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Diffraction Q1 Q2of helium on MgO(100) surface
calculated from first-principles†

Ruth Martinez-Casado,*a Giuseppe Mallia,a Denis Usvyat,*b Martin Schütz,b

Lorenzo Maschio,c Silvia Casassa,ac John Ellisd and Nicholas M. Harrisonae

In this work we simulate the diffraction peak intensities of He beams scattered on the MgO(100) surface

from first principles. It turns out that diffraction peak intensities are extremely sensitive to the quality of

the potential describing the He–MgO surface interaction. Achieving the required accuracy in first princi-

ples calculations is very challenging indeed. The present work describes a first principles protocol able

to achieve very high accuracy for reasonable computational cost. This method is based on periodic local

second-order Møller–Plesset where systematic corrections for basis set truncation and for electronic

correlation are introduced using coupled cluster calculations on finite model systems mimicking the

target system. For the He–MgO system the requirements with respect to the level of theory are very

high; it turns out that contributions from connected quadruple excitations are non-negligible. Here we

demonstrate that using this protocol, it is possible to reach the accuracy in the He–MgO potential that

is required to predict the observed He diffraction peak intensities.

I. Introduction

Interactions between molecules and crystalline surfaces are of
great fundamental and technological interest and extensively
studied both experimentally and theoretically. The scattering of
He atom beams on crystal surfaces has the potential to be an
important technique for determining the atomistic structure
and dynamics of surfaces.1–6 The He beam scatters from only
the outermost surface layers unlike X-ray diffraction and it
neither damages or charges the surface unlike electron diffrac-
tion and microscopy. During the last two decades its usefulness
has been demonstrated in the determination of numerous
surface structures.6–11 The quantitative interpretation of He-
diffraction is, however, limited as the He–surface interaction
potential is not known accurately. An accurate calculation of
the He–surface interaction requires a quantitative description
of both short range repulsive forces dominated by electronic
exchange and Coulomb interactions and of the long range van

der Waals interaction due to electronic correlation. The long
range part of the interaction is governed by the slowly decaying
van der Waals dispersion, which is weak and very difficult to
calculate with high quantitative accuracy. The short range part,
on the other hand, is dominated by the exponentially growing
repulsive wall originating from the exchange-interaction between
the (mutually penetrating) electron distributions of surface and
He atom. The functional form of the interaction potential can be
conveniently summarised by the corrugation function, z(E,x,y),
which is an isovalue surface of the energy of interaction, E(x,y,z),
at the kinetic energy of the He atom beam.

The positions of the He-diffraction peaks (‘‘channels’’) are
determined by the kinetic energy and direction of the He-beam
and the periodicity of the corrugation function which is deter-
mined by the surface unit cell. The variation of the intensity in
each channel with the kinetic energy of the helium beam is
determined by the detailed shape of z(E,x,y).3,6,12 At first sight it
would seem that diffraction is solely governed by the short-
range repulsive interactions, but in fact the van der Waals
dispersion lowers the energy of the repulsive wall and thus
influences the diffraction process quite substantially. As will be
shown below, the sensitivity of the relative intensities of the
helium beams, diffracted in various channels, to the corruga-
tion amplitude is extremely strong. For instance, a variation of
the latter by 10% can change the relative intensity by a factor of
2. Therefore, in order to predict from first principles the relative
intensities of helium in different diffraction channels, a method
for calculating the interaction potential with a precision of a few
percent is required. For simple systems with a few atoms in the

1

5

10

15

20

25

30

35

40

45

50

55

1

5

10

15

20

25

30

35

40

45

50

55

Cite this: DOI: 10.1039/c4cp01145g

a Thomas Young Centre, Department of Chemistry, Imperial College London, South

Kensington London SW7 2AZ, UK. E-mail: r.martinezcasado@imperial.ac.uk
b Institut für Physikalische und Theoretische Chemie, Universität Regensburg,
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surface unit cell, empirical interaction potentials based on
pairwise atomic interactions can be used to fit the diffraction
pattern for a range of energies. Yet in order to unambiguously
determine the surface structure from the diffraction pattern an
independent and reliable determination of the He–surface inter-
action is required. In systems with complex surface reconstruc-
tions or multiple atoms in the surface unit cell, fitting the
pairwise potential to experimental data is insufficient for unam-
biguous structural determination.

A reliable calculation of the interaction potential is non trivial.
Density functional theory is very widely used to determine surface
adsorption energetics6 but is unreliable for describing non-
bonded and long range van der Walls interactions. DFT bench-
mark calculations demonstrate this point clearly; there is a very
strong variation with the details of the exchange correlation
functional adopted.13 Empirical models14,15 for the energy surface
depend on ad hoc parameters, which undermines the predictive
value of the calculations.

The quantum chemical hierarchy of theoretical models, on the
other hand, allows for the treatment of electron correlation at an
increasing level of theory and thus a systematic increase in the
accuracy of the computed energy surface. For He–MgO surface
interactions the bottom rung of the hierarchy, second-order
Møller–Plesset perturbation theory (MP2), has been recently demon-
strated to provide a qualitatively correct but quantitatively inade-
quate description of such systems.16–18 As will be demonstrated
below it is necessary to include up to connected quadruple excita-
tions in the many body wavefunction (e.g. by means of the coupled
cluster singles, doubles, triples and perturbative quadruples
[CCSDT(Q)] method19) in order to compute a reliable energy surface.

In this work we apply a periodic/finite cluster hierarchical
scheme to calculate the interaction potential between helium and
the MgO(100) surface. It consists of the periodic local MP2
treatment, which is subsequently corrected on the basis of finite
cluster calculations, in order to achieve an energy surface at the
CCSD(T)/extrapolated-basis-set and CCSDT(Q) levels of theory.
Similar computational protocols have already been applied in
earlier work to study the geometrical frustration of an argon
monolayer adsorbed on MgO(100)20 and to determine the lowest
bound state of helium adsorbed on MgO(100).21 Scattering simu-
lations are then performed for various energies, polar angles, and
two different azimuthal angles of the incident beam, for which
high quality experimental scattering data is available.7,22

The paper is organized as follows. In Sections IIA and IIB we
present the description of the computational schemes, used to
calculate the He–MgO potential surface and the diffraction
intensities, respectively. The results of the calculations and the
related discussion is given is Section III. Finally Section IV
concludes the paper.

II. Computational methods
A. He–MgO interaction potential

The hierarchy of molecular ab initio electronic structure methods
allows it in principle to reach very high precision in describing

intermolecular interactions. However, the steep scaling of the
computational cost with molecular size prevents the use of high-
order canonical coupled cluster methods already for moderately
large systems. This problem can be circumvented by instead
using local coupled cluster methods23,24 or DFT-based symmetry
adapted perturbation theory (SAPT).25,26 The latter has the
additional bonus of naturally partitioning the interaction energy
into physically meaningful components, and therefore provides
detailed information on the individual components of the
interaction potential.

In the case of surface adsorption, the surface is effectively
infinite in extent, and a purely molecular treatment becomes
impossible unless an appropriate embedding is set up to mimic
the influence of the environment on the cluster.27 Unfortunately,
due to the delicacy of the interaction between the adsorbate and
the surface, such an embedding has to be tuned with great care,
since otherwise artefacts, noticeable at the scale of interaction
energies, compromise the interaction potential.28 It is much safer
to use finite clusters not to compute the full interaction energy,
but only to calculate the corrections to the periodic result, obtained
e.g. at the periodic HF,29,30 DFT-D,31,32 or even at the MP2 levels20

(the smaller the corrections the better). This becomes especially
important for the description of the scattering of helium atoms at
a surface, where a highly accurate corrugation function z(E,x,y),
and thus a very precise interaction potential, is essential. To this
end we employ the highest-order correlation treatment available
in the periodic atomic-orbital (AO) format, which presently is the
periodic local MP2 (LMP2) method,16–18 and compute high-order
corrections (up to CCSDT(Q)) based on finite cluster calculations
on top of that platform.

An accurate correlated description also requires rather large
basis sets.33 In order to capture dispersion the basis set has to
be augmented with diffuse AOs. Yet the quality of the basis set
in periodic calculations is somewhat limited, since the overlap
between AOs can cause numerical instabilities, particularly so
for rich basis sets including diffuse functions. For the periodic
LMP2 calculations thus a decent basis set was employed, i.e., of
triple-zeta quality for Mg and O, and of quadruple-zeta quality
for He, augmented with diffuse p- and f-functions for O, and
diffuse s-, p-, d- and f-functions for He. The Mg cc-pVTZ basis
set initially already contains very diffuse functions, which
cannot be used in the periodic context due to above mentioned
redundancies. Such functions were either omitted or upscaled.
The detailed specification of the employed basis set can be
found in ref. 34. For further reference we denote it as AVTZ.
This basis is sufficiently large to reach saturation at the
Hartree–Fock (HF) level,21 but not yet for the correlation energy
contribution. Hence, the remaining basis set incompleteness
error is corrected together with above mentioned method error
correction scheme, as described in detail below.

The periodic LMP2 potential energy surface (PES) was calculated
as the interaction energy per helium atom between an MgO(100)
3-layer slab (with a experimental lattice parameter of 4.211 Å)
and a square monolayer of He matching the surface lattice of
MgO (for the corresponding He–He distances the He–He inter-
action is negligible). Rumpling of the surface, which is observed
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experimentally35 for MgO(100), is not included in the LMP2
calculations. Yet, its influence on the diffraction intensities is
explored at a later stage (see Section III). The inter-He-slab
correlation interaction (dispersion), evaluated explicitly for the
3 layer slab, was then extrapolated to the semi-infinite crystal
limit using the slab replication technique.18 The He–MgO PES
was represented by a uniform grid consisting of 313 points. All
calculations have been performed using the CRYSTAL0936 and
CRYSCOR0918 software packages, both based on the expansion
of the crystalline orbitals as a linear combination of a local basis
set (BS) consisting of atom centred Gaussian orbitals (see ref. 13
for details). The potential curves for 21 symmetry unique adsorp-
tion sites were calculated, each sampled by 14–17 points lying in
the range of 2 to 7 Å along the He–surface direction z.

Since the valence electrons in MgO are localized around the
oxygen atoms the interaction between He and MgO is mainly a
competition of dispersive attraction and exchange repulsion
between the electron clouds around oxygen and those of
helium. The contribution of the upper core electrons of Mg to
dispersion is small, but still non-negligible at the scale of the
interaction energy.20,31,32 In order to take it into account,
additional frozen-core and correlated 2sp-Mg-core periodic
LMP2 calculations were performed for two different adsorption
sites. The core contribution was evaluated as the difference
between the interaction energies of these two calculations. For
adjusting the basis set to the describe core correlation effects,
additional tight AOs from cc-pwCVTZ37 (s- and p-functions) and
cc-pCVTZ (d- and f-functions) basis sets were added on the Mg
atoms. Since the core correlation calculations were already
quite expensive, the core contributions were explicitly evaluated
for the on-Mg and on-oxygen adsorption sites only, i.e., the
most attractive and repulsive adsorption sites on the surface. It
turned that the core correlation contribution is rather isotropic
along in-plane directions. Hence, in order to extrapolate the
core correlation contribution for an arbitrary site we applied for
it the 2D-sine law model.20

It has recently been established,20,21,34 that the MP2 level of
theory significantly underestimates the adsorption energy of
noble gasses on the MgO surface, and especially so for He.
Moreover, this underestimation is further magnified by the
basis set deficiency error, which has the same sign as the MP2
method error for these systems. The latter problem can be
eliminated to large extend by the recently implemented peri-
odic LMP2-F12 method,38 which unfortunately is yet computa-
tionally too expensive to be used for the whole He–MgO
potential surface. Therefore, we employ a recently developed
correction scheme,20 where method and basis set deficiencies
are corrected on the basis of finite cluster calculations. In this
scheme, the periodic LMP2 result is corrected by scaling the
intra-slab DELMP2

intra-MgO and inter-adsorbate-slab DELMP2
inter compo-

nents of the correlation part of the interaction energy18,39 with
appropriate factors fintra-MgO and finter, respectively. In contrast to
other common correction schemes based on universal or empiri-
cal parameters (like e.g. the popular spin-component-scaled
MP2), here the scaling factors are determined by comparing
the CCSD(T)/basis-set-extrapolated treatment to the LMP2

treatment (in the basis of the periodic calculation) for a specific
finite model system characterized by the same kind of interactions as
the actual system of interest. In comparison to formally more
rigorous approaches, where finite-cluster corrections are added
to the periodic interaction energies in the form of energy
increments,31,32 our scheme is computationally more advanta-
geous, since the whole LMP2 He–MgO potential surface is
corrected in a single step.

Similar to previous work,21 we employed the He–Mg3Na2O4

dimer (see ESI, ref. 40) as the finite model system mimicking
the periodic He–MgO system. A system of this size still allows
for a CCSD(T) treatment with augmented basis sets of up to
quadruple-zeta quality (and thus a reasonably accurate extrapola-
tion to the basis set limit). Two sodium atoms (yet equipped with
Mg instead of Na basis functions) replace the Mg atoms at
opposite corners of the cluster to keep the charge-neutrality and
the ionic type of binding in this cluster. Pure MgO clusters
(without sodium atoms) of similar size, such as the flat Mg6O6

cluster or a Mg5O5 cluster with one oxygen atom below the central
Mg, unfortunately have multireference character, and therefore
cannot be used for evaluating the correction factors. A brick-like
Mg9O9 cluster, on the other hand, is not a multireference case, but
yet too large for the quadruple-zeta CCSD(T) treatment.

The He–Mg3Na2O4 dimer was subjected to frozen-core local
MP2 and CCSD(T) treatments using the Molpro program.41–43

To correct for the basis set deficiency together with the method
error, the same basis set and domains as in the actual periodic
LMP2 treatment were also used in the finite-cluster LMP2
calculations. The upscaling factors were determined by fitting
the upscaled LMP2 correlation contributions of the respective
interaction energies to the CCSD(T) reference values. To this
end we minimize the function

X
z

DECCSDðTÞ � DELMP2
intra-He

�

� fintra-Mg3Na2O4
DELMP2

intra-Mg3Na2O4
� finterDELMP2

inter

�2
;

(1)

where DECCSD(T), DELMP2
intra-He, DELMP2

intra-Mg3Na2O4
, and DELMP2

inter are the

correlation contributions of, respectively, the (basis set extra-
polated) CCSD(T) interaction energy, and the LMP2 intra-He,
intra-Mg3Na2O4, and He–Mg3Na2O4 inter-monomer energies,
all at a certain distance z. For the summation (1) 17 z-values in
the range from 2.4 to 7 Å were used. Fig. 1 shows that the LMP2
potential curve for the He–Mg3Na2O4 interaction is indeed far
too shallow, yet after upscaling of the intra- and inter-monomer
correlation components the CCSD(T) reference curve is faith-
fully reproduced by LMP2 over the whole range of relevant
inter-monomer distances.

The upscaling parameters corresponding to the CCSD(T)/
aug-cc-pVTZ (Ups1), CCSD(T)/aug-cc-pVQZ (Ups2) and
CCSD(T)/aug-cc-pV(TQ)Z-extrapolated (Ups3) are given in
Table 1. The inter-monomer correction factor of 1.7, which
reflects the considerable underestimation of dispersion by
MP2, is virtually unaffected by the basis set employed in the
CCSD(T) calculation. The intra-Mg3Na2O4 correction, on the
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other hand, is sensitive to the basis set. Interestingly, the quite
moderate value of 1.07 for the intra-monomer correction factor
indicates that in this particular component the method error of
LMP2 and the basis set incompleteness error (of the AVTZ basis as
used in the periodic calculation) compensate each other to a large
extent when referenced to the CCSD(T)/basis-set-extrapolated value.
However, as was recently demonstrated21 for a single point
CCSDT(Q) calculation on a small He–Mg2O2 cluster, the CCSD(T)
method is not yet a converged reference for this system with respect
to the order of the correlated method (at least at the scale of the
interaction energies). Therefore the upscaling factors corresponding
to the CCSD(T)/basis-set-extrapolated results do not provide suffi-
cient accuracy. As will be shown below, the relative diffraction
intensities manifest a high sensitivity to deviations in the corruga-
tion potential. Consequently, the remaining deficiencies of the
CCSD(T)/basis-set-extrapolated description lead to significant errors
in the intensities. Hence, a higher order correlated description
becomes mandatory for reaching reasonable accuracy in the diffrac-
tion intensities. This also rules out the use of the DFT-SAPT
method,25,26 which is usually quite accurate for the inter-molecular
interactions, but still inferior to CCSD(T), and hence definitely not
sufficiently accurate for the present system.

Unfortunately, the He–Mg3Na2O4 cluster is too large for a
CCSDT(Q) treatment, making the direct computation of the
correcting factors at the CCSDT(Q) level unfeasible. In order to
include the higher order correlation correction in our scheme,

we calculated the CCSDT(Q)–CCSD(T) interaction energy differ-
ence with a moderate basis set (cc-pVDZ for Mg, aug-cc-pVDZ
for O, and aug-cc-pVTZ for He) for the He–Mg2O2 dimer with He
placed on top of the Mg|Mg-bridge-position (see ESI, ref. 40).
For these calculations Kallay’s MRCC program,19,44 interfaced
with Molpro, was used. This energy increment was added to the
CCSD(T)/basis set extrapolated result for the same cluster. It is
assumed here that the basis set effects for the CCSDT(Q)–
CCSD(T) energy correction, which is of the fifth-order within the
MP partitioning, are much less important than for the correlation
energy itself.45 It is evident from Fig. 2 that in the long range
regime the CCSDT(Q)–CCSD(T) correction is virtually zero,
whereas in the short range regime, i.e. in the repulsive wall region
it is substantial. Furthermore, the CCSDT(Q)–CCSD(T) corrected
CCSD(T)/aug-cc-pVT/QZ-extrapolated curve is sandwiched by the
CCSD(T)/aug-cc-pVQZ and CCSD(T)/aug-cc-pVTZ curves. In pre-
vious work,21 by performing a single-point periodic LMP2-F12
calculation (to reach the basis set limit directly in the periodic
system) and an incremental CCSD(T)-LMP2 energy correction on a
larger He–Mg9O9 cluster, it was shown that the upscaling factors
obtained according to the protocol described above, lead to a
slight overestimation of the binding. The upscaling parameters as
obtained for the CCSD(T)/aug-cc-pVTZ curve (i.e. Ups1 of Table 1)
are therefore anticipated to provide the most accurate diffraction
intensities.

B. Diffraction intensities

The diffraction intensities for various helium beam energies
were calculated by solving the helium scattering Schrödinger
equation

r2 þ ki
2 � 2m

�h2
VðrÞ

� �
CðrÞ ¼ 0; (2)

where ki is the incident wave vector, m is the mass of the helium
atom and V(r) is the Born–Oppenheimer He–MgO interaction
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Fig. 1 Interaction energy of the He–Mg3Na2O4 dimer at the Hartree–Fock
(black squares), LMP2/AVTZ (green circles) and CCSD(T)/aug-cc-pV(TQ)Z-
extrapolated (blue small filled circles) levels. The LMP2 correlation interaction
energy is partitioned (magenta dashed lines) into inter-component (down-
pointing triangles), intra-Mg3Na2O4-component (up-pointing triangles) and
intra-He-component (left-pointing triangles). The LMP2 energies with the
scaled intra-Mg3Na2O4- (factor 1.07) and inter- (factor 1.71) components are
denoted with red crosses.

Table 1 The scaling factors for the intra- and inter-monomer compo-
nents of the LMP2/AVTZ correlation contributions to the interaction
energy for the He–Mg3Na2O4 system, obtained by fitting to the CCSD(T)
potential curve, calculated with aug-cc-pVTZ (Ups1), aug-cc-pVQZ (Ups2)
basis sets, and aug-cc-pV(TQ)Z-extrapolated to the basis set limit (Ups3)

Ups1 Ups2 Ups3

fintra-Mg3Na2O4
1.21 1.13 1.07

finter 1.67 1.69 1.71

Fig. 2 The CCSD(T) interaction energies of the He–Mg2O2 dimer at the aug-
cc-pVTZ (black circles), aug-cc-pVQZ (red squares) and aug-cc-pV(TQ)Z-
extrapolated (green diamonds) basis sets levels. The curve resulting from
adding the CCSDT(Q)–CCSD(T) energy differences (denoted as DET(Q)) to
the CCSD(T)/aug-cc-pV(TQ)Z-extrapolated values is also given (blue triangles).
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potential. Eqn (2) was solved by means of the close-coupling
method,2,3,9,10,14,46–48 which implies expansion of the wavefunc-
tion C(r) in the plane-wave basis. The surface atoms, on the
other hand, are treated classically at zero K surface temperature,
i.e., they are motionless. Finite temperature effects can be
modeled on the basis of Debye–Waller factors2,9 (vide infra).
The directions of the diffracted beams are obtained from the
two-dimensional Bragg conditions, which depend on the length
(energy) and the component parallel to the surface of the wave
vector of the incident beam. The detailed formalism of the
method can be found for example in ref. 3. All close-coupling
calculations were carried out by using the program CPXCC.2,3,46

In order to compare the calculated intensities to experi-
mental reference data finite temperature effects have to be
taken into account. The thermal correction at a certain surface
temperature due to classical vibrations of the surface atoms in
the direction perpendicular to the surface is given by the
corresponding Debye–Waller factor.2,9 It relates the intensity
I(T) at that temperature T of a diffraction peak to the zero-
temperature intensity I0 by

I(T) = I0e�2W(T). (3)

Treating each atom as an independent Einstein oscillator,
the dependence of the exponent on the temperature takes
the form

2WðTÞ ¼
3�h2T kiz þ kfz

� �2
MkBYD

2
; (4)

where YD is the Debye temperature, kiz and kfz are the z-
projections of the incident and diffracted wave-vectors, M is
the averaged reduced mass of the surfaces atoms, and kB the
Boltzmann constant. For our system the Debye temperature is
495 K49 and the experiments,7,22 used here as the reference,
were conducted at temperature T = 300 K. Finally, the accelera-
tion of the helium atoms near the surface due to the attractive
potential well with a depth D is taken into account by using the
Beeby correction,50 which replaces the z components of the
initial and final wave vectors with

ki=f ;z )
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ki=f ;z2 þ

2mD

�h2

r
: (5)

III. Calculations

In order to facilitate the simulation of the diffraction intensi-
ties, the potential energy surfaces as obtained from periodic
LMP2/Ups1, LMP2/Ups3, and unscaled LMP2 calculations, were

subsequently fitted to Buckingham pairwise potentials14 by
using the program GULP.51 The resulting parameters of these
model potentials are given in Table 2.

Fig. 3 displays the LMP2/Ups1 fitted potential along the z-
direction for three different positions of He atop the surface: (i)
atop the oxygen atoms, (ii) atop the Mg-atoms, and (iii) atop the
Mg–Mg bridge position. The well depths of these potential
curves are �8.80, �10.80 and �9.72 meV, respectively, while
the averaged well depth D, employed in eqn (5) is�9.62 meV. In
Fig. 3 one can also trace the growth of the amplitude of the
corrugation function z(E,x,y) with increasing energy.

To further characterize the LMP2/Ups1 potential we calcu-
lated the corresponding energies of the G-point vibrational
states. For this purpose a vibrational band-structure plane-
wave program11 was used, that solves the Schrödinger eqn (2)
for the bound states within the full 3D (2D-periodic) potential.
For the LMP2/Ups1 potential 5 bound states were obtained with
the energies: E0 = �7.59 meV, E1 = �4.10 meV, E2 = �2.05 meV,
E3 = �0.85 meV, and E4 = �0.30 meV, all of them with an error
of �0.01 meV. These values are overall in reasonably good
agreement with the experimental ones reported in ref. 52
(�5.5 meV, �2.6 meV, �1.2 meV, �0.5 meV, �0.3 meV),
especially in the light of the results of ref. 21. As it is argued
there, the upscaling model can lead to an overestimation of the
well depth by up to 2 meV.

Now we focus on the main topic of the current article—the
diffraction intensities, which were calculated for various
helium beam energies and directions, for which experimental
data is available.7 The experimental diffraction peak intensities
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Table 2 Fitting parameters for the Buckingham pairwise potential where AHeX and CHeX are respectively the repulsive and attractive coefficients of the
He–X interactions (where X = O and Mg)

AHeO (meV Å) rHeO (Å) CHeO (meV Å6) AHeMg (meV Å) rHeMg (Å) CHeMg (meV Å6)

LMP2 1.4 � 105 3.5 � 10�1 6.3 � 103 2.1 4.5 � 10�1 7.0 � 10�1

LMP2/Ups1 2.2 � 105 3.4 � 10�1 11.7 � 103 2.8 � 101 4.8 � 10�1 3.0 � 10�1

LMP2/Ups3 2.4 � 105 3.3 � 10�1 11.9 � 103 4.5 � 101 4.8 � 10�1 2.0 � 10�1

Fig. 3 Fitted potential for various positions of the He on top of the
surface: (i) atop O (black), (ii) atop Mg (blue), and (iii) atop the Mg–Mg
bridge position (red).
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and the corresponding integrated peak areas7,22 for the two
azimuthal h100i and h110i He-beam directions are displayed in
Fig. 4 and 5, respectively. We note that some of the experimental

spectra, presented here, were not explicitly reported in ref. 7, but
have been directly provided to us by Dr F. Traeger. It is usually
argued (cf. e.g. ref. 53) that the peak areas are a more reliable
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Fig. 4 Comparison of the close-coupling intensities at h100i direction of incident beam for the MP2 (red circles), Ups3 (green diamonds) and Ups1 (blue
up triangles) with the experimental spectra (black lines) and the peak areas (black squares). The diffraction peaks are given in counts per s; the peak areas
in counts � deg per s, and close-coupling intensities have been normalized in a way that the specular (central) peak appears at the maximum of
the experimental peak. The considered incident energy are the following: (a) Ei = 26.62 meV, (b) Ei = 33.30 meV, (c) Ei = 40.02 meV, (d) Ei = 48.96 meV,
(e) Ei = 50.20 meV and (f) Ei = 60.47 meV.

Fig. 5 Comparison of the close-coupling intensities at h110i direction of incident beam for the MP2 (red circles), Ups3 (green diamonds) and Ups1 (blue
up triangles) with the experimental spectra (black lines) and the peak areas (black squares). The diffraction peaks are given in counts per s; the peak areas
in counts � deg per s, and close-coupling intensities have been normalized in a way that the specular (central) peak appears at the maximum of the
experimental peak. The considered incident energy are the following: (a) Ei = 10.52 meV, (b) Ei = 19.93 meV, (c) Ei = 26.16 meV.
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representation of the intensity for comparison with calculated
intensities, than the peak heights themselves, since effects of
diffraction peak broadening due to energy and momentum
spread of the He beam, are taken into account in the former.

The same figures also contain the relative intensities (normed to
the intensities of the central peaks) calculated by employing the
Ups1 model (the most accurate one, cf. Section IIA), and according
to the Ups3 and pure LMP2 models, for comparison. Agreement of
the LMP2 and Ups3 intensities with experiment is clearly very poor,
whereas the Ups1 model provides indeed quite accurate diffraction
peak intensities. The dramatic improvement of the agreement
with experiment for the Ups1 model indicates (i) the sensitivity
of the calculated diffraction peak intensities on the quality of the
potential energy surface, and (ii) the effectiveness of the correcting
scheme described above and the importance of the corrections of
both method and basis set deficiencies.

Interestingly, the corrections themselves do not lead to a
substantial change in the potential or the corrugation function
(e.g. the amplitudes of the corrugation function in the Ups3 and
Ups1 models differ only by about 10%). However, even such a
small modification has extreme consequences for the relative
amplitudes: the Ups3 amplitudes deviate from the Ups1 ones by
a factor of two. Such a strong sensitivity of the intensities to the
form of the surface corrugation renders He scattering as a highly
accurate experimental tool to determine He–surface potentials.
To reach the required extremely high precision in first-principle
calculations of such potentials is indeed very challenging, but
possible, as demonstrated by the present work.

Finally, we investigate the influence of the surface rumpling
on the intensities. For the MgO(100) surface, rumpling man-
ifests mainly in a shift of the Mg atoms inwards by about 0.02 Å
(cf. e.g. ref. 35 or ref. 6, and references therein). We recalculated the
diffraction patterns employing the fitted LMP2/Ups3 potential for
the MgO with the rumpled surface, but the impact on the
intensities was found to be very small. We attribute the low
sensitivity of the intensities to rumpling in MgO to fact that the
He–MgO interaction (both the attraction and repulsive components
thereof) and thus the corrugation function for the low energies
involved in this study are mainly determined by the electron clouds
around the oxygen atoms, which are not affected significantly by
rumpling. At higher energies the effect of the rumpling on the
corrugation becomes more pronounced.6 Higher energy He beams,
accessible via the Fast Atom Diffraction technique,4,5 could there-
fore provide more information about rumpling.6

IV. Conclusions

In this work we have simulated the diffraction peak intensities
of He beams scattered on the MgO(100) from first principles.
This is a very challenging endeavor due to the fact that the
diffraction peak intensities are very sensitive to the He–surface
interaction potential, which in turn poses high demands on the
quality of the ab initio electronic structure methods used to
construct the potential energy surface. In order to achieve the
required precision we applied a recently developed hierarchical

first-principle computational protocol to calculate the He–MgO(100)
interaction energies. It is based on a periodic local MP2 treatment
with scaled intra-surface(slab) and inter-surface(slab)-helium corre-
lation components of the interaction energy. The appropriate scaling
factors correcting for method- and basis set errors are obtained
from LMP2 and CCSD(T)/basis-set-extrapolated calculations on the
He–Mg3Na2O4 dimer, which mimics the target system. Actually,
as it turns out, even a CCSD(T) treatment, the ‘‘gold standard’’ of
numerical quantum chemistry, provides insufficient accuracy.
Hence, we evaluated an additional CCSDT(Q)–CCSD(T) correction
on the smaller He–Mg2O2 dimer (CCSDT(Q) calculations are extre-
mely expensive). The CCSDT(Q)–CCSD(T) correction is virtually zero
for the long-range part of the CCSD(T) potential, yet has a noticeable
impact on the repulsive part, making it steeper. Generally, it shifts
the CCSD(T)/basis-set-extrapolated potential curve back to that
obtained with CCSD(T)/aug-cc-pVTZ. The latter potential thus is
expected to provide the most accurate diffraction peak intensities,
which were obtained by employing the close-coupling method, with
finite temperature effects included via corresponding Debye–Waller
factor. The simulated diffraction peak intensities turned out to be in
excellent agreement with available experimental data.

We conclude that the proposed methodology opens a way to
predict accurate first principles diffraction patterns for helium
atoms scattered on non-conducting surfaces. Such calculations
will provide important support for experimental investigations
of surfaces using helium beam techniques. In future work we
plan to apply this method to predict helium diffraction inten-
sities for surfaces of several other oxide crystals.
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K. Gärtner, R. Wlodarczyk, J. Sauer and M. Sierka, Surf.
Sci., 2012, 606, 161.

7 G. Benedek, G. Brusdeylins, V. Senz, J. G. Skofronick,
J. P. Toennies, F. Traeger and R. Vollmer, Phys. Rev. B:
Condens. Matter Mater. Phys., 2001, 64, 125421.

8 J. Gomes and J. P. Ramalho, Phys. Rev. B: Condens. Matter
Mater. Phys., 2005, 71, 235421.

9 D. Farias and K.-H. Rieder, Rep. Prog. Phys., 1998, 61, 1575.
10 R. Guantes, A. Sanz, J. Margalef-Roig and S. Miret-Artés,

Surf. Sci. Rep., 2004, 53, 99.
11 F. Tuddenham, H. Hedgeland, J. Knowling, A. Jardine,

D. MacLaren, G. Alexandrowicz and J. E. W. Allison,
J. Phys.: Condens. Matter, 2009, 21, 264004.

12 U. Garibaldi, A. Levi, R. Spadacini and G. Tommei, Surf. Sci.,
1975, 48, 649.

13 R. Martinez-Casado, G. Mallia, D. Usvyat, L. Maschio,
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37 K. A. Peterson and T. H. Dunning, J. Chem. Phys., 2002,
117, 10548.

38 D. Usvyat, J. Chem. Phys., 2013, 139, 194101.
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