
T5 I4

⊗
t5 0

0 0 0 0 0 0 0 0 0 0 T4 t4
0 0 0 0 0 0 0 0 0 0 0 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
where ti is the finishing vector of the PH distribution (βi, Ti) (i.e.,tx = −Tx1I). Each block
of rows corresponds to a set of currently ongoing activities and these sets are ordered as
{1, 2}, {2, 3, 4}, {2 , 3}, {2}, {1}, {2, 4}, {3, 4}, {3}, {5}, {4, 5}, {4} and the empty set, ∅.

As a numerical example, we assume that activity 1 follows a log-normal distribution

with mean equals to one and with pdf f(x) = 1/(b
√
2πx) e−

(log(x)−a)2

2b2 and parameters
a = −1.62, b = 1.8 while the duration of the other activities are given by order 4 Erlang
distribution with mean equal to one (note that Erlang distributions are in the PH family).
We constructed four different fitting distributions for the log-normal distribution of activity
1. The first one is an order 8 ML estimation by PhFit (Horváth & Telek 2002). The second
and the third one are order 8 ML estimations extended with 2 and 4 phases, respectively,
to fit the tail (obtained with PhFit). The last one matches three moments of the log-normal
distribution (this can be done with an order 2 PH distribution by (Bobbio et al. 2005)). The
pdf of the log-normal and the fitting PH distributions are depicted in Figure 3. The pure
ML estimation fails to catch the tail behaviour and the moment matching PH distribution
fails to capture the shape of the log-normal distribution.
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Fig. 3. Main part (left) and tail (right) of the pdf of the PH distributions fitting the
log-normal distribution.
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Fig. 4. Main part (left) and tail (right) of the pdf of the makespan of the activity network.

In Figure 4 we depicted the pdf of the makespan of the activity network both with the
original log-normal distribution and with the approximating PH distributions. It can be
seen that the best approximation is achieved by applying the third PH distributions that
captures both the main part and the tail of the pdf.
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