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1Exploiting abstrationsin ost-sensitive abdutive problem solvingwith observations and ationsGianlua Torta a;�, Lua Anselma a andDaniele Theseider Dupr�e baDipartimento di Informatia, Universit�a diTorinoCorso Svizzera 185, 10149 Torino (Italy)E-mail: ftorta,anselmag�di.unito.itbDiSIT, Universit�a del Piemonte OrientaleViale Teresa Mihel 11, 15121 Alessandria (Italy)E-mail: dtd�di.unipmn.itSeveral explanation and interpretation tasks, suh asdiagnosis, plan reognition and image interpretation,an be formalized as abdutive and onsisteny rea-soning. The interpretation task is usually exeuted forthe purpose of performing ations, e.g., in diagnosis,repair ations or therapy. Some proposals address theproblem based on a task-independent representationof a domain whih inludes an ontology or taxonomyof hypotheses and observations. In this paper we relyon the same type of representation, and we point outthe role of abstrations in an iterative abdution pro-ess. At eah iteration, as in model-based diagnosis andtroubleshooting, our algorithm hooses to perform fur-ther observations or ations taking into aount theirosts and the likelihood of andidate hypotheses. Themain goal of the algorithm is to ensure disriminationamong hypotheses and, more importantly, to performthe appropriate ations for the ase at hand. We dis-uss an implementation of the proposed method andreport experimental results that support the onlu-sion that abstrations are indeed useful for the onsid-ered task.Keywords: Abdution, Abstration, Ations, Costs1. IntrodutionSeveral explanation and interpretation tasks,suh as diagnosis, plan reognition and image in-*Corresponding author: Gianlua Torta, Corso Svizzera185, 10149 Torino (Italy).

terpretation, an be formalized as abdutive rea-soning or related forms of nonmonotoni reason-ing. A number of approahes [4,14,7,17,2℄ addressthe problem based on a representation of a do-main whih inludes an ontology or taxonomy ofhypotheses.However, explanation or interpretation is usu-ally an intermediate step to a �nal goal, whih isperforming ations, suh as repair or therapy indiagnosis, or reating to the reognized plan, inplan reognition. In some ases, suh ations arealso needed, or, at least, useful, for disriminatingamong alternative explanations during the expla-nation/interpretation proess itself (e.g., trying arepair ation would either solve the problem or atleast provide the information that the orrespond-ing hypothesis is not the orret one).Ontologies have been proposed as the basis forlarge knowledge bases to be used also for otherproblem solving tasks (inluding planning, see [21,11℄), but, as noted in [6℄, they should be sharedamong di�erent problem solvers for related tasks;therefore, they should be developed independentlyof the reasoning task1: i.e., their struture shouldreet a natural representation of the domain, butit might not diretly provide the best struture fordiagnosis, interpretation, or planning and ating.In this paper we propose a novel approah wherea similar representation is adopted in the ontextof an iterative abdution proess where:{ further observations or ations (e.g. substitut-ing a suspet omponent in the system), as inmodel-based diagnosis [12℄ and troubleshoot-ing [13℄, an be proposed with the interme-diate goal of disriminating among andidateexplanations and the ultimate goal of per-1In perspetive, a shared ontology for di�erent reasoningtasks may be available on the Web.AI CommuniationsISSN 0921-7126, IOS Press. All rights reserved



2 G. Torta et al. / Exploiting abstrations in ost-sensitive abdutive problem solvingforming ations that are appropriate for thease at hand. Ations may be interleaved withobservations [10℄.{ The osts of observations are balaned withredued osts of the ations performed forsolving the problem.The osts assoiated with the results of abdu-tion, in a diagnosti setting, orrespond to the ostof repair ations or therapy, and are expeted toderease as long as more information is availableon the hypotheses; similarly, in a plan reognitionor in an interpretation task, the human or soft-ware agent using the results should ahieve an ad-vantage from a better disrimination of hypothe-ses or from more spei� hypotheses, leading to amore foused ation, possibly with redued osts| e.g., if hypotheses are threats to the agent withostly defense ations. In all settings, we intendthat some ations have to be taken based, in gen-eral, on the remaining andidate hypotheses. If theset of andidates is too broad or too abstrat, theagent is expeted to inur into higher ation ostsdue to (a ombination of) the following reasons:{ an ation whih is stronger than neessary istaken, in order to aount for all urrent pos-sibilities;{ unneessary ations are taken, e.g., repairingthe wrong part, taking the wrong therapy, de-fending from the wrong threat.The di�erent issues are related: disriminationmay be performed among hypotheses at the samelevel of abstration, but it ould also involve re-�ning hypotheses. In any ase, disrimination re-quires more observations, whose ost should bebalaned with the bene�ts, in terms of more suit-able ations, of better disrimination.The presene of a domain representation withIS-A abstrations has a signi�ant impat on thistrade-o�. The ost of observing the same phe-nomenon at di�erent levels of abstration is ex-peted to vary signi�antly; in fat, it may rangefrom subjetive information from a human (pa-tient or user) to more or less ostly medial or teh-nial tests, or, in an image interpretation task, itmay involve omputationally omplex image pro-essing, to be performed interatively with the rea-soning task, as suggested in [15℄. Note that, in anyase, the presene of abstrations should not pre-vent in general the ability to exploit detailed ob-servations and knowledge when onvenient [24℄.

In several settings, an observation whih is itselfexpensive, beause it onsumes resoures and timeto be performed, implies additional osts due tothe delay before taking an ation: breakdown ostsin diagnosing a physial system, risk of death ofthe patient in medial diagnosis, taking defensiveations too late, missing the opportunity of earn-ing money. Note that similar drawbaks result, atleast in some senarios, from time spent in om-puting an optimal or near-optimal solution, withrespet to performing a suboptimal ation earlier.Moreover, if the knowledge base has been de-signed independently of the explanation/ationtask (e.g., diagnosis and repair), it ould inludea detailed desription of the domain whih is notneessary for the task; more generally, the useful-ness of a detailed disrimination may depend onthe spei� ase at hand.Finally, human problem solvers have knowledgeand are able to reason on abstrat ations, suhas \taking an antibioti therapy" if the leadinghypothesis is \baterial infetion", and evaluatingtheir osts in a broad sense, for example inludingside e�ets, without neessarily reasoning on spe-i� instanes. Of ourse, an abstrat ation an-not be exeuted diretly, but abstrat knowledgemay be used to onsider it as a andidate \nextstep" before ommitting to a spei� instane.The main expeted bene�t in expliitly onsider-ing abstrations in the iterative abdution proessis a signi�ant redution of the omputational ostof deiding what to do next (observe or performan ation? whih observation or ation?), withoutsigni�antly inreasing the total ost of the obser-vations and ations performed to solve the prob-lem.In the following, we �rst desribe the knowledgewe expet to be available and de�ne the oneptof explanation of a set of observations in generalterms. Then, we desribe a spei� syntax for ex-pressing the knowledge (based on ausal graphs)and assoiate a preise semantis with suh syntaxin terms of propositional logi. The syntax and theassoiated semantis desribed in the paper are byno means the only possible hoie; however theymake the generi notion of explanation more on-rete for illustrative purposes, and they are usedfor building an implementation of the method.In the subsequent setions we desribe a basiiterative abdutive problem solving loop and weonentrate on the exeution of ations and their



G. Torta et al. / Exploiting abstrations in ost-sensitive abdutive problem solving 3estimated osts, and on the riterion for seletingthe next step in the loop: either performing a fur-ther observation at some level of detail, or an ab-strat or onrete ation. Then, we desribe thekey points of our implementation of the methodand present experimental results whih on�rmthe expetations about the advantages of using ab-strat hypotheses and ations.For the same purpose of making the frameworkonrete, in the problem solving loop we assumethat ations are \repair" ations, in the sense that,as in most forms of diagnosti problem solving,they make a orresponding hypothesis false, i.e.,they remove the ause of the problem (as far asauses are modeled in the domain), while obser-vations are evidene of the problem. In other set-tings, e.g., plan reognition, the purpose of theation, to be hosen appropriately for the situa-tion (whih an only be assessed through hypo-thetial reasoning), may be di�erent from makingthe hypothesized situation false. However, also inthese settings performing an ation is at least use-ful (like performing further observations) to on-�rm or dison�rm the orretness of the hypothe-sis, even though omputing the predited e�ets ofperforming the ation may be di�erent from \re-moving symptoms if the hypothesis was orret",as in the onrete framework desribed in the pa-per.2. Domain Representation2.1. HierarhiesThe basi elements of the domain model are aset of abduibles (i.e., assumptions, hypotheses)A = fA1; : : : ; Ang and a set of manifestations(i.e., observables) M = fM1; : : : ; Mmg.Eah abduible Ai is assoiated with an IS-Ahierarhy �(Ai) ontaining abstrat values of Aias well as their re�nements at multiple levels; sim-ilarly, eah manifestation Mj is assoiated with anIS-A hierarhy �(Mj).We assume that the diret re�nements v1; : : : ; vqof a value V in a hierarhy (either �(Ai) or �(Mj))are mutually exlusive, i.e., the � hierarhies aretrees; moreover, in a given situation, exatly oneground instane (i.e., leaf) of eah manifestationMj is true while, for eah abduible Ai, eitherone ground instane is true (i.e., the abduible is

present) or none of them is true (i.e., the abduibleis not present). The assumption that there is al-ways a true leaf for eah manifestationMj is madejust for onveniene, so that inreasing our knowl-edge about manifestations an always be viewedas a re�nement of the previous knowledge; learly,knowing that the root of a manifestation hierarhy�(Mj) is true represents omplete lak of knowl-edge about Mj (see setion 3).The overall goal of our problem solving proessis to perform ations that remove all of the ab-duibles whih are present in a given situation atan (approximately) minimum ost.The abduibles set vals(Ai ) of an abduible Aiis the set of all of the elements of the hierarhy�(Ai), while gndvals(Ai ) is the subset of vals(Ai )ontaining only ground abduibles, i.e., the leavesof hierarhy �(Ai). The de�nition of set vals (resp.gndvals) an be extended to a set of abduiblesby taking the union of the vals (resp. gndvals) ofeah abduible in the set; we also de�ne set vals(resp. gndvals) for an abduible value � belong-ing to the hierarhy �(Ai) by onsidering only thevalues (resp. ground values) belonging to the sub-hierarhy �(�) of �(Ai) rooted at �.The sets vals and gndvals are de�ned for mani-festations Mj in the same way as for abduibles.We assume that an a-priori probability p(a) isgiven for eah leaf value a of an abduible A: infat, we assume that di�erent abduibles are inde-pendent. Instead, the probability of an inner nodeis de�ned as the sum of the probabilities of its di-ret re�nements (whih, as said before, are mutu-ally exlusive).We also assoiate osts with the (ground) valuesof abduibles and the (abstrat) values of manifes-tations.The ost of a ground abduible value representsthe ost of the ation needed to remove (e.g., re-pair) it; in general, suh a ost may depend on theurrent status of the world, however, in this pa-per we assume that for eah leaf value a of an ab-duible, a ost r(a) is assigned, independently ofthe urrent hypotheses.As for the manifestations, let ! be an inter-nal value belonging to the IS-A hierarhy of Mj(i.e., ! 2 vals(Mj)ngndvals(Mj)); its ost o(!)is the ost of making the observation whih re�nesthe value ! into one of its hildren !1; : : : ; !q in�(Mj).



4 G. Torta et al. / Exploiting abstrations in ost-sensitive abdutive problem solving2.2. Explanatory KnowledgeThe hypotheses spae S(A) is the set of all ofthe ombinations  = f�1; : : : ; �rg of values drawnfrom zero or more distint hierarhies �(Ai) (i.e.,we allow the presene of multiple abduibles atthe same time) and, similarly, the observationsspae S(M) is the set of all of the ombinations� = f!1; : : : ; !mg of values drawn from eah of thedistint hierarhies �(Mj). In the paper,  will bereferred to as a andidate explanation (andidatefor short) and � as an observation.If  and A are two andidates with the samenumber r of abduible values, and eah value�i 2  is a (possibly improper) re�nement of avalue �A;i 2 A aording to the IS-A hierarhiesof abduibles, then we say that A is an abstra-tion of  and, onversely, that  is a re�nement ofA. A similar relationship an be de�ned betweentwo observations � and �A, by taking into aountthe IS-A hierarhies of manifestations.The relationship between abduibles and man-ifestations is de�ned by the explanatory domainknowledge KE � S(A) � S(M). Given an obser-vation � 2 S(M) and a andidate  2 S(A), thefat that (; �) 2 KE means that � is a possi-ble observation orresponding to andidate  (and,onversely, that  is a possible explanation for �).Our de�nition of KE as a relation between setsS(A) and S(M) does not imply that suh a rela-tion should be represented extensionally and thatthe reasoning algorithms should diretly manipu-late suh an extensional representation. In general,KE will be spei�ed intensionally with a multi-valued propositional or ausal model whose seman-tis orresponds to the extensional enumeration ofthe tuples in KE (in the next setion we disussthe intensional representation to whih we will re-fer in this paper). Moreover, also the reasoning in-volving KE may take plae at the syntati level,e.g., as propositional or ausal inferene.Given the above de�nition of KE , the set � ofandidate explanations (andidate set) for an ob-servation � 2 S(M) is:� = f 2 S(A) : (; �) 2 KEgAn important issue is that there may be too manyground explanations of the given observations.This problem may be solved muh more eÆientlythanks to the presene of abstrations in the modeland, in partiular, to the fat that abstrat as well

as ground abduibles may take part in explana-tions.A general riterion whih is suitable in this settingis the preferene for least presumptive explanations[18℄, whih generalize minimal (wrt set inlusion)explanations, in order to avoid both unneessaryassumptions, when a subset of assumptions is suÆ-ient to explain the observations, and assumptionsthat are unneessarily spei�, when a less spei�assumption is suÆient. An explanation  is morepresumptive than another explanation 0 if (alsobased on the IS-A hierarhies �(Ai))  implies 0.Guaranteeing that a set of explanations is theset of least presumptive explanations is, in general,omputationally omplex; in the following, we justrequire that the sets of andidate explanations �omputed during the problem solving proess donot ontain explanations that are more presump-tive than other members of �.3. A Causal Graph Representation FormalismIn Figure 1 we show a fragment of a �titiousmedial domain model, where we have adopted aausal graph formalism inspired by [7℄. In this se-tion we desribe the formalism and relate it to theexplanation knowledge KE through its semantis.3.1. Representation FormalismWe desribe the formalism (whih should befairly intuitive) through the example of Figure 1.On the left, there is the nosologial desription ofsome diseases, represented as three IS-A hierar-hies of abduibles (with roots D1 , D2 , and D3).For example, D1 :1 and D1 :2 are two re�nementsof D1 . The a-priori probabilities of the leaves ofabduibles (not shown in the �gure) are assumedto be 128 , exept for p(D1 :1 ) = 127 . The osts r ofthe ations that remove the ground abduibles areshown in the �gure.On the right, there are possible symptoms andpossible medial examinations (lab tests) to beperformed, represented as three IS-A hierarhies ofmanifestations (with roots Sym1 , LT1 , and LT2 ).Observation osts o assoiated with eah internalnode of manifestation hierarhies are the osts ofperforming the related laboratory test (we assumethat the ost of observing the presene of symp-toms suh as Sym1 is 0).



G. Torta et al. / Exploiting abstrations in ost-sensitive abdutive problem solving 5
D1

D1.1 D1.2

D1.2.1 D1.2.2

rc=4 rc=4

D2

D2.1 D2.2

rc=6 rc=8

D3

rc=15

LT1

LT1NegLT1Pos

LabTest1+ LabTest1++

oc=2

oc=8

LT2

LT2NegLT2Pos

oc=8

oc=12

LT2+ LT2++

Sym1Pres

Sym1

Sym1Abs

rc=8

Fig. 1. A (�titious) medial domain model.The relationships between abduibles and man-ifestations are represented by rightwards dashedarrows. For example, D1 auses LT2 to be posi-tive; D1 :2 auses LT1 to be positive, and its re-�nements D1 :2 :1 and D1 :2 :2 ause more spei�positive values of LT1 .3.2. Propositional SemantisIn order to map the graph-based formalismadopted in our example to the explanatory knowl-edge KE , we interpret the graph as a propositionaltheory TE ; the tuples of KE will then be straight-forwardly obtained from the logial models thatsatisfy suh a theory (see setion 3.3).First of all, eah value in a hierarhy �(Ai) or�(Mj) is mapped to a propositional variable. Ifvalue V has hildren v1; : : : ; vq in a hierarhy, anatural representation in TE would be:V , v1 _ : : : _ vq8i 6= j:(vi ^ vj) (1)expressing the fat that an abstrat value V anbe re�ned in exatly one of its hildren v1; : : : ; vq ,whih is what we stated in our disussion in se-tion 2.1.However, our aim in de�ning TE is to be ableto map its (2-valued) logial models as diretly aspossible to andidate explanations; in this respet,

the problem with the above translation is that ineah logial model of formulas (1) where V is true,also one hild vi must be true while, for the pur-pose of omputing explanations, we want to allowandidates where none of the hildren is true, i.e.,where V alone is an (abstrat) explanation.Consider, e.g., the graph of Figure 1 and assumethat we know that LT1Pos is true; we would like tohave an explanation where D1 :2 is true but noneof its hildren D1 :2 :1 and D1 :2 :2 is true, to avoidommitment.In order to handle this issue, for eah internalvalue V of eah hierarhy, we add a variable ukVto represent expliitly, in a 2-valued model, thefat that it is unknown whih re�nement of V istrue. If value V has hildren v1; : : : ; vq , instead offormulas (1), the following formulas are added toTE : V , v1 _ : : : _ vq _ ukV8i 6= j:(vi ^ vj); 8i:(vi ^ ukV ) (2)Note that this translation is not intended as a gen-eral, logially satisfatory approah to the logi ofknowledge; its purpose is to have abstrat explana-tions as 2-valued propositional interpretations (seesetion 5.1).The relationships between abduibles and man-ifestations are translated as follows, adapting theompletion semantis of abdution desribed in [8℄to take into aount the fat that abstrat assump-



6 G. Torta et al. / Exploiting abstrations in ost-sensitive abdutive problem solvingtions may not be preditive enough to entail ob-servations [14℄. Let ! be a value in a manifesta-tion hierarhy �(M), suh that in the ausal graphthe abduible values �1; : : : ; �k point to ! throughausal arrows (note that �1; : : : ; �k are, in gen-eral, values belonging to di�erent abduible hier-arhies). Moreover, let �1; : : : ; �l be abduible val-ues that point to possibly not distint anestors!1; : : : ; !l of !, suh that none of the desendantsof eah �i points to ! or an anestor of ! below!i. Then, we add the following formulas to TE :�1 _ : : : _ �k ) !! ) �1 _ : : : _ �k _ �1 _ : : : _ �l (3)Note that, if for a manifestation value ! there areno �is and no �js satisfying the above onditions,we do not add any formula. In other words, ! isinterpreted as a value whih is onsistent with anyabduible value �, as far as � does not expliitlypredit a value !0 suh that ! and !0 are mutu-ally exlusive aording to formulas (2). In Fig-ure 1, this role is played by Sym1Abs , LT1Neg andLT2Neg , whih do not have any inoming ausalar.Let us onsider some examples from the model ofFigure 1. Two abduible values point to LT2Pos ,namely D1 and D2 ; sine no abduible valuepoints to the (only) anestor LT2 of LT2Pos (i.e.,there are no �is in formula (3)), we add the fol-lowing formulas:D1 _ D2 ) LT2PosLT2Pos ) D1 _ D2Aording to the �rst formula, if LT2Pos is false,then also D1 and D2 are false, i.e., neither D1 ,nor D2 , nor any re�nements of suh diseases anbe explanations. If, on the other hand, LT2Pos isobserved to be true, then, aording to the seondformula, either D1 or D2 must be true; in turn,this may be due to, e.g., the fat that the re�ne-ment D1 :2 of D1 is true but, as disussed above, itmay also be the ase that ukD1 is true, i.e., we donot need to ommit to any partiular re�nementof D1 in order to explain LT2Pos .Let us now onsider a more omplex example,where the �is of formula (3) are involved. The onlyabduible value pointing to LT2+ is D2 :1 ; how-ever, D1 points to the anestor LT2Pos of LT2+;therefore we add the following formulas:D2 :1 ) LT2+LT2+) D2 :1 _ D1

The seond formula states that if LT2+ is true,then D2 :1 or D1 must be true: the �rst one, be-ause it diretly auses LT2+; the seond one be-ause it auses the anestor LT2Pos of LT2+ andits desendants do not predit more spei� values.In this way, although the abduible hierarhyof D1 predits the value of manifestation LT2 ata oarser level of granularity than the abduiblehierarhy of D2 , we still allow D1 to explain some�ne-grained values of LT2 , suh as LT2+.Adopting the hierarhial formulas (2) with ukVvariables has the bene�t of allowing abstrat ex-planations, as disussed above, but it also weakensthe theory TE . In partiular, let us assume thatan observation value ! is not unknown (i.e., oneof its hildren !j is known to be true), and thata hild �i of an abduible value � points to oneof the other hildren !h of !, h 6= j. Aording toformulas (2), it may still be possible that uk� istrue, i.e., that � is an abstrat explanation of !j .We would like to avoid � being an explanation of!j when (at least) one of its hildren, namely �i,is ertainly not true. To this end, we add to TE theformula::uk! ) (:!h ) :uk�) (4)The formula says that, unless the value of ! isunknown, if value !h is false then abduible value� is not unknown, i.e., � annot be an (abstrat)explanation.To illustrate this point, let us onsider valueLT1 in Figure 1, and let us assume that we haveexluded its hild LT1Pos by observing LT1Neg .Thanks to the presene of the formula::ukLT1 ) (:LT1Pos ) :ukD1 )the manifestation value LT1Neg annot be ex-plained by D1 alone, although it an still be ex-plained by one of its re�nements, namely D1 :1 .3.3. Mapping to the Explanatory KnowledgeOne the theory TE has been generated from theausal graph, its logial models are easily mappedto an explanatory knowledge KE � S(A) � S(M)as de�ned in setion 2.2.Let � = f!1; : : : ; !mg be any observation. Start-ing from theory TE , we want to de�ne the portionKE(�) of KE whih ontains the explanations of�. To this end, we start by onsidering the propo-sitional theory:



G. Torta et al. / Exploiting abstrations in ost-sensitive abdutive problem solving 7TE(�) = TE [ f!1 ^ : : : ^ !mgwhih asserts observation � = f!1; : : : ; !mg in TE .Let us denote asM(�) a logial model of TE(�),and restrit it to a partial modelM(�)A whih as-signs truth values only to the variables assoiatedwith abduibles:M(�)A =MA1 [ : : : [MAnwhere MAi is a truth assignment to eah variablein vals(Ai ). Note that M(�)A does not ontainthe truth assigments to the unknown variables uk�assoiated with the abduible values.From eah model M(�)A we an derive exatlyone andidate  as follows:{ if MAi assigns false to eah variable, thennone of the values vals(Ai ) of abduible Aibelongs to ;{ otherwise, let �i be the most spei� value ofAi suh that MAi assigns true to �i; then �ibelongs to .The andidate derived from M(�)A as we havejust explained is denoted as (M(�)A).The relation KE(�) ontaining the explanationsof � is thus de�ned as:KE(�) = f(; �) j 9M(�)A :  = (M(�)A)gi.e., the explanations of � are the andidates de-rived from the (partial) models M(�)A of TE(�).Finally, KE itself is de�ned as the union ofKE(�) for eah possible observation �. As statedbefore, our purpose is not that of expliitly enu-merating all of the tuples of relation KE , whihwould be infeasible for all but the smallest domainmodels. Instead, the above disussion implies thatwe an ompute the explanations of any observa-tion � by diretly manipulating the propositionaltheory TE .Let us onsider again an example from themodel of Figure 1. We may ask whether, aordingto the above de�nitions, andidate  = fD1 :2gis an explanation of observation � = fSym1Pres ;LT1 ; LT2g, i.e., whether (fD1 :2g; fSym1Pres;LT1 ; LT2g) 2 KE .It is easy to see that the propositional seman-tis of the graph inludes a logial model wherethe only abduible variables that are true areD1 , D1 :2 and ukD1 :2 , while the true manifesta-tion variables are Sym1Pres , LT1 , LT1Pos , LT2 ,LT2Pos plus other unknown variables and vari-ables assoiated with their re�nements.

input: a set of values '̂ = f!̂1; : : : ; !̂mgrepresenting the initial observations' := '̂� := [℄generate a set � of andidates  whih explain '̂loopif � = f;g then exit� := f� j 9i 2 � : � 2 ig� := ChooseNextStep(�, ', �)� := � � �if � = ! 2 '(', �) := Observe(', �, �, !)elseif � = � 2 �(', �) := Remove(', �, �, �)endifendFig. 2. Main loop of the troubleshooting algorithm.Clearly, if � = fSym1Pres ; LT1 ; LT2g, thisis also a logial model M(�) of TE(�) = TE [fSym1Pres; LT1 ; LT2g. Let us now onsider therestritionM(�)A ofM(�) to the A variables; byeliminating all the assignments to uk and mani-festation variables,M(�)A assigns true just to ab-duible variables D1 and D1 :2 , both belonging tothe portion MD1 of M(�)A.From the rules for deriving a andidate  fromM(�)A, it follows that (M(�)A) = fD1:2g, so we�nally onlude that (fD1 :2g; fSym1Pres; LT1 ;LT2g) 2 KE .From this example, we easily see that fD1 :2g isalso an explanation for, e.g., fSym1Pres; LT1Pos ;LT2g or fSym1Pres ; LT1Pos ; LT2Posg, wheremore re�ned observation values have been inludedinto the observation � that we want to explain.4. Method Desription4.1. Troubleshooting AlgorithmThe algorithm shown in Figure 2 illustrates theoverall approah to troubleshooting with abstra-tions we propose in this paper.We de�ne ' = f!1; : : : ; !mg as the urrentfringe over the manifestations, ontaining the mostspei� values !j known to be true so far for man-ifestations Mj , j = 1; : : : ;m.Sine we assume that at least one ground value of



8 G. Torta et al. / Exploiting abstrations in ost-sensitive abdutive problem solvingeah manifestation is true in eah situation, if wedo not have any information about the value of amanifestation Mj , its value in ' is the root of thehierarhy for Mj , i.e., !j = root(�(Mj )); other-wise, !j may be a more spei� value in vals(Mj ).An initial fringe '̂ of observations is given andthe fringe is updated as the problem solving pro-ess goes on. We also initialize the sequene �of observations/ations performed so far to theempty sequene [℄. The sequene � will be usefulfor ignoring ations that have already been per-formed [22℄.Given the set of initial observations '̂, a set ofandidate explanations � are generated.At eah iteration of the main loop, we �rst hekwhether � ontains just an empty andidate ;,meaning that the problem is solved and the algo-rithm an terminate. If this is not the ase, the set� of abduible values that appear in � is omputed.Then, we have to hoose whether to perform anobservation, in order to re�ne or disriminate theandidates, or to remove an abduible, by impli-itly performing the related ation (for example arepair ation in the troubleshooting ontext). Weselet what to do next based on the urrent andi-date set �, the fringe ' and the set of abduibles �.Clearly, this hoie is in general suboptimal, due tothe prohibitive omplexity of making an optimalhoie.If the hoie is to perform an observation, theandidate set � and the fringe ' are updated a-ording to its outome (all to funtion Observe).In partiular, if ! is a value in manifestation hier-arhy �(M) and the outome of observing ! is !k,then ! is replaed by !k as the value of M in ';the andidate set � is updated by generating theandidate explanations for the updated fringe.Also when the hoie is to remove an abduiblevalue �, � and ' must be updated (all to funtionRemove). The details of suh an update are givenin the next setion.4.2. Removing AbduiblesIn this setion we desribe how the fringe ' andthe andidate set � are updated when an abduiblevalue � is removed. We denote as '0 and �0 theupdated fringe and andidate set, respetively.Let us start by onsidering the update of '. Inorder to update ', the �rst step is a transformationof the previous andidate set �. In partiular, if �

is a ground abduible value a, we ompute a set�a by updating eah andidate  2 � as follows:0 = nfag(learly, if a 62  then 0 = ; note also that if = fag, then 0 = ;).Eah updated andidate 0 will make, in gen-eral, a set of possibly non-deterministi predi-tions f�1; : : : ; �qg on the values of manifesta-tions M, where eah predition is a set �i =f!i;1; : : : ; !i;mg. Eah andidate 0 represents allof its possible extensions and re�nements; there-fore the preditions of 0 are all the observa-tions �i that an be indued by any of its ex-tensions/re�nements. For example, the andidate0 = ; will make essentially no predition (exeptthe obvious fat that the roots of eah manifesta-tion are present), sine it an be extended to anyother andidate.Let us denote with LUB(0;Mj ) the value in�(Mj) that is the least upper bound of f!1;j ; : : : ;!q;jg (i.e., of the set of values for Mj preditedby 0). The new fringe predited by 0 will thenbe '(0) = fLUB(0;M1 ); : : : ;LUB(0;Mm)g (re-all that a value in the fringe for Mj is the mostspei� value of Mj known to be ertainly true).Similarly, we denote with LUB(�a ;Mj ) the valuein �(Mj) that is the least upper bound of the setfLUB(0;Mj ) : 0 2 �ag (i.e., of the set of valuesforMj predited by �a). The new fringe preditedby �a will therefore be '(�a ) = fLUB(�a ;M1 );: : : ; LUB(�a ;Mm)g.The updated fringe '0 should be set to '(�a);note however that '(�a) may ontain very weak(i.e., abstrat) values for manifestations, sine theymust be onsistent with all of the possible predi-tions made by all of the (modi�ed) andidates in�a. For this reason, it is useful to assume that, fora (possibly empty) subset M� of manifestations,it is possible to perform at no ost an immediatehek (at a given level of abstration) after the re-moval of an abduible.In partiular, following [23℄, we de�ne a utC(M) on a hierarhy �(M) to be a set of val-ues ! 2 vals(M ) suh that eah ground value ingndvals(M ) is an instane of exatly one ! 2 C(M)(i.e., a ut an be seen as a urve line whih makesan horizontal ut of the tree �(M) in two parts bytouhing a set of values at possibly di�erent levelsof abstration).The immediate hek on eah manifestation Mj 2



G. Torta et al. / Exploiting abstrations in ost-sensitive abdutive problem solving 9M� will result in exatly one (abstrat) value!j belonging to the ut C�(Mj) assoiated with�(Mj).For instane, in our running example, the manifes-tation Sym1 is assoiated with the ut fSym1Pres ;Sym1Absg, i.e., after performing an ation weknow for free whether the symptom persists(Sym1Pres) or it has disappeared (Sym1Abs). Forthe other manifestations LT1 and LT2 , we assumetrivial uts onsisting just in the roots of the re-spetive hierarhies.Note that a ut may in general onsist of bothground and abstrat values: for instane, fLT1Pos ;LT1Negg would be a valid ut for LT1 , althoughLT1Pos is an abstrat value, while LT1Neg is aground value.In general, the observed value !j 2 C�(Mj) ofa manifestation Mj 2 M� may be more preisethan the predited value LUB(�a ;Mj ) and it willtherefore be inluded in the new fringe '0.The updated andidate set �0 will be omputedby generating the explanations for '0, taking intoaount that the abduibles in the sequene � (in-luding a) will not be part of any explanation.Let us now onsider the exeution of an ationfor removing an abstrat abduible value �. Sine�, by being abstrat, is not assoiated with an a-tion whih ould remove it, we need to iterativelyremove the values a : a 2 gndvals(�) until weensure that � has indeed been removed (i.e., hasbeome false) in the andidates �.The algorithm starts by seleting an approxi-mately best value a to remove (see below). Afterthe removal of abduible value a, there are two pos-sible ases: either some manifestations inM� havehanged, or not. In the �rst ase, a was learly thereal re�nement of �, so the removal of � is om-plete. Otherwise, a new approximately best valuea0 is seleted, and so on until some manifestationsin M� hange. It is possible (in partiular whenwe have hosen to remove an adbuible � that wasnot present in the �rst plae), that we need to re-move all the ground values in gndvals(�), sine wedon't detet any hange in the manifestations.The seletion of the best value to remove isbased on a slight modi�ation of the eÆienymeasure de�ned in [13℄. In partiular, let us denotewith �a the subset of � whose andidates ontainthe abduible value a (i.e., �a = f 2 � : a 2 g);the eÆieny of value a is de�ned as:

ef (a) = p(�aj�)r(a)Intuitively, the eÆieny of a is inreased by theprobability that the abduible value a is in theandidate set, and it is dereased by the ost ofremoving it. The value a to be removed next is theone with the highest eÆieny.Independently of the sequene of values (a1; : : : ;aq) whih is atually removed, one the removal of� is omplete we an proeed to update ' and � asin the ase of a ground abduible value desribedabove.4.3. Estimated Cost of Removing AbduiblesIn the previous setion we have onsidered theatual removal of an abduible value, and its ef-fets on ' and �. In this setion we onsider theproblem of estimating the ost of suh a removalbefore atually exeuting any ation. This esti-mate is needed in order to hoose what should bedone next, i.e., observe or remove, in the all toChooseNextStep in Figure 2; we will explain suha hoie in detail in the next setion.If � is a ground abduible value a, then the ostr(a) is de�ned diretly in the model, so there isno need to estimate it. If, on the other hand, �is an abstrat value, its ost an be estimated byadapting to our setting a simple tehnique fromthe troubleshooting literature, namely the greedyapproah of [16℄. Let (a1; : : : ; aq) be the sequeneof ground values ai 2 gndvals(�) in dereasing ef-�ieny order aording to the formula introduedin the previous setion. The estimated ost of re-moving � from a andidate set � is omputed asfollows:r�(�) = qXi=1 r(ai) � �1� p(�j�) � p(� 62 �ij�)�(5)where �i is the andidate set after values a1; : : : ;ai�1 have been removed starting from andidateset �. When onvenient, we will use the notationr�(a) to denote the �xed ost r(a) de�ned in themodel for a ground abduible value a.To understand this de�nition, let us �rst notethat the most eÆient ground value a1 will alwaysbe removed at the ost r(a1): indeed, �1 = � andtherefore p(� 62 �1j�) = 0, sine � is onsideredfor removal just beause it appears in �. As for a2,its ost r(a2) will be paid, exept in ase, after



10 G. Torta et al. / Exploiting abstrations in ost-sensitive abdutive problem solvingremoving a1, the resulting andidate set �2 doesno longer ontain � (i.e., � has been removed byremoving a1, and this fat has been deteted - seebelow). Similarly, the ost of ai; i > 2, will be paidexept in ase, after removing a1; : : : ; ai�1, the re-sulting andidate set �i does no longer ontain �.The exat way p(� 62 �ij�) is omputed de-pends on the set of manifestationsM� that an beheked at no ost after the exeution of eah a-tion, and on the uts assoiated with suh heks.One possibility is to make the strong assumptionthat the removal of any value ai (when ai is atu-ally present) always makes the manifestations inM� hange; in suh a ase:p(� 62 �ij�) = i�1Xj=1 p(aj j�)i.e., �i will not ontain � provided one of the valuesa1; : : : ; ai�1 was present.If, on the other hand, we make the weaker as-sumption that the manifestations in M� hangeonly when the problem has been solved, then:p(� 62 �ij�) = �0 if f�g 62 �Pi�1j=1 p(aj j�) otherwise (6)sine, if there is no andidate ontaining just f�g,the problem will ertainly not be solved by remov-ing � while, otherwise, deteting that the prob-lem is solved is equal to deteting that � has beenremoved.The assumption we hoose to make (the strongor weak ones desribed above, as well as otherones) will not a�et the orretness of the algo-rithm, sine it is used just for estimating the ostof removing �. However, the assumption should re-et as far as possible the harateristis of the do-main (in this ase, the number and disriminationpower of manifestationsM�), in order to make theestimate as preise (and useful) as possible. Forthe example in setion 4.5 and for the experimen-tal evaluation in setion 5, we will use the weakerassumption.4.4. Choosing the Next StepAs disussed in setion 4.1, at eah iterationof the problem solving proess we need to hoosewhether to observe a value ! in the fringe ' or toremove an abduible � in the set �.For eah ! 2 ', we evaluate the estimated ost(!), whih is the sum of the ost o(!) of re�ning

! and the expeted ost of the andidate set afterre�ning !, i.e.:(!) = o(!) + qXk=1 p(!kj�) � (�k) (7)where �1; : : : ;�q are the possible andidate setsthat would result by observing ! and getting val-ues !1; : : : ; !q respetively; p(!kj�) is the proba-bility of getting value !k (omputed based on ur-rent andidates �); and (�k) is the estimated ostof �k as detailed below.For eah � 2 �, we evaluate the estimated ost(�), whih is the sum of the ost r�(�) of remov-ing � and the expeted ost of the andidate setafter removing �, i.e.:(�) = r�(�) + X�k2PW (�;�) p(�kj�) � (�k) (8)where PW (�; �) (for possible worlds) is an esti-mate of the possible andidate sets resulting fromthe removal of � and p(�kj�) is the probabilitythat the atual andidate set after removing � is�k.Let us onsider the set PW (�; �) in more detail.As in the atual removal of an abduible value, we�rst ompute the andidate set �� obtained by re-moving � from eah andidate in �. In order tosimplify our estimate, we onsider that eah andi-date 0 2 �� represents just itself, instead of rep-resenting also all of its extensions and re�nements,e.g., we do not interpret ; as the representation ofany possible andidate as we do in the atual ex-eution of ations, but just as the representationof the ase where none of the abduible values ispresent. This approximation makes the preditionsof andidates 0 muh more preise, improving theeÆieny of the estimate as we shall see shortly.We then onsider the preditions made by theandidates in �� on the M� manifestations at thelevel of the uts C�(Mj), and group all of the an-didates 0 whih make the same preditions intothe same possible world �k. The set PW (�; �) willontain all of the andidate sets �k � �� obtainedin this way.In general, the number of possible (non deter-ministi) preditions on manifestationsM� an beexponential in jM�j, and therefore PW (� ; �) maybe intratable to ompute if M� is large. How-ever, even when M� is large, it is suÆient thatthe preditions made by the andidates 0 2 �� onthe values of manifestations M� are deterministi



G. Torta et al. / Exploiting abstrations in ost-sensitive abdutive problem solving 11at the level of the uts C�(Mj); in suh a ase itis easy to see that jPW (� ; a)j is bounded by thenumber of andidates j�j.In both equations 7 and 8, we need to be ableto estimate the ost of the problem solving proessfor a andidate set �k.In order to ompute suh a ost, we adopt a teh-nique similar to the one adopted for estimatingr�(�) (setion 4.3), inspired by [16℄. In partiular,we start by omputing �k, i.e., the set of abduiblevalues that appear in �k; then we order suh ab-duibles in dereasing eÆieny order using the fol-lowing formula, whih was introdued previouslyfor ground abduible values but an be straightfor-wardly applied also to abstrat abduible values:ef�k (�) = p(��j�k)r�k (�)Let �̂k = (�1; : : : ; �q) be the sequene of abduiblevalues ordered by dereasing order of eÆieny.The ost of �k is omputed as follows:(�k) = qXi=1 r�k (�i) � p(�ik 6= f;g) (9)where �ik is the andidate set after abduible val-ues �1; : : : ; �i�1 have been removed starting fromandidate set �k.Note that the ost of eah abduible �i isweighted with the probability that the ation toremove it will atually be exeuted, i.e., that theandidate set �ik is not equal to f;g, whih or-responds to the situation where the problem hasalready been solved and this has been deteted, sothat the only andidate left is ;.As in the ase of the estimate of r�(�), theway p(�ik 6= f;g) is omputed depends on the setof manifestations M� and on the uts C�(Mj). Ifwe assume that, after eah ation exeution, it ispossible to hek at no ost whether the problemhas been solved or not, then:p(�ik 6= ;) = X02�k:0 6�f�1;:::;�i�1g p(0j�k)sine, if the real world status is a andidate0 2 � whih is ompletely removed by remov-ing �1; : : : ; �i�1, we must be aware (through ourheks) that the problem is solved, and �i musttherefore be equal to f;g.After we have omputed the expeted observa-tion osts (!) and expeted ation osts (�), we

simply hoose the observation or ation � suhthat:� = argmin�̂2('[�) [(�̂)℄i.e., the observation or ation of minimum ex-peted ost.4.5. ExampleIn order to get a better understanding of theproblem solving proess, let us onsider in detailthe exeution of the algorithm in Figure 2 on themedial example in Figure 1. A shemati view ofthe solution proess is shown in Figure 3.Initial observations. Let us suppose that an ini-tial manifestation of Sym1 is deteted, i.e., '̂ =fSym1Pres; LT1 ; LT2g. The initial andidate setis � = ffD1g; fD2g; fD3gg, representing the pos-sible alternative diagnoses (in fat, D1 , D2 andD3 explain Sym1Pres).First iteration. The abduibles to be onsideredfor removal are � = fD1 ; D2 ;D3g, while the fringe' is initially equal to '̂ = fSym1Pres ; LT1 ; LT2g.Figure 3 shows the possible hoies as dashed arsleaving the root of the graph; note that we don'tonsider the observation of Sym1Pres sine it isa ground value in the hierarhy of manifestationSym1 .The osts are estimated as follows. Regardingthe observation ! = LT1 , two outomes are possi-ble: the test is either negative (LT1Neg) or positive(LT1Pos). The andidate set �N resulting fromobserving LT1Neg is:�N = ffD1 :1g; fD2g; fD3ggIndeed, aording to setion 3.2, LT1Neg is ex-plained by any abduible value exept those thatpredit LT1Pos , namely D1 :2 and its hildren,i.e., exatly by the (least presumptive) andidatesontained in �N . Note that these andidates alsoexplain the manifestation values already in ', inpartiular Sym1Pres .On the other hand, if the outome is LT1Pos ,the andidate set is:�P = ffD1 :2ggsine, aording to equation (3) in setion 3.2, thefollowing holds:LT1Pos ) D1 :2The probability of �N given � is:
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Fig. 3. Graph representing the solution of the example problem. Dashed ars represent alternative hoies to onsider, whilesolid ars represent atual observations and ations.p(�N j�) = p(�N )p(�) = � 228 + 228 + 128 �728 = 57Similarly, the probability of �P given � is 27 .In order to estimate the ost (�N ) we �rst needto estimate r�N (D2 ) (the other abduible valuesin �N are ground, therefore their ost needs notbe estimated). The ground values D2 :1 , D2 :2 ofD2 have the same probability, and D2 :1 osts lessthan D2 :2 , thus we onsider them in the order ofeÆieny (D2 :1 ; D2 :2 ). We also note that, as soonas we solve the problem, we will immediately de-tet it at no ost from the symptom Sym1 (equa-tion (6)); the estimated ost is then omputed asfollows aording to equation (5):r(D2 :1 ) = 6; r(D2 :2 ) = 8p(D2 j�N ) = 25p(D2 62 �1jD2 ) = 0p(D2 62 �2jD2 ) = p(D2 :1 jD2 ) = 12r�N (D2 ) = r(D2 :1 ) + r(D2 :2 ) � �1� 25 � 12 � = 12:4The estimated ost (�N ) is omputed based onthe fat that the relative probabilities of the andi-dates fD1 :1g, fD2g, fD3g are 2, 2, 1, their ostsare 8, 12:4, 15 and therefore the sequene in orderof dereasing eÆieny is fD1 :1g, fD2g, fD3g.Then, aording to equation (9):(�N ) = 8 + 35 � 12:4 + 15 � 15 = 18:44Let us onsider the estimated ost of (�P ).First of all, we ompute r�P (D1 :2 ) as follows:r(D1 :2 :1 ) = 4; r(D1 :2 :2 ) = 4p(D1 :2 j�P ) = 1p(D1 :2 :1 jD1 :2 ) = 12p(D1 :2 62 �1jD1 :2 ) = 0p(D1 :2 62 �2jD1 :2 ) = p(D1 :2 :1 jD1 :2 ) = 12r�P (D1 :2 ) = r(D1 :2 :1 ) + r(D1 :2 :2 ) � �1� 1 � 12 )�= 6

Sine, aording to equation (9), (�P ) =r�P (D1 :2 ), it follows that (�P ) = 6. The totalexpeted ost assoiated with observation LT1 istherefore:(LT1 ) = 2 + 57 � (�N ) + 27 � (�P ) = 16:89aording to equation (7) and realling that theimmediate ost o(LT1 ) of performing LT1 is 2.Regarding the observation ! = LT2 , if the out-ome of this observation is negative (LT2Neg),then the resulting andidate set is �0N = ffD3gg.On the other hand, if the outome is positive(LT2Pos), the andidate set is �0P = ffD1g; fD2gg.The expeted osts are:(�0N ) = r(D3) = 15(�0P ) = r�0P (D1) + 13 � r�0P (D2)= 12:67 + 13 � 12:67 = 16:89and then:(LT2 ) = 8 + 17 � 15 + 67 � 16:89 = 24:62sine the immediate ost of performing LT2 is 8and the probabilities of �0N , �0P are, respetively,17 and 67 .The expeted ost assoiated with removing D1is as follows, aording to equation (8):(D1) = r�(D1 ) + 37 � (ffD2g; fD3gg)sine fD1g has probability 47 in �, and, if remov-ing fD1g does not solve the problem, the only re-maining possible world is �D1 = ffD2g; fD3gg.The omputation of r�(D1 ) gives 13:14. As forthe ost of �D1, its value is 11:33 + 13 � 15 = 16:33



G. Torta et al. / Exploiting abstrations in ost-sensitive abdutive problem solving 13given that D2 has higher eÆieny than D3 , andthat r�D1 (D2) = 11:33 and r(D3) = 15.The resulting expeted ost if we hoose to re-pair D1 is then:(D1 ) = 13:14 + 37 � 16:33 = 20:14Similarly, the expeted osts for removing D2 andD3 are:(D2 ) = 23:57(D3 ) = 29:48The estimated osts of the alternative hoiesare reported in Figure 3. We hoose to observeLT1 , whose expeted ost of 16:89 is the lowestone. Let us now suppose that the outome of LT1is positive (i.e., LT1Pos); the andidate set � isupdated to �P = ffD1:2gg and the fringe ' isupdated to fSym1Pres; LT1Pos ; LT2g.Seond iteration. We need to estimate the ostsof re�ning observations LT1Pos and LT2 , and theost of removing abduible D1:2. As shown in Fig-ure 3, the best hoie is to remove D1:2, with anexpeted ost of 6. In order to remove D1 :2 , westart removing its ground values D1 :2 :1 , D1 :2 :2in that order (sine they have the same ost andprobability, they have the same eÆieny, andthus the order is hosen arbitrarily). After remov-ing D1 :2 :1 , symptom Sym1 is still present (i.e.,Sym1Pres is still true), so we also remove D1 :2 :2 .Now, Sym1 disappears, and we onlude that theproblem has been solved. Overall, the ost paid forthis solution is 10: 2 for observing LT1 and 8 forremoving D1:2.5. Experimental Evaluation5.1. Implementation of the MethodWe have implemented the proposed approahas a Perl program. The models onsist in ausalgraphs G as spei�ed in setion 3; suh graphs arestored in the �le system in YAML format, and areloaded into appropriate memory data strutureswhen needed.A key part of the program, starting from theausal graph G of a model, generates the proposi-tional theory TE orresponding with the explana-tory knowledge KE , as desribed in setion 3.2.Suh a propositional theory is further ompiled

into an OBDD (Ordered Binary Deision Dia-gram), denoted as O(TE). OBDDs are a speial,anonial form for representing Boolean funtions[3℄ that makes some important reasoning tasks2tratable, with a linear or even onstant omplex-ity. Due to these features, OBDDs have been su-essfully employed for knowledge ompilation inseveral AI reasoning tasks, inluding planning [1℄and diagnosis [5,19℄.The implementation of the problem-solving al-gorithm shown in Figure 2 depends on the avail-ability of an explanation funtion that, given afringe ', omputes a set � of andidates that ex-plain the observations in '. Suh a funtion isneeded both to bootstrap the omputation, andto update the urrent andidate set � after a newobservation is made.Our implementation of the funtion is based onsuitable manipulations of OBDD O(TE). In par-tiular:1. we assert the truth of the fringe ' in O(TE);this operation an be done in linear timew.r.t. to the size of O(TE);2. we assert the (negation of the) removed ab-duibles in O(TE) (also in linear time);3. we extrat explanations from the resultingOBDD by employing a well-known algo-rithm for extrating minimal models from anOBDD [9℄ whose omplexity is exponential inthe worst ase, but usually tratable in pra-tie; suh an algorithm is slightly modi�ed inorder to enumerate the models that ontain aminimal set (w.r.t. set inlusion) of true ab-duible variables vals(A1) [ : : : [ vals(An),exluding ukV variables (in order to eliminatenon-least presumptive andidates).Given this funtion, the implementation of therest of the algorithm of Figure 2 was straightfor-wardly based on the ontents of setion 4.5.2. Results of the ExperimentsIn order to empirially evaluate our approah,we ran a set of experiments. A main goal wasomparing abdutive problem solving performedby exploiting abstrations and abdutive problemsolving not relying on abstrations, i.e., the ase2Inluding onsisteny hek, equivalene hek, andmost importantly enumeration of logial models.



14 G. Torta et al. / Exploiting abstrations in ost-sensitive abdutive problem solvingProblem set na nt ns h ba bt eb NaSMALL 5 3 3 2 3 2 3 49.4MEDIUM 8 3 3 2 4 2 6 104.8LARGE 8 3 3 2-3 4 2 7 166.8Table 1Parameters for problem setsProblem set toNOABSvsABS oABSvsNOABS toABSvsRND oRNDvsABSSMALL 3.829 1.117 4.417 2.166MEDIUM 8.265 1.121 1.789 3.354LARGE 18.622 1.101 1.919 5.663Table 2Comparison with no abstrations and with random hoieswhere the reasoning proess is restrited to formu-late only ground hypotheses. Moreover, we evalu-ated the ase where further lookahead in ost esti-mates is used, to get loser to the optimal hoie.The di�erent approahes were ompared in termsof omputation time and in terms of observationand ation osts to solve the problem.To this purpose, we implemented a generator ofrandom models. Models are generated based on anumber of parameters, inluding:{ na, nt, ns number of hierarhies of abduibles,tests and symptoms;{ h height of the hierarhies of abduibles andtests;{ ba, bt branhing of the hierarhies of ab-duibles and tests;{ eb (explanation branhing), number of ab-duibles explaining a symptom: a larger ebprovides more andidate explanations.Three sets, SMALL, MEDIUM and LARGE, of�ve models eah, were generated, with di�erentvalues for parameters, as from table 1, where Na isthe resulting average total number of nodes in theabduible hierarhies. Observation osts inreasewhen going deeper in the hierarhies, with an av-erage 50% inrease from one level to the next one.For eah model, a set of 50 ases was gener-ated randomly, based on the a-priori probabili-ties of abduibles; i.e., for eah ase, a set  ofground abduibles is generated | and, sine theirprobabilities are used, in a large fration of ases, is a singleton (i.e., a single fault in diagno-sis/troubleshooting). The observations � to be ex-plained for solving the ase are the onsequenesof .Table 2 ompares the results of three methods:

{ ABS is the method desribed in the paper;{ NOABS only uses ground hypotheses and a-tions;{ RND performs a random hoie of the nextobservation or ation (among the sets � and' of relevant ations and observations).The omparison is provided in terms of theaverage relative overhead of a method with re-spet to one another, in terms of omputationtime, and in terms of observation and ation ostpaid to atually solve the problem. For example,toNOABSvsABS provides the average relative timeoverhead of NOABS with respet to ABS, and wesee that for the SMALL problems, the omputa-tion time of NOABS is almost 4 times with re-spet to ABS, while the overhead of ABS in termsof observation and ation ost (oABSvsNOABS) is11.7%.We see that the additional ost of ABS with re-spet to NOABS is around 10% and does not in-rease with the size of models, while the runningtime of NOABS diverges with respet to the onefor ABS. We also see that ABS has an aept-able additional running time (less than double, forMEDIUM and LARGE) with respet to hoosingthe next observation or ation at random, whileRND has, as it an be expeted, unaeptable anddiverging additional osts.Table 3 reports results related to using, for theSMALL problem set, additional lookahead for es-timating the best hoie, i.e., trying to get loserto the optimal hoie.Column to provides the average relative over-head in time with respet to the ABS methods forvariants, with lookahead 2, 3 and 4, of the basiABS method (whih uses lookahead 1). Column



G. Torta et al. / Exploiting abstrations in ost-sensitive abdutive problem solving 15to o2 10.156 1.0463 27.355 1.0484 71.784 1.053Table 3Results for additional lookaheado provides the average relative overhead in ost(for observations and ations) of the ABS methodwith respet to the additional lookahead methods.As we an see, running times inrease signi�antlyand only provide minor ost savings.The experiments on�rm that the approah inthe paper provides aeptable additional observa-tion/ation osts, with respet to not using ab-strat hypotheses, with major savings on ompu-tation time. The experiments also illustrate thatusing further lookahead provides small savingswhile adding signi�ant omputational osts. Asobserved in the introdution, small or at least fea-sible omputation time may mean that an ation,even though possibly suboptimal, is taken beforeit is too late; in a spei� setting, the ost of de-laying ations might be measured in the same unitas observation and ation osts.6. ConlusionsIn this paper, we proposed a novel abdutiveproblem solving method whih extends previouswork on measurement seletion in Model-BasedReasoning and on deision-theoreti troubleshoot-ing. Unlike previous approahes to troubleshootingwhih do not exploit strutured representations ofthe domain (e.g., [13,16℄), our work is based ona representation with abstrations where both ab-strat observations and abstrat hypotheses aretaken into aount.We present a general abdutive problem solv-ing loop where, depending on the osts of obser-vations and the osts of ations to be taken, afurther observation may be hosen for disrimi-nating or re�ning urrent andidates, or an a-tion an be taken based on the urrent andi-date(s). In this respet, the paper is also a sig-ni�ant generalization of previous works whihuse ontologies or taxonomies of hypotheses forexplanation/interpretation purposes, but assumethat all of the observations are given in advane[4,14,7,17,2℄ or on�ne ations to a seond phase

[20℄. Interleaving observations and ations requiresmore sophistiated reasoning, but the inreasedexibility in the way the problem is solved allowsfor better solutions to be found; in the diagnosisdomain, this orresponds to the di�erene between(sequential) diagnosis and troubleshooting.Costs of observations and ations may be verydi�erent at di�erent levels of abstration: there isa trade-o� between paying the ost of further ob-servations (or more preise observations) and theone of performing unneessary ations, or unne-essarily general ations. Given that in pratialases omputing an optimal hoie is not feasible,we adopt a greedy, approximate approah frommodel-based diagnosis and deision-theoreti trou-bleshooting, basing the hoie on expeted osts.The approah is aimed at being general, beauseits motivations an be found in several tasks anddomains inluding tehnial and medial diagnosisas well as interpretation tasks suh as plan reogni-tion. Di�erent instanes may be derived with spe-i� approahes for representing domain knowl-edge and for generating and updating andidateexplanations based on observations.Nevertheless, in the paper we have also de�nedthe syntax and semantis of a spei� knowledgerepresentation formalism based on ausal graphs.We have foused on suh a representation for de-riving an algorithm for the omputation of expla-nations and for implementing the whole abdutiveproblem solving loop. The experiments performedwith the implemented system suggest that the useof abstration results in a very limited overheadon observation/ation osts, while the savings onomputation time are major.Referenes[1℄ P. Bertoli, A. Cimatti, M. Roveri, and P. Traverso.Planning in nondeterministi domains under partialobservability via symboli model heking. In Pro.IJCAI, pages 473{478, 2001.[2℄ Ph. Besnard, M.-O. Cordier, and Y. Moinard.Ontology-based inferene for ausal explanation. InKnowledge Siene, Engineering and Management,2nd Int. Conf., LNCS 4798, pages 153{164, 2007.[3℄ R. Bryant. Symboli boolean manipulation with or-dered binary-deision diagrams. ACM Computing Sur-veys, 24:293{318, 1992.[4℄ B. Chu and J. Reggia. Modeling diagnosis at multiplelevels of abstration I and II. International Journal ofIntelligent Systems, 6(6):617{671, 1991.
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