
This full text was downloaded from iris - AperTO: https://iris.unito.it/

iris - AperTO

University of Turin’s Institutional Research Information System and Open Access Institutional Repository

This is the author's final version of the contribution published as:

Barrera G;Pizzimenti S;Ciamporcero ES;Daga M;Ullio C;Arcaro
A;Cetrangolo GP;Ferretti C;Dianzani C;Lepore A;Gentile F. Role of
4-Hydroxynonenal-Protein Adducts in Human Diseases.. ANTIOXIDANTS
& REDOX SIGNALING. None pp: 1-21.
DOI: 10.1089/ars.2014.6166

The publisher's version is available at:
http://online.liebertpub.com/doi/10.1089/ars.2014.6166

When citing, please refer to the published version.

Link to this full text:
http://hdl.handle.net/2318/157874

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Institutional Research Information System University of Turin

https://core.ac.uk/display/301981994?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


BARRERA 

 1

FORUM REVIEW ARTICLE 

 

 

Role of 4-hydroxynonenal-protein adducts in human diseases 

Giuseppina Barrera1, Stefania Pizzimenti1, Eric Ciamporcero1, Martina Daga1,   Chiara 

Ullio1, Alessia Arcaro2, Giovanni Paolo Cetrangolo4, Carlo Ferretti3 , Chiara Dianzani3,  

Alessio Lepore5, and Fabrizio Gentile2. 

1. Dipartimento di Scienze Cliniche e Biologiche, Università di Torino, 10125 Torino, Italy. 

2. Dipartimento di Medicina e Scienze della Salute, Università del Molise, 86010 Campobasso, Italy. 

3. Dipartimento di Scienza e Tecnologia del Farmaco, Università di Torino, 10125 Torino ,Italy 

4. Istituto di Biochimica delle Proteine del Consiglio Nazionale delleRicerche, 80010 Napoli, Italy 

4. Dipartimento di Medicina Molecolare e Biotecnologie Mediche –Università degli Studi di Napoli 

Federico II, 80010 Napoli, Italy. 

 

Running title: HNE-protein adduct in diseases 

 

Corresponding Author: Giuseppina Barrera; Departement of Clinical and Biological 

Sciences; Corso Raffaello 30, 10125 Torino  (Italy). 

Phone number: +39-011-6707795 

Fax Number: +39-011-6707753 

e-mail address: giuseppina.barrera@unito.it 

 

Word count: 9647 

Reference numbers: 228 

Greyscale illustrations: 5 

Color illustrations : 2  (online only) 

 

 

mailto:giuseppina.barrera@unito.it


BARRERA 

 2

 

Abstract 

Significance. Oxidative stress provokes the peroxidation of polyunsaturated fatty 

acids in cellular membranes, leading to the formation of aldheydes that, due to their 

high chemical reactivity, are considered to act as second messengers of oxidative 

stress. Among the aldehydes formed during lipid peroxidation, 4-hydroxy-2-nonenal 

(HNE) is produced at a high level and easily reacts both with low-molecular-weight 

compounds and macromolecules, such as proteins and DNA. In particular, HNE-

protein adducts have been extensively investigated in diseases characterized by the 

pathogenic contribution of oxidative stress, such as cancer, neurodegenerative, 

chronic inflammatory and autoimmune diseases. 

Recent advances. In this review we describe and discuss recent insights concerning 

the role played by covalent adducts of HNE with proteins in the development and 

evolution of those, among the above mentioned disease conditions, in which the 

functional consequences of their formation have been characterized. 

Critical Issue. Results obtained in recent years have shown that the generation of 

HNE-protein adducts can play important pathogenic roles in several diseases. 

However, in some cases,  the generation of HNE-protein adducts can represent a 

contrast to the progression of disease or can promote adaptive cell responses, 

demonstrating that HNE is not only a toxic product of lipid peroxidation, but also a 

regulatory molecule, involved in several biochemical pathways. 

Future directions. In the coming years, the refinement of proteomical techniques, 

allowing the individuation of novel cellular targets of HNE, will lead to a better 

understanding the role of HNE in human diseases. 
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Introduction 

Oxidative stress produces reactive intermediates which, in turn, can cause the 

oxidation of polyunsaturated fatty acids in membrane lipid bilayers, leading 

eventually to the formation of aldehydes (57). This process can produce changes in 

the permeability and fluidity of the membrane lipid bilayer and can dramatically 

alter cell integrity (50). However, LPO can affect cell functions through its end-

products endowed with biological activity. Among the products of LPO, 4-hydroxy-2-

alkenals represent the most biologically active alkenals and aldehydes, that, due to 

their prolonged half-lives and their ability to diffuse from their sites of formation, 

have been considered as second messengers of oxidative stress (14). The 

peroxidation of n-3 polyunsaturated fatty acids (α-linolenic acid and 

docosahexaenoic acid) generates 4-hydroxy-hexenal (HHE), which is a mediator of 

the mitochondrial permeability transition (99), while the peroxidation of n-6 

polyunsaturated fatty acids, such as linoleic acid and arachidonic acid, generates 4-

hydroxy-2-nonenal (HNE), which is the most intensively studied aldehyde (15, 154), 

because it is highly electrophilic and easily reacts with low-molecular-weight 

compounds, such as glutathione (GSH), with proteins and, at higher concentrations, 

with DNA (57, 204). The mechanism of HNE formation during peroxidation of 

arachidonic acid is reported in Fig. 1 (159). 

Once formed, HNE is able to affect several signalling processes, as well as gene 

expression pathways and protein functions. Most of these effects depend on the 

ability of HNE to bind covalently to functional proteins. Indeed, HNE is a γ-hydroxy-

α,β-unsaturated electrophilic compound, which preferentially forms 1,4-Michael-

type adducts with nucleophiles, such as proteins and DNA. 1,4-Michael addition to 

4-HNE occurs readily via the reaction of a nucleophile with C3 of HNE, resulting in 

the addition of a nucleophile and proton across the HNE carbon–carbon double 

bond (C=C) (150) (Fig. 2). The addition product subsequently rearranges to a cyclic 
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hemiacetal (lactol) via the reaction of the 4-hydroxyl group with the aldehydic 

function. Amino acids known to react with HNE via 1,4-addition are Cys, His, and Lys 

(150). HNE can also react with lysyl residues through Schiff base formation, leading 

to pyrrole formation. In addition, HNE modification can result in cross-linking of two 

lysyl residues through reversibly formed Schiff base Michael adducts (134, 221) 

(Fig.2).  

Due to the high chemical reactivity of aldehydes, mammals have evolved a full set of 

enzymes converting them to less reactive chemical species and contributing to the 

control of their steady-state intracellular concentrations, which reflect the equilibria 

between the rates of formation by LPO and of catabolism into less reactive 

compounds. The main catabolic reactions are the formation of adducts with GSH, 

which can occur spontaneously or can be catalysed by glutathione-S-transferases 

(GSTs), the reduction to alcohols by aldo-keto reductases (AKRs) or alcohol 

dehydrogenases and the oxidation to acids by aldehyde  dehydrogenases (57, 118, 

180). 

The amphiphilic nature of HNE allows its diffusion across membranes and the 

covalent modification of cytoplasmic or nuclear compounds far from the site of its 

origin (135). Similarly, HNE formed outside the cells (i.e., in an inflammatory site or 

in the plasma), can react with stromal proteins or proteins belonging to adjacent 

cells, which do not undergo LPO. The targets for HNE are cell-type specific and 

dependent both on the pattern of proteins expressed by the cell and the aldehyde 

concentration. Moreover, the modification of specific proteins can have different 

biological consequences, in relation with the protein function.  

In this review we consider some HNE-protein interactions which have been shown 

to be involved in the development and evolution of some pathological conditions, 

such as cancer, neurodegenerative, chronic inflammatory and autoimmune 

diseases.  
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HNE-protein adducts in cancer cells. 

Increases of oxidative stress have been demonstrated in the majority of cancer 

types, while the concentration of LPO products can vary in relation with cell type. 

The first experiments in this field demonstrated that, in hepatoma cells, the level of 

LPO products was lower than in normal liver cells (72, 155) and depended on the 

degree of deviation from the normal phenotype (166). In accordance with these 

results, Canuto et al. (28) showed that, during rat liver carcinogenesis, the activities 

of the enzymes metabolizing the toxic aldehydes increased, thus rendering the 

cancer cells more protected against the cytotoxic effect of aldehydes. Moreover, in 

hepatoma cells, the majority of HNE was converted to the HNE-GSH conjugate, 

which was rapidly and efficiently exported from the cell (197). However, the analysis 

of HNE-protein adducts in different types of tumors by immunoblotting or 

immunohistochemistry revealed adducts of this kind in renal (138), and colon cancer 

cells (88), as well as in astrocytic and ependymal glial tumors, in which the incidence 

of HNE-immunopositive tumor cells increased with increasing grades of malignancy 

(89). 

Oxidative stress and, consequently, the products of LPO were long considered 

merely involved in carcinogenesis, due to their reactivity with DNA, while other 

papers demonstrated that oxidative stress and LPO products, such as HNE, also play 

important roles in the induction of cell cycle arrest, differentiation and apoptosis in 

cancer cells (14). Similarly, the presence of HNE-guanosine adducts may not only 

indicate the mutagenicity of HNE but also its capacity to induce apoptosis in cancer 

cells. Indeed, the ability to alter DNA is a characteristic of many chemotherapeutic 

drugs which, through this mechanism, induce apoptosis in actively proliferating 

cancer cells. Moreover, the concentrations at which HNE can form DNA adducts are 

rather high and can be achieved only under highly pro-oxidant conditions (216). 

In contrast, in several tumor types, the progression of malignancy is accompanied by 

reductions of oxidative stress, due to the upregulation of antioxidant capacity (199), 
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and the induction of the Nfr2/Keap1 pathway, which negatively regulates the HNE 

intracellular concentration (151). On the other hand, despite the reduction of 

intrinsic oxidative stress, the level of HNE-protein adducts in cancer cells may 

increase, due to the inflammatory response present in tissues surrounding cancer 

lesions. 

In summary, the divergent results regarding the concentration of HNE in tumor 

tissues of different origins, and the discrepancies between the levels of oxidative 

stress and the levels of the products of LPO could have diverse causes , including: 

the pattern of HNE-metabolizing enzymes in tumor cells; the lipid composition of 

the cell membranes, with differing levels of peroxidation-susceptible substrates, 

such as polyunsaturated fatty acids (PUFAs); and the presence of inflammation, 

which might increase the level of diffusible HNE from neighboring tissues to the 

tumor cells. 

Although the amount of HNE-protein adducts in cancer cells has been often assayed 

as a means of assessing the level of oxidative stress under diverse experimental 

conditions, only in some cases the identification and the consequences of HNE-

protein adduct formation on cancer cell growth or behavior have been reported.  

Divergent results obtained in this field document that the formation of HNE adducts 

can have anti-carcinogenic  or pro-carcinogenic effects, depending on the cell type 

and the specific adduct. In epidermoid carcinoma A431 cells, Liu et al. (119) 

observed that the signal triggered by the formation and activation of HNE- 

Epidermal Growth Factor Receptor (EGFR) adducts, detected by immunoblot 

analysis, followed by phosphorylation/activation of Shc adaptor proteins, ERK and 

JNK, inhibited DNA synthesis and suggested that this HNE-triggered signal 

transduction cascade selectively worked to suppress cell growth (119). 

In a previous paper, we analyzed the interaction between HNE and α-enolase in HL-

60 human leukemic cells (64), using a combination of two-Dimensional 

Polyacrylamide Gel Electrophoresis (2D-PAGE), immunoblotting and mass 
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spectrometry. In addition to its enzymatic and transcriptional roles, α-enolase, 

expressed on the surface of a variety of eukaryotic cells, functions as a strong 

plasminogen receptor (144). Treatment with HNE strongly inhibited the binding 

between plasminogen and α-enolase at the surface of HL-60 cells, most probably as 

a consequence of the formation of HNE adducts with lysyl residues of α-enolase 

involved in plasminogen binding (7). HL-60 cells, as well as other leukemic cells, 

display enhanced plasminogen binding, which may contribute to an enhanced 

fibrinolytic state in leukemic patients (144). The inhibition of plasminogen binding 

was apparent even at HNE concentrations almost as low as those detected in 

normal tissues and plasma (1 μM). As a functional consequence, a strong reduction 

of HL-60 cell adhesion to HUVECs was produced, which might reduce the invasive 

and metastatic capacity of HL-60 cells (Fig. 3).  

In MDA-MB-231 cells, a triple-negative human breast carcinoma cell line, the 

analysis of HNE-protein adduct formation revealed that HNE could modify, in a 

dose-dependent way, the enzyme peptidylprolyl cis/trans-isomerase A1, which 

catalyzes phosphoserine and phosphothreonine-proline conversions from cis to 

trans (4). HNE formed Michael adducts with this enzyme, which were detected by 

matrix-assisted laser desorption ionization / time-of-flight / time-of-flight (MALDI-

TOF/TOF) mass spectrometry at the active site residues His157 and Cys113, Cys113 

being the primary site of HNE modification. The molecules that covalently modify 

critical residues in Pin1 catalytic or binding sites have been shown to induce 

apoptosis and inhibit cell proliferation, possibly due to their inhibition of Pin1 

actions on cell cycle. Thus, it was proposed that some antiproliferative effects 

observed in cancer cells after exposure to HNE might also depend on this enzymatic 

pathway. 

In contrast, in another line of breast cancer cells, MCF-7 cells, and in RKO colon 

cancer cells, it has been demonstrated that HNE inhibited the AMP-kinase kinase 

activity of cellular LKB1, a serine/threonine kinase tumor suppressor, which 
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modulates anabolic and catabolic homeostasis, cell proliferation and organ polarity 

(209). The authors reasoned that LKB1 would be covalently modified and inactivated 

by HNE, which may entail increased risks of hypertrophic or neoplastic diseases. 

Another HNE effect detected in cancer cells points to an interaction between HNE 

and Peroxisome Proliferator Activated Receptors (PPARs). PPARs are a superfamily 

of nuclear receptors, subdivided into three subtypes (α, β/δ and γ), differing for 

tissue-specific expression, preferential ligand recognition and biological function (95, 

207). In HL-60 cells and in U937 leukemic cells, HNE potentiated the effects of PPARγ 

ligands, suggesting the existence of mutual interactions between HNE- and PPAR-

ligand-related pathways in leukemic cell growth and differentiation (153). In 

addition, it has been reported that HNE directly binds and activates PPAR β/δ which, 

in the liver, exerts a protective action towards chemically-induced hepatotoxicity 

(40). This suggests that HNE, as an endogenous modulator of PPARβ/δ activity, 

might be involved in the protection from liver disease associated with oxidative 

damage. In this context, it is of interest that HNE stimulated Glutamate Cysteine 

Ligase (GCL) activity, through post-transcriptional modification of Cys553 in GCL and 

Cys35 in the modulatory subunit of GCL (GCLM) in vitro, detected by MALDI-

TOF/TOF mass spectrometry. Since GCL catalyzes the first and rate-limiting step in 

GSH biosynthesis, these results suggest that the stimulation of GCL activity by HNE 

may concur to a compensatory cytoprotective response, through an increase of 

intracellular GSH and GSH-dependent detoxifying potential, during periods of 

oxidative stress (12). The activation of PPAR β/δ by HNE may have anti-carcinogenic 

effects in breast cancer too (222). Indeed, Yao et al.  recently demonstrated that 

ligand activation of PPAR β/δ in two human breast cancer cell lines inhibited relative 

breast cancer tumorigenicity and further advanced the development of ligands of 

PPAR β/δ able to inhibit specifically breast carcinogenesis  (222). 

 

HNE-protein adducts in neurodegenerative diseases. 
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HNE-protein adducts have been detected in brain tissues and body fluids in several 

neurodegenerative diseases, such as Alzheimer’s Disease (AD), Huntington’s Disease 

(HD), Parkinson’s Disease (PD), Amyotrophic Lateral Sclerosis (ALS), and Down 

Syndrome (DS) (26, 27, 110, 182, 223). Indeed, the brain is one of the major targets 

of LPO, since it is highly sensitive to oxidative stress (it consumes about 20–30% of 

inspired oxygen) and contains high levels of PUFAs.  

Among neurodegenerative diseases, the formation of HNE-protein adducts in AD 

has been extensively documented and a number of comprehensive reviews, 

describing the proteins involved, have been written by our, as well as other research 

groups (152, 191). The majority of studies in this field adopted proteomic 

approaches based on the immunochemical detection of HNE-protein adducts with 

anti-HNE antibodies among cellular proteins separated by 2D-PAGE, followed by 

Western blotting and identification of immunoreactive spots by mass spectrometry. 

As seen above, while discussing the studies of HNE-protein adducts in cancer cells, 

very rare studies proceeded to the non-trivial task of actually demonstrating the 

oxidative modifications of specific proteins by mass spectrometry. These include the 

adducts of HNE with regulator of G-protein signaling 4 in PD described below (131). 

Instead, the pinponting analyses of ubiquitin carboxyl-terminal hydrolase L1 (UCH-

L1), Cu,Zn-superoxide dismutase (SOD1) and DJ-1 protein in AD and PD conducted 

by Choi et al. concerned the oxidation of cysteinyl and methionyl residues (35, 36, 

37). 

Here, we briefly summarize the most important findings and the most recent 

insights in this field. Cerebral alterations in AD include synaptic loss (176),  

neurofibrillary tangles (NFTs), and amyloid plaques, whose main protein component 

is the amyloid β (Aβ) peptide, a molecule of 40-42 amino acids, derived from the 

proteolytic cleavage of integral membrane Amyloid Precursor Protein (APP), by the 

action of beta- and gamma-secretases (73). It has been demonstrated that Amyloid 

β (Aβ) can induce oxidative stress and initiate LPO (27), resulting in the formation of 
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LPO products, including HNE, malondialdehyde (MDA), and others. HNE, in turn,  can 

directly react with the Aβ peptide, through a covalent cross-linking of Aβ peptides, 

causing an acceleration in Aβ protofibril formations and an inhibition of the 

production of straight, mature fibrils (184). Another important target for HNE 

adduction in AD brain tissue is the Heme Oxygenase Protein-1 (HO-1) (191). The 

activation of this enzyme is one of the earliest events in AD and plays an important 

role in the response to oxidative stress (158). HO-1 catalyzes the degradation of 

heme in a multistep, energy-dependent process and represents the rate-limiting 

enzyme in bilirubin production (123). Its expression is controlled by the Nrf2 

transcription factor, since the HO-1 gene contains in its promoter region the 

Antioxidant Responsive element (ARE) (63). In AD brains, the increase of oxidative 

stress leads to increases of Nrf2 activity and, consequently, increases of HO-1 

protein levels. At the same time, oxidative stress induces LPO and HNE formation. 

The increases of HNE and HO-1 lead to increased formation of HNE adducts of HO-1. 

While, on one hand, HNE adduct formation could impair HO-1 function, the loss of 

HO-1 function was accompanied, on the other hand, by increased phosphorylation 

of seryl residues of HO-1, leading to HO-1 functional activation. Moreover, the loss 

of HO-1 function can increase oxidative stress (Fig. 4) (13). 

Adducts of HNE with α-enolase have been reported, besides in the HL-60 human 

leukemic cell line (see the discussion of HNE-protein adducts in cancer cells, above), 

also in the brain tissue of AD patients, where their level correlated with the reduced 

glucose metabolism and the upregulation of glycolytic enzymes, necessary for 

counteracting the mounting energy deficit and hypoxic environment (128). In AD 

brain tissues, the α-enolase level increased to support the increase of glycolytic 

activity (190). The oxidative modifications of α-enolase lead to a disruption of 

neuronal energy metabolism and ATP-dependent ion homeostasis. Conceivably, 

these alterations might compromise the viability of neurons, rendering them more 

prone to cytotoxicity and apoptosis (191). Reduced glucose utilization and energy 
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production in AD may also be related with the formation of HNE adducts with the 

neuronal glucose transporter GLUT3 (125) and with the mitochondrial ATP synthase 

α subunit (149). The latter observation is in agreement with previous results 

demonstrating a decrease of ATP synthase activity in AD brains (175). In view of the 

possibly important role of α-enolase as plasminogen receptor at the surface of 

neurons, Sultana and coworkers suggested that the formation of HNE adducts with 

α-enolase might inhibit the conversion of plasminogen to plasmin, involved in the 

degradation of oligomeric and fibrillar Aβ, thereby preventing the detoxication of Aβ 

and facilitating neuronal death (191).  

Another HNE target in AD brain tissue is represented by Collapsin Response 

Mediator Protein 2 (CRMP2) (149). This protein plays an important role in 

membrane trafficking, cytoskeletal organization, axonogenesis and neurite 

outgrowth, and neuronal polarity (161, 162). The formation of adducts of HNE with 

CRMP2 impairs its activity and might be of pathogenic importance for neurite 

shortening and the loss of synapses, which are early features of AD (75, 175). 

In AD brain, Owen et al. have detected HNE adducts with Low Density Lipoprotein 

(LDL) receptor-related protein 1 (LRP-1), a membrane receptor involved in Aβ 

peptide removal. The formation of HNE adducts might lead to protein impairment 

which might contribute, in turn, to the extracellular deposition of amyloid substance 

(141). Moreover, Perluigi et al. demonstrated that SOD1 is HNE-modified in the 

inferior parietal lobule of late-stage AD, which results in the formation of protease-

resistant protein aggregates, which are considered to be highly toxic and can 

mediate cell death (149). The multiple HNE-protein adducts found in AD point out 

the relevance of protein modification by HNE in AD initiation and progression. 

Parkinson's disease (PD) is the most common neurodegenerative motion disorder. 

Hallmarks of PD are the loss of dopaminergic  neurons in the substantia nigra and 

the presence of cytoplasmic spherical protein inclusions, named Lewy bodies. These 

inclusions contain various proteins, including α-synuclein (172). 
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Immunoistochemically detectable HNE-protein adducts were significantly increased 

in nigral neurons of patients with PD (223) and stimulated the aggregation of α-

synuclein in vitro (160). Oxidative modification of α-synuclein and adducts of LPO 

products with this protein have been found in the dopaminergic neurons of the 

substantia nigra from PD patients (181). Qin and coworkers (160) demonstrated that 

incubation of HNE with α-synuclein resulted in the covalent modification of the 

protein, with up to six HNE molecules per protein molecule incorporated as Michael 

addition products. The formation of these adducts prevented fibrillation but might 

result in the formation of toxic oligomers, which might contribute to the demise of 

neurons subjected to oxidative damage.  

The HNE involvement in the pathogenesis of PD has been supported by other 

observations indicating a pleiotropic role for HNE-protein adducts. HNE-modified 

glycolytic enzymes (aldolase A, α-enolase, and glyceraldehyde-3-phosphate- 

dehydrogenase-GAPDH) have been found by a proteomic approach in the frontal 

cortex of incidental PD, and dementia with Lewy bodies (67), and this has been 

suggested to be related with the decreases of enzyme activity and the impairment 

of glucose metabolism and neurological function in the frontal lobe of PD patients. 

Moreover, HNE protein adduction can affect G-protein-dependent signaling in PD, 

whose regulation has been implicated as an important pathogenic factor in PD, as 

well as in other neurodegenerative diseases. HNE was able to impair this signaling 

pathway by directly modifying Gαq/11, a subunit of the heterotrimeric G-Protein 

Coupled Receptor (GPCR), as shown by immunoprecipitation and Western blotting 

(17). HNE could exert similar effects also by modifying and inactivating the regulator 

of G-protein signaling 4 (RGS4), which increases the GTPase activity of the Gα 

subunit, as recently demonstrated in a study by Monroy et al., in which the 

identification of HNE-RGS4 adducts by immunoprecipitation, Western blot and mass 

spectrometry was followed by a more refined mass spectrometric analysis, which 

permitted to detect HNE-modified Cys71, Cys148 and Cys183 (131). 
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ALS is a motor neuron degenerative disease which occurs both sporadically (sALS) 

and as a familial disorder (fALS). Although multiple mechanisms likely contribute to 

the pathogenesis of motor neuron injury in ALS, it has been suggested that oxidative 

stress may play a significant role in the pathogenesis and amplification of the 

disease. The levels of HNE and immunochemically detectable HNE-modified proteins 

were increased in spinal cord motor neurons of ALS patients, indicating that these 

modifications were associated with motor neuron degeneration in ALS (146). Using 

proteomic analysis, Perluigi and coworkers (148) detected three proteins 

significantly modified by HNE in the spinal cord of an animal model of fALS, the 

G93A-SOD1 transgenic mice: 1) dihydropyrimidinase-Related Protein 2 (DRP-2); 2) 

Heat-shock protein 70 (Hsp70); and 3) α-enolase. It was suggested that oxidative 

stress is a major contributing mechanism in the pathogenesis of ALS and that the 

structural alterations and the losses of functional activity of proteins can contribute 

to the neurodegenerative process (147).  

High levels of oxidized proteins have been found in both Huntington's disease (HD) 

(reviewed in ref. 24) and Down's syndrome (DS) (48). HD is a dominantly inherited 

neurodegenerative disorder, caused by the expansion of a CAG repeat in the gene 

encoding the protein huntingtin (70). It has been suggested that functional defects 

of mitochondria, which are both important sources of Reactive Oxygen Species 

(ROS) and targets of ROS-mediated damage, are involved in HD pathogenesis (87). 

The increase of ROS and the oxidative damage of functional proteins have been 

associated with pathological neuronal loss in HD. Moreover, a marked increase of 

HNE adducts has been found by immunohistochemistry in the nucleus caudatus and 

putamen of HD brains and in the corpus striatum of HD mice, which suggested the 

therapeutic use of antioxidants to inhibit LPO and protect neurons from oxidative 

stress-induced cell death, by improving ATP generation and mitochondrial 

morphology and function (110). 
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DS is one of the most frequent chromosomal aberrations, resulting from the partial 

or complete triplication of chromosome 21, characterized by several abnormalities, 

including premature development of AD neuropathology and by increased oxidative 

stress, conceivably involved in neurodegeneration (147). Quite recently, Di 

Domenico et al., by using a redox proteomic approach, have identified various 

protein targets of HNE in the frontal cortex from DS cases, with and without AD 

pathology (48). The HNE-modified protein targets identified embraced proteins 

involved in several biological functions, such as neuronal integrity, axonal transport, 

cytoskeleton organization, degradative systems, energy metabolism and antioxidant 

response. The dysfunction determined by the formation of HNE adducts with these 

proteins might contribute to the progression from DS to AD. Similar repertoires of 

aldehyde-modified protein targets had been reported in relation with the other 

neurodegenerative diseases as well (reviewed in ref. 126, 164, 191). 

In recent years, the role of autophagy has emerged as an essential antioxidant 

pathway in neurodegenerative diseases because, by permitting the removal of 

damaged mitochondria and proteins, it can provide an effective antioxidant 

strategy, independent of the initiating mechanism (66). It has been proved that the 

accumulation of toxic oxidation products, such as HNE, is a prevalent feature of 

neurodegenerative diseases and can promote organelle and protein damage, 

leading to the induction of autophagy (51). Stimulation of autophagy by HNE has 

been demonstrated also in rat aortic smooth muscle cells (77). The data obtained in 

these model cells suggested that the autophagic response to HNE could be 

attributed, in part, to ER stress, being a component of the cell survival strategy in 

response to oxidative stress (71). HNE emerges from the sum of the data reported 

as an important contributor to the pathogenesis of neurodegeneration, whose 

build-up in the course of disease modifies functionally important proteins, while 

promoting the autophagic process as a survival-oriented defense mechanism. 
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HNE-protein adducts in chronic inflammatory diseases  

One of the first demonstrations that HNE plays a role in the inflammatory process 

came by the studies on the effects of HNE on chemotactic oriented migration of 

neutrophils. When measured in a Boyden chamber, the latter was stimulated by 

HNE, even at concentrations of 0.1 μM or less (44). In the following years, it became 

evident that HNE is one of the major biologically active aldehydes produced by 

membrane LPO, in the course of inflammation and oxidative stress, which can 

accumulate in certain tissues up to concentrations of 10 μM or more (49, 204). 

Experimental ischemia or ischemia/reperfusion was shown to induce early 

generation of HNE and HNE-dependent protein modifications in the lung (43)  or in 

the isolated rat heart (54). High doses of HNE (50 μM) infused into rat lungs caused 

perivascular edema with vascular compression and early endothelial cells disruption 

(76). Moreover, in lung inflammatory disorders, HNE induced lung injury and 

apoptosis (43). 

The hyperproduction of HNE in the adipose tissue of obese patients was shown to 

contribute also to adipose tissue inflammation, by promoting the release of pro-

inflammatory cytokines (reviewed in ref. 39). In C57BL/6 mice fed a high-fat diet, 

body weight gain and epididymal fat expansion were associated with increases of 4-

HNE-protein adducts in adipose tissue detected by Western blotting (211). Excess 

generation of HNE, acting both as a covalent modifier of cell proteins involved in 

signal transduction, cytoskeletal organization or cell adhesion, and as a cell signal 

messenger, has been strongly implicated also in endothelial barrier dysfunction and 

atherosclerosis (112, 205). Evidence for the involvement of LPO-derived aldehydes 

in the alteration of LDL-receptor binding and in the promotion of atheroma 

formation came from several immunohistochemical analyses of atherosclerotic 

lesions from human aorta, using antibodies against such adducts as HNE-histidine 

(201), Nε-MDA-lysine (203), and Nε-acrolein-lysine (Nε-(3-Formyl-3,4-

DehydroPiperidino) lysine, FDP-lysine) (202), in which intense positivities were 
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associated with cells, primarily macrophages. The role of reactive aldehydes in the 

pathogenesis of atherosclerosis was also suggested by their increases in plasma, in 

association with extensive aortic atherosclerosis (142, 169, 170). About 30-40% of 

the uptake and degradation of oxidized Low Density Lipoprotein (oxLDL) by mouse 

peritoneal macrophages is mediated by scavenger receptor SR-AI/II, with CD36 

accounting for a further 35% (102, 120). LDL modification by aldehydes enhanced 

their recognition and uptake by macrophages (79, 81). The formation of aldehyde 

adducts with lysyl residues of Apolipoprotein B (ApoB) in LDL altered the affinity of 

the latter for the ApoB/E receptor, expressed on most cell types except 

macrophages, and converted LDL to an atherogenic form that was uptaken by 

scavenger receptor-bearing cells (macrophages and smooth muscle cells), leading to 

the formation of foam cells (33, 187, 188, 189). Moreover, modification of human 

recombinant ApoE with acrolein severely compromised its functional integrity, as for 

heparin, lipid and LDL receptor binding (196). Acrolein-LDL also induced foam cell 

formation from macrophages (212). 

Phosphatidylcholine γ-hydroxyalkenal, i.e., the γ-hydroxy-α,β-unsaturated core 

aldehydes still esterified at the sn-2 position of phosphatidylcholine, also contribute 

strongly to the binding of oxLDL by scavenger receptors and to the pathogenesis of 

atherosclerosis (80, 169). Antibody-based studies revealed the presence of 

carboxyheptylpyrroles (CHPs) and carboxypropylpyrroles (CPPs) in oxLDL (93), 

reflecting the presence of protein lysyl adducts in the core aldehydes 9-hydroxy-12-

oxo-10-dodecenoyl- acid ester of  phosphocholine (HODA-PC), produced by 

oxidation of 1-palmitoyl-2-linoleoyl-glycero-3-phosphocholine (PL-PC) or linoleoyl-2-

arachidonoyl-glycero-3-phosphocholine (LA-PC), and 5-hydroxy-8-oxo-6-octenoyl- 

acid ester of  phosphocholine (HOOA-PC), by oxidation of 1-palmitoyl-2-

arachidonoyl-glycero-3-phosphocholine (PA-PC). The CHP immunoreactivity was also 

significantly higher in the plasma of patients with atherosclerosis and end-stage 

renal disease than in healthy controls (93). Chemically synthesized HOOA-PC 
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exhibited properties of a chemical mediator of chronic inflammation. It activated, in 

a dose-dependent manner, Human Aortic Endothelial Cells (HAEC) to bind 

monocytes and to secrete increased levels of Monocyte Chemotactic Protein-1 

(MCP-1) and interleukin-8 (IL-8), which promoted monocyte entry into chronic 

lesions. HOOA-PC was found unbound and in pyrrole adducts in lipid extracts of 

oxLDL and human atheromas (81, 156). The binding of oxLDL to CD36 was mediated 

partly also by the head group of oxidized, but not native PC, in oxidized 

phospholipids such as 1-palmitoyl-2-(5-oxovaleroyl)-sn-glycero-3-phosphocholine 

(POV-PC) (18). The scenario emerging from these studies delineated atherogenesis 

as a result of myeloperoxidase-initiated, free radical-induced production of oxPC, 

which promoted subendothelial monocyte infiltration and endocytosis of oxLDL by 

macrophages, accompanied by conversion into foam cells and atheroma formation 

(169). Thereafter, it was shown that scavenger receptor CD36, another mediator of 

oxLDL uptake (as well as of recognition and phagocytosis of apoptotic cells) by 

macrophages, bound oxidized PC derivatives in oxLDL, including HODA-PC and 

HOOA-PC. These γ-hydroxy-α,β-unsaturated aldehydes, collectively referred to as 

oxPCCD36, were potent activators of the CD36-mediated endocytosis of oxLDL by 

macrophages, promoting the cytotoxic effects of the adducts of oxidized derivatives 

of phospholipids and cholesterol with proteins (157, 193). OxLDL and individual 

oxPCCD36 also interfered with the binding of HDL to scavenger SR-B1 receptors of 

hepatocytes, thus inhibiting the HDL-mediated delivery of cholesteryl esters to the 

liver  (10). 

The complexity of this process was illustrated by the report that HNE-histidine 

adducts bound to Lectin-like oxidized LDL receptor-1 (LOX-1), a class-E scavenger, 

multiligand receptor also implicated in atherosclerotic plaque formation (100, 121). 

Cloned as the main receptor for the binding, internalization and degradation of 

oxLDL by endothelial cells (174), LOX-1 was found to be expressed also in vascular 

smooth muscle cells, macrophages, fibroblasts and platelets (8, 34, 132, 220). Its C-
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type, lectin-like ligand-binding domain was capable of binding such diverse ligands 

as oxLDL, acetylated LDL (AcLDL), phosphatidylserine, apoptotic bodies, activated 

platelets, leukocytes and bacteria (90, 133, 140, 183). LOX-1 has been indicated as a 

pro-inflammatory factor, with a role in atherosclerosis initiation and progression 

(34, 53, 92, 208). In endothelial cells, LOX-1 was upregulated upon exposure to 

oxLDL (115). OxLDL binding to LOX-1 induced a decrease in nitric oxide release (42) 

and the expression of adhesion molecules (116) and monocyte chemoattractant 

protein-1 (MCP-1) (114), while promoting ROS production, NF-κB activation (41, 42, 

127) and apoptosis (115). In macrophages, LOX-1-mediated oxLDL binding 

stimulated the formation of lipid-laden cells resembling foam cells of atherosclerotic 

plaques (121, 185) (Fig. 5). As the upregulation of LOX-1 and downregulation of SR-

AI/II and CD36 are induced by cytokines, such as TNF-α (101) and TGF-β (52), it is 

conceivable that LOX-1 play a major role in oxLDL uptake in inflamed atherosclerotic 

plaques. 

In CHO cells stably expressing LOX-1, Bovine Serum Albumine (BSA) modified with 

HNE, ONE (4-oxo-2-nonenal), or non-hydroxylated alkenals 2-nonenal and 2-hexenal 

strongly inhibited the uptake of AcLDL (used as an alternative to oxLDL, in order to 

bypass the variations in the extent of LDL oxidation), with HNE-BSA showing the 

strongest inhibitory activity. AcLDL uptake was completely inhibited by anti-LOX-1 

antibodies and significantly inhibited also by HNE-LDL, but not by native LDL. BSA 

modified with these aldehydes, unlike native BSA, was taken up by CHO cells 

transiently expressing LOX-1, in proportion with the level of LOX-1 expression, 

highlighting LOX-1 as the receptor responsible for the uptake of aldehyde-modified 

BSA (100). HNE-LDL uptake was inhibited by the substitutions of critical amino acid 

residues of LOX-1, which had been shown to be crucial for oxLDL binding (139), 

indicating a shared binding site for oxLDL and HNE-LDL on LOX-1. The binding of 

oxLDL, HNE-LDL and histidine-LDL to LOX-1 was confirmed with CLTD14, the ligand 
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recognition domain of LOX-1. Moreover, in HAEC, the binding to LOX-1 of HNE-

histidine adducts (HNE-LDL, HNE-Nα-acetylhistidine), as well as of oxLDL, but not of 

LDL and histidine, stimulated ROS formation, an effect which could be inhibited by 

anti-LOX-1 antibodies. OxLDL, HNE-LDL and HNE-histidine adducts triggered a redox-

sensitive signalling cascade, entailing the phosphorylation of ERK 1/2 and NF-κB 

(100), which resulted in the expression of genes related to endothelial dysfunction 

and injury (115, 116).  

The ability of oxLDL to function as endothelial cell stressors was largely determined 

by the extent of their oxidative modification. Minimally oxidized LDLs retained their 

affinity for LDL receptor, activated antiapoptotic signaling and induced inflammatory 

changes in macrophages and endothelial cells, resulting in the recruitment of 

inflammatory cells and the secretion of cytokines and chemokines that promoted 

further oxidation (1). Further LDL LPO and apolipoprotein modification by reactive 

aldehydes determined the loss of recognition by the LDL receptor, with a shift to 

recognition by scavenger receptors, leading to foam cell formation from anti-

inflammatory M2 macrophages, which were activated and shifted to a pro-

inflammatory phenotype (206, 224). Scavenger receptors expressed on DCs (e.g., 

LOX-1) also mediate oxLDL uptake and the induction of the pro-inflammatory 

cytokine profile and of differentiation into the mature Dendritic Cell (DC) phenotype 

(136). Vascular associated DCs (VADCs) thus contribute to the initiation of 

atherosclerosis (145). Mice receiving DCs pulsed with MDA-LDL exhibited more 

extensive atherosclerotic lesions, with increased inflammatory signs and antigen-

specific immune responses (192) (Fig. 5). 

Adaptive immune responses contribute to plaque formation and to the maintenance 

of the atherosclerotis process. HSP-60, which is involved in the delivery of antigens 

into the MHC-I presentation pathway (218) and the maturation of DCs (59), is a main 

target of autoimmune cell-mediated responses in atherosclerosis (25, 68, 97, 98, 

124, 167). Infiltration of atherosclerotic lesions with HSP60-specific T cells even 
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appeared to precede the formation of foam cells (96, 129, 219). Intriguingly, HSP-60 

is secreted by monocytes (61) and endothelial cells in response to oxLDL (5, 69) and 

shares with them the LOX-1 receptor (218) (Fig. 5). 

Other inflammation-related diseases associated with the presence of HNE-protein 

adducts are alcoholic liver disorders (113) and chronic alcoholic pancreatitis, in 

which the increased formation of HNE-protein adducts was evidenced in acinar cells 

adjacent to interlobular connective tissue (30). In chronic liver injury, it was 

demonstrated that HNE was involved in the transdifferentiation of hepatic stellate 

cells into a myofibroblastic phenotype characterized by proliferation and 

extracellular matrix deposition, leading to fibrosis (225). The exposure of isolated 

stellate cells to 1–10 μM HNE led to the detection of HNE adducts with Jun terminal 

kinase. The translocation of protein adducts determined an increased level of c-Jun 

mRNA, suggesting that HNE was an activating signal for oxidative stress responses.  

An anti-inflammatory role for HNE has been demonstrated by studying NF-κB cell 

signaling. The latter is the major transcription factor associated with inflammation 

and oxidative stress (111). Inactive NF-κB is localized in the cytosol, bound to its 

inhibitory protein, IκB. Upon activation, NF-κB dissociates from IκB, after which 

translocation to the nucleus enables DNA binding and transactivation (91). This 

process is triggered by sequential phosphorylation and ubiquitination of IκBα, 

followed by proteasomal digestion. The enzyme that catalyzes the ubiquitination of 

phosphorylated IκB, IκB kinase (IKK), is constitutively active and, in most cases, 

represents the key regulator of NF-κB activation (23). Ji et al. found covalent 

adducts of HNE to IKK, by using antibodies against IKK or HNE-protein conjugates in 

the human colorectal carcinoma cell line (RKO) and the human lung carcinoma cell 

line (H1299), and demonstrated that HNE binding prevented IκBα degradation and, 

consequently, inhibited NF-κB activation (86). These authors concluded that, as NF-
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κB stimulates transcription in response to oxidative stress, its modification by HNE 

may limit the magnitude of such transcriptional response. 

In another inflammation-related metabolic condition, diabetes mellitus, the increase 

of oxidative stress and the formation of HNE adducts has been widely reported (45,  

200). HNE has been demonstrated to form adducts with some of the proteins 

involved in the etiopathogenesis of diabetes. Indeed, HNE affected insulin signaling 

by binding to Insulin Receptor Substrate (IRS)-1/-2 proteins in 3T3-L1 adipocytes, as 

shown by immunoprecipitation and immunoblotting (47). IRSs are recruited after 

insulin binding to its receptor and transmit the insulin signal by activating two major 

pathways: the phosphatidylinositol 3-kinase (PI 3-kinase) cascade for glucose, lipid, 

and protein metabolism and the mitogen-activated protein kinase (MAPK) cascade 

for cell proliferation and differentiation (171, 214). HNE-IRS adducts likely impair the 

function of IRSs and favor their degradation, indicating that this aldehyde plays an 

important role in insulin resistance development and, therefore, could foster the 

progression to type 2 diabetes (47). 

Moreover, HNE seems to be involved in the etiopathogenesis of diabetic 

cardiomyopathy. Using immunoblotting with anti-HNE antibodies, Lashin et al. 

demonstrated the presence of HNE adducts with succinyl dehydrogenase (SDH) in 

the heart of diabetic rats, which contributed to the functional inhibition of 

mitochondrial complex-II, amplifying the organelle dysfunction and markedly 

decreasing oxygen consumption in heart mitochondria. (109). In keeping with these 

results, Mali et al., using immunoprecipitation, showed that 4-HNE formed adducts 

with myocardial aldehyde dehydrogenase 2 in mice exhibiting metabolic 

syndrome/type-2 diabetes mellitus, whose formation was associated with a 

reduction of the enzyme activity, which might contribute to cardiac hypertrophy and 

dysfunction (122) . 
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HNE-Protein adducts in autoimmunity: Sjögren's Syndrome (SS) and Systemic 

Lupus Erythematosus (SLE) 

HNE-protein adducts have been involved in both innate and adaptive autoimmune 

responses. Several oxidation-specific epitopes (OSEs) are recognized as endogenous 

damage-associate molecular patterns (DAMPs) by innate pattern recognition 

receptors (PRRs). Such OSEs include the oxidation products of membrane 

phospholipids and polyunsaturated fatty acids in LDLs and their adducts, as seen in 

atherosclerosis (107). PRRs involved include Toll-like receptors, scavenger receptors 

CD36 and SR-B1, C-reactive protein, complement factor H and natural IgM 

antibodies (213), such as those recognizing the adducts of MDA and HNE with LDLs, 

detected in the sera of immunodeficient rag1-/- mice after reconstitution with B-1 

cells (38). 

A number of interesting observations were also collected, concerning the adducts of 

HNE with some autoantigenic targets of antinuclear autoantibodies (ANA) 

characteristically detected in Sjögren syndrome (SS), SLE and other autoimmune 

diseases (103). Typical ANA targets in SS include the SS-A/Ro and SS-B/La antigens. 

The SS-A/Ro antigens comprise a 52-kDa form (SS-A1/Ro52; TRIM21), found both in 

cytoplasm and nucleus and characterized by a tripartite motif with RING (E3 

ubiquitine ligase), B-box and Coiled Coil domains, and a 60-kDa form (SS-A2/Ro60; 

TROVE2), found mainly in cytoplasm and involved in cell survival to UV damage. 

Both are components of Ro ribonucleoprotein (RNP) particles, in which they are 

non-covalently associated with short, non-coding, human cytoplasmic RNAs (hY-

RNAs), as in spliceosomal RNPs, and small cytoplasmic RNAs, such as the 5S rRNA 

precursors of the 60S ribosomal subunit. The 48-kDa SS-B/La antigen is a 

transcription termination factor forRNA Polymerase III, transiently associated with 

hY-RNAs in RNPs involved in tRNA processing and histonic mRNA stabilization. 

Autoantibodies to SS-A2/Ro60 occur in over 60 % of SS patients and 25-40 % of SLE 

patients, as well as in other autoimmune diseases. SS-Ro and SS-La antigens become 



BARRERA 

 23

exposed in apoptotic bodies and blebs of variable size at the surface of apoptotic 

cells (29). Apoptotic cardiocytes from fetuses spontaneously aborted, due to the 

congenital heart block of neonatal lupus, opsonized by maternal anti-Ro and anti-La 

antibodies, induced the Antibody-Dependent Cell-mediated Cytotoxicity (ADCC) of 

co-cultured macrophages (130). Anti-SS-A/Ro antibodies were involved also in the 

ADCC in damage of keratinocytes in UV-sensitive SLE (62). It was proposed that, in 

SLE and SS, both an increased susceptibility of leukocytes to apoptosis (55, 65, 165, 

227), possibly related with the overexpression of the E3 ubiquitin ligase SS-A1/Ro52 

(56), and an impaired clearance of apoptotic cells by macrophages (117, 165) may 

be triggers of autoimmunity (173). More interestingly from the standpoint of this 

review, it was proposed that the breaking of tolerance to self antigens at the surface 

of apoptotic cells might be promoted by oxidative modifications occurring as a 

consequence of the oxidative stress that characterizes apoptosis (29, 78). 

The role of self antigen modification by the formation of HNE adducts in the 

breaking of immunological tolerance was first documented in an early report (217), 

in which Murine Serum Albumin (MSA), modified in vitro with several unsaturated 

(MDA, HNE, heptadienal) and saturated aldehydes (butanal, nonanal), induced 

strong T-cell-dependent antibody responses. Various T-cell hybridomas, established 

from immunized mice, recognized MDA- and HNE-modified MSA, but not native 

MSA, in a MHC-restricted manner. All aldehyde-modified MSA preparations induced 

strong specific antibody responses, while native MSA did not. Of the former, only 

HNE-MSA and nonanal-MSA induced crossed antibody responses to unmodified 

MSA, almost as intense as against aldehyde-modified MSA, indicating that the 

sensitization of T cells to HNE-MSA adducts favored the intramolecular spreading of 

the immune response to formerly tolerated epitopes of the native self antigen (Fig. 

6) (217). Scofield and coworkers hypothesized that modification of SS-A2/Ro60 with 

HNE might facilitate the breaking of tolerance to the native antigen in Sjögren's 

Syndrome. After immunizing rabbits with either the HNE-modified or the 
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unmodified SS-A2/Ro60, they observed that autoimmunity was established faster 

and more strongly in the animals immunized with HNE-modified SS-A2/Ro60 (106, 

178). Later work provided formal proof that the breaking of tolerance to self 

antigens in the context of apoptosis required the generation of neoepitopes (143). 

The immunization of A/J mice with late apoptotic thymocytes, expressing the 

transgenic hSS-B/La antigen of human origin, was followed by the production of 

anti-SS-B/La antibodies. Immunization with non-apoptotic cells, expressing the 

transgenic antigen, had similar, although smaller and slower effects. Instead, no 

responses ensued either the immunization of transgenic mice with syngeneic 

thymocytes expressing the transgenic antigen, or of wild-type mice with thymocytes 

expressing autologous SS-B/La (143). 

In an extension of this model, an SS-like condition, with anti-SS-A2/Ro60 antibodies, 

could be induced in BALB/c mice by immunization with a peptide of SS-A2/Ro60 

(108). The production of anti-SS-A2/Ro60 and anti-SS-B/La autoantibodies ensued 

immunization with SS-A2/Ro60, both as such and modified with increasing 

concentrations of HNE (0.4, 2 or 10 mM). However, antibody production was faster 

after immunization with low- and, especially, medium-level HNE-modified antigen. 

The antibodies produced by mice immunized with HNE-modified, but not with 

unmodified SS-A2/Ro60, included added subpopulations that recognized HNE or 

HNE-SS-A2/Ro60, but not the unmodified antigen, as well as dsDNA, which induced 

the authors to imply a SLE-like disease, although they did not provide pathological 

evidence of it. The occurrence of anti-dsDNA and anti-SS-B/La antibodies, following 

immunization with SS-A2/Ro60, represents an example of intermolecular epitope 

spreading. The ability of HNE to form adducts with a large number of biological 

macromolecules might be of help in understanding the broad range of autoantibody 

responses in SLE and SS. Moreover, immunization with high-level HNE-modified SS-

A2/Ro60 was associated with protein aggregation, lower-level antibody responses to 

unmodified SS-A2/Ro60 and SS-B/La and a Sjögren-like condition, with reduced 
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salivary flow and lymphocytic infiltration of salivary glands. These results were 

interpreted as being due to increased bifunctional cross-linking of SS-A2/Ro60 

molecules (108), but a different interpretation could be that large, particulate 

immunocomplexes of aggregated HNE-SS-A2/Ro60 and autoantibodies stimulated 

the antigen-presenting activity of macrophages, which skewed the autoimmune 

response towards a cytotoxic cell-mediated mechanism. The same authors localized 

the targets of HNE modification within the sequence of Ro60, by using a collection 

of Multiple Antigenic Peptides (MAPs), chemically synthesized on the base of the 

sequences of Ro60 targeted by autoantibodies in SLE (82, 177) and anchored in 

multiple copies to a heptalysine core. Covalent adduct formation, upon exposure to 

HNE in vitro, mostly occurred in sequences participating in the solvent-exposed 

tertiary structure of Ro60, such as 126-137, 166-172 and 401-195 (105). 

Quantitative correlations of diagnostic and prognostic interest between markers of 

LPO, immunological reactivity to lipid-derived reactive aldehydes, and disease 

activity of SLE were reported. The prevalences and serum titers of MDA- and HNE-

specific antibodies were significantly higher in SLE patients than in healthy controls, 

being also in correlation with the SLE Disease Activity Index (SLEDAI). Analogous 

correlations were observed between serum levels of MDA and HNE protein adducts 

and both SLEDAI scores and antibody levels. Such results underscored the 

pathogenic role of LPO in SLE and the potential usefulness of anti-MDA and anti-HNE 

antibodies in predicting its progression (210). 

The molecular mimicry between the adducts of HNE and its analogs with proteins, 

on one hand, and DNA, in native or modified form, on the other hand, as a 

mechanism for the production of anti-DNA autoantibodies in response to aldehyde-

modified self protein antigens was investigated by Uchida and coworkers. After 

raising an anti-HNE monoclonal antibody (anti-R mAb 310), which selectively 

recognized the R enantiomer of HNE-histidine Michael adducts (74), these authors 

found that the sequence of such anti-HNE mAb strictly resembled those of various 
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clonally related anti-DNA antibodies. Despite this structural similarity, the cross-

reactivity of mAb R310 with native dsDNA was limited, but strongly enhanced by the 

treatment of DNA with ONE, an HNE analog. ONE-2'-deoxynucleoside adducts were 

identified as alternative epitopes of mAb R310 in ONE-modified DNA. The 

constituent chemical groups of a common epitope, possibly responsible for the 

molecular mimicry between the R-HNE-histidine configurational isomers and the 

1,N2-etheno-type ONE-2'-deoxyguanosine adducts, and required for the recognition 

by bispecific antibodies, were highlighted (Fig. 7). On this basis, it was proposed that 

endogenous electrophilic molecular species, including HNE, may be immunological 

triggers of autoimmune disease (2). The same authors further investigated the 

possible role of HNE-modified proteins as the endogenous prompt for the 

production of anti-DNA antibodies. Having established a murine hybridoma with the 

splenocytes of BALB/c mice immunized with HNE-modified keyhole limpet 

hemocyanin (KLH), they found HNE-specific epitopes in the epidermis and dermis of 

patients with SLE, pemphigus vulgaris and contact dermatitis, as well as antibodies 

against HNE-modified bovine serum albumin (BSA) both in the sera of patients 

affected with SLE, SS, rheumatoid arthritis, systemic sclerosis and idiopathic 

inflammatory myopathies, and in the sera of diseased, lupus-prone MRL/lpr mice. 

Upon repeated immunization with HNE-modified KLH, mice also developed a 

distinct population of B cell clones, recognizing native DNA, but not HNE-BSA. In 

accordance with the work previously cited, the reactivity of anti-HNE B cell clones 

towards DNA was greatly enhanced by DNA modification with ONE. On the other 

hand, anti-DNA mAbs cross-reacted with ONE-modified BSA. The data suggested 

that HNE-specific epitopes formed upon HNE generation in cells might serve as 

sensitizing antigenic determinants for the production of bispecific antibodies against 

native DNA and ONE-modified proteins (198). Further results in experimental 

animals and in patients with SLE confirmed that the modification of Human Serum 

Albumin (HSA) with HNE resulted in the generation of neoepitopes in HSA, which, in 
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turn, was instrumental for the breaking of tolerance to HSA and was accompanied 

by cross-reactive responses to similarly modified DNA (58). Moreover, anti-ds-DNA 

antibodies from 27 out of 40 patients affected by SLE preferentially bound to HNE-

modified HSA, with respect to DNA and native HSA. Analogous results were 

reported, showing that the IgG antibodies raised in rabbits against HNE-modified 

HSA recognized HSA from SLE patients and cross-reacted with native and ozidized 

goat liver chromatin, while the anti-native/oxidized chromatin antibodies from 41 

out of 74 SLE patients also specifically recognized HNE-HSA (3). These findings 

strongly supported the pathogenetic role of LPO products in autoimmune disease. 

 

HNE-protein adducts in red blood cell aging and AutoImmune Hemolytic Anemia 

(AIHA)  

In AutoImmune Hemolytic Anemia (AIHA), red blood cells (RBCs) coated with 

autoantibodies on their surface are destroyed at an accelerated rate by splenic 

macrophages. Mice of the New Zealand Black strain spontaneously develop AIHA 

with increasing age and serve as an animal model of the disease. Major membrane 

proteins of RBCs were identified as autoantigenic targets in NZB mice. 

Autoantibodies eluted from RBC surfaces and mAbs produced by hybridomas 

established from NZB mice recognized band 3 protein, the major RBC membrane 

glycoprotein (32, 46). The breakage of tolerance to band 3 protein apparently 

resulted from the proteolytic removal of its surface domain or other modifications 

exposing its membrane-embedded portion (60). More recent studies have provided 

evidence for the involvement of oxidative modifications of RBC self antigens in the 

formation of neoepitopes, the loss of tolerance and the triggering of autoimmunity 

to RBCs (83). A similar phenotype as in NZB mice, i.e., increased production of anti-

RBC autoantibodies and accelerated intravascular hemolysis and phagocytic removal 

of RBCs by Kuppfer cells, together with high levels of reactive oxygen species (ROS) 

in RBCs, was observed in sod1-knockout mice (84, 186). Autoantibodies were 
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directed against HNE, acrolein and Carbonic Anhydrase II (CAII). Both autoimmune 

responses and hemolytic anemia were rescued by transgenic expression of human 

SOD1 in erythroid cells (85). Moreover, immunoblotting and mass spectrometric 

analyses revealed that exposure of intact human RBCs to HNE resulted in selective 

HNE-β-spectrin adduct formation and cross-linking of HNE-modified spectrin. 

Spectrin is the main component of the submembranous cytoskeleton of RBCs and 

plays a critical role in the stability and strength of RBC plasma membrane. 

Apparently, local spectrin aggregation might lead to membrane surface area 

extrusion and loss, by freeing the lipid bilayer from the underlying cytoskeleton (9). 

As a whole, the observations described above are of relevance both for the 

physiological destruction of RBCs, in view of the reported accumulation of HNE in 

aging erythrocytes (6), and for their immune-mediated hemolysis, in conditions of 

enhanced LPO. 

 

Protein-HNE adducts in autoimmune liver disease and ferritin-induced liver 

cytotoxicity 

Primary biliary cirrhosis (PBC) is a progressive, nonsuppurative, autoimmune 

cholangiopathy entailing the selective, cell-mediated destruction of small and 

medium-sized (<100 µm in diameter) intrahepatic bile ducts. The immunochemical 

detection of HNE-modified proteins in liver biopsies revealed HNE-protein adducts 

in the cytoplasm of biliary cells of small bile ducts in all of 20 patients with PBC. In 

30% of patients, HNE-protein adducts were detected also in periportal hepatocytes, 

in association with higher serum bilirubin levels and histological stage (stage 3, 

septal fibrosis), in comparison with patients lacking intrahepatocytic HNE-protein 

adducts. Thus, hepatic LPO may be an early event in bile duct destruction and 

contribute to hepatocyte injury and fibrosis during cholestasis in PBC  (94). 
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Non-alcoholic Fatty Liver Disease (NAFLD) covers a pathological spectrum of disease, 

from relatively benign lipid accumulation (simple steatosis, fatty liver), which is 

devoid of long-term adverse effects, to progressive nonalcoholic steatohepatitis 

(NASH), which is associated with necrosis, chronic inflammation and fibrosis, leading 

to liver cirrhosis. Adaptive immunity seems to be involved in the progression of 

NAFLD from steatosis to NASH, as hepatic oxidative stress markers, such as HNE and 

8-hydroxydeoxyguanosine, correlated with the severity of hepatic necrosis, 

inflammation and fibrosis (31, 179);  antibody responses to MDA-modified antigens 

were associated with increased severity of lobular inflammation or fibrosis (104, 

137). In the methionine-choline deficient (MCD) murine model of NASH, 

autoimmune responses towards aldehyde-modified self antigens contributed to 

hepatic inflammation, by promoting TH1 cell differentiation (194). In MCD-fed mice, 

the severity of hepatocyte damage and lobular inflammation, as revealed by 

transaminase release and hepatic TNF-α expression, paralleled IgG responses 

against MDA- and HNE-modified antigens, as well as hepatic infiltration by CD4+ and 

CD8+ T cells recognizing the same antigens. Immunization with MDA-modified BSA 

enhanced transaminase release, hepatic TNF-α expression and liver recruitment and 

differentiation of TH1 cells. NASH in immunized, MCD-fed mice was also associated 

with IL-15-mediated expansion of NK T cells (194), which likely contributed to 

fibrosis by producing osteopontin (195). 

A major role of HNE and other reactive aldehydes was implicated also in cell death 

induced by secreted acidic ferritins (20, 21). These appeared to act as soluble 

mediators of oxidative stress (19), in spite of the reported ability of human H chain 

ferritin to serve as a cellular antioxidant and apoptosis inhibitor (16, 228). 

Pathophysiological interest for these observations comes from the reported 

increases of serum ferritin levels in various pathological conditions, including acute 

and chronic inflammation and autoimmunity (163, 226). The cytotoxicity of an 
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acidic, H-chain-rich isoferritin (FER-CM) secreted by rat primary hepatocytes in vitro 

followed a dose-response relationship, marked by the transition from apoptosis to 

necrosis at concentrations above 100 ng/mL (22). Pro-apoptotic activity was 

accompanied by modification of cell proteins with HNE, as revealed by cytosolic 

accumulation of immunocytochemically detectable HNE-histidine protein (HNE-His-

P) adducts, especially in the perinuclear area, and DNA damage, as revealed by the 

formation of micronuclei. FER-CM-induced apoptosis and HNE-His-P 

immunoreactivity were partially inhibited by the free radical scavenger 6-hydroxy-

2,5,7,8-tetramethylchromane-2-carboxylic acid (trolox) and, more completely, by 

the lysosomotropic iron chelator desferrioxamine (DFO), as well as by proliferative 

stimulation of rat hepatocytes with EGF and insulin, whose mitogenic efficacy was 

reduced, in turn, in the presence of acidic isoferritins (19). It was suggested that 

these might act as oxidative stress mediators by promoting ferrous iron loading in 

lysosomes, ROS production, and lysosomal membrane permeabilization. The latter, 

in turn, might foster cell damage via the release of ferrous ions, ROS and cathepsins, 

cytosolic amplification of LPO, aldehyde-mediated protein/DNA modification and 

mitochondrial outer membrane permeabilization, leading to Fas- and p53-mediated 

apoptosis or necrosis, depending on the severity of oxidative stress (19). HNE itself 

was able to trigger p53 and Fas-dependent apoptosis (11). The conclusions drawn in 

the study cited (19) had some limitations, in that: a) HNE-His-P immunoreactivity 

varied markedly between different cells treated with FER-CM at the same dosage; b) 

the protection from FER-CM-induced apoptosis and necrosis provided by trolox was 

only partial, compared with that afforded by DFO and EGF/insulin, as though HNE 

hyperproduction were not entirely and directly responsible for the observed effects 

of FER-CM on cell viability. Ways of addressing these aspects might be the use of: 1) 

a selective inhibitor, such as nordihydroguaiaretic acid (NDGA) (215), of reticulocyte 

15-lipoxygenase (15-LO), the enzyme responsible for the conversion of arachidonic 

acid to 15-hydroperoxy-5,8,11,13-eicosatetraenoic acid (15-HpETE), from which HNE 
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is produced by a series of non-enzymatic peroxidation reactions; 2) cell 

transfection/transduction and overexpression of the fatty aldehyde dehydrogenase 

gene (ALDH3A2, FALDH), whose product detoxifies HNE by converting it to 4-

hydroxynonenoic acid (4-HNA) (39), as already done in 3T3-L1 adipocytes (47). 

 

Conclusions 

Results obtained in recent years have shown that the generation of HNE-protein 

adducts can play important pathogenic roles in several diseases characterized by 

increases in oxidative stress and, consequently, of LPO and production of reactive 

aldehydes. However, cancer is peculiar in this respect, as the increases in oxidative 

stress do not always correlate with increases of LPO, due to differences in 

membrane lipid composition of cancer cells. Moreover, in cancer cells, the 

generation of HNE-protein adducts, by leading to apoptosis or to losses of 

dysregulated functions, can represent a contrast to the progression of disease. 

HNE-protein and HNE-DNA adducts can incite autoimmune responses by combined 

effects on both innate and adaptive immunity. On one hand, they can act as Damage 

Associated Molecular Patterns (DAMPs) recognized by soluble and cell-associated 

pattern recognition receptors (PRRs), which may favor the uptake and presentation 

of self antigens by APCs in the context of enhanced levels of costimulation. 

Moreover, HNE cross-linking with self antigens can lead to the formation of 

neoepitopes, which initiate autoimmunity by recruiting T and B cells outside the 

repertoires of autoreactive T and B cells. Moreover, it has been repeatedly 

observed, both in the experimental and in the clinical setting, that the breaking of 

tolerance to a modified self antigen also affected its native counterpart. This effect, 

which entails the intramolecular spreading of sensitization to other epitopes, 

reflects both the hapten-carrier relationship linking HNE with its macromolecular 

targets and the multivalent character of the latter as immunogens. Intermolecular 

epitope spreading between HNE-modified protein antigens and other proteins or 
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DNA, either in native form or modified with the HNE analog ONE, has been also 

reported as a reflection of the molecular mimicry and cross-reaction between 

structurally related epitopes, as well as of the pleiotropic effects of HNE. 

Interestingly, in certain chronic inflammatory and neurodegenerative diseases the 

presence of HNE adducts can promote adaptive cell responses, by stimulating 

intracellular GSH synthesis (12), inhibiting the Nuclear Factor kappa-light-chain-

enhancer of activated B cells (NF-kB) activity (86), inducing HO-1 activation (13) or 

stimulating autophagy (71). These studies underline the fact that HNE can be 

considered not only a toxic product of LPO, but also a regulatory molecule, involved 

in several biochemical pathways. 

We believe that, in the coming years, the refinement both of proteomical and of 

tissue and cell sampling techniques, allowing the individuation of novel cellular 

targets of HNE, will lead to a better understanding of the mechanisms of HNE action 

in human diseases. 
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List of Abbreviations 

AcLDL: Acetylated Low Density Lipoprotein; 
AD: Alzheimer’s Disease; 
ADCC:  Antibody-Dependent Dell-mediated Cytotoxicity; 
AIHA: AutoImmune Hemolytic Anemia; 
ALS: Amyotrophic Lateral Sclerosis; 
ApoB: ApoLipoprotein B; 
APP: Amyloid Precursor Protein; 
ARE: Antioxidant Responsive Element; 
Aβ: Amyloid β; 
BCRs: B Cell Receptors; 
BSA: Bovine Serum Albumin; 
CAII: Carbonic Anhydrase II; 
CHPs: carboxyheptylpyrroles; 
CPPs: carboxypropylpyrroles; 
CRMP2: Collapsin Response Mediator Protein 2; 
2D-PAGE: two-Dimensional PolyAcrylamide Gel Electrophoresis; 
DAMPs: Damage Associated Molecular Patterns; 
DCs:  Dendritic Cells; 
DFO: DesFerriOxamine; 
DRP-2: Dihydropyrimidinase-Related Protein 2; 
DS: Down Syndrome; 
ECs:  Endothelial Cells; 
EGFR:   Epidermal Growth Factor Receptor; 
fALS: familial Amyotrophic Lateral Sclerosis; 
FDP-lysine: Nε-(3-Formyl-3,4-DehydroPiperidino) lysine: 
FER-CM:  H-chain-rich isoferritin;  
GAPDH : Glyceraldehyde-3-Phosphate- DeHydrogenase;  
GCL: Glutamate Cysteine Ligase; 
GCLM: Glutamate Cysteine Ligase Modulatory subunit; 
GPCR:  G-Protein Coupled Receptor; 
GSH: Glutathione; 
GSTs: Glutathione-S-Transferases; 
HAEC: Human Aortic Endothelial Cells; 
HD: Huntington's disease; 
HHE: 4-hydroxy-hexenal; 
4-HNA:  4 -hydroxynonenoic acid; 
HNE: 4-hydroxy-2-nonenal; 
HNE-His-P:  HNE-histidine protein; 
HO-1: Heme Oxygenase Protein-1; 
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HODA-PC:  9-hydroxy-12-oxo-10-dodecenoyl- acid ester of  phosphocholine;   
HOOA-PC:  5-hydroxy-8-oxo-6-octenoyl- acid ester of phosphocholine;   
15-HpETE: 15-hydroperoxy-5,8,11,13-eicosatetraenoic acid; 
HSA:  Human Serum Albumin; 
Hsp70: Heat-shock protein 70; 
HUVECs: Human Venous Endothelial Cells; 
hY-RNAs: human cYtoplasmic RNAs 
IKK: IκB Kinase; 
IL-8: interleukin-8; 
IRS: Insulin Receptor Substrate; 
KLH:  keyhole limpet hemocyanin; 
LA-PC: linoleoyl-2-arachidonoyl-glycero-3-phosphocholine; 
LDL: Low Density Lipoprotein; 
LOX-1: Lectin-like oxidized low density lipoprotein receptor-1  
LPO: lipid peroxidation; 
LPOs: products of LPO; 
LRP-1: Low density lipoprotein receptor-related protein-1; 
Mϕ: Macrophages; 
MALDI-TOF/TOF:  matrix-assisted laser desorption ionization / time-of-flight/time-
of-flight; 
MAPs:  Multiple Antigenic Peptides; 
MCD: methionine-choline deficient; 
MCP-1: Monocyte Chemotactic Protein-1; 
MDA: malondialdehyde; 
MSA: Murine Serum Albumin; 
NAFLD: non-alcoholic fatty liver disease; 
NASH:  progressive nonalcoholic steatohepatitis;  
NDGA: nordihydroguaiaretic acid; 
NF-kB: Nuclear Factor kappa-light-chain-enhancer of activated B cells; 
NFTs: neurofibrillary tangles; 
ONE:  4-oxo-2-nonenal;  
OSEs: oxidation-specific epitopes; 
oxLDL: oxidized Low Density Lipoprotein; 
oxPCCD36: specific oxidized phospholipids acting via CD36 
PA-PC: 1-palmitoyl-2-arachidonoyl-glycero-3-phosphocholine; 
PBC: Primary biliary cirrhosis; 
PC: Phosphatidylcholine; 
PD: Parkinson’s Disease; 
PI 3-kinase: PhosphatidylInositol 3-kinase; 
PL-PC: 1-palmitoyl-2-linoleoyl-glycero-3-phosphocholine;   
POV-PC: 1-Palmitoyl-2-(5-oxovaleroyl)-sn-glycero-3-phosphocholine; 
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PPARs: Peroxisome Proliferator Activated Receptors; 
PRRs: cell-associated pattern recognition receptors; 
RBCs: red blood cells; 
RNP: Ro ribonucleoprotein; 
ROS:  Reactive Oxygen Species; 
sALS: sporadic Amyotrophic Lateral Sclerosis; 
SDH: succinyl dehydrogenase; 
 SLE: Systemic Lupus Erythematosus; 
SLEDAI:  SLE Disease Activity Index;  
SOD1: Cu, Zn-superoxide dismutase; 
SS: Sjögren Syndrome; 
TCR: T Cell Receptor; 
UCH-L1: ubiquitin carboxyl-terminal hydrolase L1;   
VADCs:  Vascular Associated Dendritic Cells. 
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Figures legends 

 

Figure 1. Mechanism of HNE formation during peroxidation of arachidonic acid. 

Figure 2. Reaction of HNE with cysteinyl, histidyl, and lysyl residues via 1,4-Michael 

addition. 

Figure 3. The inhibitory effect of covalent modification by HNE on the binding of 

plasminogen to α-enolase leads to the inhibition of adhesion of HL-60 human 

leukemic cells to Human Venous Endothelial Cells (HUVECs). 

Figure 4. The formation of adducts of HNE with heme oxygenase (HO-1) might 

impair HO-1 function. In turn, the loss of HO-1 function might determine an increase 

of oxidative stress, resulting in increased HNE production from LPO. 

Figure 5. Contribution of the products of LPO (LPOs) in LDL to the pathogenesis of 

atherosclerosis. LPOs implicated include the lysyl- adducts of MDA and the lysyl- and 

histidyl- adducts of HNE with apolipoproteins, as well as the 4-hydroxy-2,3-

unsaturated core aldehydes (oxPCCD36), like HODA-PC and HOOA-PC, and other 

aldehydes (e.g., POV-PC) produced by the oxidation of phosphatidylcholine (PC). 

Myeloperoxidase-initiated, ROS-dependent LDL oxidation in plasma impairs LDL 

binding to LDL-R and improves their binding to scavenger receptors CD36 and LOX-1 

in endothelial cells and macrophages, while also upregulating them. This has two 

consequences: 1) increased ROS production by macrophages, with conversion into 

dysfunctional, lipid-laden foam cells; 2) endothelial cell dysfunction, with increased 

ROS and chemokine MCP-1 release, increased expression of adhesion molecules 

(which promotes monocyte infiltration), and NF-KB-induced apoptosis. By binding to 

CD36 and LOX-1, oxLDL also promote the maturation of vascular-associated DCs 

(VADCs), activate platelets, and stimulate the production of HSP-60 by monocytes 

and endothelial cells. HSP-60, which also binds to LOX-1, ushers the inflammatory 

response into a cell-mediated adaptive response, being itself a prominent target of 
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it, by inducing the maturation of APCs and delivering self antigens of apoptosed cells 

into their MHC-I-associated presentation pathway. 

Figure 6. Proposed mechanisms for the breaking of tolerance to self antigens upon 

formation of adducts of HNE. A) Neoepitopes are generated by the covalent 

modification of macromolecular self antigens with HNE. B) HNE-protein adducts 

stimulate differentiation and maturation of macrophages (Mϕ), dendritic cells (DCs) 

and endothelial cells (ECs), with upregulation of scavenger receptors, which 

facilitates their uptake, and expression of costimulatory molecules, which permit 

their efficient presentation to neoepitope-recognizing CD4+ T cells. These are 

selected outside the repertoire of autoreactive T cells, which were either clonally 

deleted or put under intrinsic or extrinsic regulatory control. B1) Once differentiated 

in effector TH2 cells, these cooperate in the differentiation of cognate non-

autoreactive B cells, recognizing neoformed epitopes with their B Cell Receptors 

(BCRs), into memory B and plasma cells. B2) Cooperation from neoepitope-specific 

TH2 cells is provided also to B cells which internalize HNE-modified macromolecular 

antigens via BCRs recognizing native self epitopes, but present both these and HNE-

related neoepitopes at their surface. This leads to the differentiation of plasma cells 

secreting true autoantibodies. C) APCs which uptake and process HNE-modified 

antigens also present the entire repertoire of HNE-modified and native self epitopes, 

thus recruiting into the adaptive response T cells  with autoreactive T cell receptors 

(TCRs), as well. Reinforcement to the expression of costimulatory molecules 

provided to these APCs from non-autoreactive T cells recognizing HNE-related 

neoepitopes helps them to overcome the anergy of autoreactive T cells recognizing 

native self epitopes, leading to the differentiation of autoreactive effector TH2 cells 

and autoantibody-secreting plasma cells. 

Figure 7. Molecular mimicry between the R-HNE-histidine and the 7-(2-oxo-heptyl)-

substituted 1,N2-etheno-type ONE-2'-deoxyguanosine adducts. Background shades 

of grey highlight shared or closely resembling functional groups implicated as the 
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constituents of a common epitope, responsible for the molecular mimicry between 

the two adducts and required for recognition by bispecific antibodies. Color-code: 

light grey, 2'-deoxyribose-like tetrahydrofuran rings; dark grey, hydroxyl groups; 

dotted grey, nitrogen-containing heterocyclic groups (histidine and guanine). Likely, 

also the shared alkyl (pentyl) groups of the HNE-histidine and ONE-2'-

deoxynucleoside adducts (in bold) are involved in the recognition by antibodies (2). 
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