

# UNIVERSITÀ DEGLI STUDI DI TORINO 

Dipartimento di Matematica "Giuseppe Peano"<br>Scuola di Dottorato<br>in Scienze della Natura e Tecnologie Innovative<br>Dottorato di Ricerca in Matematica

Ciclo XXVII

# Microlocal and Spectral Analysis of <br> Tensor Products of Pseudodifferential Operators 

Tesi presentata da: Massimo Borsero<br>Tutor: Prof. Sandro Coriasco<br>Coordinatore del dottorato: Prof. Ezio Venturino<br>Anni accademici: 2012-2014<br>Settore scientifico-disciplinare di afferenza: MAT/05 - Analisi Matematica

## Acknowledgements

First and foremost, I wish to thank Prof. Sandro Coriasco for his guidance during my Ph.D. His support during the last three (eight...) years has been invaluable, and he also showed me what is the real passion behind the work of a mathematician. Many thanks also for the countless hours spent correcting my thesis and improving the exposition (all the remaining mistakes are mine).
I also wish to thank Prof. Jörg Seiler, who originally introduced me to bisingular operators, Dr. Ubertino Battisti, who is one of the best mathematicians with whom I could have hoped to work and Dr. René Schulz, whose mathematical curiosity is analogous to mine. It has been an honor and a pleasure to work with all of you.
I am grateful to Prof. Elmar Schrohe and Prof. Bert-Wolfgang Schulze for the critical remarks and suggestions which led to the improvement of my thesis.
I am indebted to the Doctoral School of Sciences and Innovative Technologies, Ph.D. program in Mathematics, of the University of Torino, coordinated by Prof. Ezio Venturino, and to the group of Microlocal and Timefrequency Analysis of the Department of Mathematics "Giuseppe Peano". I am grateful to all its past and present members, and, in particular, to Prof. Luigi Rodino, for many valuable discussions, for their trust in me and for their constant encouragement.
Last but not least, I wish to thank all the colleagues of the Ph.D. office. During my future life, it will be certainly very difficult to find other such good friends and interesting people. I will never forget the coffee and lunch breaks we spent together. Thank you Luigi, Evanthia, Maura, Giovanni, Elisa, Paolo, Michela C., Fausto, Steave, Erico, Giorgia, Giorgio, Michele, Martina, Paola, Filippo, Marina, Simon, Monica, Emma, Chiara, Alberto, Maria Anna, Fabio, Eleonora, Matteo, Carlotta, Michela Z., Manon and Azadeh. Although not exactly Ph.D. students, I also list in this group Roberta, Federico, Enrico and Bruno.
A special thanks goes to Luisa, she knows why.

## Contents

Introduction ..... iii
Notation ..... ix
1 Preliminaries ..... 1
1.1 Tensor products ..... 1
1.2 Bisingular operators ..... 4
2 Wave front sets ..... 13
2.1 The classical wave front set ..... 13
2.2 The bi-wave front set ..... 19
2.2.1 Classical microlocal analysis of bisingular operators ..... 19
2.2.2 Microlocal properties of bisingular operators ..... 22
2.2.3 Microelliptic properties of bisingular operators ..... 28
2.3 The $S G$ wave front set ..... 31
3 Spectral asymptotics ..... 37
3.1 Spectrum and functional calculus ..... 37
3.1.1 Complex powers of elliptic operators ..... 37
3.1.2 The spectral $\zeta$-function ..... 43
3.2 Asymptotics of $N_{A}$ spectral counting function of $A$ ..... 45
3.2.1 A Tauberian Theorem ..... 46
3.2.2 Stationary phase approximation ..... 47
3.2.3 Sharpness of the result ..... 55
3.3 Asymptotics of $N_{A_{1} \otimes A_{2}}$ spectral counting function of $A_{1} \otimes A_{2}$ ..... 56
3.3.1 The main Theorem ..... 57
3.3.2 Sharpness of the result ..... 64
3.3.3 Appendix. An alternative proof of Proposition 3.3 .3 ..... 72
4 Fredholm properties ..... 81
4.1 Fredholm operators ..... 81
4.2 Global bisingular operators ..... 83
4.3 Fredholm property for global bi-elliptic operators ..... 87
4.3.1 Sufficiency of bi-ellipticy ..... 88
4.3.2 Necessity of bi-ellipticy . . . . . . . . . . . . . . . . . 88

Bibliography 95

## Introduction

In this thesis we deal with the analysis of some microlocal properties of tensor products of pseudodifferential operators. More generally, we will also be concerned with the so-called class of bisingular pseudodifferential operators. In fact, calculi of bisingular pseudodifferential operators can be seen as a systematic approach for studying tensor products of pseudodifferential operators. Within the elliptic theory, a typical question would be the following. Given classical (or poly-homogeneous) pseudodifferential operators $A_{j} \in \mathrm{~L}_{\mathrm{cl}}^{\mu}\left(M_{1}\right)$ and $B_{j} \in \mathrm{~L}_{\mathrm{cl}}^{\nu}\left(M_{2}\right)$ for $j=1, \ldots, k, k \in \mathbb{N}$, on smooth manifolds $M_{1}$ and $M_{2}$, how can we characterize the existence of a parametrix, the Fredholm property or the invertibilty of the operator $A_{1} \otimes B_{1}+\cdots+A_{k} \otimes B_{k}$ ? Here, the tensor product $A \otimes B$ denotes an operator acting on functions defined on $M_{1} \times M_{2}$ with the property that

$$
(A \otimes B)(u \otimes v)=A u \otimes B v, \quad u \in \mathcal{C}^{\infty}\left(M_{1}\right), v \in \mathcal{C}^{\infty}\left(M_{2}\right)
$$

where $(f \otimes g)(x, y)=f(x) g(y)$ for any two functions $f$ and $g$ on $M_{1}$ and $M_{2}$, respectively. Such tensor products, in general, do not define a classical pseudodifferential operator on $M_{1} \times M_{2}$, hence the question cannot be answered using the standard pseudodifferential calculus only. Questions of this kind arose naturally, in particular, in the framework of the celebrated AtiyahSinger index theorem. In fact, M. F. Atiyah and I. M. Singer in AS68] were led to study systems of the form

$$
A \boxtimes B=\left(\begin{array}{cc}
A \otimes 1 & -1 \otimes B^{*} \\
1 \otimes B & A^{*} \otimes 1
\end{array}\right)
$$

acting on $\mathbb{C}^{2}$-valued functions over $M_{1} \times M_{2}$, where both $A$ and $B$ are zero-order classical pseudodifferential operators on $M_{1}$ and $M_{2}$, respectively. Again, $A \boxtimes B$ is not a classical pseudodifferential operator on $M_{1} \times M_{2}$. However, if both $A$ and $B$ are elliptic, then $A \boxtimes B$ is a Fredholm operator in $L^{2}\left(M_{1} \times M_{2}, \mathbb{C}^{2}\right)$ with index ind $A \boxtimes B=\operatorname{ind} A \cdot \operatorname{ind} B$.
Motivated by these phenomena, L. Rodino introduced in Rod75 a pseudodifferential calculus of operators over a product of smooth, closed (i.e., compact and without boundary) manifolds $M_{1} \times M_{2}$, containing such kinds of tensor product type operators. The elements of this calculus are defined as
linear and continuous operators $A=\operatorname{Op}(a)$ whose symbol satisfies, in local product-type coordinates, for all multi-indices $\alpha_{j}, \beta_{j}, j=1,2$, the estimates

$$
\left|D_{\xi_{1}}^{\alpha_{1}} D_{\xi_{2}}^{\alpha_{2}} D_{x_{1}}^{\beta_{1}} D_{x_{2}}^{\beta_{2}} a\left(x_{1}, x_{2}, \xi_{1}, \xi_{2}\right)\right| \leq C_{\alpha_{1}, \alpha_{2}, \beta_{1}, \beta_{2}}\left\langle\xi_{1}\right\rangle^{m_{1}-\left|\alpha_{1}\right|}\left\langle\xi_{2}\right\rangle^{m_{2}-\left|\alpha_{2}\right|} .
$$

As already pointed out, a fundamental example of a bisingular operator is the tensor product $A_{1} \otimes A_{2}$ of two pseudodifferential operators, with symbols in the Hörmander class, $A_{i} \in \mathrm{~L}^{m_{i}}\left(M_{i}\right), i=1$, 2 , while more complex examples include the double Cauchy integral operator studied by F. Nicola and L. Rodino in NR06. With each symbol of a bisingular operator $A$ we can associate two maps, namely

$$
\begin{aligned}
& \sigma^{1}(A): M_{1} \times \mathbb{R}^{n_{1}} \rightarrow \mathrm{~L}^{m_{2}}\left(M_{2}\right), \\
& \sigma^{2}(A): M_{2} \times \mathbb{R}^{n_{2}} \rightarrow \mathrm{~L}^{m_{1}}\left(M_{1}\right) .
\end{aligned}
$$

With these maps, bisingular calculus can be considered a calculus with operator-valued symbols, in the spirit of the theories developed by B.-W. Schulze, see, e.g., Sch98. In particular, ellipticity in the context of bisingular calculus refers to the invertibility, as pseudodifferential operators, of the two operator-valued principal symbols associated with each bisingular operator.
Another motivation for the study of bisingular operators derives from the study of the spectral asymptotics of the counting function of a pseudodifferential operator. Let $P$ be a positive self-adjoint operator with compact resolvent, such that the spectrum is discrete and formed only by eigenvalues with finite multiplicity. Let $\left\{\lambda_{j}\right\}_{j \in \mathbb{N}}=\sigma(P)$ be the set of the eigenvalues counted with multiplicity. The counting function $N_{P}(\tau)$ is defined as

$$
\begin{equation*}
N_{P}(\tau)=\sum_{\lambda_{j} \in \sigma(P) \cap[0, \tau)} 1=\sum_{\lambda_{j}<\tau} 1 \tag{0.1}
\end{equation*}
$$

The Weyl's law describes the asymptotic expansion of the counting function $N_{P}(\tau)$, as $\tau$ goes to infinity. In the standard settings, it is well known that that the leading term of the asymptotic expansion of 0.1 depends on the dimension of the manifold, on the order of the operator and on its principal symbol, see, e.g., L. Hörmander Hör85a and M. A. Shubin [Shu01 for the classical theory in the case of closed manifolds and the Shubin calculus on $\mathbb{R}^{n}$, respectively. See also Y. Safarov and D. Vassiliev SV97] and W. Arendt, R. Nittka, W. Peter and F. Steiner ANPS09 for a detailed analysis of Weyl's law and several developments. Weyl's laws can be obtained in many other situations, see, e.g., U. Battisti and S. Coriasco BC11], S. Coriasco and L. Maniccia CM13, F. Nicola Nic03 for $S G$ operators (on manifolds with ends and $\mathbb{R}^{n}$ ), P. Boggiatto and F. Nicola BN03 for anisotropic Shubin calculus, J. Gil and P. Loya [GL02] for conic manifolds, K. Datchev and S. Dyatlov DD13 for asymptotically hyperbolic manifolds, S. Moroianu

Mor08 for cusp manifolds, and many others.
Now consider $A=A_{1} \otimes A_{2}$, where $A_{j} \in \mathrm{~L}_{\mathrm{cl}}^{m_{j}}\left(M_{j}\right)$ is positive, self-adjoint and elliptic, for $j=1,2$, and $M_{1}, M_{2}$ are closed manifolds. Denoting by $\sigma\left(A_{1}\right)=\left\{\lambda_{k}\right\}_{k \in \mathbb{N}}$ and $\sigma\left(A_{2}\right)=\left\{\mu_{i}\right\}_{i \in \mathbb{N}}$, the eigenvalues of $A_{1}$ and $A_{2}$, counted with multiplicity, we easily obtain that

$$
\sigma(A)=\left\{\lambda_{k} \cdot \mu_{i}\right\}_{(k, i) \in(\mathbb{N} \times \mathbb{N})}
$$

Therefore,

$$
\begin{equation*}
N_{A}(\tau)=\sum_{\rho \in \sigma(A) \cap[0, \tau)} 1=\sum_{\lambda_{k} \cdot \mu_{i}<\tau} 1 \tag{0.2}
\end{equation*}
$$

Counting functions of the type (0.2) allow to use a spectral approach to a prominent type of lattice problem, the so-called Dirichlet divisors problem. Let us suppose that the spectrum of both $A_{1}$ and $A_{2}$ in $(0.2)$ is formed by all strictly positive natural numbers, all with multiplicity one. Then

$$
N_{A}(\tau)=\sum_{n \cdot m<\tau} 1=D(\tau)
$$

The function $D(\tau)$ is called Dirichlet divisor summatory function and it is straightforward to check that it amounts to the number of points with integer coordinates which lie in the first quadrant below the hyperbola $x y=\tau$. In 1849, Dirichlet proved that

$$
\begin{equation*}
D(\tau)=\tau \log \tau+(2 \gamma-1) \tau+\mathcal{O}\left(\tau^{1 / 2}\right), \quad \tau \rightarrow+\infty \tag{0.3}
\end{equation*}
$$

where $\gamma$ is the Euler-Mascheroni constant. Several papers aimed at finding the sharp remainder in (0.3), see A. Ivić, E. Krätzel, M. Kühleitner and W. G. Nowak IKKN06] for an overview on this type of problems. In Har16], G. H. Hardy proved that $\mathcal{O}\left(\tau^{\frac{1}{4}}\right)$ is a lower bound for the remainder in (0.3). It is conjectured that the sharp estimate in this case is $\mathcal{O}\left(\tau^{\frac{1}{4}+\epsilon}\right)$ or, more precisely, $\mathcal{O}\left(\tau^{1 / 4} \log \tau\right)$. The best known result, due to M. N. Huxley Hux03], is that the remainder is $\mathcal{O}\left(\tau^{\alpha}(\log \tau)^{\beta+1}\right)$, where

$$
\alpha=\frac{131}{416} \sim 0,3149 \ldots \quad \beta=\frac{18627}{8320} \sim 2,2513 \ldots
$$

In order to have a spectral interpretation of the Dirichlet divisor problem, U. Battisti, T. Gramchev, S. Pilipović and L. Rodino introduced in BGPR13 a global bisingular calculus based on Shubin calculus. Then, the Hermite-type operator

$$
H_{j}=\frac{1}{2}\left(-\partial_{x_{j}}^{2}+x_{j}^{2}\right)+\frac{1}{2}, \quad j=1,2
$$

was considered. Using Hermite polynomials, one can check that $\sigma\left(H_{j}\right)=$ $\{n\}_{n \in \mathbb{N}^{*}}, j=1,2$, all with multiplicity one. Therefore $\sigma\left(H_{1} \otimes H_{2}\right)=$ $\{n \cdot m\}_{(n, m) \in\left(\mathbb{N}^{*} \times \mathbb{N}^{*}\right)}$ and

$$
N_{H_{1} \otimes H_{2}}(\tau)=D(\tau)
$$

This spectral meaning of the Dirichlet divisor problem was one of the main motivations of the papers by U. Battisti, T. Gramchev, S. Pilipović and L. Rodino BGPR13 and by T. Gramchev, S. Pilipović, L. Rodino and J. Vindas GPRV14. For the connection between Dirichlet divisor problem and standard bisingular operators on the product of closed manifolds, see also U. Battisti Bat12].
The thesis is organized as follows. In Chapter 1 we recall the main definitions and properties of tensor products of operators, and we review the bisingular calculus on the product of two closed manifolds. In Chapter 2 we study the microlocal properties of bisingular operators. To do this, we define a suitable wave front set for such operators, called the bi-wave front set, which is the union of three components,

$$
\mathrm{WF}_{\mathrm{bi}}(u)=\mathrm{WF}_{\mathrm{bi}}^{1}(u) \cup \mathrm{WF}_{\mathrm{bi}}^{2}(u) \cup \mathrm{WF}_{\mathrm{bi}}^{12}(u),
$$

$u \in \mathcal{D}^{\prime}\left(M_{1} \times M_{2}\right), M_{1}, M_{2}$ closed manifolds. This definition is formulated using the calculus only, and is related to the classical Hörmander wave front set $\mathrm{WF}_{\mathrm{cl}}$, cfr. L. Hörmander Hör83], via the following inclusion

$$
\mathrm{WF}_{\mathrm{cl}}(u) \cap\left(\Omega_{1} \times \Omega_{2} \times\left(\mathbb{R}^{n_{1}} \backslash 0\right) \times\left(\mathbb{R}^{n_{2}} \backslash 0\right)\right) \subset \mathrm{WF}_{\mathrm{bi}}^{12}(u) .
$$

The following Theorem 1 is the main result of Chapter 2.
Theorem 1. Let $A$ be a bisingular operator, $u \in \mathcal{D}^{\prime}\left(\Omega_{1} \times \Omega_{2}\right)$. Then,

$$
\mathrm{WF}_{\mathrm{bi}}(A u) \subset \mathrm{WF}_{\mathrm{bi}}(u) .
$$

Theorem 1 shows the bi-wave front set is microlocal with respect to bisingular operators. Then, we define an appropriate notion of characteristic set for a bisingular operator $A$, given again as a union of three components, namely

$$
\operatorname{Char}_{\mathrm{bi}}(A):=\operatorname{Char}_{\mathrm{bi}}^{1}(A) \cup \operatorname{Char}_{\mathrm{bi}}^{2}(A) \cup \operatorname{Char}_{\mathrm{bi}}^{12}(A) .
$$

With this notion, we prove a microellipticity result for the 1 - and 2-components of the bi-wave front set, which is the content of the next Theorem 2.

Theorem 2. Let $A$ be a bisingular operator, $u \in \mathcal{D}^{\prime}\left(\Omega_{1} \times \Omega_{2}\right)$. Then,

$$
\mathrm{WF}_{\mathrm{bi}}^{j}(u) \subseteq \operatorname{Char}_{\mathrm{bi}}^{j}(A) \cup \mathrm{WF}_{\mathrm{bi}}^{j}(A u), \quad j=1,2 .
$$

In Chapter 3 we study the spectral asymptotics of the tensor product of two pseudodifferential operators $A_{1} \otimes A_{2}$. Theorem 3 below is the main result of Chapter 3

Theorem 3. Let $M_{1}, M_{2}$ be two closed manifolds of dimension $n_{1}, n_{2}$, respectively. Let $A=A_{1} \otimes A_{2}$, where $A_{j} \in \mathrm{~L}_{\mathrm{cl}}^{m_{j}}\left(M_{j}\right), m_{j}>0, j=1,2$,
are positive, self-adjoint, invertible operators, with $\frac{n_{1}}{m_{1}}>\frac{n_{2}}{m_{2}}$. Then, for $\tau \rightarrow+\infty$,

$$
N_{A}(\tau)= \begin{cases}\frac{C_{1}}{n_{1}} \zeta\left(A_{2}, \frac{n_{1}}{m_{1}}\right) \tau^{\frac{n_{1}}{m_{1}}}+\mathcal{O}\left(\tau^{\frac{n_{1}-1}{m_{1}}}\right) & \text { if } \frac{n_{2}}{m_{2}}<\frac{n_{1}-1}{m_{1}} \\ \frac{C_{1}}{n_{1}} \zeta\left(A_{2}, \frac{n_{1}}{m_{1}}\right) \tau^{\frac{n_{1}}{m_{1}}}+\mathcal{O}\left(\tau^{\frac{n_{1}-1}{m_{1}}} \log \tau\right) & \text { if } \frac{n_{2}}{m_{2}}=\frac{n_{1}-1}{m_{1}} \\ \frac{C_{1}}{n_{1}} \zeta\left(A_{2}, \frac{n_{1}}{m_{1}}\right) \tau^{\frac{n_{1}}{m_{1}}}+\mathcal{O}\left(\tau^{\frac{n_{2}}{m_{2}}}\right) & \text { if } \frac{n_{2}}{m_{2}}>\frac{n_{1}-1}{m_{1}}\end{cases}
$$

where $\zeta$ is the spectral $\zeta$-function and

$$
C_{1}=\frac{1}{(2 \pi)^{n_{1}}} \iint_{\mathbb{S}^{*} M_{1}} \frac{d \theta_{1} d x_{1}}{\left[a_{m_{1}}\left(x_{1}, \theta_{1}\right)\right]^{\frac{n_{1}}{m_{1}}}} .
$$

Moreover, using spherical harmonics, we show that the estimates in Theorem 3 are sharp. A similar statement holds for the tensor product of Shubin operators. In the aforementioned paper GPRV14, T. Gramchev, S. Pilipović, L. Rodino and J. Vindas studied the same class of operators, and proved a slightly weaker estimate. Namely, under the same assumptions of Theorem 3, they showed that

$$
N_{A}(\tau)=\frac{C_{1}}{n_{1}} \zeta\left(A_{2}, \frac{n_{1}}{m_{1}}\right) \tau^{\frac{n_{1}}{m_{1}}}+\mathcal{O}\left(\tau^{\delta}\right), \quad \tau \rightarrow+\infty
$$

where $\max \left\{\frac{n_{1}-1}{m_{1}}, \frac{n_{2}}{m_{2}}\right\}<\delta<\frac{n_{1}}{m_{1}}$.
In Chapter 4, we consider the global bisingular operators based on Shubin pseudodifferential operators, introduced by U. Battisti, T. Gramchev, S. Pilipović and L. Rodino in BGPR13. In particular, we investigate the relationship between ellipticity and Fredholm property for such operators. As a consequence of the existence of parametrices to elliptic operators, elliptic operators act as Fredholm operators in a certain scale of naturally associated $L^{2}$-Sobolev spaces. The main result of Chapter 4 is the reverse statement, given in the next Theorem 4.

Theorem 4. Let $A \in \mathrm{G}_{\mathrm{cl}}^{0,0}\left(\mathbb{R}^{n_{1}}, \mathbb{R}^{n_{2}}\right)$, i.e. a classical global bisingular operator, induce a Fredholm operator from $L^{2}\left(\mathbb{R}^{n_{1}} \times \mathbb{R}^{n_{2}}\right)$ to itself. Then, $A$ is elliptic.

Loosely speaking, this means that the ellipticity condition used in the calculus is "optimal". The relationship between Fredholm property and ellipticity, in a quite general context of "abstract" pseudodifferential operators, has been studied, e.g., by J. Seiler in Sei12].

## Notation

$x=\left(x_{1}, \ldots, x_{n}\right)$ will denote a point in $\mathbb{R}^{n}$. If $x, y \in \mathbb{R}^{n}$, then

$$
\begin{aligned}
x \cdot y & =x_{1} y_{1}+\cdots+x_{n} y_{n} \\
|x| & =(x \cdot x)^{1 / 2}=\left(x_{1}^{2}+\cdots+x_{n}^{2}\right)^{1 / 2} \\
\langle x\rangle & =\sqrt{1+|x|^{2}} \\
d x & =d x_{1} \cdots d x_{n} \\
d x & =(2 \pi)^{-n} d x=(2 \pi)^{-n} d x_{1} \cdots d x_{n}
\end{aligned}
$$

Given $\mathbb{N}=\mathbb{Z}_{+}=\{0,1,2, \ldots\}$, we define a multi-index $\alpha$ as

$$
\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in \mathbb{Z}_{+}^{n} .
$$

If $\alpha$ and $\beta$ are both multi-indices, then

$$
\begin{array}{rlr}
|\alpha| & =\alpha_{1}+\cdots+\alpha_{n}, \\
\beta & \leq \alpha \Leftrightarrow \text { for all } i, 1 \leq i \leq n: \beta_{i} \leq \alpha_{i} \\
\alpha \pm \beta & =\left(\alpha_{1} \pm \beta_{1}, \cdots, \alpha_{n} \pm \beta_{n}\right), \\
\binom{\alpha}{\beta} & =\binom{\alpha_{1}}{\beta_{1}} \cdots\binom{\alpha_{n}}{\beta_{n}}, \\
\partial^{\alpha} & =\left(\frac{\partial}{\partial x_{1}}\right)^{\alpha_{1}} \cdots\left(\frac{\partial}{\partial x_{n}}\right)^{\alpha_{n}}=\partial_{1}^{\alpha_{1}} \cdots \partial_{n}^{\alpha_{n}} .
\end{array}
$$

If $x \in \mathbb{R}^{n}$ and $\alpha \in \mathbb{Z}_{+}^{n}$, then

$$
x^{\alpha}=x_{1}^{\alpha_{1}} \cdots x_{n}^{\alpha_{n}}
$$

where, if $\alpha_{j}=0$, we set $x_{j}^{\alpha_{j}}=1$. We define the operator $D^{\alpha}$, with $\alpha \in \mathbb{Z}_{+}^{n}$, as :

$$
D^{\alpha}=i^{-|\alpha|} \partial^{\alpha}=\left(\frac{1}{i} \frac{\partial}{\partial x_{1}}\right)^{\alpha_{1}} \cdots\left(\frac{1}{i} \frac{\partial}{\partial x_{n}}\right)^{\alpha_{n}}=\left(-i \partial_{1}\right)^{\alpha_{1}} \cdots\left(-i \partial_{n}\right)^{\alpha_{n}} .
$$

Let $u \in L^{1}\left(\mathbb{R}^{n}\right)$. The Fourier transform of $u$ is

$$
\hat{u}(\xi)=\mathcal{F}\{u\}(\xi)=\int_{\mathbb{R}^{n}} e^{-i x \cdot \xi} u(x) d x
$$

and the inverse Fourier transform of $u$ is

$$
\mathcal{F}^{-1}\{u\}(\xi)=\int_{\mathbb{R}^{n}} e^{i x \cdot \xi} u(\xi) \nexists \xi=(2 \pi)^{-n} \int_{\mathbb{R}^{n}} e^{i x \cdot \xi} u(\xi) d \xi
$$

Let $f, g: X \rightarrow \mathbb{R}_{+}$. We write $f \prec g$ if there exists $C>0$ such that

$$
f(x) \leq C g(x)
$$

for all $x \in X . C$ is independent from $x$, but can possibly depend from various parameters which intervene in the definition of $f$ and $g$. We write $f \sim g$ if $f \prec g$ and $g \prec f$.

Definition 0.0.1. Let $A, B, C$ be three sets such that $C \subset A \times B$. Then,

$$
C \circ B:=\{a \in A: \text { exists } b \in B:(a, b) \in C\},
$$

that is, $C$ is considered as a relation acting on $B$.
Let $\Omega$ be and open subset of $\mathbb{R}^{n}$. Then $\Omega_{\Delta}$ is the diagonal in $\Omega \times \Omega$, defined as

$$
\Omega_{\Delta}=\{(x, x): x \in \Omega\}
$$

Let $\Gamma \subset \mathbb{R}^{n} \backslash 0$ be an open set containing $x_{0}$. $\Gamma$ is called conic with respect to $x_{0}$ if $\lambda x_{0} \in \Gamma$ for all $\lambda>0$.
A manifold $M$ is called closed if it is compact and without boundary.
We denote by $\mathbb{S}^{n}$ the $n$-dimensional sphere of radius 1 , equipped with the metric induced by the standard Euclidean metric on $\mathbb{R}^{n+1}$, i.e.

$$
\mathbb{S}^{n}=\left\{x \in \mathbb{R}^{n+1}:|x|=1\right\}
$$

Definition 0.0.2. Let $\Omega \subset \mathbb{R}^{n}$ an open set, and $m \in \mathbb{R}$. $\mathrm{S}^{m}(\Omega)$ is the set of all $a \in \mathcal{C}^{\infty}\left(\Omega \times \mathbb{R}^{n}\right)$ such that, for all multi-indices $\alpha, \beta \in \mathbb{Z}_{+}^{n}$ and for all compact subsets $K \subset \Omega$, there exists a constant $C_{\alpha, \beta, K}>0$ such that

$$
\left|D_{\xi}^{\alpha} D_{x}^{\beta} a(x, \xi)\right| \leq C_{\alpha, \beta, K}\langle\xi\rangle^{m-|\alpha|}
$$

for all $x \in K, \xi \in \mathbb{R}^{n}$. An element of $\mathrm{S}^{m}(\Omega)$ is called a (Hörmander-type) symbol. A linear operator $A: \mathcal{C}_{0}^{\infty}\left(\mathbb{R}^{n}\right) \rightarrow \mathcal{C}^{\infty}\left(\mathbb{R}^{n}\right)$ is called a pseudodifferential operator if it can be written in the form

$$
A(u)(x)=(\operatorname{Op}(a)[u])(x)=\int_{\mathbb{R}^{n}} e^{i x \cdot \xi} a(x, \xi) \hat{u}(\xi) d \xi
$$

where $a \in \mathrm{~S}^{m}(\Omega)$ and $\hat{u}$ denotes the Fourier transform of $u$. $\mathrm{L}^{m}(\Omega)$ denotes the set of all pseudodifferential operators with symbol in $\mathrm{S}^{m}(\Omega)$. Moreover, we set

$$
\begin{aligned}
\mathrm{S}^{\infty}(\Omega) & :=\bigcup_{m} \mathrm{~S}^{m}(\Omega), \\
\mathrm{S}^{-\infty}(\Omega) & :=\bigcap_{m} \mathrm{~S}^{m}(\Omega),
\end{aligned}
$$

and denote by $\mathrm{L}^{\infty}(\Omega), \mathrm{L}^{-\infty}(\Omega)$, respectively, the corresponding class of operators. The operators in $\mathrm{L}^{-\infty}(\Omega)$ are called smoothing operators.

The class of operators in Definition 0.0 .2 can be extended to operators on a closed manifold $M$. For all the details and properties of the Hörmander calculus of pseudodifferential operators we refer to [Hör85b, KG82]. Let $a, b \in \mathrm{~S}^{\infty}(M)$. We write $a=b$ modulo $\mathrm{S}^{-\infty}$ if $a-b \in \mathrm{~S}^{-\infty}(M)$. Let $A, B \in \mathrm{~L}^{\infty}(M)$. We write $A=B$ modulo $\mathrm{L}^{-\infty}$ if $A-B \in \mathrm{~L}^{-\infty}(M)$.

## Chapter 1

## Preliminaries

In this fist chapter we will give a brief survey on tensor products and bisingular operators.

### 1.1 Tensor products

We begin by recalling the well-known notion of tensor product for functions and distributions. First, we recall an important inequality which will be used throughout the whole thesis

Proposition 1.1.1 (Peetre's inequality). Let $x, y \in \mathbb{R}^{n}$. For any $s \in \mathbb{R}$ one has

$$
\langle x\rangle^{s} \leq 2^{|s|}\langle x-y\rangle^{|s|}\langle y\rangle^{s}
$$

Proof. The triangular inequality gives

$$
(1+|x|) \leq(1+|x-y|+|y|) \leq(1+|x-y|)(1+|y|)
$$

so that

$$
\langle x\rangle^{2} \leq(1+|x|)^{2} \leq(1+|x-y|)^{2}(1+|y|)^{2}
$$

On the other hand,

$$
(1+|y|)^{2} \leq(1+|y|)^{2}+(1-|y|)^{2}=2\langle y\rangle^{2}
$$

and estimating $(1+|x-y|)^{2}$ in the same way, we thus get

$$
\langle x\rangle^{2} \leq 2^{2}\langle x-y\rangle^{2}\langle y\rangle^{2}
$$

If $s=0$, the claim is obvious. If $s>0$, we obtain our claim by raising the previous inequality to the power $\frac{s}{2}$. If $s<0$, we exchange $x$ and $y$ to get

$$
\langle y\rangle^{-s} \leq 2^{-s}\langle y-x\rangle^{-s}\langle x\rangle^{-s}
$$

which can be rewritten

$$
\langle x\rangle^{s} \leq 2^{-s}\langle x-y\rangle^{-s}\langle y\rangle^{s} .
$$

Definition 1.1.2. Let $\Omega_{i}$, be an open subset of $\mathbb{R}^{n_{i}}$, and $f_{i} \in \mathcal{C}\left(\Omega_{i}\right), i=1,2$. Then, the function $f_{1} \otimes f_{2} \in \mathcal{C}\left(\Omega_{1} \times \Omega_{2}\right), \Omega_{1} \times \Omega_{2} \subset \mathbb{R}^{n_{1}+n_{2}}$ defined by

$$
\left(f_{1} \otimes f_{2}\right)\left(x_{1}, x_{2}\right):=f_{1}\left(x_{1}\right) f_{2}\left(x_{2}\right),
$$

$x_{i} \in \Omega_{i}, i=1,2$, is called the tensor product of $f_{1}$ and $f_{2}$.
To extend the previous definition to distributions, it is enough to observe that $f_{1} \otimes f_{2} \in \mathcal{C}\left(\Omega_{1} \times \Omega_{2}\right), \varphi_{i} \in \mathcal{C}_{0}^{\infty}\left(\Omega_{i}\right), i=1,2$, imply

$$
\int\left(f_{1} \otimes f_{2}\right)\left(\varphi_{1} \otimes \varphi_{2}\right) d x_{1} d x_{2}=\left(\int u_{1} \varphi_{1} d x_{1}\right) \cdot\left(\int u_{2} \varphi_{2} d x_{2}\right) .
$$

We have the following
Theorem 1.1.3. Let $u_{i} \in \mathcal{D}^{\prime}\left(\Omega_{i}\right), i=1,2$. Then, there exists a unique $u \in \mathcal{D}^{\prime}\left(\Omega_{1} \times \Omega_{2}\right)$, denoted by $u_{1} \otimes u_{2}$, such that

1. $\left(u_{1} \otimes u_{2}\right)\left(\varphi_{1} \otimes \varphi_{2}\right)=u_{1}\left(\varphi_{1}\right) u_{2}\left(\varphi_{2}\right)$, for all $\varphi_{i} \in \mathcal{C}_{0}^{\infty}\left(\Omega_{i}\right), i=1,2$.
2. $\left(u_{1} \otimes u_{2}\right)(\varphi)=u_{1}\left(u_{2}\left(\varphi\left(x_{1}, \cdot\right)\right)\right)=u_{2}\left(u_{1}\left(\varphi\left(\cdot, x_{2}\right)\right)\right)$, for all $\varphi \in \mathcal{C}_{0}^{\infty}\left(\Omega_{1} \times\right.$ $\Omega_{2}$ ).

The distribution $u_{1} \otimes u_{2}$ is called the tensor product of $u_{1}$ and $u_{2}$. If $u_{i}$ is in $\mathcal{E}^{\prime}\left(\Omega_{i}\right), i=1,2$, the same formulae are valid for $\varphi_{i} \in \mathcal{C}^{\infty}\left(\Omega_{i}\right), i=1,2$, $\varphi \in \mathcal{C}^{\infty}\left(\Omega_{1} \times \Omega_{2}\right)$.

Every function $f \in \mathcal{C}\left(\Omega_{1} \times \Omega_{2}\right)$ defines an integral operator $A_{f}: \mathcal{C}_{0}\left(\Omega_{2}\right) \rightarrow$ $\mathcal{C}\left(\Omega_{1}\right)$ by

$$
A_{f} \varphi\left(x_{1}\right):=\int f\left(x_{1}, x_{2}\right) \varphi\left(x_{2}\right) d x_{2} \quad \varphi \in \mathcal{C}_{0}\left(\Omega_{2}\right), x_{1} \in \Omega_{1}
$$

This result can be extended to arbitrary distributions via the following Theorem:

Theorem 1.1.4 (The Schwartz kernel theorem). Every distribution $K_{A} \in \mathcal{D}^{\prime}\left(\Omega_{1} \times \Omega_{2}\right)$ defines a continuous linear map $A: \mathcal{C}_{0}^{\infty}\left(\Omega_{2}\right) \rightarrow \mathcal{D}^{\prime}\left(\Omega_{1}\right)$ by

$$
\begin{equation*}
\langle A \varphi, \psi\rangle:=\left\langle K_{A}, \psi \otimes \varphi\right\rangle \quad \psi \in \mathcal{C}_{0}^{\infty}\left(\Omega_{1}\right), \varphi \in \mathcal{C}_{0}^{\infty}\left(\Omega_{2}\right) . \tag{1.1}
\end{equation*}
$$

Conversely, for every such linear map $A$, there is one and only one distribution $K_{A}$ such that (1.1) is valid. $K_{A}$ is called the (Schwartz) kernel of A.

Proposition 1.1.5. Let $K_{A} \in \mathcal{D}^{\prime}\left(\Omega_{1} \times \Omega_{2}\right)$ be the kernel of of $A$. Then

$$
\operatorname{supp} A u \subset \operatorname{supp} K_{A} \circ \operatorname{supp} u, \quad u \in \mathcal{C}_{0}^{\infty}\left(\Omega_{2}\right)
$$

where $\operatorname{supp} K_{A} \subset \Omega_{1} \times \Omega_{2}$ is considered as a relation acting on $\operatorname{supp} u \subset \Omega_{2}$.
Proof. From Definition 0.0.1, we have

$$
\operatorname{supp} K_{A} \circ \operatorname{supp} u=\left\{x_{1} \in \Omega_{1}: \text { exists } x_{2} \in \operatorname{supp} u:\left(x_{1}, x_{2}\right) \in \operatorname{supp} K_{A}\right\}
$$

Notice that this is a closed set, since $\operatorname{supp} u$ is compact. Now assume that $x_{1} \notin \operatorname{supp} K_{A} \circ \operatorname{supp} u$. Then we can find a neighbourhood $V$ of $x_{1}$ such that

$$
V \cap\left(\operatorname{supp} K_{A} \circ \operatorname{supp} u\right)=\emptyset
$$

If $v \in \mathcal{C}_{0}^{\infty}(V)$, then

$$
\operatorname{supp}(v \otimes u) \cap \operatorname{supp} K_{A}=\emptyset
$$

which proves $\langle A u, v\rangle=0$ by Theorem 1.1.4, i.e. $A u=0$ in $V$, which is our claim.

Theorem 1.1.6. Let $K_{A} \in \mathcal{C}^{\infty}\left(\Omega_{1} \times \Omega_{2}\right)$. Then, the map $A$ defined by (1.1) has a continuous extension from $\mathcal{E}^{\prime}\left(\Omega_{2}\right)$ to $\mathcal{C}^{\infty}\left(\Omega_{1}\right)$ defined by

$$
A u\left(x_{1}\right):=u\left(K_{A}\left(x_{1} \cdot\right)\right), \quad u \in \mathcal{E}^{\prime}\left(\Omega_{1}\right) x_{1} \in \Omega_{1}
$$

Conversely, every continuous linear map $A: \mathcal{E}^{\prime}\left(\Omega_{2}\right) \rightarrow \mathcal{C}^{\infty}\left(\Omega_{1}\right)$ is defined in this way by a kernel $K_{A} \in \mathcal{C}^{\infty}\left(\Omega_{1} \times \Omega_{2}\right)$. We now give some examples.

Example 1.1.7. The kernel of the identity map $I: \mathcal{C}_{0}^{\infty}(\Omega) \rightarrow \mathcal{C}_{0}^{\infty}(\Omega), \Omega$ open subset in $\mathbb{R}^{n}$, is the distribution

$$
\begin{equation*}
\left\langle K_{I}, \varphi\right\rangle=\int \varphi(x, x) d x, \quad \varphi \in \mathcal{C}_{0}^{\infty}(\Omega \times \Omega) \tag{1.2}
\end{equation*}
$$

with support in $\Omega_{\Delta}$, the diagonal in $\Omega \times \Omega$.
Example 1.1.8. Let $f: \Omega_{1} \rightarrow \Omega_{2}$ be a continuous map and $A \psi:=\psi \circ f$, $\psi \in \mathcal{C}_{0}^{\infty}\left(\Omega_{2}\right)$. Then the kernel is given by

$$
\begin{equation*}
\left\langle K_{A}, \varphi\right\rangle=\int \varphi(x, f(x)) d x, \quad \varphi \in \mathcal{C}_{0}^{\infty}(\Omega \times \Omega) \tag{1.3}
\end{equation*}
$$

with support in the graph of $f$.
Example 1.1.9. Let $A$ be a pseudodifferential operator in $\mathrm{L}^{m}(\Omega), \Omega$ open subset in $\mathbb{R}^{n}$. Then, the kernel $K_{A}$ is the distribution

$$
K_{A}(x, y)=\int e^{i(x-y) \cdot \xi} a(x, \xi) d \xi
$$

where $a \in \mathrm{~S}^{m}(\Omega)$ is the symbol of $A$.

The kernel $K_{A}$ from example 1.1 .9 has one important property, given in the next result.

Proposition 1.1.10. Let $A \in \mathrm{~L}^{m}(\Omega)$, and $\Omega_{\Delta}$ the diagonal in $\Omega \times \Omega$. Then $K_{A} \in \mathcal{C}^{\infty}\left((\Omega \times \Omega) \backslash \Omega_{\Delta}\right)$.

Remark 1.1.11. From Example 1.1.9 and Proposition 1.1 .10 it follows that operators in $\mathrm{L}^{-\infty}(M)$, where $M$ is a closed manifold, have a $\mathcal{C}^{\infty}$ kernel.

Definition 1.1.12. A map $f: B \rightarrow C$ is called proper if, for every compact $K \subset C, f^{-1}(K) \subset B$ is a compact set. An operator $A \in \mathrm{~L}^{m}(\Omega), \Omega$ open subset in $\mathbb{R}^{n}$, is properly supported if both its standard projections $\pi_{1}, \pi_{2}$ : $\operatorname{supp}\left(K_{A}\right) \rightarrow \Omega$ are proper maps.

We conclude the section with an important property:
Proposition 1.1.13. Let $A_{i}$ be a boundend linear operator with spectrum $\sigma\left(A_{i}\right), i=1,2$. Then $\sigma\left(A_{1} \otimes A_{2}\right)=\sigma\left(A_{1}\right) \sigma\left(A_{2}\right)$.

### 1.2 Bisingular operators

In the previous Section we recalled the basic properties of tensor products of operators. We now study a more general class of operators on the product of two closed manifolds, originally introduced by L. Rodino in [Rod75], which includes tensor products as a special case. Here, $\Omega_{i}, i=1,2$, denote open domains of $\mathbb{R}^{n_{i}}$.

Definition 1.2.1. $\mathrm{S}^{m_{1}, m_{2}}\left(\Omega_{1}, \Omega_{2}\right)$ is the set of all $a \in \mathcal{C}^{\infty}\left(\Omega_{1} \times \Omega_{2} \times \mathbb{R}^{n_{1}} \times\right.$ $\left.\mathbb{R}^{n_{2}}\right)$ such that, for all multi-indices $\alpha_{i}, \beta_{i} \in \mathbb{Z}_{+}^{n}$ and for all compact subsets $K_{i} \subset \Omega_{i}, i=1,2$, there exists a constant $C_{\alpha_{1}, \alpha_{2}, \beta_{1}, \beta_{2}, K_{1}, K_{2}}>0$ such that

$$
\left|D_{\xi_{1}}^{\alpha_{1}} D_{\xi_{2}}^{\alpha_{2}} D_{x_{1}}^{\beta_{1}} D_{x_{2}}^{\beta_{2}} a\left(x_{1}, x_{2}, \xi_{1}, \xi_{2}\right)\right| \leq C_{\alpha_{1}, \alpha_{2}, \beta_{1}, \beta_{2}, K_{1}, K_{2}}\left\langle\xi_{1}\right\rangle^{m_{1}-\left|\alpha_{1}\right|}\left\langle\xi_{2}\right\rangle^{m_{2}-\left|\alpha_{2}\right|}
$$

for all $x_{i} \in K_{i}, \xi_{i} \in \mathbb{R}^{n_{i}}, i=1,2$. An element of $\mathrm{S}^{m_{1}, m_{2}}\left(\Omega_{1}, \Omega_{2}\right)$ is called a bi-symbol.

Definition 1.2.2. A linear operator $A: \mathcal{C}_{0}^{\infty}\left(\mathbb{R}^{n_{1}} \times \mathbb{R}^{n_{2}}\right) \rightarrow \mathcal{C}^{\infty}\left(\mathbb{R}^{n_{1}} \times \mathbb{R}^{n_{2}}\right)$ is called a bisingular operator if it can be written in the form

$$
\begin{aligned}
& A(u)\left(x_{1}, x_{2}\right)=(\operatorname{Op}(a)[u])\left(x_{1}, x_{2}\right) \\
& \quad=\frac{1}{(2 \pi)^{n_{1}+n_{2}}} \int_{\mathbb{R}^{n_{1}}} \int_{\mathbb{R}^{n_{2}}} e^{i\left(x_{1} \cdot \xi_{1}+x_{2} \cdot \xi_{2}\right)} a\left(x_{1}, x_{2}, \xi_{1}, \xi_{2}\right) \hat{u}\left(\xi_{1}, \xi_{2}\right) d \xi_{1} d \xi_{2}
\end{aligned}
$$

where $a \in \mathrm{~S}^{m_{1}, m_{2}}\left(\Omega_{1}, \Omega_{2}\right)$ and $\hat{u}$ denotes the Fourier transform of $u$. Here and in the sequel we denote by the same letters the elements of $\mathcal{C}_{0}^{\infty}\left(\Omega_{1} \times\right.$ $\left.\Omega_{2}\right)$ and their trivial extension outside $\Omega_{1} \times \Omega_{2}$ to elements of $\mathcal{C}_{0}^{\infty}\left(\mathbb{R}^{n_{1}} \times \mathbb{R}^{n_{2}}\right)$.
$L^{m_{1}, m_{2}}\left(\Omega_{1}, \Omega_{2}\right)$ denotes the set of all bisingular operators with bi-symbol in $\mathrm{S}^{m_{1}, m_{2}}\left(\Omega_{1}, \Omega_{2}\right)$. Moreover, we set

$$
\begin{aligned}
\mathrm{S}^{\infty, \infty}\left(\Omega_{1}, \Omega_{2}\right) & :=\bigcup_{m_{1}, m_{2}} \mathrm{~S}^{m_{1}, m_{2}}\left(\Omega_{1}, \Omega_{2}\right), \\
\mathrm{S}^{-\infty,-\infty}\left(\Omega_{1}, \Omega_{2}\right) & :=\bigcap_{m_{1}, m_{2}} \mathrm{~S}^{m_{1}, m_{2}}\left(\Omega_{1}, \Omega_{2}\right)
\end{aligned}
$$

and denote by $\mathrm{L}^{\infty, \infty}\left(\Omega_{1}, \Omega_{2}\right)$, $\mathrm{L}^{-\infty,-\infty}\left(\Omega_{1}, \Omega_{2}\right)$, respectively, the corresponding class of operators. The operators in $\mathrm{L}^{-\infty,-\infty}\left(\Omega_{1}, \Omega_{2}\right)$ are called smoothing operators.

A simple and fundamental example of a bisingular operator is the tensor product $A_{1} \otimes A_{2}$ of two pseudodifferential operators, with symbols in the Hörmander class, $A_{i} \in \mathrm{~L}^{m_{i}}\left(\Omega_{i}\right), i=1,2$, while more complex examples include the vector-tensor product $A_{1} \boxtimes A_{2}$ studied in Rod75, and the double Cauchy integral operator studied in NR06.
We associate with every $a \in \mathrm{~S}^{m_{1}, m_{2}}\left(\overline{\Omega_{1}}, \Omega_{2}\right)$ the two maps

$$
\begin{aligned}
& A^{1}: \Omega_{1} \times \mathbb{R}^{n_{1}} \rightarrow \mathrm{~L}^{m_{2}}\left(\Omega_{2}\right):\left(x_{1}, \xi_{1}\right) \mapsto a\left(x_{1}, x_{2}, \xi_{1}, D_{2}\right), \\
& A^{2}: \Omega_{2} \times \mathbb{R}^{n_{2}} \rightarrow \mathrm{~L}^{m_{1}}\left(\Omega_{1}\right):\left(x_{2}, \xi_{2}\right) \mapsto a\left(x_{1}, x_{2}, D_{1}, \xi_{2}\right) .
\end{aligned}
$$

For $a \in \mathrm{~S}^{m_{1}, m_{2}}\left(\Omega_{1}, \Omega_{2}\right), b \in \mathrm{~S}^{p_{1}, p_{2}}\left(\Omega_{1}, \Omega_{2}\right)$ we also set, for fixed $\left(x_{1}, \xi_{1}\right),\left(x_{2}, \xi_{2}\right)$, respectively,

$$
\begin{aligned}
& a \circ_{1} b\left(x_{1}, x_{2}, \xi_{1}, D_{2}\right):=\left(A^{1} \circ B^{1}\right)\left(x_{1}, x_{2}, \xi_{1}, D_{2}\right) \in \mathrm{L}^{m_{2}+p_{2}}\left(\Omega_{2}\right), \\
& a \circ_{2} b\left(x_{1}, x_{2}, D_{1}, \xi_{2}\right):=\left(A^{2} \circ B^{2}\right)\left(x_{1}, x_{2}, D_{1}, \xi_{2}\right) \in \mathrm{L}^{m_{1}+p_{1}}\left(\Omega_{1}\right) .
\end{aligned}
$$

Remark 1.2.3. In view of the definitions of $a \circ_{1} b$ and $a \circ_{2} b$, the bisingular calculus can also be considered a form of calculus with vector-valued symbols. General vector-valued calculi have been deeply studied, for example, by B.-W. Schulze in [Sch98].

Definition 1.2.4. Let $a \in \mathrm{~S}^{m_{1}, m_{2}}\left(\Omega_{1}, \Omega_{2}\right)$. Then, $a$ has a homogeneous principal bi-symbol if
i) there exists $a_{m_{1} ; \text {. }} \in \mathrm{S}^{m_{1}, m_{2}}\left(\Omega_{1}, \Omega_{2}\right)$ such that

$$
\begin{aligned}
a_{m_{1} ; \cdot}\left(x_{1}, x_{2}, t \xi_{1}, \xi_{2}\right) & =t^{m_{1}} a_{m_{1} ; \cdot( }\left(x_{1}, x_{2}, \xi_{1}, \xi_{2}\right), \forall x_{1}, x_{2}, \xi_{2}, \forall\left|\xi_{1}\right|>1, t>0, \\
a-\psi_{1}\left(\xi_{1}\right) a_{m_{1} ; \cdot} & \in \mathrm{S}^{m_{1}-1, m_{2}}
\end{aligned}
$$

where $\psi_{1}$ is an 0-excision function; moreover, $a_{m_{1} ; \cdot}\left(x_{1}, x_{2}, \xi_{1}, D_{2}\right)$ belongs to $\mathrm{L}_{\mathrm{cl}}^{m_{2}}\left(\Omega_{2}\right)^{1}$.

[^0]ii) there exists $a_{\cdot ; m_{2}} \in \mathrm{~S}^{m_{1}, m_{2}}\left(\Omega_{1}, \Omega_{2}\right)$ such that
\[

$$
\begin{aligned}
& a_{\cdot ; m_{2}}\left(x_{1}, x_{2}, \xi_{1}, t \xi_{2}\right)=t^{m_{2}} a_{\cdot ; m_{2}}\left(x_{1}, x_{2}, \xi_{1}, \xi_{2}\right), \forall x_{1}, x_{2}, \xi_{1}, \forall\left|\xi_{2}\right|>1, t>0 \\
& \quad a-\psi_{2}\left(\xi_{2}\right) a_{\cdot ; m_{2}} \in \mathrm{~S}^{m_{1}, m_{2}-1}
\end{aligned}
$$
\]

where $\psi_{2}$ is an 0-excision function; moreover, $a_{\cdot ; m_{2}}\left(x_{1}, x_{2}, D_{1}, \xi_{2}\right)$ belongs to $\mathrm{L}_{\mathrm{cl}}^{m_{1}}\left(\Omega_{1}\right)$;
iii) the symbols $a_{m_{1} ; \text {; }}$ and $a_{\cdot ; m_{2}}$ have the same leading term, that is there exists $a_{m_{1} ; m_{2}}$ such that

$$
\begin{aligned}
& a_{m_{1} ;-}-\psi_{2}\left(\xi_{2}\right) a_{m_{1} ; m_{2}} \in \mathrm{~S}^{m_{1}, m_{2}-1}\left(\Omega_{1}, \Omega_{2}\right) \\
& a_{\cdot ; m_{2}}-\psi_{1}\left(\xi_{1}\right) a_{m_{1} ; m_{2}} \in \operatorname{S}^{m_{1}-1, m_{2}}\left(\Omega_{1}, \Omega_{2}\right)
\end{aligned}
$$

and

$$
a-\psi_{1} a_{m_{1} ; \cdot}-\psi_{2} a_{\cdot ; m_{2}}+\psi_{1} \psi_{2} a_{m_{1} ; m_{2}} \in \mathrm{~S}^{m_{1}-1, m_{2}-1}\left(\Omega_{1}, \Omega_{2}\right)
$$

The bi-symbols which admit a full bi-homogeneous expansion in $\xi_{1}$ and $\xi_{2}$ are called classical bi-symbols, their class is denoted by $\mathrm{S}_{\mathrm{cl}}^{m_{1}, m_{2}}\left(\Omega_{1}, \Omega_{2}\right)$, and the corresponding operator class by $\mathrm{L}_{\mathrm{cl}}^{m_{1}, m_{2}}\left(\Omega_{1}, \Omega_{2}\right)$. For more details on the classical bi-symbols, we refer to NR06.

The previous Definition 1.2 .4 implies that, given $A \in \mathrm{~L}_{\mathrm{cl}}^{m_{1}, m_{2}}\left(\Omega_{1}, \Omega_{2}\right)$, we can introduce maps $\sigma^{1}, \sigma^{2}, \sigma^{12}$ as

$$
\begin{aligned}
\sigma^{1}(A) & : T^{*} \Omega_{1} \backslash 0 \rightarrow \mathrm{~L}_{\mathrm{cl}}^{m_{2}}\left(\Omega_{2}\right):\left(x_{1}, \xi_{1}\right) \mapsto a_{m_{1} ; \cdot}\left(x_{1}, x_{2}, \xi_{1}, D_{2}\right) \\
\sigma^{2}(A) & : T^{*} \Omega_{2} \backslash 0 \rightarrow \mathrm{~L}_{\mathrm{cl}}^{m_{1}}\left(\Omega_{1}\right):\left(x_{2}, \xi_{2}\right) \mapsto a_{\cdot ; m_{2}}\left(x_{1}, x_{2}, D_{1}, \xi_{2}\right) \\
\sigma^{12}(A) & :\left(T^{*} \Omega_{1} \backslash 0\right) \times\left(T^{*} \Omega_{2} \backslash 0\right) \rightarrow \mathbb{C}:\left(x_{1}, x_{2}, \xi_{1}, \xi_{2}\right) \mapsto a_{m_{1} ; m_{2}}\left(x_{1}, x_{2}, \xi_{1}, \xi_{2}\right) .
\end{aligned}
$$

In this way, denoting by $\sigma(P)(x, \xi)$ the principal symbol of a pseudodifferential operator $P$, we have

$$
\begin{aligned}
\sigma\left(\sigma^{1}(A)\left(x_{1}, \xi_{1}\right)\right)\left(x_{2}, \xi_{2}\right) & =\sigma\left(\sigma^{2}(A)\left(x_{2}, \xi_{2}\right)\right)\left(x_{1}, \xi_{1}\right) \\
& =\sigma^{12}(A)\left(x_{1}, x_{2}, \xi_{1}, \xi_{2}\right)=a_{m_{1} ; m_{2}}\left(x_{1}, x_{2}, \xi_{1}, \xi_{2}\right)
\end{aligned}
$$

We call the couple $\left(\sigma^{1}(A), \sigma^{2}(A)\right)$ the principal bi-symbol of $A$.
In the sequel, we only consider bisingular operators on the product of two closed manifolds $\Omega_{1}, \Omega_{2}$. They are defined as above in local coordinates. For such operators, there exists a notion of ellipticity, called bi-ellipticity (for more details, see again $\operatorname{Rod} 75]$ ).

Definition 1.2.5. Let $A \in \mathrm{~L}_{\mathrm{cl}}^{m_{1}, m_{2}}\left(\Omega_{1}, \Omega_{2}\right)$. We say that $A$ is bi-elliptic if
i) $\sigma^{12}(A)\left(v_{1}, v_{2}\right) \neq 0$ for all $\left(v_{1}, v_{2}\right) \in\left(T^{*} \Omega_{1} \backslash 0\right) \times\left(T^{*} \Omega_{2} \backslash 0\right)$;
ii) $\sigma^{1}(A)\left(v_{1}\right)$ is invertible as an operator in $\mathrm{L}_{\mathrm{cl}}^{m_{2}}\left(\Omega_{2}\right)$ for all $v_{1} \in T^{*} \Omega_{1} \backslash 0$, with inverse in $\mathrm{L}_{\mathrm{cl}}^{-m_{2}}\left(\Omega_{2}\right)$;
iii) $\sigma^{2}(A)\left(v_{2}\right)$ is invertible as an operator in $\mathrm{L}_{\mathrm{cl}}^{m_{1}}\left(\Omega_{1}\right)$ for all $v_{2} \in T^{*} \Omega_{2} \backslash 0$, with inverse in $\mathrm{L}_{\mathrm{cl}}^{-m_{1}}\left(\Omega_{1}\right)$.

Basic examples of classical bi-singular operators are described below.
Example 1.2.6. Consider the differential operator

$$
A=\sum_{\substack{\left|\beta_{1}\right| \leq m_{1} \\\left|\beta_{2}\right| \leq m_{2}}} c_{\beta_{1}, \beta_{2}}\left(x_{1}, x_{2}\right) D_{1}^{\beta_{1}} D_{2}^{\beta_{2}}
$$

where $\beta_{1}, \beta_{2} \in \mathcal{C}^{\infty}\left(\Omega_{1} \times \Omega_{2}\right)$. In this case

$$
\begin{align*}
\sigma^{1}(A)\left(x_{1}, \xi_{1}\right) & =\sum_{\substack{\left|\beta_{1}\right|=m_{1} \\
\left|\beta_{2}\right| \leq m_{2}}} c_{\beta_{1}, \beta_{2}}\left(x_{1}, x_{2}\right) \xi_{1}^{\beta_{1}} D_{2}^{\beta_{2}},  \tag{1.4}\\
\sigma^{2}(A)\left(x_{2}, \xi_{2}\right) & =\sum_{\substack{\left|\beta_{1}\right| \leq m_{1} \\
\left|\beta_{2}\right|=m_{2}}} c_{\beta_{1}, \beta_{2}}\left(x_{1}, x_{2}\right) D_{1}^{\beta_{1}} \xi_{2}^{\beta_{2}} . \tag{1.5}
\end{align*}
$$

A full bi-homogeneous expansion is given by

$$
\tilde{\sigma}^{i, j}(A)\left(x_{1}, x_{2}, \xi_{1}, \xi_{2}\right)=\sum_{\substack{\left|\beta_{1}\right|=i \\\left|\beta_{2}\right|=j}} c_{\beta_{1}, \beta_{2}}\left(x_{1}, x_{2}\right) \xi_{1}^{\beta_{1}} \xi_{2}^{\beta_{2}}
$$

The bi-ellipticity of $A$ is given by the condition $\sigma^{12}(A)=\tilde{\sigma}^{m_{1}, m_{2}}(A)\left(v_{1}, v_{2}\right) \neq$ 0 for all $\left(v_{1}, v_{2}\right) \in\left(T^{*} \Omega_{1} \backslash 0\right) \times\left(T^{*} \Omega_{2} \backslash 0\right)$ and the invertibility of the two maps (1.4) and 1.5 . We may give a global meaning to $A$ on a product of closed manifolds $\Omega_{1} \times \Omega_{2}$ by taking, for example, $\Omega_{j}=\mathbb{T}_{j}$, the $n_{j}$-dimensional torus, $j=1,2$, and $x_{j}$ angular coordinates on $\mathbb{T}_{j}$.

Example 1.2.7. A simple example of a bisingular operator which is not a pseudodifferential operator is

$$
A=\left(-\Delta_{1}+I\right)^{-1} \otimes\left(-\Delta_{2}+I\right)^{-1}
$$

where $-\Delta_{i}$ is the usual Laplacian on $\Omega_{i}, i=1,2$. To see this, we notice that

$$
K_{\left(-\Delta_{1}+I\right)^{-1}}\left(x_{1}, y_{1}\right)=\int e^{i\left(x_{1}-y_{1}\right) \cdot \xi_{1}} \frac{1}{1+\left|\xi_{1}\right|^{2}} d \xi
$$

Therefore, we can find $\bar{x}_{1}, \bar{y}_{1}, \bar{x}_{1} \neq \bar{y}_{1}$, such that $K_{\left(-\Delta_{1}+I\right)^{-1}}\left(\bar{x}_{1}, \bar{y}_{1}\right) \neq 0$. Since

$$
K_{A}\left(x_{1}, y_{1}, x_{2}, y_{2}\right)=K_{\left(-\Delta_{1}+I\right)^{-1}}\left(x_{1}, y_{1}\right) \otimes K_{\left(-\Delta_{2}+I\right)^{-1}}\left(x_{2}, y_{2}\right)
$$

we have that

$$
\left(\bar{x}_{1}, \bar{y}_{1}, x_{2}, x_{2}\right) \in \operatorname{singsupp} K_{A},
$$

for every $x_{2} \in \Omega_{2}$, but $\left(\bar{x}_{1}, \bar{y}_{1}, x_{2}, x_{2}\right) \notin\left(\Omega_{1} \times \Omega_{2}\right)_{\Delta}$. Thus, according to Proposition 1.1.10, $A$ cannot be a pseudodifferential operator.

However, notice that all pseudodifferential operators of order zero or lower, in particular those corresponding to cut-offs and excision functions, are bisingular operators:

Proposition 1.2.8. $\mathrm{S}^{0}\left(\Omega_{1} \times \Omega_{2}\right) \subset \mathrm{S}^{0,0}\left(\Omega_{1}, \Omega_{2}\right)$.
Proof. Let $a \in \mathrm{~S}^{0}\left(\Omega_{1} \times \Omega_{2}\right)$. Then for all pairs of multi-indices $\alpha=$ $\left(\alpha_{1}, \alpha_{2}\right), \beta=\left(\beta_{1}, \beta_{2}\right)$ we have

$$
\begin{aligned}
\left|D_{\xi_{1}}^{\alpha_{1}} D_{\xi_{2}}^{\alpha_{2}} D_{x_{1}}^{\beta_{1}} D_{x_{2}}^{\beta_{2}} a\left(x_{1}, x_{2}, \xi_{1}, \xi_{2}\right)\right| & =\left|D_{\xi}^{\alpha} D_{x}^{\beta} a(x, \xi)\right| \prec\langle\xi\rangle^{-|\alpha|} \\
& \prec\langle\xi\rangle^{-\left|\alpha_{1}\right|}\langle\xi\rangle^{-\left|\alpha_{2}\right|} \prec\left\langle\xi_{1}\right\rangle^{-\left|\alpha_{1}\right|}\left\langle\xi_{2}\right\rangle^{-\left|\alpha_{2}\right|},
\end{aligned}
$$

that is, $a \in \mathrm{~S}^{0,0}\left(\Omega_{1}, \Omega_{2}\right)$.
With this in mind, it is possible to study some model cases of operators of the form $A \otimes B$, and compare the notion of bi-ellipticity with the standard notion of ellipticity for pseudodifferential operators. In the following Table 1.1 we mean by $\Psi$ DO the classical pseudodifferential operators on $\Omega_{1} \times \Omega_{2}$, and by $\Psi D O$-order and $\Psi D O$-ell. their order and ellipticity, respectively.

| Operator | $\Psi$ DO-order | $\Psi$ DO-ell. | Bi-order | Bi-ell. |
| :---: | :---: | :---: | :---: | :---: |
| $I \otimes I$ | 0 | $\checkmark$ | $(0,0)$ | $\sqrt{ }$ |
| $-\Delta_{1} \otimes I+I \otimes\left(-\Delta_{2}\right)$ | 2 | $\sqrt{ }$ | $(2,2)$ | $\times$ |
| $-\Delta_{1} \otimes\left(-\Delta_{2}\right)$ | 4 | $\times$ | $(2,2)$ | $\times$ |
| $\left(-\Delta_{1}+I\right) \otimes\left(-\Delta_{2}\right)$ | 4 | $\times$ | $(2,2)$ | $\times$ |
| $\left(-\Delta_{1}+I\right) \otimes\left(-\Delta_{2}+I\right)$ | 4 | $\times$ | $(2,2)$ | $\sqrt{ }$ |
| $\left(-\Delta_{1}+I\right)^{-1} \otimes\left(-\Delta_{2}+I\right)^{-1}$ | not a $\Psi \mathrm{DO}$ |  | $(-2,-2)$ | $\sqrt{ }$ |

Table 1.1: Some model cases of bisingular operators of tensor product type

As in the case of the standard pseudodifferential calculus, it is possible to define a scale of adapted Sobolev spaces and prove some continuity results.

Definition 1.2.9. The Sobolev space of exponent $\left(s_{1}, s_{2}\right), s_{1}, s_{2} \in \mathbb{R}$, is the space
$\mathrm{H}^{s_{1}, s_{2}}\left(\Omega_{1} \times \Omega_{2}\right)=\mathrm{H}^{s_{1}, s_{2}}:=\left\{u \in \mathcal{D}^{\prime}\left(\Omega_{1} \times \Omega_{2}\right): \operatorname{Op}\left(\left\langle\xi_{1}\right\rangle^{s_{1}}\left\langle\xi_{2}\right\rangle^{s_{2}}\right) u \in L^{2}\left(\Omega_{1} \times \Omega_{2}\right)\right\}$.
If $u \in \mathrm{H}^{s_{1}, s_{2}}$ then

$$
\|u\|_{s_{1}, s_{2}}:=\left\|\operatorname{Op}\left(\left\langle\xi_{1}\right\rangle^{s_{1}}\left\langle\xi_{2}\right\rangle^{s_{2}}\right) u\right\|_{2}
$$

Similarly to weighted $S G$ Sobolev spaces, the following result holds true, see Cor95,

Proposition 1.2.10. If $s_{1} \geq s_{1}^{\prime}, s_{2} \geq s_{2}^{\prime}$, we have

$$
\mathrm{H}^{s_{1}, s_{2}}\left(\Omega_{1} \times \Omega_{2}\right) \subset \mathrm{H}^{s_{1}^{\prime}, s_{2}^{\prime}}\left(\Omega_{1} \times \Omega_{2}\right)
$$

and the embedding $\mathrm{H}^{s_{1}, s_{2}}\left(\Omega_{1} \times \Omega_{2}\right) \hookrightarrow \mathrm{H}^{s_{1}^{\prime}, s_{2}^{\prime}}\left(\Omega_{1} \times \Omega_{2}\right)$ is continuous. If $s_{1}>s_{1}^{\prime}, s_{2}>s_{2}^{\prime}$, the embedding is compact.

Proposition 1.2.11. A bisingular operator $A \in \mathrm{~L}^{m_{1}, m_{2}}\left(\Omega_{1}, \Omega_{2}\right)$ extends to a continuous operator

$$
A: \mathrm{H}^{s_{1}, s_{2}}\left(\Omega_{1} \times \Omega_{2}\right) \rightarrow \mathrm{H}^{s_{1}-m_{1}, s_{2}-m_{2}}\left(\Omega_{1} \times \Omega_{2}\right)
$$

for every $s_{1}, s_{2} \in \mathbb{R}$.
Theorem 1.2.12. Let $A \in \mathrm{~L}_{\mathrm{cl}}^{m_{1}, m_{2}}\left(\Omega_{1}, \Omega_{2}\right)$ be bi-elliptic. Then, there exists $B \in \mathrm{~L}_{\mathrm{cl}}^{-m_{1},-m_{2}}\left(\Omega_{1}, \Omega_{2}\right)$ such that

$$
A B=I+K_{1}, \quad B A=I+K_{2}
$$

where $I$ is the identity map and $K_{1}, K_{2}$ are smoothing operators. Moreover, the principal bi-symbol of $B$ is $\left(\sigma^{1}(A)^{-1}, \sigma^{2}(A)^{-1}\right)$.

From now on we will assume, for simplicity, that bi-symbols of bisingular operators have compact support with respect to the $x_{1}, x_{2}$ variables.

Theorem 1.2.13. Let $a \in \mathrm{~S}^{m_{1}, m_{2}}\left(\Omega_{1}, \Omega_{2}\right), b \in \mathrm{~S}^{p_{1}, p_{2}}\left(\Omega_{1}, \Omega_{2}\right)$. Then $A B \in$ $\mathrm{L}^{m_{1}+p_{1}, m_{2}+p_{2}}\left(\Omega_{1}, \Omega_{2}\right)$, and its bi-symbol $c\left(x_{1}, x_{2}, \xi_{1}, \xi_{2}\right)$ has the asymptotic expansion

$$
c \sim \sum_{j=0}^{\infty} c_{m_{1}+p_{1}-j, m_{2}+p_{2}-j}
$$

where

$$
\begin{aligned}
c_{m_{1}+p_{1}-j, m_{2}+p_{2}-j}= & c_{m_{1}+p_{1}-j-1, m_{2}+p_{2}-j}^{1}+c_{m_{1}+p_{1}-j, m_{2}+p_{2}-j-1}^{2} \\
& +c_{m_{1}+p_{1}-j, m_{2}+p_{2}-j}^{12}
\end{aligned}
$$

and

$$
\begin{aligned}
& c^{1}{ }_{m_{1}+p_{1}-j-1, m_{2}+p_{2}-j} \\
& \quad=\sum_{\left|\alpha_{2}\right|=j} \frac{1}{\alpha_{2}!}\left\{\partial_{\xi_{2}}^{\alpha_{2}} a \circ_{1} D_{x_{2}}^{\alpha_{2}} b-\sum_{\left|\alpha_{1}\right| \leq j} \frac{1}{\alpha_{1}!} \partial_{\xi_{1}}^{\alpha_{1}} \partial_{\xi_{2}}^{\alpha_{2}} a D_{x_{1}}^{\alpha_{1}} D_{x_{2}}^{\alpha_{2}} b\right\} \\
& c^{2}{ }_{m_{1}+p_{1}-j, m_{2}+p_{2}-j-1} \\
& \quad=\sum_{\left|\alpha_{1}\right|=j} \frac{1}{\alpha_{1}!}\left\{\partial_{\xi_{1}}^{\alpha_{1}} a \circ_{2} D_{x_{1}}^{\alpha_{1}} b-\sum_{\left|\alpha_{2}\right| \leq j} \frac{1}{\alpha_{2}!} \partial_{\xi_{1}}^{\alpha_{1}} \partial_{\xi_{2}}^{\alpha_{2}} a D_{x_{1}}^{\alpha_{1}} D_{x_{2}}^{\alpha_{2}} b\right\} \\
& c^{12}{ }_{m_{1}+p_{1}-j, m_{2}+p_{2}-j} \\
& \quad=\sum_{\left|\alpha_{1}\right|=\left|\alpha_{2}\right|=j} \frac{1}{\alpha_{1}!\alpha_{2}!} \partial_{\xi_{1}}^{\alpha_{1}} \partial_{\xi_{2}}^{\alpha_{2}} a D_{x_{1}}^{\alpha_{1}} D_{x_{2}}^{\alpha_{2}} b
\end{aligned}
$$

Corollary 1.2.14. Let $a \in \mathrm{~S}^{m_{1}, m_{2}}\left(\Omega_{1}, \Omega_{2}\right), b \in \mathrm{~S}^{p_{1}, p_{2}}\left(\Omega_{1}, \Omega_{2}\right)$. Then the commutator $[A, B]:=A B-B A$ belongs to $\mathrm{L}^{m_{1}+p_{1}-1, m_{2}+p_{2}}+L^{m_{1}+p_{1}, m_{2}+p_{2}-1}$.

Proof. By Theorem 1.2.13, we find, as top order order terms $(j=0)$,

$$
\begin{aligned}
& c_{m_{1}+p_{1}-1, m_{2}+p_{2}}^{1}=a \circ_{1} b-b \circ_{1} a \\
& c_{m_{1}+p_{1}, m_{2}+p_{2}-1}^{2}=a \circ_{2} b-b \circ_{2} a \\
& c_{m_{1}+p_{1}, m_{2}+p_{2}}^{12}=0 .
\end{aligned}
$$

Then, expanding $c^{1}$ and $c^{2}$ according to the definition of $\circ_{j}, j=1,2$, we get

$$
c^{j}=i\{a, b\}_{j}+\text { terms of order }\left(m_{j}+p_{j}-2\right),
$$

where with $\{a, b\}_{j}$ we denote the Poisson bracket of $a$ and $b$ in the $j$ argument. Therefore, the leading terms (up to order ( $m_{1}+p_{1}-2, m_{2}+p_{2}-2$ )) of the expansion of $c$ can be written as

$$
c=0+i\left(\{a, b\}_{1}+\{a, b\}_{2}\right) \in \mathrm{S}^{m_{1}+p_{1}-1, m_{2}+p_{2}}+\mathrm{S}^{m_{1}+p_{1}, m_{2}+p_{2}-1}
$$

Remark 1.2.15. This behaviour under commutators is indeed something peculiar about bisingular calculus. For standard pseudodifferential calculus, $A \in \mathrm{~L}^{m}(\Omega), B \in \mathrm{~L}^{p}(\Omega)$ implies $[A, B] \in \mathrm{L}^{m+p-1}(\Omega), \Omega \subset \mathbb{R}^{n}$ open.

Example 1.2.16. For a better understanding of this phenomenon, consider the model case of a tensor product where $A=A_{1} \otimes A_{2} \in \mathrm{~L}^{m_{1}, m_{2}}, B=$ $B_{1} \otimes B_{2} \in \mathrm{~L}^{p_{1}, p_{2}}$. Then

$$
\begin{aligned}
{[A, B]=\left[A_{1} \otimes A_{2}, B_{1} \otimes B_{2}\right] } & =A_{1} B_{1} \otimes A_{2} B_{2}-B_{1} A_{1} \otimes B_{2} A_{2} \\
& =\underbrace{\left[A_{1}, B_{1}\right] \otimes A_{2} B_{2}}_{\mathrm{L}^{m_{1}+p_{1}-1, m_{2}+p_{2}}}+\underbrace{B_{1} A_{1} \otimes\left[A_{2}, B_{2}\right]}_{\mathrm{L}^{m_{1}+p_{1}, m_{2}+p_{2}-1}} .
\end{aligned}
$$

Remark 1.2.17. Here, we deal with bisingular operators whose symbols follow Hörmander-type estimates (see e.g. [Hör85b]). In particular, in Chapter 2 we only study operators on closed manifolds, given explicitly in local coordinates. However a global version of bisingular calculus was defined by U. Battisti, T. Gramchev, S. Pilipović and L. Rodino in BGPR13. We will study this class more precisely in Chapter 4. We also notice that 'producttype' operators calculi, similar to bisingular calculus, were introduced by V. S. Pilidi Pil73, R. V. Dudučava Dud79a, Dud79b, and, more recently, by R. Melrose and F. Rochon [MR06]. Moreover, multisingular calculi were considered by V. S. Pilidi Pil71] and L. Rodino Rod80.

## Chapter 2

## Wave front sets

In this chapter we will give a summary of different kinds of wave front sets, and define the bi-wave front set. Throughout this chapter, all the pseudodifferential operators are assumed properly supported.

### 2.1 The classical wave front set

Let $\Omega \subset \mathbb{R}^{n}$ be open and $u \in \mathcal{D}^{\prime}(\Omega)$. The singular support of $u$ is the set

$$
\operatorname{sing} \operatorname{supp}(u)=\Omega \backslash\left\{x \in \Omega: \exists \varphi \in \mathcal{C}_{0}^{\infty}(\Omega), \varphi(x) \neq 0, \varphi u \in \mathcal{C}^{\infty}(\Omega)\right\}
$$

From its definition, it is immediate that $\operatorname{sing} \operatorname{supp}(u) \subset \Omega$ is closed. Now let $u \in \mathcal{D}^{\prime}(\Omega)$ and $\varphi \in \mathcal{C}_{0}^{\infty}(\Omega)$. From the Paley-Wiener-Schwartz Theorem, we know that

$$
|\widehat{\varphi u}(\xi)| \lesssim\langle\xi\rangle^{N}, \quad \xi \in \mathbb{R}^{n},
$$

for some $N \geq 0$ (depending on $\varphi$ ). Moreover, $\varphi u \in \mathcal{C}_{0}^{\infty}(\Omega)$ if and only if

$$
\begin{equation*}
|\widehat{\varphi u}(\xi)| \lesssim\langle\xi\rangle^{-N}, \quad \xi \in \mathbb{R}^{n}, \quad \forall N \geq 0 . \tag{2.1}
\end{equation*}
$$

So, the rapid decay of the Fourier trasform of $u$ localized at $x_{0} \in \Omega$ is equivalent to the smoothness of $u$ in a neighborhood of $x_{0}$. The idea behind the wave front set is to refine the singular support, in the sense of finding the directions in the space of frequencies where rapid decay is lacking, i.e. directions which cause a singularity to appear in the singular support.

Definition 2.1.1. Let $u \in \mathcal{D}^{\prime}(\Omega)$. The distribution $u$ is microlocally $\mathcal{C}^{\infty}$ near $\left(x_{0}, \xi_{0}\right) \in \mathrm{T}^{*} \Omega \backslash 0$ if, there exists a cut-off $\varphi \in \mathcal{C}_{0}^{\infty}(\Omega)$ with $\varphi \equiv 1$ in an open set containing $x_{0}$ such that

$$
|\widehat{\varphi u}(\xi)| \leq C_{N}\langle\xi\rangle^{-N} \quad \forall \xi \in \Gamma,|\xi|>R,
$$

$\forall N \in \mathbb{N}$, where $\Gamma \subset \mathbb{R}^{n} \backslash 0$ is a conic open set containing $\xi_{0}$ and $C_{N}, R>0$. The classical wave front set of $u \in \mathcal{D}^{\prime}(\Omega)$, that we denote by $\mathrm{WF}_{\mathrm{cl}}(u)$, is the complement of the set of points where $u$ is microlocally $\mathcal{C}^{\infty}$.

It is immediate to observe that $\mathrm{WF}_{\mathrm{cl}}(u)$ is closed is $\Omega \times\left(\mathbb{R}^{n} \backslash 0\right)$ and conic, in the sense that

$$
(x, \xi) \in \mathrm{WF}_{\mathrm{cl}}(u) \Rightarrow(x, \lambda \xi) \in \mathrm{WF}_{\mathrm{cl}}(u)
$$

for all $\lambda>0$. Moreover, it is also easy to check that if $u, v \in \mathcal{D}^{\prime}(\Omega), f \in$ $\mathcal{C}^{\infty}(\Omega)$, we have

$$
\begin{aligned}
\mathrm{WF}_{\mathrm{cl}}(u+v) & \subseteq \mathrm{WF}_{\mathrm{cl}}(u) \cup \mathrm{WF}_{\mathrm{cl}}(v) \\
\mathrm{WF}_{\mathrm{cl}}(f u) & \subseteq \mathrm{WF}_{\mathrm{cl}}(u)
\end{aligned}
$$

Definition 2.1.2. Let $\xi_{0} \in \mathbb{R}^{n} \backslash 0$. A conic neighbourhood of $\xi_{0}$ is an open neighbourhood $V \subset \mathbb{R}^{n} \times \mathbb{R}^{n}$ that contains $\xi_{0}$ and is conic with respect to the second variable, i.e. contains all the points of the form $\left(x, \lambda \xi_{0}\right)$, for all $\lambda>0$.

Lemma 2.1.3. Let $\Gamma, \Gamma^{\prime} \subset \mathbb{R}^{n} \backslash 0$ open conic sets such that $\overline{\Gamma^{\prime} \cap \mathbb{S}^{n}} \subset \Gamma$, and let $f \in \mathscr{S}\left(\mathbb{R}^{n}\right)$. Then for all $g \in \mathscr{S}\left(\mathbb{R}^{n}\right)$ we have $f * g \in \mathscr{S}\left(\Gamma^{\prime}\right)$, i.e.

$$
\sup _{\xi \in \Gamma^{\prime}}\langle\xi\rangle^{N}|(f * g)(\xi)| \prec 1 \quad \text { for all } N \geq 0
$$

Proof. Let $N \geq 0$. Then

$$
\begin{aligned}
& |(f * g)(\xi)| \\
& \leq \int_{\langle\eta\rangle \leq\langle\xi\rangle^{1 / 2}}|f(\xi-\eta)||g(\eta)| d \eta+\int_{\langle\eta\rangle>\langle\xi\rangle^{1 / 2}}|f(\xi-\eta)||g(\eta)| d \eta \\
& \prec \int_{\langle\eta\rangle \leq\langle\xi\rangle^{1 / 2}}\langle\xi-\eta\rangle^{-N}|g(\eta)| d \eta+\int_{\langle\eta\rangle>\langle\xi\rangle^{1 / 2}}\langle\xi-\eta\rangle^{k}|g(\eta)| d \eta \\
& \prec\langle\xi\rangle^{-N} \int_{\mathbb{R}^{n}}\langle\eta\rangle^{N}|g(\eta)| d \eta+\langle\xi\rangle^{k} \int_{\langle\eta\rangle>\langle\xi\rangle^{1 / 2}}\langle\eta\rangle^{-2(N+k)}\langle\eta\rangle^{2 N+3 k}|g(\eta)| d \eta \\
& \prec\langle\xi\rangle^{-N}+\langle\xi\rangle^{k-N-k} \int_{\mathbb{R}^{n}}\langle\eta\rangle^{2 N+3 k}|g(\eta)| d \eta \\
& \prec\langle\xi\rangle^{-N},
\end{aligned}
$$

where we used that if $\xi \in \Gamma^{\prime}$ and $\langle\eta\rangle \leq\langle\xi\rangle^{1 / 2}$, then $(\xi-\eta) \in \Gamma$ for sufficiently large $|\xi|$.

Proposition 2.1.4. If $\pi: \Omega \times\left(\mathbb{R}^{n} \backslash 0\right) \mapsto \Omega$ is the natural projection, then

$$
\pi\left(\mathrm{WF}_{\mathrm{cl}}(u)\right)=\operatorname{sing} \operatorname{supp}(u)
$$

Proof. If $x_{0} \notin \operatorname{sing} \operatorname{supp}(u)$, choose $\varphi \in \mathcal{C}_{0}^{\infty}(\Omega)$ such that $\varphi \equiv 1$ in a neighbourhood of $x_{0}, \varphi \equiv 0$ in a neighbourhood of $\operatorname{sing} \operatorname{supp}(u)$. Then, $\varphi u \in \mathcal{C}_{0}^{\infty}(\Omega)$, from which $\varphi u \in \mathscr{S}\left(\mathbb{R}^{n}\right)$ i.e. $x_{0} \notin \pi\left(\mathrm{WF}_{\mathrm{cl}}(u)\right)$.
Conversely, let $x_{0} \notin \pi\left(\mathrm{WF}_{\mathrm{cl}}(u)\right)$. Then, for any $\xi_{0} \in \mathbb{R}^{n} \backslash 0$ there exists
a function $\varphi_{\xi_{0}}(x) \in \mathcal{C}_{0}^{\infty}(\Omega)$ and a conic neighbourhood $\Gamma_{\xi_{0}}$ of $\xi_{0}$ such that $\varphi_{\xi_{0}} \equiv 1$ near $x_{0}$ and $\widehat{\varphi_{\xi_{0}} u}(\xi)$ decreases rapidly in $\Gamma_{\xi_{0}}$. Due to the compactness of the $n$-dimensional sphere, let $\Gamma_{\xi_{1}}, \ldots, \Gamma_{\xi_{N}}$ be a covering of $\mathbb{R}^{n} \backslash 0$, and $\varphi_{\xi_{j}}, j=1, \ldots, N$, the corresponding functions. Setting

$$
\varphi:=\prod_{j=1}^{N} \varphi_{\xi_{j}}
$$

we get

$$
\widehat{\varphi u}=(2 \pi)^{-n} \widehat{\varphi_{\xi_{k}} u} * \widehat{\Phi_{k}}
$$

where

$$
\Phi_{k}:=\prod_{j \neq k} \varphi_{\xi_{j}}
$$

for all $1 \leq k \leq N$. Choosing appropriate conic $\Gamma_{\xi_{j}}^{\prime} \subset \Gamma_{\xi_{j}}$ such that $\overline{\Gamma_{\xi_{j}}^{\prime} \cap \mathbb{S}^{n}} \subset \Gamma_{\xi_{j}}, j=1, \ldots, N$, we see from Lemma 2.1.3 that $\widehat{\varphi u}$ decreases rapidly everywhere so that $\varphi u \in \mathcal{C}_{0}^{\infty}(\Omega)$, i.e. $u \in \mathcal{C}_{0}^{\infty}$ in a neighbourhood of $x_{0}$, that is, $x_{0} \notin \operatorname{sing} \operatorname{supp}(u)$.

Proposition 2.1.5. Let $u \in \mathcal{D}^{\prime}(\Omega)$ and $\left(x_{0}, \xi_{0}\right) \notin \mathrm{WF}_{\mathrm{cl}}(u)$. Then there exists $A=\mathrm{Op}(a) \in \mathrm{L}_{\mathrm{cl}}^{0}(\Omega)$ such that $a \equiv 1$ modulo $\mathrm{S}^{-\infty}$ in a conic neighbourhood of $\left(x_{0}, \xi_{0}\right)$, and $A u \in \mathcal{C}_{0}^{\infty}(\Omega)$.

Proof. Since $\left(x_{0}, \xi_{0}\right) \notin \mathrm{WF}_{\mathrm{cl}}(u)$, there exists $\varphi \in \mathcal{C}_{0}^{\infty}(\Omega), \varphi\left(x_{0}\right) \equiv 1$ in a neighbourhood of $x_{0}$, such that $\widehat{\varphi u}$ decreases rapidly on a conic neighbourhood of $\xi_{0}$. Let $\chi(\xi)$ be supported in this neighbourhood, with $\chi(t \xi)=\chi(\xi)$ for $t \geq 1,|\xi| \geq 1$, and $\chi \in \mathcal{C}^{\infty}(\Omega)$ with $\chi(\xi) \equiv 1$ in some smaller conic neighbourhood of $\xi_{0}$. Then $\chi \widehat{\varphi u}(\xi)$ is rapidly decreasing everywhere, so that $\chi(D)(\varphi(x) u(x)) \in \mathcal{C}^{\infty}$. Then, if $h \in \mathcal{C}_{0}^{\infty}(\Omega), h(x) \chi(D)(\varphi(x) u(x)) \in \mathcal{C}_{0}^{\infty}(\Omega)$. Choosing $h$ such that $h \equiv 1$ in a neighbourhood of $x_{0}$ we get that the operator $A=\operatorname{Op}(a):=h(x) \chi(D) \varphi(x)$ satisfies all the required conditions, since

$$
a(x, \xi) \sim h(x) \sum_{\alpha \geq 0} D_{x}^{\alpha} \varphi(x) \partial_{\xi}^{\alpha} \chi(\xi) \in \mathrm{S}_{\mathrm{cl}}^{0}(\Omega) .
$$

Lemma 2.1.6. Let $v \in \mathcal{E}^{\prime}\left(\mathbb{R}^{n}\right), \chi \in \mathrm{S}^{m}$. Then, if $\operatorname{dist}(x, \operatorname{supp} v) \geq 1$, we have, for all $N \in \mathbb{N},|x| \geq 1$,

$$
\left|D^{\alpha} \chi(D) v(x)\right| \leq C_{\alpha, N}|x|^{-N} .
$$

Proposition 2.1.7. Let $u \in \mathcal{E}^{\prime}(\Omega),\left(x_{0}, \xi_{0}\right) \in \Omega \times\left(\mathbb{R}^{n} \backslash 0\right)$, and an operator $A \in \mathrm{~L}_{\mathrm{cl}}^{m}(\Omega)$ with principal symbol $\sigma(A)$. Then, if $\sigma(A)\left(x_{0}, \xi_{0}\right) \neq 0$ and $A u \in \mathcal{C}^{\infty}(\Omega)$, we have $\left(x_{0}, \xi_{0}\right) \notin \mathrm{WF}_{\mathrm{cl}}(u)$.

Proof. Since $\sigma(A)\left(x_{0}, \xi_{0}\right) \neq 0$, by the standard parametrix construction in a conic neighbourhood of $\left(x_{0}, \xi_{0}\right)$ (see, e.g., Shu01]), we obtain an operator $B \in \mathrm{~L}_{\mathrm{cl}}^{-m}(\Omega)$ such that $B A=\mathrm{Op}(c)$ and $c \equiv 1$ modulo $\mathrm{S}^{-\infty}$ in this neighbourhood. Since also $B A u \in \mathcal{C}^{\infty}(\Omega)$, up to replacing $A$ by $B A$ we may assume, without loss of generality, $A \equiv I \bmod \mathrm{~S}^{-\infty}$ in the same neighbourhood of $\left(x_{0}, \xi_{0}\right)$.
Let $\chi \equiv 1$ in a neighbourhood of $\xi_{0}, \chi \in \mathcal{C}^{\infty}\left(\mathbb{R}^{n}\right)$, and $\chi(\xi)$ homogeneous of degree 0 in $\xi$ for $|\xi| \geq 1$. Let $\varphi \in \mathcal{C}_{0}^{\infty}\left(\mathbb{R}^{n}\right), \varphi \equiv 1$ in a neighbourhood of $x_{0}$, and the supports of $\varphi$ and $\chi$ be chosen so that

$$
\varphi(x) \chi(\xi) a(x, \xi)=\varphi(x) \chi(\xi) \quad \bmod \mathrm{S}^{-\infty}
$$

From this we obtain

$$
\begin{equation*}
\chi(D) \varphi A-\chi(D) \varphi \in \mathrm{L}^{-\infty} \tag{2.2}
\end{equation*}
$$

and by $\chi(D) \varphi A u \in \mathcal{C}^{\infty}(\Omega)$, it follows from 2.2 that

$$
\begin{equation*}
\chi(D) \varphi u \in \mathcal{C}^{\infty}\left(\mathbb{R}^{n}\right) \tag{2.3}
\end{equation*}
$$

Using (2.3) and Lemma 2.1.6 we obtain that

$$
\begin{equation*}
\chi(D) \varphi u \in \mathscr{S}\left(\mathbb{R}^{n}\right) \tag{2.4}
\end{equation*}
$$

from which it follows that $\chi(\xi) \widehat{\varphi u}(\xi) \in \mathscr{S}\left(\mathbb{R}^{n}\right)$ and, in particular, that $\widehat{\varphi u}$ decreases rapidly in a conic neighbourhood of $\xi_{0}$, i.e. $\left(x_{0}, \xi_{0}\right) \notin \mathrm{WF}_{\mathrm{cl}}(u)$, as claimed.

Definition 2.1.8. Let $A \in \mathrm{~L}_{\mathrm{cl}}^{m}(\Omega)$. We say that $A$ is non-characteristic at $\left(x_{0}, \xi_{0}\right) \in \mathrm{T}^{*} \Omega \backslash 0$ if $\sigma(A)\left(x_{0}, \xi_{0}\right) \neq 0$, where $\sigma(A)$ is the principal symbol of $A$.

Remark 2.1.9. The previous Definition 2.1 .8 makes sense from the $1-1$ correspondence between a classical pseudodifferential operator and its principal symbol. See KG82 or Cor95 for details.

Remark 2.1.10. One can alternatively define $\mathrm{WF}_{\mathrm{cl}}(u)$ as the complement of the set of points $\left(x_{0}, \xi_{0}\right)$ such that there exists a pseudodifferential operator $A \in \mathrm{~L}_{\mathrm{cl}}^{0}(\Omega)$, non-characteristic at $\left(x_{0}, \xi_{0}\right)$, such that $A u \in \mathcal{C}^{\infty}(\Omega)$. Proposition 2.1.5 and Proposition 2.1.7 show that this definition and Definition 2.1.1 are equivalent.

We now recall the concept of classical characteristic set
Definition 2.1.11. Let $A \in \mathrm{~L}_{\mathrm{cl}}^{m}(\Omega), m \in \mathbb{R}$. The classical characteristic set of $A$ is

$$
\operatorname{Char}_{\mathrm{cl}}(A)=\left\{(x, \xi) \in \Omega \times\left(\mathbb{R}^{n} \backslash 0\right): \sigma(A)(x, \xi)=0\right\}
$$

We have
Theorem 2.1.12. Let $u \in \mathcal{D}^{\prime}(\Omega)$. Then

$$
\mathrm{WF}_{\mathrm{cl}}(u)=\bigcap_{\substack{A \in \mathrm{~L}_{\mathrm{cl}}^{0}(\Omega) \\ A u \in \mathcal{C}^{\infty}}} \operatorname{Char}_{\mathrm{cl}}(A)
$$

Proof. Let $\left(x_{0}, \xi_{0}\right) \notin \mathrm{WF}_{\mathrm{cl}}(u)$. Then, from Proposition 2.1.5, we can find $A \in \mathrm{~L}_{\mathrm{cl}}^{0}(\Omega), A u \in \mathcal{C}^{\infty}$, such that $\sigma(A)\left(x_{0}, \xi_{0}\right)=1$ in a conic neighbourhood of $\left(x_{0}, \xi_{0}\right)$, i.e. $\left(x_{0}, \xi_{0}\right) \notin \operatorname{Char}_{\mathrm{cl}}(A)$.
Conversely, let $A \in \mathrm{~L}_{\mathrm{cl}}^{0}(\Omega), A u \in \mathcal{C}^{\infty}$ and $\left(x_{0}, \xi_{0}\right) \notin \operatorname{Char}_{\mathrm{cl}}(A)$. By replacing $u$ with $\chi u$, for an appropriate cut-off $\chi \in \mathcal{C}_{0}^{\infty}(\Omega)$, we can assume, without loss of generality, that $u \in \mathcal{E}^{\prime}(\Omega)$. Then, from Proposition 2.1.7, we get $\left(x_{0}, \xi_{0}\right) \notin \mathrm{WF}_{\mathrm{cl}}(u)$.

It is now interesting to compare, for given operators $A$, the sets $\mathrm{WF}_{\mathrm{cl}}(A u)$ and $\mathrm{WF}_{\mathrm{cl}}(u)$. An operator is microlocal, if $\mathrm{WF}_{\mathrm{cl}}(A u) \subset \mathrm{WF}_{\mathrm{cl}}(u)$. We have

Theorem 2.1.13 (Microlocality of pseudodifferential operators). Let $u \in \mathcal{D}^{\prime}(\Omega)$ and $A \in \mathrm{~L}_{\mathrm{cl}}^{m}(\Omega)$. Then,

$$
\mathrm{WF}_{\mathrm{cl}}(A u) \subseteq \mathrm{WF}_{\mathrm{cl}}(u) .
$$

Proof. Let $\left(x_{0}, \xi_{0}\right) \notin \mathrm{WF}_{\mathrm{cl}}(u)$. Then we can find an operator $B=\mathrm{Op}(b) \in$ $\mathrm{L}_{\mathrm{cl}}^{0}(\Omega)$ such that $B u \in \mathcal{C}^{\infty}(\Omega)$ and $b \equiv 1$ modulo $\mathrm{S}^{-\infty}$ in a conic neighbourhood $U \times \Gamma$ of $\left(x_{0}, \xi_{0}\right)$. By standard construction, cfr. [Shu01], we can find $B_{1}=\mathrm{Op}\left(b_{1}\right) \in \mathrm{L}_{\mathrm{cl}}^{0}(\Omega)$ such that $B+B_{1}$ is elliptic, and

$$
\operatorname{supp}\left(b_{1}-r\right) \cap\left(U^{\prime} \times \Gamma^{\prime}\right) \subset\left(\Omega \times \mathbb{S}^{n}\right), \quad r \in \mathrm{~S}^{-\infty}(\Omega)
$$

with $x_{0} \in U^{\prime} \subseteq U$ open, $\xi_{0} \in \Gamma^{\prime} \subseteq \Gamma$ open and conic. Let $P \in \mathrm{~L}_{\mathrm{cl}}^{0}(\Omega)$ a parametrix of $B+B_{1}$, that is

$$
I-P\left(B+B_{1}\right)=R \in \mathrm{~L}^{-\infty}(\Omega) .
$$

Then

$$
\begin{equation*}
A u=A P B_{1} u+A P B u+A R u, \tag{2.5}
\end{equation*}
$$

and $A R u \in \mathcal{C}^{\infty}(\Omega)$ because $R$ is smoothing, while $A P B u \in \mathcal{C}^{\infty}(\Omega)$ because $B u \in \mathcal{C}^{\infty}(\Omega)$. Finally, take $\chi \in \mathcal{C}_{0}^{\infty}(\Omega)$, supp $\chi \subset U^{\prime}, \chi\left(x_{0}\right) \neq 0$, and $\psi \in \mathcal{C}^{\infty}\left(\mathbb{R}^{n}\right)$, $\operatorname{supp} \psi \subset \Gamma^{\prime}, \psi(\xi)=1$ for $\xi \in \Gamma^{\prime \prime} \subset \Gamma^{\prime}$ and $|\xi| \geq\left|\xi_{0}\right|>0, \Gamma^{\prime \prime}$ open and conic. Now, setting $A_{1}=\operatorname{Op}\left(a_{1}\right)$ with $a_{1}(x, \xi):=\chi(x) \psi(\xi)$, we have $A_{1} \in \mathrm{~L}_{\mathrm{cl}}^{0}(\Omega)$ and $\sigma\left(A_{1}\right)\left(x_{0}, \xi_{0}\right) \neq 0$. The support properties of $a_{1}$ and $b_{1}$ imply that $A_{1} A P B_{1} \in \mathrm{~L}^{-\infty}(\Omega)$. Thus, from (2.5), we get that $A_{1} A u \in$ $\mathcal{C}^{\infty}(\Omega)$, and from Proposition 2.1 .7 it follows that $\left(x_{0}, \xi_{0}\right) \notin \mathrm{WF}_{\mathrm{cl}}(A u)$.

As a direct consequence, we get

Corollary 2.1.14 (Pseudolocality of pseudodifferential operators). Let $u \in \mathcal{D}^{\prime}(\Omega)$ and $A \in \mathrm{~L}_{\mathrm{cl}}^{m}(\Omega)$. Then

$$
\operatorname{sing} \operatorname{supp}(A u) \subseteq \operatorname{sing} \operatorname{supp}(u)
$$

Proof. By Theorem 2.1.13, it follows, trivially,

$$
\operatorname{sing} \operatorname{supp}(A u)=\pi\left(\mathrm{WF}_{\mathrm{cl}}(A u)\right) \subseteq \pi\left(\mathrm{WF}_{\mathrm{cl}}(u)\right)=\operatorname{sing} \operatorname{supp}(u)
$$

The next result gives "an estimate" of $\mathrm{WF}_{\mathrm{cl}}(u)$ in terms of $\mathrm{WF}_{\mathrm{cl}}(A u)$ and $\operatorname{Char}_{\mathrm{cl}}(A)$. That is, if $u$ is a solution of $A u=v \in \mathcal{D}^{\prime}(\Omega)$, its wave front set depends on the characteristic set of $A$ and wave front set of the datum $v$.

Theorem 2.1.15 (Microellipticity of pseudodifferential operators). Let $u \in \mathcal{D}^{\prime}(\Omega)$ and $A \in \mathrm{~L}_{\mathrm{cl}}^{m}(\Omega)$. Then

$$
\mathrm{WF}_{\mathrm{cl}}(u) \subseteq \mathrm{WF}_{\mathrm{cl}}(A u) \cup \operatorname{Char}_{\mathrm{cl}}(A)
$$

Proof. Let $\left(x_{0}, \xi_{0}\right) \notin \mathrm{WF}_{\mathrm{cl}}(A u) \cup \operatorname{Char}_{\mathrm{cl}}(A)$. Then, by Proposition 2.1.5, we can find an operator $P=\mathrm{Op}(p) \in \mathrm{L}_{\mathrm{cl}}^{0}(\Omega)$ such that $P A u \in \mathcal{C}^{\infty}(\Omega)$ and $p \equiv 1$ modulo $\mathrm{S}^{-\infty}$ in a conic neighbourhood of $\left(x_{0}, \xi_{0}\right)$. But then, from Proposition 2.1.7 it follows that $\left(x_{0}, \xi_{0}\right) \notin \mathrm{WF}_{\mathrm{cl}}(u)$, since $\sigma(P A)\left(x_{0}, \xi_{0}\right)=$ $\sigma(P)\left(x_{0}, \xi_{0}\right) \cdot \sigma(A)\left(x_{0}, \xi_{0}\right) \neq 0$.

Corollary 2.1.16. Let $u \in \mathcal{D}^{\prime}(\Omega), A \in \mathrm{~L}_{\mathrm{cl}}^{m}(\Omega)$, with $A$ elliptic. Then,

$$
\mathrm{WF}_{\mathrm{cl}}(A u)=\mathrm{WF}_{\mathrm{cl}}(u)
$$

Proof. We already know that $\mathrm{WF}_{\mathrm{cl}}(A u) \subseteq \mathrm{WF}_{\mathrm{cl}}(u)$. Conversely, since $A$ in elliptic, there exists $B \in \mathrm{~L}_{\mathrm{cl}}^{-m}(\Omega)$ such that $B A-I=K \in \mathrm{~L}^{-\infty}(\Omega)$. Thus,

$$
\begin{aligned}
\mathrm{WF}_{\mathrm{cl}}(u)=\mathrm{WF}_{\mathrm{cl}}((B A-K) u) & \subseteq \mathrm{WF}_{\mathrm{cl}}(B A u) \cup \mathrm{WF}_{\mathrm{cl}}(K u) \\
& \subseteq \mathrm{WF}_{\mathrm{cl}}(A u) \cup \emptyset=\mathrm{WF}_{\mathrm{cl}}(A u)
\end{aligned}
$$

We conclude the section with some examples.
Example 2.1.17. Let us compute the wave front set of $\delta_{x_{0}}, x_{0} \in \mathbb{R}^{n}$. Taking $\phi$ as in Definition 2.1.1 around $x^{\prime} \in \mathbb{R}^{n}$, we have $\widehat{\phi \delta_{x_{0}}}=\widehat{\phi\left(x_{0}\right)} \equiv 0$ if $x^{\prime} \neq x_{0}$. Conversely, for $x^{\prime}=x_{0}$, we have

$$
\begin{aligned}
\left\langle\widehat{\phi \delta_{x_{0}}}, \varphi\right\rangle=\left\langle\delta_{x_{0}}, \phi \hat{\varphi}\right\rangle & =\phi\left(x_{0}\right) \hat{\varphi}\left(x_{0}\right) \\
& =\hat{\varphi}\left(x_{0}\right)=\int e^{-i x_{0} \cdot \xi} \varphi(\xi) d \xi=\left\langle e^{-i x_{0}(\cdot)}, \varphi\right\rangle
\end{aligned}
$$

Since $e^{-i x_{0} \cdot \xi}$ is not rapidly decreasing in any conical subset of $\mathbb{R}_{\xi}^{n}$, we conclude that

$$
\mathrm{WF}_{\mathrm{cl}}\left(\delta_{x_{0}}\right)=\left\{x_{0}\right\} \times\left(\mathbb{R}^{n} \backslash 0\right)
$$

Example 2.1.18. Let $A \in \mathrm{~L}_{\mathrm{cl}}^{m}(\Omega)$, and $K_{A} \in \mathcal{D}^{\prime}(\Omega \times \Omega)$ its distributional kernel. Then

$$
\mathrm{WF}_{\mathrm{cl}}\left(K_{A}\right) \subseteq\left\{(x, x, \xi,-\xi):(x, \xi) \in \Omega \times\left(\mathbb{R}^{n} \backslash 0\right)\right\}
$$

The proof of this fact can be found, for instance, in Trè80.

### 2.2 The bi-wave front set

In this Section we establish a notion of wave front set for bisingular operators in terms of the bisingular calculus, and analyze its properties. In fact, it turns out to be quite similar to the notion studied in [CM03] for the $S G$ calculus, see also Mel94, Mel95]. This is not surprising, as there is a strong similarity in the formulas arising in both calculi. In this Section all bisingular operators are assumed to be classical, and $\Omega_{1}, \Omega_{2}$ will denote two closed manifolds.

### 2.2.1 Classical microlocal analysis of bisingular operators

A natural way to start with the analysis of the microlocal properties of bisingular operators is to estimate their distributional kernel. From Theorem 1.1.4, we obtain that the Schwartz kernel of a bisingular operator with symbol $a$ is defined by the oscillatory integral

$$
K_{A}\left(x_{1}, x_{2}, y_{1}, y_{2}\right)=\int_{\mathbb{R}^{n_{1}+n_{2}}} e^{i\left(x_{1}-y_{1}, x_{2}-y_{2}\right) \cdot\left(\xi_{1}, \xi_{2}\right)} a\left(x_{1}, x_{2}, \xi_{1}, \xi_{2}\right) d \xi_{1} d \xi_{2}
$$

The Schwartz kernel Theorem states the following smoothing property:
Proposition 2.2.1. A linear map $\mathcal{D}^{\prime}\left(\Omega_{1} \times \Omega_{2}\right) \rightarrow \mathcal{D}^{\prime}\left(\Omega_{1} \times \Omega_{2}\right)$ is actually a mapping $\mathcal{D}^{\prime}\left(\Omega_{1} \times \Omega_{2}\right) \rightarrow \mathcal{E}\left(\Omega_{1} \times \Omega_{2}\right)$, i.e. smoothing, if and only if its distributional kernel is in $\mathcal{E}\left(\left(\Omega_{1} \times \Omega_{2}\right) \times\left(\Omega_{1} \times \Omega_{2}\right)\right)$.
Therefore, pseudodifferential operators with symbols in $S^{-\infty}$ and bisingular operators with symbol in $S^{-\infty,-\infty}$ are smoothing. As the prototype of a bisingular operator is the tensor product of two pseudodifferential operators, it makes sense also to define what is meant by an operator that is smoothing in one set of variables only.
Definition 2.2.2. We define $\mathcal{C}^{\infty}\left(\Omega_{1}, \mathcal{D}^{\prime}\left(\Omega_{2}\right)\right)$ as the set of all $u \in \mathcal{D}^{\prime}\left(\Omega_{1} \times\right.$ $\left.\Omega_{2}\right)$ such that for each $f \in \mathcal{D}\left(\Omega_{2}\right)$, the distribution $\mathcal{D}^{\prime}\left(\Omega_{1}\right) \ni u(g \otimes \cdot)$ : $g \mapsto u(g \otimes f)$ is actually a smooth function. Correspondingly, we can define $\mathcal{C}^{\infty}\left(\Omega_{2}, \mathcal{D}^{\prime}\left(\Omega_{1}\right)\right)$.
We can now list the mapping properties of bisingular operators on these spaces, following the ideas in Trè67.

Lemma 2.2.3. $\bullet$ Bisingular operators map the spaces $\mathcal{C}^{\infty}\left(\Omega_{1}, \mathcal{D}^{\prime}\left(\Omega_{2}\right)\right)$ and $\mathcal{C}^{\infty}\left(\Omega_{2}, \mathcal{D}^{\prime}\left(\Omega_{1}\right)\right)$ into themselves ${ }^{1}$.

[^1]- Let $a \in S^{-\infty, m}$. Then, the bisingular operator $\operatorname{Op}(a)$ maps $\mathcal{D}^{\prime}\left(\Omega_{1} \times \Omega_{2}\right)$ to $\mathcal{C}^{\infty}\left(\Omega_{1}, \mathcal{D}^{\prime}\left(\Omega_{2}\right)\right)$ and $\mathcal{C}^{\infty}\left(\Omega_{2}, \mathcal{D}^{\prime}\left(\Omega_{1}\right)\right)$ to $\mathcal{C}^{\infty}\left(\Omega_{1} \times \Omega_{2}\right)$.
- Let $a \in S^{m,-\infty}$. Then, the bisingular operator $\operatorname{Op}(a)$ maps $\mathcal{D}^{\prime}\left(\Omega_{1} \times \Omega_{2}\right)$ to $\mathcal{C}^{\infty}\left(\Omega_{2}, \mathcal{D}^{\prime}\left(\Omega_{1}\right)\right)$ and $\mathcal{C}^{\infty}\left(\Omega_{1}, \mathcal{D}^{\prime}\left(\Omega_{2}\right)\right)$ to $\mathcal{C}^{\infty}\left(\Omega_{1} \times \Omega_{2}\right)$.
The following Lemma (see e.g. GS94) indicates how the singularities of a distribution transform under the action of a linear operator in terms of the singularities of its kernel.
Lemma 2.2.4. Let $K \in \mathcal{D}^{\prime}\left(\Omega_{1} \times \Omega_{2}\right)$, and denote by the same letter the corresponding operator $K: \mathcal{C}_{0}^{\infty}\left(\Omega_{2}\right) \rightarrow \mathcal{D}^{\prime}\left(\Omega_{1}\right)$. Set
$\mathrm{WF}^{\prime}(K):=\left\{\left(x_{1}, x_{2}, \xi_{1},-\xi_{2}\right) \in T^{*}\left(\Omega_{1} \times \Omega_{2}\right) \backslash 0 ;\left(x_{1}, x_{2}, \xi_{1}, \xi_{2}\right) \in \mathrm{WF}_{\mathrm{cl}}(K)\right\}$, $\mathrm{WF}_{\Omega_{1}}^{\prime}(K):=\left\{\left(x_{1}, \xi_{1}\right) \in T^{*} \Omega_{1} \backslash 0 ; \exists y \in \Omega_{2}\right.$ with $\left.\left(x_{1}, y, \xi_{1}, 0\right) \in \mathrm{WF}^{\prime}(K)\right\}$, $\mathrm{WF}_{\Omega_{2}}^{\prime}(K):=\left\{\left(x_{2}, \xi_{2}\right) \in T^{*} \Omega_{2} \backslash 0 ; \exists x \in \Omega_{1}\right.$ with $\left.\left(x, x_{2}, 0, \xi_{2}\right) \in \mathrm{WF}^{\prime}(K)\right\}$.

Then, if $u \in \mathcal{E}^{\prime}\left(\Omega_{2}\right)$ and $\mathrm{WF}_{\mathrm{cl}}(u) \cap \mathrm{WF}_{\Omega_{2}}^{\prime}(K)=\emptyset$, we have

$$
\mathrm{WF}_{\mathrm{cl}}(K u) \subset\left(\mathrm{WF}^{\prime}(K) \circ\left(\mathrm{WF}_{\mathrm{cl}}(u)\right)\right) \cup \mathrm{WF}_{\Omega_{1}}^{\prime}(K)
$$

where we considered $\mathrm{WF}^{\prime}(K)$ as a relation.
Remark 2.2.5. From the previous Lemma we can obtain an alternative proof of the microlocality of pseudodifferential operators. In fact, if $K$ is the kernel of a pseudodifferential operator $A$ on $\Omega=\Omega_{1}=\Omega_{2}$, then

$$
\mathrm{WF}_{\Omega_{1}}^{\prime}(K)=\emptyset=\mathrm{WF}_{\Omega_{2}}^{\prime}(K)
$$

and, from Example 2.1.18,

$$
\mathrm{WF}^{\prime}(K) \subseteq\left\{(x, x, \xi,-\xi):(x, \xi) \in \Omega \times\left(\mathbb{R}^{n} \backslash 0\right)\right\}
$$

Hence, from Lemma 2.2.4 we get $\mathrm{WF}_{\mathrm{cl}}(A u) \subseteq \mathrm{WF}_{\mathrm{cl}}(u)$.
We now study the microlocal properties of bisingular operators.
Example 2.2.6. Consider $\Omega_{1}=\Omega_{2}=\mathbb{R}$. We further choose positive $\phi, \psi \in$ $\mathcal{C}_{0}^{\infty}(\mathbb{R})$. Now, define the pseudodifferential operator $T_{\phi}$ on $\mathcal{C}_{0}^{\infty}(\mathbb{R})$ by

$$
T_{\phi}(f):=\phi * f
$$

Then, the operator $A:=T_{\phi} \otimes I$ is a tensor product of two pseudodifferential operators, and thus a bisingular operator on $\mathbb{R}^{2}$. Now, consider the distribution $u=\psi \otimes \delta$, which has the following wave front set:

$$
\mathrm{WF}_{\mathrm{cl}}(u)=\left\{\left(x_{1}, 0,0, \xi_{2}\right) \mid x_{1} \in \operatorname{supp}(\psi), \xi_{2} \in \mathbb{R} \backslash 0\right\}
$$

Then, it is easy to see that

$$
\mathrm{WF}_{\mathrm{cl}}(A u)=\left\{\left(x_{1}, 0,0, \xi_{2}\right) \mid x_{1} \in(\operatorname{supp}(\psi)+\operatorname{supp}(\phi)), \xi_{2} \in \mathbb{R} \backslash 0\right\}
$$

thus $\mathrm{WF}_{\mathrm{cl}}(A u) \supset \mathrm{WF}_{\mathrm{cl}}(u)$. The example can be similarly given, using local coordinates, on a product of two closed manifolds.

The previous example shows that, in general, bisingular operators do not have the microlocal property. Let us start considering the model case of a tensor product of two pseudodifferential operators. For that, we use the following well-known estimate for the wave front set of a tensor product of distributions (cf. e.g. Hör83]):

Lemma 2.2.7. Let $u \in \mathcal{D}^{\prime}\left(\Omega_{1}\right), v \in \mathcal{D}^{\prime}\left(\Omega_{2}\right)$. Then,

$$
\begin{aligned}
\mathrm{WF}_{\mathrm{cl}}(u \otimes v) & \subseteq\left(\mathrm{WF}_{\mathrm{cl}}(u) \times \mathrm{WF}_{\mathrm{cl}}(v)\right) \cup\left((\operatorname{supp}(u) \times\{0\}) \times \mathrm{WF}_{\mathrm{cl}}(v)\right) \\
& \cup\left(\mathrm{WF}_{\mathrm{cl}}(u) \times(\operatorname{supp}(v) \times\{0\})\right) .
\end{aligned}
$$

Example 2.2.8. Let $A \in \mathrm{~L}^{m_{1}}\left(\Omega_{1}\right), B \in \mathrm{~L}^{m_{2}}\left(\Omega_{2}\right)$. Then, the kernel of the bisingular operator $A \otimes B \in \mathrm{~L}^{m_{1}, m_{2}}\left(\Omega_{1}, \Omega_{2}\right)$ is given by $K:=K_{A} \otimes K_{B}$. From Lemma 2.2.7 we have

$$
\begin{aligned}
\mathrm{WF}_{\mathrm{cl}}\left(K_{A} \otimes K_{B}\right) & \subset\left(\mathrm{WF}_{\mathrm{cl}}\left(K_{A}\right) \times \mathrm{WF}_{\mathrm{cl}}\left(K_{B}\right)\right) \\
& \cup\left(\left(\Omega_{1} \times \Omega_{1} \times\{0\}\right) \times \mathrm{WF}_{\mathrm{cl}}\left(K_{B}\right)\right) \\
& \cup\left(\mathrm{WF}_{\mathrm{cl}}\left(K_{A}\right) \times\left(\Omega_{2} \times \Omega_{2} \times\{0\}\right)\right) .
\end{aligned}
$$

We know, from Example 2.1.18, that

$$
\mathrm{WF}_{\mathrm{cl}}\left(K_{A}\right) \subseteq\left\{(x, x, \xi,-\xi):(x, \xi) \in \Omega_{1} \times\left(\mathbb{R}^{n_{1}} \backslash 0\right)\right\} .
$$

If follows

$$
\begin{aligned}
\mathrm{WF}_{\mathrm{cl}}\left(K_{A} \otimes K_{B}\right) & \subset\left\{\left(x_{1}, x_{2}, x_{1}, x_{2}, \xi_{1}, \xi_{2},-\xi_{1},-\xi_{2}\right)\right\} \\
& \cup\left\{\left(x_{1}, x_{2}, y_{1}, x_{2}, 0, \xi_{2}, 0,-\xi_{2}\right)\right\} \\
& \cup\left\{\left(x_{1}, x_{2}, x_{1}, y_{2}, \xi_{1}, 0,-\xi_{1}, 0\right)\right\},
\end{aligned}
$$

that is

$$
\begin{aligned}
\mathrm{WF}_{\mathrm{cl}}(K u) & \subset\left\{\left(x_{1}, x_{2}, \xi_{1}, \xi_{2}\right) \in \mathrm{WF}_{\mathrm{cl}}(u)\right\} \\
& \cup\left\{\left(x_{1}, x_{2}, 0, \xi_{2}\right) ;\left(y_{1}, x_{2}, 0, \xi_{2}\right) \in \mathrm{WF}_{\mathrm{cl}}(u)\right\} \\
& \cup\left\{\left(x_{1}, x_{2}, \xi_{1}, 0\right) ;\left(x_{1}, y_{2}, \xi_{1}, 0\right) \in \mathrm{WF}_{\mathrm{cl}}(u)\right\}=\mathrm{WF}_{\mathrm{cl}}^{\prime}(K) \circ\left(\mathrm{WF}_{\mathrm{cl}}(u)\right),
\end{aligned}
$$

which is precisely the relation of Lemma 2.2.4 given the fact that in our case $\mathrm{WF}_{\Omega_{1}}^{\prime}(K)=\emptyset$.

The approach of the previous Example 2.2.8 seems promising, but it strongly relies on the computation of the distributional kernel and its singularities in the sense of the classical Hörmander's wave front set. It is far more desirable to have a notion of singularities in terms of the actual bisingular calculus. This will be provided in the next subsection.

### 2.2.2 Microlocal properties of bisingular operators

While being the description that naturally arises when analysing the kernels of bisingular operators, the notion of classical wave front is not defined in terms of the bisingular calculus, but indeed with respect to the pseudodifferential one. It is the appropriate to provide a definition of wave front set that takes into account with the peculiar aspects of bisingular calculus.

Definition 2.2.9. Let $u \in \mathcal{D}^{\prime}\left(\Omega_{1} \times \Omega_{2}\right)$. We define $\mathrm{WF}_{\mathrm{bi}}(u) \subset \Omega_{1} \times \Omega_{2} \times$ $\left(\mathbb{R}^{n_{1}+n_{2}} \backslash 0\right)$ as

$$
\mathrm{WF}_{\mathrm{bi}}(u)=\mathrm{WF}_{\mathrm{bi}}^{1}(u) \cup \mathrm{WF}_{\mathrm{bi}}^{2}(u) \cup \mathrm{WF}_{\mathrm{bi}}^{12}(u)
$$

where

- $\left(x_{1}, x_{2}, \xi_{1}, 0\right)$ is not in $\mathrm{WF}_{\mathrm{bi}}^{1}(u)$ if there exists $A \in \mathrm{~L}_{\mathrm{cl}}^{0}\left(\Omega_{1}\right)$, noncharacteristic at $\left(x_{1}, \xi_{1}\right)$, such that

$$
\begin{equation*}
(A \otimes I) u \in \mathcal{C}^{\infty}\left(\Omega_{1}, \mathcal{D}^{\prime}\left(\Omega_{2}\right)\right) \tag{2.6}
\end{equation*}
$$

- $\left(x_{1}, x_{2}, 0, \xi_{2}\right)$ is not in $\mathrm{WF}_{\mathrm{bi}}^{2}(u)$ if there exists $A \in \mathrm{~L}_{\mathrm{cl}}^{0}\left(\Omega_{2}\right)$, noncharacteristic at $\left(x_{2}, \xi_{2}\right)$, such that

$$
\begin{equation*}
(I \otimes A) u \in \mathcal{C}^{\infty}\left(\Omega_{2}, \mathcal{D}^{\prime}\left(\Omega_{1}\right)\right) \tag{2.7}
\end{equation*}
$$

- $\left(x_{1}, x_{2}, \xi_{1}, \xi_{2}\right),\left|\xi_{1}\right|\left|\xi_{2}\right| \neq 0$, is not in $\mathrm{WF}_{\mathrm{bi}}^{12}(u)$ if there exist $A_{i} \in$ $\mathrm{L}_{\mathrm{cl}}^{0}\left(\Omega_{i}\right)$, non-characteristic at $\left(x_{i}, \xi_{i}\right), i=1,2$, such that

$$
\begin{align*}
\left(A_{1} \otimes A_{2}\right) u & \in \mathcal{C}^{\infty}\left(\Omega_{1} \times \Omega_{2}\right)  \tag{2.8}\\
\left(A_{1} \otimes I\right) u & \in \mathcal{C}^{\infty}\left(\Omega_{1}, \mathcal{D}^{\prime}\left(\Omega_{2}\right)\right)  \tag{2.9}\\
\left(I \otimes A_{2}\right) u & \in \mathcal{C}^{\infty}\left(\Omega_{2}, \mathcal{D}^{\prime}\left(\Omega_{1}\right)\right) \tag{2.10}
\end{align*}
$$

Remark 2.2.10. Notice that conditions 2.9 and 2.10 do not follow from (2.8). Take, for instance, $u \in \mathcal{D}^{\prime}(\mathbb{R} \times \mathbb{R}), u=\delta(x-1) \delta(y+1)$ and $\psi$ smooth such that $\psi \equiv 1$ for $x>1 / 2$ and $\psi \equiv 0$ for $x \leq 0$. Then, $(\psi(x) \otimes \psi(y)) u=0$, as $(1,-1) \notin \operatorname{supp}(\psi \otimes \psi)$. However, for $g \in \mathcal{D}(\mathbb{R})$ with $g(-1) \neq 0$ we have $(\psi(x) \otimes I) u(\cdot \otimes g)=\delta(x-1) g(-1)$, which is not smooth.

We have the following inclusion result:
Lemma 2.2.11. If a point $\left(x_{1}^{0}, x_{2}^{0}, \xi_{1}^{0}, \xi_{2}^{0}\right),\left|\xi_{1}^{0}\right|\left|\xi_{2}^{0}\right| \neq 0$, is not in $\operatorname{WF}_{\mathrm{bi}}^{12}(u)$, then it is not in $\mathrm{WF}_{\mathrm{cl}}(u)$.

Proof. The proof is a variant of Hör91, Proposition 2.8. By definition, there exists $A:=A_{1} \otimes A_{2} \in \mathrm{~L}^{0,0}\left(\Omega_{1} \times \Omega_{2}\right)$, with $\sigma^{12}(A)\left(x_{1}^{0}, x_{2}^{0}, \xi_{1}^{0}, \xi_{2}^{0}\right) \neq 0$, such that $A u \in \mathcal{C}^{\infty}\left(\Omega_{1} \times \Omega_{2}\right)$. Now take a ( $\Psi$ DO symbol) $\psi \in \mathrm{L}_{\mathrm{cl}}^{0}\left(\Omega_{1} \times \Omega_{2}\right)$ such that
a) on the support of $\psi$ we have $\left\langle\xi_{1}\right\rangle \lesssim\left\langle\xi_{2}\right\rangle \lesssim\left\langle\xi_{1}\right\rangle$;
b) $\psi$ is non-characteristic at $\left(x_{1}^{0}, x_{2}^{0}, \xi_{1}^{0}, \xi_{2}^{0}\right)$.

Then, the (bi-singular) operator product

$$
B:=\psi\left(x_{1}, x_{2}, D_{1}, D_{2}\right) \circ A\left(x_{1}, x_{2}, D_{1}, D_{2}\right)
$$

yields a pseudodifferential operator of order 0 , plus a smoothing remainder, by virtue of the above inequality on the support of $\psi$ and the symbol expansion in Theorem 1.2.13. It has the following properties:
a) its principal symbol is $\psi \cdot \sigma^{12}(A)$, and thus it is non-characteristic (in the sense of $\Psi \mathrm{DOs})$ at $\left(x_{1}^{0}, x_{2}^{0}, \xi_{1}^{0}, \xi_{2}^{0}\right)$ and of order zero;
b) $B u=\psi\left(x_{1}, x_{2}, D_{1}, D_{2}\right) A\left(x_{1}, x_{2}, D_{1}, D_{2}\right) u \in \mathcal{C}^{\infty}$.

This proves the claim.
Remark 2.2.12. Lemma 2.2 .11 asserts that in the conic region where both covariables are non-vanishing we can pass from bisingular to pseudodifferential calculus by multiplying by a $\Psi \mathrm{DO}$. This has the consequence that the two operator classes have similar microlocal properties (with respect to the classical wave front set) in that region.

Definition 2.2.13. Let $x_{0} \in \mathbb{S}^{n}$, and choose a positive function $\phi \in \mathcal{C}^{\infty}\left(\mathbb{S}^{n}\right)$ with $\|\phi\|_{\infty}=1$ and $\phi \equiv 1$ in a neighbourhood of $x_{0}$. Denote by $\tilde{\phi}$ the homogeneous extension of $\phi$ to $\mathbb{R}^{n} \backslash 0$, and consider an excision function $\chi \in \mathcal{C}_{0}^{\infty}\left(\mathbb{R}^{n}\right)$. The function

$$
\psi(x):=\chi(x) \tilde{\phi}\left(\frac{x}{|x|}\right) \in \mathcal{C}^{\infty}\left(\mathbb{R}^{n}\right)
$$

is called conic localizer around $x_{0}$. For further details on this construction, see, e.g., Mel04.

The following Lemma gives a similar interpretation of the remaining components, illustrating the loss of localization of singularities already encountered in the previous section.

Lemma 2.2.14. Let $u \in \mathcal{E}^{\prime}\left(\Omega_{1} \times \Omega_{2}\right),\left(x_{1}^{0}, \xi_{1}^{0}\right) \in \Omega_{1} \times\left(\mathbb{R}^{n_{1}} \backslash 0\right)$. If for all $y \in \Omega_{2}$ we have $\left(x_{1}^{0}, y, \xi_{1}^{0}, 0\right) \notin \mathrm{WF}_{\mathrm{cl}}(u)$, then, for all $y \in \Omega_{2}$ we have $\left(x_{1}^{0}, y, \xi_{1}^{0}, 0\right) \notin \mathrm{WF}_{\mathrm{bi}}^{1}(u)$. Similarly, if for all $x \in \Omega_{1}$ we have $\left(x, x_{2}^{0}, 0, \xi_{2}^{0}\right) \notin$ $\mathrm{WF}_{\mathrm{cl}}(u)$, then, for all $x \in \Omega_{1}$ we have $\left(x, x_{2}^{0}, 0, \xi_{2}^{0}\right) \notin \mathrm{WF}_{\mathrm{bi}}^{2}(u)$.

Proof. We prove only the first claim, since the proof of the second one is similar. Take $\left(x_{1}^{0}, y, \xi_{1}^{0}, 0\right) \notin \mathrm{WF}_{\mathrm{cl}}(u)$. Then, there exists a cut-off $\phi \in$
$\mathcal{C}_{0}^{\infty}\left(\Omega_{1} \times \Omega_{2}\right)$ and a conic localizer $\psi_{y} \in \mathcal{C}^{\infty}\left(\mathbb{R}^{n_{1}+n_{2}}\right)$, non-vanishing in a (conic) neighbourhood ( $x_{1}^{0}, y$ ) and ( $\left.\xi_{1}^{0}, 0\right)$ respectively, such that

$$
\psi_{y}\left(\xi_{1}, \xi_{2}\right) \mathcal{F}_{\left(x_{1}, x_{2}\right) \mapsto\left(\xi_{1}, \xi_{2}\right)}\left\{\phi\left(x_{1}, x_{2}\right) u\right\} \in \mathscr{S}\left(\mathbb{R}^{n_{1}+n_{2}}\right)
$$

As this holds true for any $y$, due to the compactness of the support of $u$, there exists a cut-off $\phi_{1} \in \mathcal{C}_{0}^{\infty}\left(\Omega_{1}\right)$ such that, for some conic localizer $\psi \in \mathcal{C}^{\infty}\left(\mathbb{R}^{n_{1}+n_{2}}\right)$,

$$
\psi\left(\xi_{1}, \xi_{2}\right) \mathcal{F}_{\left(x_{1}, x_{2}\right) \mapsto\left(\xi_{1}, \xi_{2}\right)}\left\{\phi\left(x_{1}\right) u\right\} \in \mathscr{S}\left(\mathbb{R}^{n_{1}+n_{2}}\right) .
$$

We can then find a conic localizer $\psi_{1} \in \mathcal{C}^{\infty}\left(\mathbb{R}^{n_{1}}\right)$, non-vanishing around $\xi_{1}^{0}$, such that $\psi\left(\xi_{1}\right) \mathcal{F}_{\left(x_{1}, x_{2}\right) \mapsto\left(\xi_{1}, \xi_{2}\right)}\left\{\phi\left(x_{1}\right) u\right\} \in \mathcal{C}^{\infty}\left(\mathbb{R}^{n_{1}+n_{2}}\right)$ is rapidly decaying with respect to the first variable $\xi_{1}$ for fixed $\xi_{2}$, and polynomially bounded everywhere, by the Paley-Wiener-Schwartz Theorem. Define $A \in \mathrm{~L}_{\mathrm{cl}}^{0}\left(\Omega_{1}\right)$ to be the operator

$$
A u\left(y_{1}\right)=\mathcal{F}_{\xi_{1} \mapsto y_{1}}^{-1}\left(\psi\left(\xi_{1}\right) \mathcal{F}_{x_{1} \mapsto \xi_{1}}\left\{\phi\left(x_{1}\right) u\right\} .\right.
$$

By the assumptions on $\phi_{1}$ and $\psi_{1}, A$ is non-characteristic in the sense of pseudodifferential operators at $\left(x_{1}^{0}, \xi_{1}^{0}\right)$. Taking $f \in \mathcal{D}\left(\Omega_{2}\right)$, we find that $[(A \otimes$ $I) u](f)\left(x_{1}\right)=\mathcal{F}_{\xi_{1} \mapsto x_{1}}^{-1}\left\langle\psi\left(\xi_{1}\right) \mathcal{F}_{\left(y_{1}, y_{2}\right) \rightarrow\left(\xi_{1}, \xi_{2}\right)}\left\{\phi\left(y_{1}\right) u\right\}, \widehat{f}\right\rangle$ is a smooth function, which means $(A \otimes I) u \in \mathcal{C}^{\infty}\left(\Omega_{1}, \mathcal{D}^{\prime}\left(\Omega_{2}\right)\right)$, as claimed.

Proposition 2.2.15. Let $u \in \mathcal{E}^{\prime}\left(\Omega_{1} \times \Omega_{2}\right)$. Then

$$
\mathrm{WF}_{\mathrm{bi}}(u)=\emptyset \Leftrightarrow u \in \mathcal{C}^{\infty}\left(\Omega_{1} \times \Omega_{2}\right) .
$$

Proof. Assume $\mathrm{WF}_{\mathrm{bi}}(u)=\emptyset$. Then, in view of of Lemma 2.2.11, we have $\mathrm{WF}_{\mathrm{cl}}(u) \cap\left\{\left(x_{1}, x_{2}, \xi_{1}, \xi_{2}\right)\left|:\left|\xi_{1}\right|\right| \xi_{2} \mid \neq 0\right\}=\emptyset$. Thus, $\widehat{u}$ is rapidly decaying on any ray $\mathbb{R} \cdot\left(\xi_{1}, \xi_{2}\right)$ where $\left|\xi_{1}\right|\left|\xi_{2}\right| \neq 0$.
Since $\mathrm{WF}_{\mathrm{bi}}^{1}(u)=\emptyset$, for each $\left(x_{1}, x_{2}, \xi_{1}, \xi_{2}\right)$ we can find $A \in \mathrm{~L}_{\mathrm{cl}}^{0}\left(\Omega_{1}\right)$ noncharacteristic at $\left(x_{1}, \xi_{1}\right)$ such that, by Lemma 2.2.3, for any

$$
B \in \mathrm{~L}^{m,-\infty}\left(\Omega_{1} \times \Omega_{2}\right),
$$

we have

$$
B(I \otimes A) u \in \mathcal{C}^{\infty}\left(\Omega_{1} \times \Omega_{2}\right)
$$

By compactness and a parametrix construction, see e.g. Shu01], we can thus conclude that, for all

$$
B \in \mathrm{~L}^{m,-\infty}\left(\Omega_{1} \times \Omega_{2}\right),
$$

we get

$$
B u \in \mathcal{C}^{\infty}\left(\Omega_{1} \times \Omega_{2}\right)
$$

Now, choose $\phi \in \mathcal{C}_{0}^{\infty}\left(\Omega_{1} \times \Omega_{2}\right)$ with $\phi \equiv 1$ on a neighbourhood of the support of $u$, and define $b\left(x_{1}, x_{2}, \xi_{1}, \xi_{2}\right)=\phi\left(x_{1}, x_{2}\right) f\left(\xi_{2}\right)$, with $f \in \mathscr{S}\left(\mathbb{R}^{n_{2}}\right)$. Then

$$
\mathscr{S}\left(\mathbb{R}^{n_{1}+n_{2}}\right) \ni \mathcal{F}(B u)=\mathcal{F}\left(b\left(x_{1}, x_{2}, D_{1}, D_{2}\right) u\right)=(1 \otimes f) \widehat{u} .
$$

As $f$ was arbitrary and rapidly decaying, this means that $\widehat{u}$ must already be rapidly decaying in the first variable. A repetition of the argument for the second variable proves the assertion.

By the same arguments used in the proof of the previous Proposition 2.2.15 we get:

Proposition 2.2.16. Let $u \in \mathcal{E}^{\prime}\left(\Omega_{1} \times \Omega_{2}\right)$. Then,

$$
\begin{aligned}
& \operatorname{WF}_{\mathrm{bi}}^{1}(u)=\emptyset \Leftrightarrow u \in \mathcal{C}^{\infty}\left(\Omega_{1}, \mathcal{D}^{\prime}\left(\Omega_{2}\right)\right) \\
& \operatorname{WF}_{\mathrm{bi}}^{2}(u)=\emptyset \Leftrightarrow u \in \mathcal{C}^{\infty}\left(\Omega_{2}, \mathcal{D}^{\prime}\left(\Omega_{1}\right)\right) .
\end{aligned}
$$

Remark 2.2.17. Notice that $u \in \mathcal{C}^{\infty}\left(\Omega_{1}, \mathcal{D}^{\prime}\left(\Omega_{2}\right)\right) \bigcap \mathcal{C}^{\infty}\left(\Omega_{2}, \mathcal{D}^{\prime}\left(\Omega_{1}\right)\right)$ does not imply that $u \in \mathcal{C}^{\infty}\left(\Omega_{1} \times \Omega_{2}\right)$. Following Trè67, a counterexample is, for instance, $\delta\left(x_{1}-x_{2}\right)$. The additional regularity needed such that $u \in \mathcal{C}^{\infty}\left(\Omega_{1} \times \Omega_{2}\right)$ is therefore, by Proposition 2.2.15, encoded in $\mathrm{WF}_{\mathrm{bi}}^{12}(u)$.

The bisingular wave front set has the following properties:
Proposition 2.2.18. Let $u, v \in \mathcal{D}^{\prime}\left(\Omega_{1} \times \Omega_{2}\right), f \in \mathcal{C}^{\infty}\left(\Omega_{1} \times \Omega_{2}\right)$.

- $\mathrm{WF}_{\mathrm{bi}}(u)$ is a closed set and conic, jointly, with respect to both covariables.
- Let $\Omega_{1}=\Omega_{2}=\Omega$. Define, for $u \in \mathcal{C}^{\infty}(\Omega \times \Omega), A u\left(x_{1}, x_{2}\right)=u\left(x_{2}, x_{1}\right)$. Then, we can define the pull-back $A^{*}$ by duality as an endomorphism on $\mathcal{D}^{\prime}(\Omega \times \Omega)$. We have $\left(x_{1}, x_{2}, \xi_{1}, \xi_{2}\right) \in \mathrm{WF}_{\mathrm{bi}}(A u) \Leftrightarrow\left(x_{2}, x_{1}, \xi_{2}, \xi_{1}\right) \in$ $\mathrm{WF}_{\mathrm{bi}}(u)$.
- $\mathrm{WF}_{\mathrm{bi}}(u+v) \subseteq \mathrm{WF}_{\mathrm{bi}}(u) \cup \mathrm{WF}_{\mathrm{bi}}(v) ; \mathrm{WF}_{\mathrm{bi}}(f u) \subseteq \mathrm{WF}_{\mathrm{bi}}(u)$.

Remark 2.2.19. These properties are quite similar to the corresponding ones of the $S G$-wave front set, examined in CM03]. This is not very surprising, as the bisingular calculus is formally very similar, in its definition, to the $S G$-calculus, through which the $S G$-wave front set is introduced. We will explore this connection in Section 2.3 .

Lemma 2.2.20. Let $C \in \mathrm{~L}^{m_{1}, m_{2}}\left(\Omega_{1} \times \Omega_{2}\right), u \in \mathcal{D}^{\prime}\left(\Omega_{1} \times \Omega_{2}\right)$. Then,

$$
\mathrm{WF}_{\mathrm{bi}}^{1}(C u) \subset \mathrm{WF}_{\mathrm{bi}}^{1}(u) .
$$

Proof. Let $\left(x_{1}, x_{2}, \xi_{1}, 0\right) \notin \mathrm{WF}_{\mathrm{bi}}^{1}(u)$. By definition, there exists $A \in \mathrm{~L}_{\mathrm{cl}}^{0}\left(\Omega_{1}\right)$, non-characteristic at $\left(x_{1}, \xi_{1}\right)$, such that $(A \otimes I) u \in \mathcal{C}^{\infty}\left(\Omega_{1}, \mathcal{D}^{\prime}\left(\Omega_{2}\right)\right.$. In particular, by Lemma 2.2 .3 we have for all $B \in \mathrm{~L}^{m,-\infty}\left(\Omega_{1} \times \Omega_{2}\right)$, that $B(A \otimes I) u$ is smooth. By the standard pseudodifferential calculus, we can find $A^{\prime} \in \mathrm{L}^{0}\left(\Omega_{1}\right)$ such that $A+A^{\prime}$ is elliptic in the sense of pseudodifferential operators and such that the symbol of $A^{\prime}$ vanishes on a conic neighbourhood $\Gamma$ of $\left(x_{1}, \xi_{1}\right)$. We thus have a parametrix $P \in \mathrm{~L}^{0}\left(\Omega_{1}\right)$ such that
$P\left(A+A^{\prime}\right)=I-R$ with $R \in \mathrm{~L}^{-\infty}\left(\Omega_{1}\right)$.
Take $H \in \mathrm{~L}^{0}\left(\Omega_{1}\right)$ such that $H$ is non-characteristic at $\left(x_{1}, \xi_{1}\right)$ and such that the symbol of $H$ vanishes outside a proper subcone of $\Gamma$. Then we have:

$$
\begin{aligned}
(H \otimes I) C u & =(H \otimes I) C\left(\left(P\left(A+A^{\prime}\right)+R\right) \otimes I\right) u \\
& =(H \otimes I) C(P \otimes I)(A \otimes I) u+(H \otimes I) C\left(P A^{\prime} \otimes I\right) u+ \\
& +(H \otimes I) C(R \otimes I) u \in \mathcal{C}^{\infty}\left(\Omega_{1}, \mathcal{D}^{\prime}\left(\Omega_{2}\right)\right)
\end{aligned}
$$

The first summand is in $\mathcal{C}^{\infty}\left(\Omega_{1}, \mathcal{D}^{\prime}\left(\Omega_{2}\right)\right)$, due to the definition of $A$. The second, in view of the symbol expansion given in Theorem 1.2.13, using the support properties of the symbols of $H$ and $A^{\prime}$, gives an operator in $L^{-\infty, 0}$. Finally, the third one is in $\mathcal{C}^{\infty}\left(\Omega_{1}, \mathcal{D}^{\prime}\left(\Omega_{2}\right)\right)$, as $R \in L^{-\infty, 0}$ is already a smoothing operator in the first variable. This proves the claim.

Lemma 2.2.21. Let $C \in \mathrm{~L}^{m_{1}, m_{2}}\left(\Omega_{1} \times \Omega_{2}\right), u \in \mathcal{D}^{\prime}\left(\Omega_{1} \times \Omega_{2}\right)$. Then we have $\mathrm{WF}_{\mathrm{bi}}^{12}(C u) \subset \mathrm{WF}_{\mathrm{bi}}^{12}(u)$.

Proof. Let $\left(x_{1}, x_{2}, \xi_{1}, \xi_{2}\right) \notin \mathrm{WF}_{\mathrm{bi}}^{12}(u)$. Then, by definition, we know that there exist $A_{i} \in \mathrm{~L}_{\mathrm{cl}}^{0}\left(\Omega_{i}\right)$, non-characteristic at $\left(x_{i}, \xi_{i}\right), i=1,2$, such that

$$
\begin{aligned}
\left(A_{1} \otimes A_{2}\right) u & \in \mathcal{C}^{\infty}\left(\Omega_{1} \times \Omega_{2}\right) \\
\left(A_{1} \otimes I\right) u & \in \mathcal{C}^{\infty}\left(\Omega_{1}, \mathcal{D}^{\prime}\left(\Omega_{2}\right)\right) \\
\left(I \otimes A_{2}\right) u & \in \mathcal{C}^{\infty}\left(\Omega_{2}, \mathcal{D}^{\prime}\left(\Omega_{1}\right)\right)
\end{aligned}
$$

By the standard pseudodifferential calculus we can thus find $A_{i}^{\prime} \in \mathrm{L}^{0}\left(\Omega_{i}\right)$, such that $A_{i}+A_{i}^{\prime}$ is elliptic in the sense of pseudodifferential operators and such that the symbol of $A_{i}^{\prime}$ vanishes on a conic neighborhood $\Gamma_{i}$ of $\left(x_{i}, \xi_{i}\right)$, $i=1,2$. We then have two parametrices $P_{i} \in \mathrm{~L}^{0}\left(\Omega_{i}\right), i=1,2$, such that

$$
\left(P_{1} \otimes P_{2}\right)\left(\left(A_{1}+A_{1}^{\prime}\right) \otimes\left(A_{2}+A_{2}^{\prime}\right)\right)=I \otimes I-R_{1} \otimes I-I \otimes R_{2}-\underbrace{R_{1} \otimes R_{2}}_{:=R},
$$

with $R_{i} \in \mathrm{~L}^{-\infty}\left(\Omega_{i}\right), i=1,2$. Now, choose $H_{i} \in \mathrm{~L}^{0}\left(\Omega_{i}\right)$ such that $H_{i}$ is noncharacteristic at $\left(x_{i}, \xi_{i}\right)$ and such that the symbol of $H_{i}$ vanishes outside a proper subcone of $\Gamma_{i}, i=1,2$. Recall that, by the standard pseudodifferential calculus, if two operators have symbols with disjoint supports, their
product is a smoothing operator. Then, using Lemma 2.2.3,

$$
\begin{aligned}
& \left(H_{1} \otimes H_{2}\right) C u= \\
& \left(H_{1} \otimes H_{2}\right) C\left(\left(P_{1} \otimes P_{2}\right)\left(\left(A_{1}+A_{1}^{\prime}\right) \otimes\left(A_{2}+A_{2}^{\prime}\right)\right)+R_{1} \otimes I+I \otimes R_{2}+R\right) u \\
& =\underbrace{\left(H_{1} \otimes H_{2}\right) C\left(P_{1} \otimes P_{2}\right)\left(A_{1} \otimes A_{2}\right) u}_{\in \mathcal{C}^{\infty} \text { by eq } \sqrt{2.8}}+\underbrace{\left(H_{1} \otimes H_{2}\right) C\left(P_{1} \otimes P_{2}\right)\left(A_{1}^{\prime} \otimes A_{2}\right) u}_{\in \mathcal{C}^{\infty} \text { by } \sqrt{2.10} \text { and by the support of } H_{1}, A_{1}^{\prime}} \\
& +\underbrace{\left(H_{1} \otimes H_{2}\right) C\left(P_{1} \otimes P_{2}\right)\left(A_{1} \otimes A_{2}^{\prime}\right) u}_{\in \mathcal{C}^{\infty} \text { by } \sqrt{2.9} \text { and by the support of } H_{2}, A_{2}^{\prime}}+\underbrace{\left(H_{1} \otimes H_{2}\right) C\left(P_{1} \otimes P_{2}\right)\left(A_{1}^{\prime} \otimes A_{2}^{\prime}\right) u}_{\in \mathcal{C}^{\infty} \text { by the support of } H_{1}, H_{2}, A_{1}^{\prime}, A_{2}^{\prime}} \\
& +\left(H_{1} \otimes H_{2}\right) C\left(R_{1} \otimes I\right) u+\left(H_{1} \otimes H_{2}\right) C\left(I \otimes R_{2}\right) u+\underbrace{\left(H_{1} \otimes H_{2}\right) C R u}_{\in \mathcal{C}^{\infty} \text { because } R \in \mathrm{~L}^{-\infty},-\infty} \\
& =\left(H_{1} \otimes H_{2}\right) C\left(R_{1} \otimes I\right) u+\left(H_{1} \otimes H_{2}\right) C\left(I \otimes R_{2}\right) u \quad \bmod \mathcal{C}^{\infty}\left(\Omega_{1} \times \Omega_{2}\right) .
\end{aligned}
$$

Now, without loss of generality, we proceed with the calculations only for the term $\left(H_{1} \otimes H_{2}\right) C\left(R_{1} \otimes I\right) u$. We have

$$
\begin{aligned}
\left(H_{1} \otimes H_{2}\right) C\left(R_{1} \otimes I\right) u & =\left(H_{1} \otimes H_{2}\right) C\left(R_{1} \otimes\left(P_{2}\left(A_{2}+A_{2}^{\prime}\right)+R_{2}\right)\right) u \\
& =\underbrace{\left(H_{1} \otimes H_{2}\right) C\left(R_{1} \otimes P_{2}\right)\left(I \otimes A_{2}\right) u}_{\in \mathcal{C}^{\infty} \text { by } \sqrt{2.10}} \\
& +\underbrace{\left(H_{1} \otimes H_{2}\right) C\left(R_{1} \otimes P_{2}\right)\left(I \otimes A_{2}^{\prime}\right) u}_{\in \mathcal{C}^{\infty} \text { by the support of } H_{2}, A_{2}^{\prime}} \\
& +\underbrace{\left(H_{1} \otimes H_{2}\right) C\left(R_{1} \otimes I\right)\left(I \otimes R_{2}\right) u}_{\in \mathcal{C}^{\infty} \text { because } R \in \mathrm{~L}^{-\infty,-\infty}} \in \mathcal{C}^{\infty}\left(\Omega_{1} \times \Omega_{2}\right),
\end{aligned}
$$

therefore $\left(H_{1} \otimes H_{2}\right) C u \in \mathcal{C}^{\infty}\left(\Omega_{1} \times \Omega_{2}\right)$. With similar computations, one can check that

$$
\begin{aligned}
& \left(H_{1} \otimes I\right) C u \in \mathcal{C}^{\infty}\left(\Omega_{1}, \mathcal{D}^{\prime}\left(\Omega_{2}\right)\right), \\
& \left(I \otimes H_{2}\right) C u \in \mathcal{C}^{\infty}\left(\Omega_{2}, \mathcal{D}^{\prime}\left(\Omega_{1}\right)\right),
\end{aligned}
$$

and this proves the claim.

The previous Lemmas leads to the next Proposition 2.2.22, dealing with the microlocality of bisingular operators. It means that this definition of wave front set is indeed suitable for the calculus of bisingular operators.

Proposition 2.2.22 (Microlocality of bisingular operators). Let $C \in$ $\mathrm{L}^{m_{1}, m_{2}}\left(\Omega_{1} \times \Omega_{2}\right), u \in \mathcal{D}^{\prime}\left(\Omega_{1} \times \Omega_{2}\right)$. Then we have $\mathrm{WF}_{\mathrm{bi}}(C u) \subseteq \mathrm{WF}_{\mathrm{bi}}(u)$.

Proof. The claim follows directly from Lemma 2.2.20 and Lemma 2.2.21, recalling Definition 2.2.9.

### 2.2.3 Microelliptic properties of bisingular operators

From the previous Proposition 2.2 .22 , we can conclude that bielliptic operators preserve the bi-wave front set:

Corollary 2.2.23. Let $A \in \mathrm{~L}^{m_{1}, m_{2}}\left(\Omega_{1}, \Omega_{2}\right)$ be bi-elliptic. Then $\mathrm{WF}_{\mathrm{bi}}(A u)=$ $\mathrm{WF}_{\mathrm{bi}}(u)$.

Proof. One inclusion follows directly form Proposition 2.2.22. The other follows arguing as in Corollary 2.1.16.

Next, we study the microellipticity properties of bisingular operators. To this aim, we need a suitable definition of a characteristic set. As in Definition $1.2 .5, \Omega_{1}$ and $\Omega_{2}$ are closed manifolds.

Definition 2.2.24. Let $B \in \mathrm{~L}^{m_{1}, m_{2}}\left(\Omega_{1}, \Omega_{2}\right)$ and $v_{0}=\left(x_{0}, \xi_{0}\right) \in \Omega_{1} \times\left(\mathbb{R}^{n_{1}} \backslash\right.$ $0)$. We say that $B$ is not 1 -characteristic on $V:=\pi_{2}^{-1}\left(v_{0}\right):=\left\{\left(x_{0}, y, \xi_{0}, 0\right)\right.$ : $\left.y \in \Omega_{2}\right\}$ if

1. for all $v \in V$ there exists an open conic neighbourhood $\Theta$ of $v$ such that $\sigma^{12}(B) \neq 0$ on $\Theta \backslash\left(\mathbb{R}^{+} v\right)$;
2. $\sigma^{1}(B) \in \mathrm{L}_{\mathrm{cl}}^{m_{2}}\left(\Omega_{2}\right)$ is invertible with inverse in $\mathrm{L}_{\mathrm{cl}}^{-m_{2}}\left(\Omega_{2}\right)$ in an open conic neighbourhood $\Gamma$ of $v_{0}$.

Let $\operatorname{Char}_{\mathrm{bi}}^{1}(B)$ be the set of all $V$ such that $B$ is 1 -characteristic at $V$. We define $\operatorname{Char}_{\mathrm{bi}}^{2}(B)$ similarly for $W:=\pi_{2}^{-1}\left(w_{0}\right), w_{0} \in \Omega_{2} \times\left(\mathbb{R}^{n_{2}} \backslash 0\right)$, by exchanging the roles of $\sigma^{1}(B)$ and $\sigma^{2}(B)$. Finally, we define $\operatorname{Char}_{\mathrm{bi}}^{12}(B)$ as the set of points $z=\left(x_{1}, x_{2}, \xi_{1}, \xi_{2}\right),\left|\xi_{1}\right|\left|\xi_{2}\right| \neq 0$, where $\sigma^{12}(B)(z)=0$. Set

$$
\operatorname{Char}_{\mathrm{bi}}(B):=\operatorname{Char}_{\mathrm{bi}}^{1}(B) \cup \operatorname{Char}_{\mathrm{bi}}^{2}(B) \cup \operatorname{Char}_{\mathrm{bi}}^{12}(B)
$$

Remark 2.2.25. $B$ is bi-elliptic if and only if $\operatorname{Char}_{\mathrm{bi}}(B)=\emptyset$.
Remark 2.2.26. As consequence of Remark 2.2 .25 , an equivalent definition of $\mathrm{WF}_{\mathrm{bi}}(u)$ is the following one:

$$
\begin{aligned}
& \mathrm{WF}_{\mathrm{bi}}^{1}(u)=\bigcap_{\substack{A \in \mathrm{~L}_{\mathrm{cl}}^{0}\left(\Omega_{1}\right) \\
(A \otimes I) u \in \mathcal{C}^{\infty}\left(\Omega_{1}, \mathcal{D}^{\prime}\left(\Omega_{2}\right)\right)}} \underbrace{\operatorname{Char}_{\mathrm{bi}}^{1}(A \otimes I),}_{\operatorname{Char}_{\mathrm{cl}}(A) \times\left(\Omega_{2} \times\left(\mathbb{R}^{n_{2}} \backslash 0\right)\right)} \\
& \mathrm{WF}_{\mathrm{bi}}^{2}(u)=\bigcap_{\substack{A \in \mathrm{~L}_{\mathrm{cl}}^{0}\left(\Omega_{2}\right) \\
(I \otimes A) u \in \mathcal{C}^{\infty}\left(\Omega_{2}, \mathcal{D}^{\prime}\left(\Omega_{1}\right)\right)}} \underbrace{\operatorname{Char}_{\mathrm{bi}}^{2}(I \otimes A),}_{\left(\Omega_{1} \times\left(\mathbb{R}^{n_{1}} \backslash 0\right)\right) \times \operatorname{Char}_{\mathrm{cl}}(A)} \\
& \mathrm{WF}_{\mathrm{bi}}^{12}(u)=\bigcap_{\substack{A_{i} \in \mathrm{~L}_{\mathrm{c}}^{0}\left(\Omega_{1}\right) \\
\left(A_{1} \otimes A_{2}\right) u \in \mathcal{C}^{\infty} \\
\left(A_{1} \otimes I\right) u \in \mathcal{C}^{\infty}\left(\Omega_{1}, \mathcal{D}^{\prime}\left(\Omega_{2}\right)\right) \\
\left(I \otimes A_{2}\right) u \in \mathcal{C}^{\infty}\left(\Omega_{2}, \mathcal{D}^{\prime}\left(\Omega_{1}\right)\right)}} \operatorname{Char}_{\mathrm{bi}}^{12}\left(A_{1} \otimes A_{2}\right) .
\end{aligned}
$$

| Operator $A$ | $\operatorname{Char}_{\mathrm{bi}}^{1}(A)$ | $\operatorname{Char}_{\mathrm{bi}}^{2}(A)$ | $\operatorname{Char}_{\mathrm{bi}}^{12}(A)$ |
| :---: | :---: | :---: | :---: |
| $I \otimes I$ | $\emptyset$ | $\emptyset$ | $\emptyset$ |
| $-\Delta_{1} \otimes I+I \otimes\left(-\Delta_{2}\right)$ | $\Omega \times \mathbb{R}_{*}^{n_{1}} \times\{0\}$ | $\Omega \times\{0\} \times \mathbb{R}_{*}^{n_{2}}$ | $\Omega \times \mathbb{R}_{*}^{n_{12}}$ |
| $-\Delta_{1} \otimes\left(-\Delta_{2}\right)$ | $\Omega \times \mathbb{R}_{*}^{n_{1}} \times\{0\}$ | $\Omega \times\{0\} \times \mathbb{R}_{*}^{n_{2}}$ | $\emptyset$ |
| $\left(-\Delta_{1}+I\right) \otimes\left(-\Delta_{2}\right)$ | $\Omega \times \mathbb{R}_{*}^{n_{1}} \times\{0\}$ | $\emptyset$ | $\emptyset$ |
| $\left(-\Delta_{1}+I\right) \otimes\left(-\Delta_{2}+I\right)$ | $\emptyset$ | $\emptyset$ | $\emptyset$ |
| $\left(-\Delta_{1}+I\right)^{-1} \otimes\left(-\Delta_{2}+I\right)^{-1}$ | $\emptyset$ | $\emptyset$ | $\emptyset$ |

Table 2.1: $\operatorname{Char}_{\mathrm{bi}}(A)$ for model cases of bisingular operators

With the definition of $\operatorname{Char}_{\mathrm{bi}}(u)$ we can review the model cases of Table 1.1 into the next Table 2.1, setting $\mathbb{R}_{*}^{n}=\mathbb{R}^{n} \backslash 0, \Omega=\Omega_{1} \times \Omega_{2}$ and $\mathbb{R}_{*}^{n_{12}}=$ $\mathbb{R}_{*}^{n_{1}} \times \mathbb{R}_{*}^{n_{2}}$.

Lemma 2.2.27. Let $C \in \mathrm{~L}^{m_{1}, m_{2}}\left(\Omega_{1}, \Omega_{2}\right)$ be such that

$$
\operatorname{Char}_{\mathrm{bi}}^{1}(C) \cap\left(\Gamma \times \Omega_{2} \times\{0\}\right)=\emptyset .
$$

Let $a \in \mathrm{~S}^{0}\left(\Omega_{1}\right)$ have support in a closed cone $\Gamma$ and be non-characteristic (in the sense of $\Psi \mathrm{DO})$ in $\Gamma^{0}$. Then, there exists $H \in \mathrm{~L}^{-m_{1},-m_{2}}\left(\Omega_{1}, \Omega_{2}\right)$ such that

$$
H C=A \otimes I-R,
$$

where $R \in \mathrm{~L}^{-\infty, 0}$.
Proof. The requirements on the support of $a$ mean precisely that $C$ is elliptic with respect to $a$ in the sense of Cor95, Theorem 2.3.3. Therefore, by the classical calculus of pseudodifferential operators, we can find a symbol $b \in \mathrm{~S}^{-m_{1},-m_{2}}$ such that for all fixed $\left(x_{2}, \xi_{2}\right)$ the operator $B\left(x_{2}, \xi_{2}\right)=$ $b\left(x_{1}, x_{2}, D_{1}, \xi_{2}\right)$ is a local parametrix with respect to $a$ namely,

$$
B\left(x_{2}, \xi_{2}\right) \sigma^{2}(C)\left(x_{2}, \xi_{2}\right)=R\left(x_{2}, \xi_{2}\right)+(A \otimes 1)\left(x_{2}, \xi_{2}\right),
$$

where $R\left(x_{2}, D_{2}\right) \in \mathrm{L}^{-\infty, 0}\left(\Omega_{1}, \Omega_{2}\right)$ and $B\left(x_{2}, D_{2}\right) \in \mathrm{L}^{-m_{1},-m_{2}}\left(\Omega_{1}, \Omega_{2}\right)$.
Define $H$ as the operator with symbol

$$
\begin{aligned}
h=\psi_{1}\left(x_{1}, \xi_{1}\right) a_{m_{1} ;} \cdot b_{m_{1} ; \cdot} & +\psi_{2}\left(x_{2}, \xi_{2}\right) a_{\cdot ; m_{2}} c_{; m_{2}}^{-1} \\
& -\psi_{1}\left(x_{1}, \xi_{1}\right) \psi_{2}\left(x_{2}, \xi_{2}\right) a_{m_{1} ; m_{2}} c_{m_{1} ; m_{2}}^{-1} .
\end{aligned}
$$

Using the calculus and Theorem 1.2.13, it is straightforward to check that $H$ matches the requirements.

Lemma 2.2.28. Let $C \in \mathrm{~L}^{m_{1}, m_{2}}\left(\Omega_{1} \times \Omega_{2}\right), u \in \mathcal{D}^{\prime}\left(\Omega_{1} \times \Omega_{2}\right)$. Then we have

$$
\mathrm{WF}_{\mathrm{bi}}^{1}(u) \subseteq \operatorname{Char}_{\mathrm{bi}}^{1}(C) \cup \mathrm{WF}_{\mathrm{bi}}^{1}(C u) .
$$

Proof. Let $\left(x_{1}, x_{2}, \xi_{1}, 0\right) \notin \operatorname{Char}_{\mathrm{bi}}^{1}(C) \cup \mathrm{WF}_{\mathrm{bi}}^{1}(C u)$. Then, there exists $A \in$ $\mathrm{L}^{0}\left(\Omega_{1}\right)$ such that $(A \otimes I) H C u \in \mathcal{C}^{\infty}\left(\Omega_{1}, \mathcal{D}^{\prime}\left(\Omega_{2}\right)\right)$, with $H$ as in Lemma 2.2.27, due to microlocality of $H$ (see Proposition 2.2.22). Then we find

$$
\begin{aligned}
\left(A^{2} \otimes I\right) u & =(A \otimes I)(R-H C) u \\
& =\underbrace{(A \otimes I) R}_{\in \mathrm{L}^{-\infty, 0}} u-\underbrace{(A \otimes I) H C u}_{\in \mathcal{C}^{\infty}\left(\Omega_{1}, \mathcal{D}^{\prime}\left(\Omega_{2}\right)\right) \text { by assumption on } A} \in \mathcal{C}^{\infty} .
\end{aligned}
$$

Using Lemma 2.2.3 on the first summand, this proves the claim.
Using the previous Lemma 2.2.28, we obtain the microellipticity of bisingular operators with respect to the components $\mathrm{WF}_{\mathrm{bi}}^{1}(u)$ and $\mathrm{WF}_{\mathrm{bi}}^{2}(u)$ of $\mathrm{WF}_{\mathrm{bi}}(u)$.
Proposition 2.2.29. Let $C \in \mathrm{~L}^{m_{1}, m_{2}}\left(\Omega_{1}, \Omega_{2}\right), u \in \mathcal{D}^{\prime}\left(\Omega_{1} \times \Omega_{2}\right)$. Then

$$
\mathrm{WF}_{\mathrm{bi}}^{i}(u) \subseteq \operatorname{Char}_{\mathrm{bi}}^{i}(C) \cup \mathrm{WF}_{\mathrm{bi}}^{i}(C u), \quad i=1,2
$$

It is remarkable that we do not obtain full microellipticity, i.e. with respect to the $\mathrm{WF}_{\mathrm{bi}}^{12}$-component. This can be seen through the following example.
Example 2.2.30. Consider $C=-\Delta \otimes(-\Delta), u=\delta \otimes 1+1 \otimes \delta$. Then $\operatorname{Char}_{\mathrm{bi}}^{12}(C)=\emptyset$ and $C u=0 \in \mathcal{C}^{\infty}\left(\Omega_{1} \times \Omega_{2}\right)$, i.e. $\mathrm{WF}_{\mathrm{bi}}^{12}(C u)=\emptyset$. Take any $A_{1}$ non-characteristic at $\left(0, \xi_{1}\right), \xi_{1} \neq 0$. Then $\left(A_{1} \otimes I\right) u=\left(A_{1} \delta\right) \otimes 1$, which is never in $\mathcal{C}^{\infty}\left(\Omega_{1}, \mathcal{D}^{\prime}\left(\Omega_{2}\right)\right)$. This means that $\mathrm{WF}_{\mathrm{bi}}^{12}(u)$ is non-empty, because the requirements (2.9) fail to hold. By a similar argument, one can show that also the requirements 2.10 are not satisfied.

Remark 2.2.31. The problems encountered in Example 2.2 .30 could be circumvented by imposing stronger invertibility conditions in the definition of $\operatorname{Char}_{\mathrm{bi}}^{12}(A)$. This would, however, break the characterization of the wave front set in Remark 2.2.26, and lead to a loss of local information. Moreover, it would yield no additional interesting cases, compared to those already covered by Corollary 2.2.23.

With our definition we have instead the following Lemma, which can be regarded as a microellipticity result for the 12 -component of Definition 2.2 .9 , for operators given by a tensor product.
Lemma 2.2.32. Let $C_{i} \in \mathrm{~L}_{\mathrm{cl}}^{m_{i}}\left(\Omega_{i}\right), i=1,2, u \in \mathcal{D}^{\prime}\left(\Omega_{1} \times \Omega_{2}\right)$. If

$$
\left(x_{1}, x_{2}, \xi_{1}, \xi_{2}\right) \notin \operatorname{Char}_{\mathrm{bi}}^{12}\left(C_{1} \otimes C_{2}\right) \cup \mathrm{WF}_{\mathrm{bi}}^{12}\left(\left(C_{1} \otimes C_{2}\right) u\right)
$$

there exist operators $H_{i} \in \mathrm{~L}^{0}\left(\Omega_{i}\right)$, non-characteristic at $\left(x_{i}, \xi_{i}\right), i=1,2$, such that $\left(H_{1} \otimes H_{2}\right) u \in \mathcal{C}^{\infty}\left(\Omega_{1} \times \Omega_{2}\right)$.

Proof. By the standard pseudodifferential calculus we can choose $B_{i} \in$ $\mathrm{L}_{\mathrm{cl}}^{-m_{i}}\left(\Omega_{i}\right)$ non-characteristic at $\left(x_{i}, \xi_{i}\right), i=1,2$. Then the product $B_{i} C_{i} \in$ $\mathrm{L}_{\mathrm{cl}}^{0}\left(\Omega_{i}\right)$ is non-characteristic at $\left(x_{i}, \xi_{i}\right), i=1,2$. Proposition 2.2 .22 and the definition of the bi-wave front set guarantee us the existence of $A_{i} \in \mathrm{~L}^{0}\left(\Omega_{i}\right)$, non-characteristic at $\left(x_{i}, \xi_{i}\right), i=1,2$, such that $\left(A_{1} \otimes A_{2}\right)\left(B_{1} C_{1} \otimes B_{2} C_{2}\right) u \in$ $\mathcal{C}^{\infty}\left(\Omega_{1} \times \Omega_{2}\right)$. Therefore $H_{i}:=A_{i} B_{i} C_{i}, i=1,2$, fulfill the claim.

### 2.3 The $S G$ wave front set

In this section we will compare the bisingular calculus with the so-called $S G$ calculus, introduced on $\mathbb{R}^{n}$ by H. O. Cordes [Cor95] and C. Parenti Par72], see also R. Melrose Mel95, Y. Egorov and B.-W. Schulze ES97], and E. Schrohe [Sch87. $S G$ calculus is a global calculus obtained from the classical calculus by treating the variables and covariables equivalently, that is, by imposing on the symbols similar estimates as in bisingular calculus. These a priori formal similarities lead to interesting similarities in the calculus and in the analysis of singularities. However, the two calculi also differ in important aspects, as we will point out throughout the section.

Definition 2.3.1. A function $a(x, \xi) \in \mathcal{C}^{\infty}\left(\mathbb{R}^{2 n}\right)$ is called a $S G$ symbol belonging to $\mathrm{SG}^{\mu, m}\left(\mathbb{R}^{n}\right):=\mathrm{SG}^{\mu, m}$ if, for every $\alpha, \beta \in \mathbb{Z}_{+}^{n}$, there exists a constant $C_{\alpha, \beta}>0$ such that

$$
\left|D_{x}^{\alpha} D_{\xi}^{\beta} a(x, \xi)\right| \leq C_{\alpha, \beta}\langle\xi\rangle^{\mu-|\beta|}\langle x\rangle^{m-|\alpha|}
$$

for every $x, \xi \in \mathbb{R}^{n}$. A $S G$ pseudodifferential operator is an operator of the form

$$
A u(x):=\int e^{i x \cdot \xi} a(x, \xi) \hat{u}(\xi) d \xi, u \in \mathscr{S}\left(\mathbb{R}^{n}\right),
$$

and the class of operators with symbols in $\mathrm{SG}^{\mu, m}$ is denoted by $\mathrm{LG}^{\mu, m}$.
A symbol $a \in \mathrm{SG}^{\mu, m}$ is called SG classical if it admits a homogeneous expansion with respect to $\xi$, for $|\xi| \gg 1$, a homogeneous expansion in $x$, for $|x| \gg 1$, and the two expansions satisfy certain compatibility conditions. We refer here to Cor95, ES97 for a precise definition of classical SG symbols. We limit our attention (in this context) to classical operators, i.e. such that their symbols are $S G$ classical. As usual, one proceeds to develop a calculus for these operators. As every classical $S G$ operator $A$ is also a classical pseudodifferential operator in the Hörmander calculus, it admits a principal symbol $\sigma^{\psi}(A)$, homogeneous in the covariable. In addition, by exchanging the roles of the variables and covariables, one obtains a symbol $\sigma^{e}(A)$, homogeneous in the variable $x$. The two functions satisfy a compatibility condition, i.e. that there is a third, bihomogeneous principal symbol component $\sigma^{\psi e}(A)$, the leading term of the corresponding expansions of the $\psi$ and $e$-symbols. The principal homogeneous symbol of the operator is then the couple ( $\sigma^{\psi}(A), \sigma^{e}(A)$ ) which gives rise to the principal symbol

$$
\operatorname{Sym}_{p}(x, \xi)=\phi_{\psi}(\xi) \sigma^{\psi}(A)+\phi_{e}(x) \sigma^{e}(A)-\phi_{\psi}(x) \phi_{e}(\xi) \sigma^{\psi e}(A),
$$

where $\phi_{*}, *=\phi, e, \phi e$, are 0 -excision functions.
So far, this is very similar to the bisingular calculus, but the expansion formula for the symbol of a product is in fact a lot simpler. The operator
compositions arising there are not present, and the composition formula is just the one corresponding to the $c^{12}$-term in Theorem 1.2.13. This leads to a definition of ellipticity close to our notion of 12-ellipticity, as no such thing as full invertibility of the symbols as operators is needed in the parametrix construction.

Definition 2.3.2. A symbol $a \in \mathrm{SG}^{\mu, m}$ is $S G$-elliptic if there exist constants $R, C_{1}, C_{2}>0$ such that

$$
C_{1}\langle\xi\rangle^{\mu}\langle x\rangle^{m} \leq|a(x, \xi)| \leq C_{2}\langle\xi\rangle^{\mu}\langle x\rangle^{m}
$$

when $|x|+|\xi| \geq R$.

With this notion of ellipticity, we have the Fredholm property, i.e. an $S G$ elliptic operator admits a parametrix in the calculus. Another important aspect to notice is that in the context of the $S G$ calculus we have the following property of the commutator of two operators.

Proposition 2.3.3. Let $p \in \mathrm{SG}^{m, \mu}\left(\mathbb{R}^{n}\right), q \in \mathrm{SG}^{r, \nu}\left(\mathbb{R}^{n}\right)$. Then the commutator $[P, Q]:=P Q-Q P$ belongs to $\mathrm{LG}^{m+r-1, \mu+\nu-1}\left(\mathbb{R}^{n}\right)$.

We stress here this relevant difference in comparison with the bisingular setting, see Corollary 1.2 .14 and Example 1.2 .16 . The notion of $S G$ calculus can be used to introduce a concept of global analysis of singularities. In the sequel, we refer to Cor95], CM03, see also CJT13a, CJT13b. In Me194 a geometric scattering version of the $S G$ wave front set is studied. First, we introduce $S G$ characteristic sets and the $S G$ wave front set.

Definition 2.3.4. Let $A \in \mathrm{LG}^{\mu, m}$. Define the $S G$ characteristic set of $A$ as

$$
\operatorname{Char}_{\mathrm{SG}}(A)=\operatorname{Char}_{\mathrm{SG}}^{\psi}(A) \cup \operatorname{Char}_{\mathrm{SG}}^{e}(A) \cup \operatorname{Char}_{\mathrm{SG}}^{\psi e}(A),
$$

where

$$
\begin{aligned}
& \operatorname{Char}_{\mathrm{SG}}^{\psi}(A)=\left\{(x, \xi) \in \mathbb{R}^{n} \times\left(\mathbb{R}^{n} \backslash 0\right): \sigma^{\psi}(A)(x, \xi)=0\right\} \\
& \operatorname{Char}_{\mathrm{SG}}^{e}(A)=\left\{(x, \xi) \in\left(\mathbb{R}^{n} \backslash 0\right) \times \mathbb{R}^{n}: \sigma^{e}(A)(x, \xi)=0\right\} \\
& \operatorname{Char}_{\mathrm{SG}}^{\psi e}(A)=\left\{(x, \xi) \in\left(\mathbb{R}^{n} \backslash 0\right) \times\left(\mathbb{R}^{n} \backslash 0\right): \sigma^{\psi e}(A)(x, \xi)=0\right\}
\end{aligned}
$$

Definition 2.3.5. Let $u \in \mathscr{S}^{\prime}\left(\mathbb{R}^{n}\right)$. Define the $S G$ wave front set of $u$ as

$$
\mathrm{WF}_{\mathrm{SG}}(u)=\mathrm{WF}_{\mathrm{SG}}^{\psi}(u) \cup \mathrm{WF}_{\mathrm{SG}}^{e}(u) \cup \mathrm{WF}_{\mathrm{SG}}^{\psi e}(u),
$$

where

$$
\begin{aligned}
\mathrm{WF}_{\mathrm{SG}}^{\psi}(u) & =\bigcap_{\substack{A \in \mathrm{LG}^{0,0}\left(\mathbb{R}^{n}\right) \\
A u \in \mathscr{S}\left(\mathbb{R}^{n}\right)}} \operatorname{char}_{\mathrm{SG}}^{\psi}(A), \\
\mathrm{WF}_{\mathrm{SG}}^{e}(u) & =\bigcap_{\substack{A \in \mathrm{LG}^{0,0}\left(\mathbb{R}^{n}\right) \\
A u \in \mathscr{S}\left(\mathbb{R}^{n}\right)}} \operatorname{char}_{\mathrm{SG}}^{e}(A), \\
\mathrm{WF}_{\mathrm{SG}}^{\psi e}(u) & =\bigcap_{\substack{A \in \mathrm{LG}^{0}, 0\left(\mathbb{R}^{n}\right) \\
A u \in \mathscr{S}\left(\mathbb{R}^{n}\right)}} \operatorname{char}_{\mathrm{SG}}^{\psi e}(A) .
\end{aligned}
$$

This notion has the following properties:
Proposition 2.3.6. Let $u, v \in \mathscr{S}^{\prime}\left(\mathbb{R}^{n}\right), f \in \mathscr{S}\left(\mathbb{R}^{n}\right)$. Then:

1. $\mathrm{WF}_{\mathrm{SG}}(u)$ is a closed set and $\mathrm{WF}_{\mathrm{SG}}^{\psi}(u)$ is conical with respect to the covariable $\xi, \mathrm{WF}_{\mathrm{SG}}^{e}(u)$ is conical with respect to the variable $x$ and $\mathrm{WF}_{\mathrm{SG}}(u)$ is conical with respect to both of them, independently;
2. $(x, \xi) \in \mathrm{WF}_{\mathrm{SG}}(u) \Leftrightarrow(\xi,-x) \in \mathrm{WF}_{\mathrm{SG}}(\mathcal{F} u) ;$
3. $\mathrm{WF}_{\mathrm{SG}}(u+v) \subseteq \mathrm{WF}_{\mathrm{SG}}(u) \cup \mathrm{WF}_{\mathrm{SG}}(v) ; \mathrm{WF}_{\mathrm{SG}}(f u) \subseteq \mathrm{WF}_{\mathrm{SG}}(u) ;$
4. $\mathrm{WF}_{\mathrm{SG}}(u)=\emptyset \Leftrightarrow u \in \mathscr{S}\left(\mathbb{R}^{n}\right)$.

It is immediate to notice the similarities, but also apparent differences, with the bisingular notion:

- Fourier transformation (i.e. exchange of variables and covariables) corresponds to the exchange of variables $x_{1}$ and $x_{2}$ in Proposition 2.2.18
- The conical properties of the individual components of the wave front sets correspond to the homogeneity properties of the corresponding principal symbol part;
- The global (that is, $\mathscr{S}$-)regularity is of course due to the fact that $S G$-calculus imposes bounds on the variables also.

Moreover, $S G$ operators satisfy $S G$ microlocality and microellipticity, namely
Proposition 2.3.7. Let $u \in \mathscr{S}^{\prime}\left(\mathbb{R}^{n}\right)$ and $C \in \mathrm{LG}^{m, \mu}$. Then we have the inclusion

$$
\mathrm{WF}_{\mathrm{SG}}(C u) \subseteq \mathrm{WF}_{\mathrm{SG}}(u) \subseteq \operatorname{Char}_{\mathrm{SG}}(C) \cup \mathrm{WF}_{\mathrm{SG}}(C u)
$$

This again stems from an individual double inclusion with respect to each wave front set component. A capital difference lies, however, in the structure of the wave front set. For the components of the $S G$ wave front set one finds

$$
\mathrm{WF}_{\mathrm{SG}}(u) \subseteq\left(\mathbb{R}^{n} \times\left(\mathbb{R}^{n} \backslash 0\right)\right) \cup\left(\left(\mathbb{R}^{n} \backslash 0\right) \times \mathbb{R}^{n}\right) \cup\left(\left(\mathbb{R}^{n} \backslash 0\right) \times\left(\mathbb{R}^{n} \backslash 0\right)\right)
$$

Here, the $\left(\mathbb{R}^{n} \times\left(\mathbb{R}^{n} \backslash 0\right)\right) \ni(x, \xi)$ component corresponds exactly to singularities at finite arguments $x$ with propagation direction $\xi$, the $\left(\mathbb{R}^{n} \times\left(\mathbb{R}^{n} \backslash 0\right)\right)$ component yields the same interpretation in the Fourier transformed space (growth singularities of $u$ become differential singularities of $\hat{u}$ ) and the $\left(\left(\mathbb{R}^{n} \backslash 0\right) \times\left(\mathbb{R}^{n} \backslash 0\right)\right)$ component corresponds to high oscillations or lack of decay present at infinite arguments.
In the bisingular case, new phenomena are present. The 12-component has the classical interpretation, in the sense that it includes all the 'classical' singularities (see Lemma 2.2.11), but the other components lose some amount of localization. This is reflected in the structure of the (1- and 2-components) of the bi-wave front set. In fact,

$$
\begin{aligned}
\mathrm{WF}_{\mathrm{bi}}(u) \subset\left(\Omega_{1} \times \Omega_{2}\right) \times\left(\mathbb{R}^{n_{1}+n_{2}} \backslash 0\right) & =\left(\Omega_{1} \times \Omega_{2}\right) \times\left(\left(\mathbb{R}^{n_{1}} \backslash 0\right) \times\{0\}\right) \\
& \cup\left(\Omega_{1} \times \Omega_{2}\right) \times\left(\{0\} \times\left(\mathbb{R}^{n_{2}} \backslash 0\right)\right) \\
& \cup\left(\Omega_{1} \times \Omega_{2}\right) \times\left(\left(\mathbb{R}^{n_{1}} \backslash 0\right) \times\left(\mathbb{R}^{n_{2}} \backslash 0\right)\right),
\end{aligned}
$$

where if, for instance, for some $x_{1}$ we have that $\left(x_{1}, x_{2}, 0, \xi_{2}\right)$ belongs to $\mathrm{WF}_{\mathrm{bi}}(u)$, all $\left(y, x_{2}, 0, \xi_{2}\right)$ belong to $\mathrm{WF}_{\mathrm{bi}}(u)$ as well. This is due to the fact that bi-ellipticity involves true invertibility, i.e. a non-local requirement.
Another difference arises as follows. The 1- and 2-component can be understood as the boundary faces of the 12 -component, whereas in the $S G$ case the $\psi e$-component is interpreted as the corner of the wave front space where the $e$ - and $\psi$-component meet, i.e. the roles as boundaries are interchanged, see Figure 2.1.
The above observation imply the next result.
Example 2.3.8. Consider the one dimensional case. Following here Example 2.7 in CM03, there exists a temperate distribution $u(x)=e^{i x^{2} / 2}, x \in \mathbb{R}$, such that $\mathrm{WF}_{\mathrm{SG}}^{\psi}(u)=\emptyset=\mathrm{WF}_{\mathrm{SG}}^{e}(u)$ and $\mathrm{WF}_{\mathrm{SG}}^{\psi e}(u)=(\mathbb{R} \backslash 0) \times(\mathbb{R} \backslash 0)$.
However, there cannot exist a distribution $v \in \mathcal{E}^{\prime}\left(\Omega_{1} \times \Omega_{2}\right), \Omega_{1}, \Omega_{2} \subset \mathbb{R}$, such that $\mathrm{WF}_{\mathrm{bi}}^{1}(v)=\emptyset=\mathrm{WF}_{\mathrm{bi}}^{2}(v)$ and $\mathrm{WF}_{\mathrm{bi}}^{12}(v)=\Omega_{1} \times \Omega_{2} \times(\mathbb{R} \backslash 0) \times(\mathbb{R} \backslash 0)$. This is because $\mathrm{WF}_{\mathrm{bi}}^{12}(v)=\Omega_{1} \times \Omega_{2} \times(\mathbb{R} \backslash 0) \times(\mathbb{R} \backslash 0)$ is an open set (and not a clopen set), and $\mathrm{WF}_{\mathrm{bi}}(v)$ has to be closed.
Similarly $\tilde{v}=\delta \otimes 1$ satisfies $\operatorname{WF}_{\mathrm{bi}}^{1}(\tilde{v})=\left(\{0\} \times \Omega_{2}\right) \times((\mathbb{R} \backslash 0) \times\{0\})$, $\mathrm{WF}_{\mathrm{bi}}^{12}(\tilde{v})=\emptyset=\mathrm{WF}_{\mathrm{bi}}^{2}(\tilde{v})$, but there cannot exist a distribution $\tilde{u}$ such that $\mathrm{WF}_{\mathrm{SG}}^{e}(\tilde{u})=\mathbb{R} \times(\mathbb{R} \backslash 0)$ with $\mathrm{WF}_{\mathrm{SG}}^{\psi e}(\tilde{u})=\emptyset$, again due to closedness.


Figure 2.1: A schematic comparison of the components of $\mathrm{WF}_{\mathrm{SG}}$ and $\mathrm{WF}_{\mathrm{bi}}$

## Chapter 3

## Spectral asymptotics

In this chapter we will prove an estimate for the spectral counting function of the tensor product of two pseudodifferential operators. Then, we will show that the estimate is sharp. In the whole chapter, $\sigma(A)$ denotes the spectrum of the operator $A$.

### 3.1 Spectrum and functional calculus

We begin recalling some elements of the functional calculus for elliptic pseudodifferential operators.

### 3.1.1 Complex powers of elliptic operators

Let $A$ be a classical elliptic pseudodifferential operators of order $m>0$, over an $n$ dimensional closed manifold $M$, and let $z \in \mathbb{C}$. In this subsection we will give meaning to the formula

$$
\begin{equation*}
A_{z}=\frac{i}{2 \pi} \int_{\Gamma} \lambda^{z}(A-\lambda I)^{-1} d \lambda \tag{3.1}
\end{equation*}
$$

where $\Gamma$ is a special path in the complex plane and the integral is to be understood in the Dunford-Schwartz sense, see e.g. DS58.

Theorem 3.1.1. Let $A \in \mathrm{~L}_{\mathrm{cl}}^{m}(M), m>0$, be elliptid ${ }^{1}$, with principal symbol $a_{m}(x, \xi)$. Let $\Lambda$ be a closed angle in the complex plane with vertex $0 \in \mathbb{C}$, and set

$$
\Lambda_{R}:=\{\lambda \in \Lambda:|\lambda| \geq R\}
$$

$R \in \mathbb{R}$. If, for every $\xi \neq 0, a_{m}(x, \xi)$ does not take values in $\Lambda$, then
a) there exists $R>0$ such that $\Lambda_{R} \cap \sigma(A)=\emptyset$, that is, for every $\lambda \in \Lambda_{R}$ the resolvent $R_{\lambda}=(A-\lambda I)^{-1}$ exists and is a bounded linear operator;

[^2]b) the following norm estimate holds true
$$
\left\|(A-\lambda I)^{-1}\right\|_{s, s+l} \leq \frac{C_{s, l}}{|\lambda|^{1-\frac{l}{m}}}, \quad 0 \leq l \leq m, \quad \lambda \in \Lambda_{R},
$$
where $\|\cdot\|_{s, s+l}$ is the norm in the space of linear continuous operators from $\mathrm{H}^{s}(M)$ to $\mathrm{H}^{s+l}(M)$.

Due to the previous Theorem 3.1.1, we see that if $a_{m}(x, \xi)$ does not take values in $\Gamma$, we can find $R>0$ such that $(A-\lambda I)^{-1}$ exists for every $\lambda \in \Lambda_{R}$. Moreover, due to the norm estimate, the absolute convergence of the integral in (3.1) is granted by $\Re(z)<0$. Thus, we assume

1) $a_{m}(x, \xi)-\lambda \neq 0$ for $\xi \neq 0$ and $\lambda \in(-\infty, 0]$;
2) $\sigma(A) \cap(-\infty, 0]=\emptyset$.

In what follows, we consider the path $\Gamma:=-\Gamma_{1}-\Gamma_{2}+\Gamma_{3}$, with

$$
\begin{aligned}
& \Gamma_{1}=r e^{i \pi} \quad \rho \leq r<+\infty \\
& \Gamma_{2}=\rho e^{i \theta} \quad-\pi \leq \theta \leq \pi \\
& \Gamma_{3}=r e^{-i \pi} \quad \rho \leq r<+\infty
\end{aligned}
$$

with $\rho$ such that $\sigma(A)$ does not intersect the disk $|z| \leq 2 \rho$ in the complex plane, see Figure 3.1.


Figure 3.1: The path $\Gamma$.

Since $m>0$, the conditions above can always be achieved. In fact, by Theorem 3.1.1, $(A-\lambda I)^{-1}$ exists for every $|\lambda|>R$, then $\sigma(A) \neq \mathbb{C}$, thus
$\sigma(A)$ is discrete, see Shu01]. Since $0 \notin \sigma(A)$, we can always find $\rho$ with the required property. Moreover, we can always consider a sector

$$
\Lambda^{\prime}=\{z \in \mathbb{C}: \pi-\varepsilon \leq \arg (z) \leq \pi+\varepsilon\}
$$

$\varepsilon>0$, such that
$\left.1^{\prime}\right) a_{m}(x, \xi)-\lambda \neq 0$ for $\xi \neq 0$ and $\lambda \in \Lambda^{\prime}$,
2') $\sigma(A) \cap \Lambda^{\prime}=\emptyset$.
From now on, we will always consider sectors $\Lambda^{\prime}$ with these properties. Then, again for the norm estimate in Theorem 3.1.1, the integral 3.1 converges in the operator norm of $\mathscr{L}\left(L^{2}(M)\right)$ if $\Re(z)<0$, and also $A_{z}$ is a bounded operator on $L^{2}(M)$. Moreover, again due to this estimate, $A_{z}$ converges in the operator norm of $\mathscr{L}\left(\mathrm{H}^{s}(M)\right)$, for arbitrary $s \in \mathbb{R}$, and maps $\mathrm{H}^{s}(M)$ to itself. Hence, this implies that $A_{z} \operatorname{maps} \mathcal{C}^{\infty}(M)$ as well as $\mathcal{D}^{\prime}(M)$ to itself, since

$$
\mathcal{C}^{\infty}(M)=\bigcap_{s} \mathrm{H}^{s}(M)
$$

and

$$
\mathcal{D}^{\prime}(M)=\bigcup_{s} \mathrm{H}^{s}(M)
$$

Proposition 3.1.2. a) For $\Re(z)<0$ and $\Re(w)<0, A_{z}$ has the semigroup property

$$
A_{z} A_{w}=A_{z+w}
$$

b) If $k \in \mathbb{Z}$ and $k>0$ then

$$
A_{-k}=\left(A^{-1}\right)^{k}=\underbrace{A^{-1} \circ \cdots \circ A^{-1}}_{k \text { times }} .
$$

c) For arbitrary $s \in \mathbb{R}$ and $\Re(z)<0, A_{z}$ is an holomorphic operator with values in the algebra of bounded operators on the Hilbert space $\mathrm{H}^{s}(M)$.

Proof. a) Fist, we recall the formula

$$
\begin{equation*}
(A-\lambda I)^{-1}(A-\mu I)^{-1}=\frac{1}{\lambda-\mu}\left[(A-\lambda I)^{-1}-(A-\mu I)^{-1}\right] \tag{3.2}
\end{equation*}
$$

which can be proved by multiplying both sides of 3.2 by $(A-\lambda I)(A-$ $\mu I)$. Then, we set $\Gamma^{\prime}=-\Gamma_{1}^{\prime}-\Gamma_{2}^{\prime}+\Gamma_{3}^{\prime}$, with

$$
\begin{aligned}
\Gamma_{1}^{\prime} & =r e^{i(\pi-\varepsilon)} \quad \frac{3}{2} \rho \leq r<+\infty \\
\Gamma_{2} & =\frac{3}{2} \rho e^{i \theta}-\pi+\varepsilon \leq \theta \leq \pi-\varepsilon \\
\Gamma_{3} & =r e^{-i(\pi-\varepsilon)} \quad \frac{3}{2} \rho \leq r<+\infty
\end{aligned}
$$



Figure 3.2: The path $\Gamma^{\prime}$.
with $\varepsilon>0$ as in the definition of $\Lambda^{\prime}$. We obtain the path in Figure 3.2. Thus, we can write

$$
A_{z} A_{w}=-\frac{1}{4 \pi^{2}} \int_{\Gamma^{\prime}} \int_{\Gamma}(A-\lambda I)^{-1}(A-\mu I)^{-1} \lambda^{z} \mu^{w} d \mu d \lambda .
$$

Using (3.2) and the Cauchy formula (since the contour $\Gamma$ is contained within $\Gamma^{\prime}$ ), we get

$$
\begin{aligned}
A_{z} A_{w} & =-\frac{1}{4 \pi^{2}} \int_{\Gamma^{\prime}} \int_{\Gamma}(A-\lambda I)^{-1}(A-\mu I)^{-1} \lambda^{z} \mu^{w} d \mu d \lambda \\
& =-\frac{1}{4 \pi^{2}} \int_{\Gamma^{\prime}} \int_{\Gamma} \frac{\lambda^{z} \mu^{w}}{\lambda-\mu}\left[(A-\lambda I)^{-1}-(A-\mu I)^{-1}\right] d \mu d \lambda \\
& =\frac{i}{2 \pi} \int_{\Gamma^{\prime}}(A-\lambda I)^{-1} \lambda^{z+w} d \lambda+\frac{1}{4 \pi^{2}} \int_{\Gamma} \int_{\Gamma^{\prime}}(A-\mu I)^{-1} \frac{\lambda^{z} \mu^{w}}{\lambda-\mu} d \lambda d \mu \\
& =A_{z+w}+0=A_{z+w}
\end{aligned}
$$

which is the claim.
b) Consider the identity

$$
\begin{equation*}
\left(A-\mu^{-1} I\right)^{-1}=\mu A^{-1}\left(\mu I-A^{-1}\right)^{-1} \tag{3.3}
\end{equation*}
$$

which can be proved taking the inverses of both sides of (3.3). Now, notice that for $z=-1,-2, \ldots$, we have $\left(r e^{i \pi}\right)^{z}=\left(r e^{-i \pi}\right)^{z}$, and the integrals along the straight line parts of $\Gamma$ cancel each others. Therefore,

$$
\begin{equation*}
A_{-k}=\frac{i}{2 \pi} \int_{|\lambda|=\rho} \lambda^{-k}(A-\lambda I)^{-1} d \lambda \tag{3.4}
\end{equation*}
$$

moving on the path clockwise. Now, with the change of variable $\lambda=\frac{1}{\mu}$, using (3.3), we find

$$
\begin{aligned}
A_{-k} & =-\frac{i}{2 \pi} \int_{|\mu|=\frac{1}{\rho}} \mu^{k}\left(A-\mu^{-1} I\right)^{-1} \mu^{-2} d \mu \\
& =-\frac{i A^{-1}}{2 \pi} \int_{|\mu|=\frac{1}{\rho}} \mu^{k-1}\left(\mu I-A^{-1}\right)^{-1} d \mu \\
& =A^{-1}\left(A^{-1}\right)^{k-1}=\left(A^{-1}\right)^{k},
\end{aligned}
$$

since the spectrum of the bounded operator $A^{-1}$ is contained in the ball of radius $\frac{1}{\rho}$, so that the Cauchy formula holds.
c) Differentiating (3.1) with respect to $z$ gives

$$
\begin{equation*}
\frac{d}{d z} A_{z}=\frac{i}{2 \pi} \int_{\Gamma} \lambda^{z}(\ln z)(A-\lambda I)^{-1} d \lambda, \tag{3.5}
\end{equation*}
$$

converging in operator norm from $\mathrm{H}^{s}(M)$ to itself uniformly for $\Re(z) \leq$ $-\varepsilon<0$, due to Theorem 3.1.1. Thus, the operator $A_{z}$ is holomorphic in $z$ and the derivative $\frac{d}{d z} A_{z}$ is equal to the integral (3.5).

We can now define the complex powers of an elliptic pseudodifferential operator.

Definition 3.1.3. Let $A$ be as is Proposition 3.1.2, $z \in \mathbb{C}, k \in \mathbb{Z}$ such that $\Re(z)<k$. Then

$$
\begin{equation*}
A^{z}:=A^{k} A_{z-k} . \tag{3.6}
\end{equation*}
$$

This operator can be considered either from $\mathcal{C}^{\infty}(M)$ or $\mathcal{D}^{\prime}(M)$ to itself.
We need to show that the definition of $A^{z}$ does not depend on the choice of $k$ :

Proposition 3.1.4. a) The operator $A^{z}$ is independent of the choice of $k \in \mathbb{Z}$, provided $\Re(z)<k$.
b) If $\Re(z)<0$, then $A^{z}=A_{z}$.
c) The group property holds

$$
\begin{equation*}
A^{z} A^{w}=A^{z+w}, \quad z, w \in \mathbb{C} . \tag{3.7}
\end{equation*}
$$

d) If $k \in \mathbb{Z}, k>0, A^{k}=\underbrace{A \circ \ldots \circ A}_{k \text { times }}$. In particular, $A^{1}=A$. If $k \in \mathbb{Z}, k<0$, $A^{k}=\underbrace{A^{-1} \circ \cdots \circ A^{-1}}_{-k \text { times }}$, where $A^{-1}$ is the inverse of $A$. Moreover, $A^{0}=I$.
e) For arbitrary $k \in \mathbb{Z}$ and $s \in \mathbb{R}, A^{z}$ is a holomorphic operator in the half plane $\Re(z)<k$ with values in the space $\mathscr{L}\left(\mathrm{H}^{s}(M), \mathrm{H}^{s-m k}(M)\right)$.

Proof. a) Let $z \in \mathbb{C}$ and $l, k \in \mathbb{Z}$ such that $\Re(z)<l \leq k$. We need to show that

$$
A^{k} A_{z-k}=A^{l} A_{z-l}
$$

Setting $k-l=p>0$ and $z-k=w \Rightarrow \Re(w)<0$, we get the equivalent expression

$$
A_{w}=A^{-p} A_{w+p}
$$

To conclude that this holds true, we notice that, by Proposition 3.1.2 b], $A^{-p}=A_{-p}$ and then use Proposition 3.1.2 (a).
b) It is enough to set $k=0$ in (3.6).
c) By definition, we have

$$
A^{z} A^{w}=A^{p} A_{z-p} A^{k} A_{w-k}
$$

with $\Re(z)<p, \Re(w)<k$. Set $p=l-k$, and choose $k, l$ such that $k<\Re(z+w)<l$. Then, using Proposition 3.1.2, a), we get

$$
\begin{aligned}
A^{z} A^{w}=A^{p} A_{z-p} A^{k} A_{w-k}=A^{l-k} A_{z-l+k} A^{k} A_{w-k} & =A^{l} A^{-k} A_{z-l+k} A^{k} A_{w-k} \\
& =A^{l} A_{-k} A_{z-l+k} A^{k} A_{w-k} \\
& =A^{l} A_{z-l+k-k} A^{k} A_{w-k} \\
& =A^{l} A_{z-l+k} A_{-k} A^{k} A_{w-k} \\
& =A^{l} A_{z-l+k} A^{-k} A^{k} A_{w-k} \\
& =A^{l} A_{z-l+k} A_{w-k} \\
& =A^{l} A_{z+w-l}=A^{z+w}
\end{aligned}
$$

d) If $k \in \mathbb{Z}, k>0$, set $p=k+1$ and notice that $k-p=k-k-1=-1<0$. We have

$$
A^{k}=A^{p} A_{k-p}=A^{k+1} A_{-1}=A^{k+1} A^{-1}=\underbrace{A \circ \cdots \circ A}_{k \text { times }} .
$$

If $k \in \mathbb{Z}, k<0$, using Proposition 3.1.2 b , we obtain

$$
A^{k}=A_{k}=\underbrace{A^{-1} \circ \cdots \circ A^{-1}}_{-k \text { times }}
$$

Finally, from (3.7),

$$
A^{0}=A^{1-1}=A^{1} A^{-1}=I
$$

e) This follows directly from Proposition 3.1.2, a) and c, remembering that $A^{k}$, for $k$ integer, maps $\mathrm{H}^{s}(M)$ continuously into $\mathrm{H}^{s-m k}(M)$, and that $A^{-1} \in \mathrm{~L}_{\mathrm{cl}}^{-m}(M)$.

To conclude this subsection, we recall two important results, whose proof can be found, e.g., in Shu01.

Theorem 3.1.5. Let $A$ be self-adjoint. Let $f \in \mathcal{D}^{\prime}(M)$, and let

$$
f(x)=\sum_{j=1}^{+\infty} f_{j} \varphi_{j}(x)
$$

be the Fourier expansion of $f$ in the eigenfunctions of the operator $A$. Then

$$
A^{z} f(x)=\sum_{j=1}^{+\infty} \lambda_{j}^{z} f_{j} \varphi_{j}(x)
$$

In particular, $\varphi_{j}$ are the eigenfuntions of the operator $A^{z}$ with eigenvalues $\lambda_{j}^{z}$.

Remark 3.1.6. In the self-adjoint case, the principal symbol $a_{m}(x, \xi)$ is real-valued. In particular, the previous conditions translates into

$$
\begin{aligned}
& a_{m}(x, \xi)>0, \quad \xi \neq 0, \\
& A \geq \delta I, \quad \delta>0
\end{aligned}
$$

i.e. $(A u, u) \geq \delta(u, u)$ for every $u \in \mathcal{C}^{\infty}(M)$.

Theorem 3.1.7. For any $z \in \mathbb{C}, A^{z} \in \mathrm{~L}_{\mathrm{cl}}^{m z}(M)^{2}$. Moreover, the principal symbol of $A^{z}$ is $\left(a_{m}(x, \xi)\right)^{z}$.

### 3.1.2 The spectral $\zeta$-function

Let $A$ be an elliptic operator satisfying the same hypoteses of Theorem 3.1.1, and consider the kernel $K_{A^{z}}$ of $A^{z}, z \in \mathbb{C}$. We have

Theorem 3.1.8. Let $\Omega$ be a fixed arbitrary coordinate neighbourhood on $M$, and $K_{A^{z}}(x, y)$ be defined for $x, y \in \Omega$. Then
i) For $\Re(z)<-\frac{n}{m}$ the kernel $K_{A^{z}}(x, y)$ is holomorphic.

[^3]ii) $K_{A^{z}}(x, x)$ can be extended to a meromorphic function in the whole complex plane with at most simple poles
$$
z_{j}=\frac{j-n}{m} \quad j=0,1, \ldots
$$
and residues
$$
\operatorname{Res}\left(K_{A^{z}}, z=z_{j}\right)=-\frac{1}{m} \int_{\mathbb{S}^{n}-1} a_{-n}^{\left(z_{j}\right)}(x, \xi) d \xi
$$
where $a_{p}^{(z)}$ is the $p$-homogeneous component in the expansion of $A^{z}$.
Remark 3.1.9. Notice that, with the notation of Theorem 3.1.8, $a_{-n}^{\left(z_{j}\right)}=$ $a_{m z_{j}-j}^{\left(z_{j}\right)}$ since
$$
m z_{j}-j=m \frac{j-n}{m}-j=-n
$$

Remark 3.1.10. The residue in the left-most pole $z_{0}=-\frac{n}{m}$ is

$$
\operatorname{Res}\left(K_{A^{z}}, z=z_{0}\right)=-\frac{1}{m} \int_{\mathbb{S}^{n-1}} \frac{1}{\left(a_{m}(x, \xi)\right)^{\frac{n}{m}}} d \xi
$$

In the important case $a_{m}(x, \xi)>0$ for $\xi \neq 0$, the previous equations implies that $\operatorname{Res}\left(K_{A^{z}}, z=z_{0}\right)<0$.

We can now define the spectral $\zeta$-function:
Definition 3.1.11. Let $A$ be as in Theorem 3.1.1. The function

$$
\zeta(A, z):=\int_{M} K_{A^{-z}}(x, x) d x
$$

is called the spectral $\zeta$-function of $A$.
Due to Theorem 3.1.8, we have
Theorem 3.1.12. The function $\zeta(A, z)$ is holomorphic for $\Re(z)>\frac{n}{m}$. Moreover, it can be continued to a meromorphic function in the entire complex plane, with at most simple poles

$$
z_{j}=\frac{n-j}{m} \quad j=0,1, \ldots
$$

and residues

$$
\operatorname{Res}\left(\zeta(A, z), z=z_{j}\right)=-\frac{1}{m} \int_{M} \int_{\mathbb{S}^{n-1}} \frac{1}{a_{n}^{\left(z_{j}\right)}(x, \xi)} d \xi d x
$$

Remark 3.1.13. Again, in the case $a_{m}(x, \xi)>0$ for $\xi \neq 0$, the residue in the right-most pole $z_{0}=\frac{n}{m}$ is

$$
\operatorname{Res}\left(\zeta(A, z), z=z_{0}\right)=-\frac{1}{m} \int_{M} \int_{\mathbb{S}^{n-1}} \frac{1}{\left(a_{m}(x, \xi)\right)^{\frac{n}{m}}} d \xi d x
$$

In the self-adjoint case, we have
Theorem 3.1.14. Let $A$ be a self-adjoint, classical, positive, elliptic operator on $M$, and let $\left\{\lambda_{j}\right\}, j \in \mathbb{N}$, be its eingenvalues. Then

$$
\begin{equation*}
\zeta(A, z)=\sum_{j=1}^{+\infty} \frac{1}{\lambda_{j}^{z}}, \quad \Re(z)>\frac{n}{m} \tag{3.8}
\end{equation*}
$$

and the series converges absolutely. Moreover, this convergence is uniform for $z$ in the half-plane $\Re(z)>\frac{n}{m}+\varepsilon$, for arbitrary $\varepsilon>0$.
For more detail on the meromorphic properties of the spectral $\zeta$-function see, e.g., See67.

### 3.2 Asymptotics of $N_{A}$ spectral counting function of $A$

In this section we will review some classical results on the asymptotics of the counting function of the operator $A$. As in Theorem 3.1.14, let $A$ be a self-adjoint, classical positive elliptic operator on $M$, with eigenvalues $\left\{\lambda_{j}\right\}$, $j \in \mathbb{N}$.

Definition 3.2.1. The (spectral) counting function of $A$ is

$$
\begin{equation*}
N_{A}(\tau):=\sum_{\lambda_{j} \in \sigma(A) \cap(0, \tau)} 1=\sum_{\lambda_{j}<\tau} 1 \tag{3.9}
\end{equation*}
$$

Hence, for fixed $\tau \in \mathbb{R}, N_{A}(\tau)$ represents the number of eigenvalues of $A$ less than $\tau$ (counted with their multiplicity). Clearly, $N(\tau)$ is a non-decreasing function, and we can assume, without loss of generality, that the eigenvalues are arranged in nondecreasing order

$$
0<\lambda_{1} \leq \lambda_{2} \leq \lambda_{3} \leq \ldots
$$

Our aim will now be to estimate the asymptotics of $N(\tau)$ as $\tau \rightarrow+\infty$. Without loss of generality, we can assume $\lambda_{1}>1^{3}$

[^4]That is, $N_{A}(\tau)$ and $N_{\tilde{A}}(\tau)$ have the same asymptotics as $\tau$ goes to infinity.

Remark 3.2.2. The classical way to describe the asymptotic expansion of the counting function $N_{P}(\tau)$ as $\tau$ goes to infinity is the Weyl's law. In the standard settings, it is well known that that the leading term of the Weyl's law depends on the dimension of the space, on the order of the operator and on its principal symbol. See Hör85a and Shu01] for classical theory in the case of closed manifolds and Shubin calculus respectively. Weyl's law can be described in many other pseudodifferential calculi, for example $S G$-operators BC11, CM13, bisingular operators Bat12, global bisingular operators [BGPR13], cusp manifolds [Mor08 and many others. Some versions of the Weyl's law will be described in the following sections.

### 3.2.1 A Tauberian Theorem

To obtain the first term in the asymptotic expansion, we will use the following Tauberian Theorem of Ikehara:
Theorem 3.2.3. Let $f(t)$ be a non-decreasing function equal to 0 for $t \leq 1$, and such that the Stieltjes integral

$$
g(t)=\int_{1}^{+\infty} t^{-z} d f(t)
$$

converges for $\Re(z)>k$ for some $k>0$. Assume that there exists $B \neq 0$ such that the function

$$
\begin{equation*}
g(z)-\frac{B}{z-k} \tag{3.11}
\end{equation*}
$$

con be extended by continuity to the closed half plane $\Re(z) \geq k$. Then,

$$
f(t) \sim-\frac{B}{k} t^{k}
$$

as $t \rightarrow+\infty$.
From (3.8) and (3.9) we can write

$$
\zeta(A, z)=\int_{1}^{+\infty} \tau^{-z} d N(\tau)
$$

From Theorem 3.1 .12 and Remark 3.1.13 we have that (3.11) is satisfied with $g(z)=\zeta(A, z), k=\frac{n}{m}$, and

$$
B=-\frac{1}{m} \int_{M} \int_{\mathbb{S}^{n-1}} \frac{1}{\left(a_{m}(x, \xi)\right)^{\frac{n}{m}}} d \xi d x
$$

Thus, using Theorem 3.2.3 on $f(\tau)=N(\tau)$, we get, for $\tau \rightarrow+\infty$,

$$
\begin{aligned}
N(\tau) & \sim\left(\frac{m}{n} \frac{1}{m} \int_{M} \int_{\mathbb{S}^{n-1}} \frac{1}{\left(a_{m}(x, \xi)\right)^{\frac{n}{m}}} d \xi d x\right) \tau^{\frac{n}{m}} \\
& =\left(\frac{1}{n} \frac{1}{(2 \pi)^{n}} \int_{a_{m}\left(x, \xi^{\prime}\right)<1} d \xi^{\prime} d x\right) \tau^{\frac{n}{m}}
\end{aligned}
$$

where in the last equality we used the change of variables $\xi^{\prime}=\tau^{-\frac{1}{m}} \xi$. In conclusion, we have, for the first term,

$$
N(\tau) \sim \frac{C}{n} \tau^{\frac{n}{m}}
$$

for $\tau \rightarrow+\infty$, with

$$
\begin{equation*}
C=\frac{1}{(2 \pi)^{n}} \int_{a_{m}(x, \xi)<1} d \xi d x \tag{3.12}
\end{equation*}
$$

### 3.2.2 Stationary phase approximation

In this subsection we will find an estimate of the remainder term in the asymptotic expansion of $N(\tau)$ as $\tau$ goes to infinity. To do so, we will use Fourier Integral Operators (FIOs) and the Stationary Phase Theorem. This method is one of the most powerful in order to determine the sharp remainder in Weyl's law, see DG75, GS94, Hör68, Hör85a, Shu01]. First, we recall the important Stationary Phase Theorem.

Theorem 3.2.4. Let $X \subset \mathbb{R}^{n}$ be open. Let $\varphi \in \mathcal{C}^{\infty}(X)$ have a nondegenerate critical point $x_{0} \in X$, and assume that $\varphi^{\prime}(x) \neq 0$ for $x \neq x_{0}$. Then, there are differential operators $P_{2 \nu}(D)$ of order less or equal to $2 \nu$ such that, for every compact $K \subset X$ and every $N \in \mathbb{N}$, there is a constant $C=C_{K, N}>0$ such that, for every $u \in \mathcal{C}^{\infty}(X) \cap \mathcal{D}^{\prime}(K)$ we have

$$
\begin{gathered}
\left|\int e^{i \lambda \varphi(x)} u(x) d x-\left(\sum_{\nu=0}^{N-1}\left(P_{2 \nu}\left(D_{x}\right) u\right)\left(x_{0}\right) \lambda^{-\nu-\frac{n}{2}}\right) e^{i \lambda \varphi\left(x_{0}\right)}\right| \\
\leq C \lambda^{-N-\frac{n}{2}} \sum_{|\alpha| \leq 2 N+n+1} \sup _{x \in K}\left|\partial_{x}^{\alpha} u(x)\right|
\end{gathered}
$$

$\lambda \geq 1$. Moreover,

$$
P_{0}=\frac{(2 \pi)^{\frac{n}{2}} e^{i \frac{\pi}{4} \operatorname{sgn} \varphi^{\prime \prime}\left(x_{0}\right)}}{\left|\operatorname{det} \varphi^{\prime \prime}\left(x_{0}\right)\right|^{\frac{1}{2}}}
$$

For a proof of Theorem 3.2 .4 we refer to Hör83, GS94, see also, e.g., MS75 and Sjö82 for extensions.
Now consider the operator $Q:=A^{\frac{1}{m}}$. From Theorem 3.1.7, we have $Q \in$ $\mathrm{L}_{\mathrm{cl}}^{1}(M)$, with principal symbol $q_{1}(x, \xi)=\left(a_{m}(x, \xi)\right)^{\frac{1}{m}}$, eigenvalues $\mu_{j}:=\lambda_{j}^{\frac{1}{m}}$ and eigenfunctions $\left\{\varphi_{j}\right\}, j \in \mathbb{N}$. In the remaining part of this subsection, we refer to GS94.

## A trace formula

Let $u \in L^{2}(M), t \in \mathbb{R}$, and set

$$
U(t) u:=\sum_{j=1}^{+\infty} e^{i t \mu_{j}}\left(u, \varphi_{j}\right) \varphi_{j}
$$

where the series converges in the $L^{2}$ norm. For every $t, U(t)$ is a unitary operator, and we have

$$
\begin{aligned}
U(0) & =I \\
U(t+s) & =U(t) U(s), \quad t, s \in \mathbb{R}
\end{aligned}
$$

Moreover, for every $k \in \mathbb{N}$, we have

$$
\begin{equation*}
U(t) u=\mathcal{C}^{k}\left(\mathbb{R}, \mathrm{H}^{0}(M)\right) \cap \mathcal{C}^{k-1}\left(\mathbb{R}, \mathrm{H}^{1}(M)\right) \cap \cdots \cap \mathcal{C}^{0}\left(\mathbb{R}, \mathrm{H}^{k-1}(M)\right) \tag{3.13}
\end{equation*}
$$

for every $u \in \mathrm{H}^{k}(M)$. For $u \in \mathrm{H}^{1}(M)$, we also have

$$
\left\{\begin{aligned}
D_{t} U(t) u-Q U(t) u & =0 \\
U(0) u & =u
\end{aligned}\right.
$$

so that $v(t, x):=U(t) u(x)$ is a solution to the Cauchy problem

$$
\left\{\begin{aligned}
\left(D_{t}-Q\right) v & =0 \\
\left.v\right|_{t=0} & =u .
\end{aligned}\right.
$$

Now, let $\chi \in \mathscr{S}(\mathbb{R})$, and consider the operator $S:=\int \chi(t) U(t) d t$, defined by

$$
S u=\left(\int \chi(t) U(t) d t\right) u:=\int \chi(t) U(t) u d t
$$

for $u \in L^{2}(M) . S$ is a bounded operator from $L^{2}(M)$ to itself, since its norm is bounded by $\|\chi\|_{L^{1}}$. If we apply $S$ to finite linear combinations, and then use a density argument, we get

$$
\begin{aligned}
S u=\left(\int \chi(t) U(t) d t\right) u & =\sum_{j=1}^{+\infty} \int e^{i t \mu_{j}} \chi(t) d t\left(u, \varphi_{j}\right) \varphi_{j} \\
& =\sum_{j=1}^{+\infty} \hat{\chi}\left(-\mu_{j}\right)\left(u, \varphi_{j}\right) \varphi_{j}
\end{aligned}
$$

To show the convergence of the series in $\mathcal{C}^{\infty}(M \times M)$, we recall that, since $\chi \in \mathscr{S}(\mathbb{R})$, we have, for every ${ }^{4} N \geq 0$,

$$
|\hat{\chi}(\mu)| \leq C_{N} \mu^{-N}, \quad \mu>1
$$

Moreover, the Sobolev inequalities give

$$
\left\|\varphi_{j}\right\|_{C^{k}} \leq C_{k}\left\|\varphi_{j}\right\|_{k+n+1} \leq C_{k}^{\prime}\left\|Q^{k+n+1} \varphi_{j}\right\|_{0} \leq C_{k}^{\prime} \mu_{j}^{k+n+1}
$$

hence $\left\|\varphi_{j}(x) \overline{\varphi_{j}(y)}\right\|_{C^{k}} \leq C_{k}^{\prime} \mu_{j}^{k+2(n+1)}$. To conclude, we use the following Proposition:

[^5]Proposition 3.2.5. There exists a sufficiently large $N_{0}>0$ such that

$$
\sum_{j=1}^{+\infty} \mu_{j}^{-N_{0}}<+\infty
$$

Proof. We have

$$
\sum_{j} \frac{1}{\mu_{j}^{N_{0}}}=\zeta\left(P, N_{0}\right)
$$

Then, by Theorem 3.1.14, it suffices to choose $N_{0}>n$.
Now let $K_{\chi}(x, y) \in \mathcal{C}^{\infty}(M \times M)$ be the kernel of $\int \chi(t) U(t) d t$ :

$$
\left(\int \chi(t) U(t) d t u\right)(x)=\int K_{\chi}(x, y) u(y) d y
$$

Thus, we have the following trace formula:

$$
\sum_{j=1}^{+\infty} \hat{\chi}\left(-\mu_{j}\right)=\int K_{\chi}(x, x) d x
$$

## Construction of the approximate solution of the Cauchy problem

Consider the Cauchy problem

$$
\left\{\begin{aligned}
\left(D_{t}-Q\right) u & =0 \\
\left.u\right|_{t=0} & =v
\end{aligned}\right.
$$

It is well known, see, e.g. Hör85a and KG82, that we can construct an operator $V$ with the following properties:
a) There exists $T>0$ such that $V$ is continuous as an operator

$$
\begin{aligned}
& V: \mathcal{C}^{\infty}(M) \rightarrow \mathcal{C}^{\infty}((-T, T) \times M) \\
& V: \mathcal{D}^{\prime}(M) \rightarrow \mathcal{C}^{\infty}\left((-T, T), \mathcal{D}^{\prime}(M)\right)
\end{aligned}
$$

b) For all $u \in \mathcal{D}^{\prime}(M)$

$$
\begin{align*}
\left(D_{t}-Q\right) \circ V: & =R_{0} \in \mathrm{~L}^{-\infty}((-T, T) \times M \times M)  \tag{3.14}\\
\left.V u\right|_{t=0} & =u
\end{align*}
$$

where we denote by $\mathrm{L}^{-\infty}((-T, T) \times M \times M)$ the space of smoothing operators $\mathcal{D}^{\prime}(M) \rightarrow \mathcal{C}^{\infty}((-T, T) \times M)$.

More precisely, $V$ has the form

$$
(V(t)) u(x)=V u(t, x)=\sum_{1}^{N} \chi_{j}(x)\left(V_{j} \psi_{j}(\cdot) u(\cdot)\right)(t, x)
$$

where $\chi_{j}, \psi_{j} \in \mathcal{C}_{0}^{\infty}(M), \chi_{j} \equiv 1$ near $\operatorname{supp} \psi_{j}, \sum \psi_{j}=1$, and in suitable local coordinates, depending on $j$,

$$
\begin{equation*}
V_{j}(t) u(x)=\int e^{i\left(\varphi_{j}(t, x, \xi)-y \cdot \xi\right)} a_{j}(t, x, \xi) u(y) d y \not{d \xi} \tag{3.15}
\end{equation*}
$$

In 3.15 $\varphi=\varphi_{j}$ is the solution of the eikonal equation

$$
\left\{\begin{align*}
\partial_{t} \varphi(t, x, \xi)-q_{1}\left(x, \partial_{x} \varphi(t, x, \xi)\right) & =0  \tag{3.16}\\
\varphi(0, x, \xi) & =x \cdot \xi
\end{align*}\right.
$$

and $a=a_{j} \in \mathrm{~S}_{\mathrm{cl}}^{0}$ satisfies $\left.a\right|_{t=0}=1$.
Proposition 3.2.6. $U-V:=R$ belongs to $\mathrm{L}^{-\infty}((-T, T) \times M \times M)$.
Proof. Consider $W(t):=U(-t) V(t)$, where $V(t) u(x)=(V u)(t, x)$. For $u \in \mathrm{H}^{1}$, we have

$$
\begin{aligned}
D_{t} W(t) u & =-U(-t) Q V(t) u+U(-t) Q V(t) u+U(-t) R_{0}(t) u \\
& =U(-t) R_{0}(t) u
\end{aligned}
$$

Using (3.13) and (3.14), we get that

$$
U(-t) R_{0}(t): \mathcal{D}^{\prime}(M) \rightarrow \mathcal{C}^{\infty}((-T, T) \times M)
$$

is smoothing, hence

$$
U(-t) R_{0}(t) \in \mathrm{L}^{-\infty}((-T, T) \times M \times M)
$$

Since $W(0)=I$, integrating from 0 to $t$ we obtain that $W(t) \equiv I$ modulo $\mathrm{L}^{-\infty}((-T, T) \times M \times M)$. Hence, using again (3.13), $V(t) \equiv U(t)$ modulo $\mathrm{L}^{-\infty}((-T, T) \times M \times M)$.

Asymptotics of $\sum_{j=1}^{+\infty} \hat{\chi}\left(\tau-\mu_{j}\right)$
Let $R$ be as in Proposition 3.2.6, $R(t, x, y)$ be its kernel. Let $\chi \in \mathcal{C}_{0}^{\infty}((-T, T))$. For $u \in \mathcal{C}^{\infty}(M)$ we have

$$
\begin{aligned}
& \int \chi(t) U(t) u(x) d t \\
& =\sum_{j=1}^{N} \chi_{j}(x) \int \chi(t) e^{i\left(\varphi_{j}(t, x, \xi)-y \cdot \xi\right)} a_{j}(t, x, \xi) \psi_{j}(y) u(y) d y d \xi d t \\
& \quad+\int \chi(t) R(t, x, y) u(y) d y d t
\end{aligned}
$$

where the local coordinates in each term depend on $j$. Thus, the kernel of $\int \chi(t) U(t) d t$ is

$$
\begin{aligned}
K_{\chi}(x, y)= & \sum_{j=1}^{N} \chi_{j}(x) \int \chi(t) e^{i\left(\varphi_{j}(t, x, \xi)-y \cdot \xi\right)} a_{j}(t, x, \xi) d t đ \xi \psi_{j}(y) \\
& +\int \chi(t) R(t, x, y) d t
\end{aligned}
$$

In particular,

$$
\begin{align*}
\int K_{\chi}(x, x) d x= & \sum_{j=1}^{N} \int \chi(t) e^{i\left(\varphi_{j}(t, x, \xi)-x \cdot \xi\right)} a_{j}(t, x, \xi) \psi_{j}(x) d t d x d \xi  \tag{3.17}\\
& +\int \chi(t) R(t, x, x) d t d x
\end{align*}
$$

Now, we replace $\chi(t)$ by $\chi(t) e^{-i \tau}, \tau \in \mathbb{R}$, and study the asymptotics as $\tau$ goes to infinity. The trace formula gives

$$
\int K_{\chi e^{-i(\cdot) \tau}}(x, x) d x=\sum_{j=1}^{+\infty} \hat{\chi}\left(\tau-\mu_{j}\right)
$$

so 3.17 implies, for $\tau \rightarrow+\infty$,

$$
\begin{align*}
\sum_{j=1}^{+\infty} \hat{\chi}\left(\tau-\mu_{j}\right)= & \sum_{j=1}^{N} \int \chi(t) e^{i\left(-\tau t+\varphi_{j}(t, x, \xi)-x \cdot \xi\right)} a_{j}(t, x, \xi) \psi_{j}(x) d t d x d \xi \\
& +\mathcal{O}\left(|\tau|^{-\infty}\right) \tag{3.18}
\end{align*}
$$

Then, we shall study the asymptotics of each of the integrals. For that we fix $j$, and consider

$$
I(x, \tau)=\int e^{i \Phi(t, x, \xi, \tau)} \chi(t) a(t, x, \xi) d t \nexists \xi
$$

where

$$
\Phi(t, x, \xi, \tau):=-\tau t+\varphi(t, x, \xi)-x \cdot \xi=t q_{1}(x, \xi)+|\xi| \mathcal{O}\left(t^{2}\right)-\tau t
$$

Observe that, for $\tau \rightarrow-\infty$, we have

$$
\partial_{t} \Phi(t, x, \xi, \tau) \succ\langle\xi\rangle+|\tau|,
$$

which means, via integration by parts in $t$, that the term is $\mathcal{O}\left(|\tau|^{-\infty}\right)$. Consider next the case where $\tau \rightarrow+\infty$. Choose a cut-off function $H \in$ $\mathcal{C}_{0}^{\infty}(\mathbb{R})$ such that $\operatorname{supp} H \subseteq\left[K^{-1}, K\right], 0 \leq H \leq 1$ and $H \equiv 1$ on $\left[K^{-1}, K\right]$,
for a suitable $K \gg 1$. Again, for $\xi \in \operatorname{supp}\left(1-H\left(\frac{(\cdot)}{\tau}\right)\right)$, we have $\partial_{t} \Phi(t, x, \xi, \tau) \succ\langle\xi\rangle+|\tau|$, thus

$$
I(x, \tau)=\int e^{i \Phi(t, x, \xi, \tau)} \chi(t) H\left(\frac{\xi}{\tau}\right) a(t, x, \xi) d t \pi \xi+\mathcal{O}\left(|\tau|^{-\infty}\right)
$$

To study the remaining part, we switch to polar coordinates $\xi=\tau \tau \omega,|\omega|=$ $1, d \xi=\tau^{n} r^{n-1} d r d \omega$. Then,
$I(x, \tau)=\frac{\tau^{n}}{(2 \pi)^{n}} \int_{\mathbb{S}^{n-1}} d \omega \int e^{i \tau((\varphi(t, x, \omega)-x \cdot \omega) r-t)} \chi(t) H(r \omega) a(t, x, \tau r \omega) r^{n-1} d t d r$.
We want to apply the Stationary Phase Theorem to the $d t d r$ integral. The phase function is

$$
\Phi^{\prime}(t, x, \omega, r)=(\varphi(t, x, \omega)-x \cdot \omega) r-t=\operatorname{tr} q_{1}(x, \omega)+r \mathcal{O}\left(t^{2}\right)-t
$$

due to (3.16). Then,

$$
\begin{aligned}
\partial_{r} \Phi^{\prime} & =t q_{1}(x, \omega)+\mathcal{O}\left(t^{2}\right) \\
\partial_{t} \Phi^{\prime} & =r q_{1}(x, \omega)-1+\mathcal{O}\left(t^{2}\right)
\end{aligned}
$$

and we have an unique critical point given by

$$
t=0, \quad r=\frac{1}{q_{1}(x, \omega)}
$$

The elements of the Hessian matrix at the critical point are given by

$$
\Phi_{t, r}^{\prime \prime}\left(0, x, \omega, \frac{1}{q_{1}}\right)=\Phi_{r, t}^{\prime \prime}\left(0, x, \omega, \frac{1}{q_{1}}\right)=q_{1}(x, \omega), \quad \Phi_{r, r}^{\prime \prime}\left(0, x, \omega, \frac{1}{q_{1}}\right)=0
$$

hence $\left|\operatorname{det} \Phi^{\prime \prime}\right|=\left(q_{1}(x, \omega)\right)^{2}$, and the signature of $\Phi^{\prime \prime}$ is 0 . The Stationary Phase Theorem 3.2.4 then gives

$$
\begin{aligned}
I(x, \tau) & =\frac{\tau^{n-1}}{(2 \pi)^{n-1}} \int_{\mathbb{S}^{n-1}} \chi(0)\left(\frac{1}{q_{1}(x, \omega)}\right)^{n-1} \frac{1}{q_{1}(x, \omega)} d \omega+\mathcal{O}\left(\tau^{n-2}\right) \\
& =\frac{\tau^{n-1}}{(2 \pi)^{n-1}} \int_{\mathbb{S}^{n-1}} \frac{1}{\left(q_{1}(x, \omega)\right)^{n}} d \omega+\mathcal{O}\left(\tau^{n-2}\right)
\end{aligned}
$$

Remark 3.2.7. In the case $n=1,3.19$ becomes

$$
\begin{aligned}
& I(x, \tau) \\
& =\frac{\tau}{2 \pi} \int_{\mathbb{S}^{0}} d \omega \int e^{i \tau t\left(\left(q_{1}(x, \omega)+\mathcal{O}(t)\right) r-1\right)} \chi(t) H(r \omega)\left(1+\mathcal{O}(t)+\frac{\mathcal{O}(t)}{\tau}\right) d t d r
\end{aligned}
$$

and, computing the first two terms in the stationary phase expansion, we see that the coefficient of the $\tau^{-1}$ term is 0 . Therefore, we get the improved estimate

$$
I(x, \tau)=\int_{\mathbb{S}^{n-1}} \frac{1}{q_{1}(x, \omega)} d \omega+\mathcal{O}\left(\tau^{-2}\right)
$$

To conclude, in suffices to integrate with respect to $\psi_{j}(x) d x$ and add the $N$ integrals in (3.18), obtaining

Theorem 3.2.8. Let $\chi \in \mathcal{C}_{0}^{\infty}((-T, T)), \chi(0)=1$. Then

$$
\begin{align*}
& \sum_{j=1}^{+\infty} \hat{\chi}\left(\tau-\mu_{j}\right) \\
& \quad= \begin{cases}\frac{\tau^{n-1}}{(2 \pi)^{n-1}} \iint_{\mathbb{S}^{*} M} \frac{1}{\left(q_{1}(x, \omega)\right)^{n}} d \omega d x+\mathcal{O}\left(\tau^{n-2}\right) & \text { for } \\
\mathcal{O}\left(|\tau|^{-\infty}\right) & \text { for } r \rightarrow+\infty \\
& \tau \rightarrow-\infty\end{cases} \tag{3.20}
\end{align*}
$$

## Estimate of the counting function

First, notice that, in Theorem 3.2.8, we may choose $\chi$ with the additional property that $\hat{\chi} \geq 0$. To do so, set $\chi:=\psi * \breve{\psi}$ for a suitable $\psi \in \mathcal{C}_{0}^{\infty}$, where $\check{\psi}(t):=\psi(-t)$. Now rewrite 3.20 as a Stieltjes integral, so that

$$
\begin{align*}
& \int \hat{\chi}(\tau-\sigma) d N(\sigma) \\
& \quad= \begin{cases}\frac{\tau^{n-1}}{(2 \pi)^{n-1}} \iint_{\mathbb{S}^{*} M} \frac{1}{\left(q_{1}(x, \omega)\right)^{n}} d \omega d x+\mathcal{O}\left(\tau^{n-2}\right) & \text { for } \quad \tau \rightarrow+\infty \\
\mathcal{O}\left(|\tau|^{-\infty}\right) & \text { for } \tau \rightarrow-\infty\end{cases} \tag{3.21}
\end{align*}
$$

Setting

$$
G(\tau):=\int_{-\infty}^{\tau} \hat{\chi}(\lambda) d \lambda
$$

and integrating (3.21), we get

$$
\begin{align*}
& \int G(\tau-\sigma) d N(\sigma) \\
& \quad= \begin{cases}\frac{\tau^{n}}{n(2 \pi)^{n-1}} \iint_{\mathbb{S}^{*} M} \frac{1}{\left(q_{1}(x, \omega)\right)^{n}} d \omega d x+\mathcal{O}\left(\tau^{n-1}\right) & \text { for } \quad \tau \rightarrow+\infty \\
\mathcal{O}\left(|\tau|^{-\infty}\right) & \text { for } \tau \rightarrow-\infty\end{cases} \tag{3.22}
\end{align*}
$$

We observe that, in the case $n=1$, we have used Remark 3.2.7, replacing $\mathcal{O}\left(\lambda^{-1}\right)$ with $\mathcal{O}\left(\lambda^{-2}\right)$ in (3.21). Then, indicating by $\Theta(t)$ the Heaviside
function,

$$
\begin{aligned}
\int G(\tau-\sigma) d N(\sigma)=\sum_{j} G\left(\tau-\mu_{j}\right) & =\sum_{j} \int_{-\infty}^{\tau-\mu_{j}} \hat{\chi}(\lambda) d \lambda \\
& =\sum_{j} \int \Theta\left(\tau-\mu_{j}-\lambda\right) \hat{\chi}(\lambda) d \lambda \\
& =\int \sum_{j} \Theta\left(\tau-\mu_{j}-\lambda\right) \hat{\chi}(\lambda) d \lambda \\
& =\int N_{Q}(\tau-\lambda) \hat{\chi}(\lambda) d \lambda \\
& =2 \pi N_{Q}(\tau)+Y(\tau)
\end{aligned}
$$

where $N_{Q}(\tau)$ is the counting function,

$$
Y(\tau):=\int\left(N_{Q}(\tau-\lambda)-N_{Q}(\tau)\right) \hat{\chi}(\lambda) d \lambda
$$

and we used that $\int \hat{\chi}(\lambda) d \lambda=2 \pi$. From 3.20 (see GS94 for the details), we get that

$$
\#\{\sigma(Q) \cap[\tau, \tau+1]\}=N_{Q}(\tau+1)-N_{Q}(\tau)=\mathcal{O}\left(\tau^{n-1}\right)
$$

Therefore, for $\tau>1$,

$$
\left|N_{Q}(\tau-\lambda)-N_{Q}(\tau)\right| \prec(1+|\lambda|)(\tau+|\lambda|)^{n-1} \prec(1+|\lambda|)^{n} \tau^{n-1}
$$

Since

$$
\int(1+|\lambda|)^{n} \hat{\chi}(\lambda) d \lambda<+\infty
$$

we get $Y(\tau)=\mathcal{O}\left(\tau^{n-1}\right)$, and

$$
\begin{equation*}
\int G(\tau-\sigma) d N(\sigma)=2 \pi N_{Q}(\tau)+\mathcal{O}\left(\tau^{n-1}\right) \tag{3.23}
\end{equation*}
$$

Finally, (3.22) and 3.23 give
Proposition 3.2.9. We have

$$
N_{Q}(\tau)=\frac{1}{n} \frac{\tau^{n}}{(2 \pi)^{n}} \iint_{\mathbb{S}^{*} M} \frac{1}{\left(q_{1}(x, \omega)\right)^{n}} d \omega d x+\mathcal{O}\left(\tau^{n-1}\right)
$$

for $\tau \rightarrow+\infty$.
Switching back to the operator $A=Q^{m}$, since $\mu_{j}:=\lambda_{j}^{\frac{1}{m}}$, we have

$$
N_{A}(\tau)=\sum_{\lambda_{j}<\tau} 1=\sum_{\lambda_{j}^{\frac{1}{m}}<\tau^{\frac{1}{m}}} 1=\sum_{\mu_{j}<\tau^{\frac{1}{m}}} 1=N_{Q}\left(\tau^{\frac{1}{m}}\right)
$$

and, in conclusion,

Theorem 3.2.10. Let $A$ be a self-adjoint, classical, positive, elliptic operator on $M$, with eigenvalues $\left\{\lambda_{j}\right\}, j \in \mathbb{N}$. Then,

$$
\begin{aligned}
N_{A}(\tau) & =\frac{1}{n} \frac{\tau^{\frac{n}{m}}}{(2 \pi)^{n}} \iint_{\mathbb{S}^{*} M} \frac{1}{\left(a_{m}(x, \xi)\right)^{\frac{n}{m}}} d \xi d x+\mathcal{O}\left(\tau^{\frac{n-1}{m}}\right) \\
& =\frac{C}{n} \tau^{\frac{n}{m}}+\mathcal{O}\left(\tau^{\frac{n-1}{m}}\right)
\end{aligned}
$$

for $\tau \rightarrow+\infty$, with $C$ as in 3.12.

### 3.2.3 Sharpness of the result

In this subsection we show that the estimate of the remainder in Theorem 3.2 .10 is sharp. To do so, we need the precise knowledge of the spectrum of some operator with the required properties on a closed manifold. We consider

$$
A:=-\Delta_{\mathbb{S}^{n}} \in L^{2}\left(\mathbb{S}^{n}\right)
$$

the Laplace-Beltrami operator on the $n$-dimensional sphere $\mathbb{S}^{n}$. It is well known, see for example [Shu01 and [BEM71], that

Theorem 3.2.11. The eigenvalues of the operator $A=-\Delta_{\mathbb{S}^{n}}$ on $\mathbb{S}^{n}$ are

$$
\lambda_{k}=k(k+n-1), \quad k \in \mathbb{N}
$$

Moreover, each $\lambda_{k}$ has multiplicity

$$
\sharp\left(\lambda_{k}\right)=N_{k}-N_{k-2},
$$

where

$$
N_{k}:=\binom{n+k}{n}
$$

Now,

$$
\begin{equation*}
N_{A}\left(\lambda_{k}\right)=\sum_{\lambda_{l}<\lambda_{k}} \sharp\left(\lambda_{l}\right)=\sum_{l<k}\left(N_{l}-N_{l-2}\right)=N_{k}+N_{k-1} . \tag{3.24}
\end{equation*}
$$

Moreover,

$$
N_{k}=\binom{n+k}{n}=\frac{(n+k)!}{n!k!}=\frac{1}{n!}(k+n)(k+n-1) \ldots(k+1)
$$

thus $N_{k}$ is a polynomial of degree $n$ in $k$ with leading coefficient $\frac{1}{n!}$. Then, from 3.24,

$$
\begin{equation*}
N_{A}\left(\lambda_{k}\right) \sim \frac{2}{n!} k^{n} \sim \frac{2}{n!}(k(k+n-1))^{\frac{n}{2}}=\frac{2}{n!}\left(\lambda_{k}\right)^{\frac{n}{2}} \tag{3.25}
\end{equation*}
$$

From (3.24) it also follows that

$$
N_{A}\left(\lambda_{k}\right)-N_{A}\left(\lambda_{k-1}\right)=N_{k}-N_{k-2}=P_{n-1}(k)
$$

where $P_{n-1}(k)$ is a polynomial of degree $n-1$ in $k$. Therefore

$$
\begin{equation*}
N_{A}\left(\lambda_{k}\right)-N_{A}\left(\lambda_{k-1}\right) \geq c k^{n-1} \geq c^{\prime}(k(k+n-1))^{\frac{n-1}{2}}=c^{\prime}\left(\lambda_{k}\right)^{\frac{n-1}{2}} \tag{3.26}
\end{equation*}
$$

for some $c, c^{\prime}>0$. Combining (3.25 and 3.26 we get

$$
\begin{equation*}
N_{A}(\tau)=\frac{2}{n!} \tau^{\frac{n}{2}}+\mathcal{O}\left(\tau^{\frac{n-1}{2}}\right) \tag{3.27}
\end{equation*}
$$

which shows that the estimate in Theorem 3.2 .10 is sharp.
Remark 3.2.12. Notice that also the constant in the first term of (3.27) is correct. We have $a_{2}(x, \xi)=|\xi|^{2}$, and, by direct computation,

$$
\iint_{\mathbb{S}^{n} \times \mathbb{S}^{n-1}} \frac{1}{|\xi|^{\frac{n}{2}}} d \xi d x=\frac{2(2 \pi)^{n}}{(n-1)!}
$$

Thus,

$$
\frac{C}{n}=\frac{1}{n} \frac{1}{(2 \pi)^{n}} \iint_{\mathbb{S}^{n} \times \mathbb{S}^{n-1}} \frac{1}{|\xi|^{\frac{n}{2}}} d \xi d x=\frac{1}{n} \frac{1}{(2 \pi)^{n}} \frac{2(2 \pi)^{n}}{(n-1)!}=\frac{2}{n!} .
$$

### 3.3 Asymptotics of $N_{A_{1} \otimes A_{2}}$ spectral counting function of $A_{1} \otimes A_{2}$

Let $M_{1}, M_{2}$ be two closed manifolds of dimension $n_{1}, n_{2}$ respectively. Let $A=A_{1} \otimes A_{2}, A_{i} \in \mathrm{~L}_{\mathrm{cl}}^{m_{i}}\left(M_{i}\right), m_{i}>0, i=1,2$, and

$$
\sigma\left(A_{1}\right)=\left\{\lambda_{i}\right\}_{i \in \mathbb{N}}, \quad \sigma\left(A_{2}\right)=\left\{\mu_{k}\right\}_{k \in \mathbb{N}}
$$

Thus, by Proposition 1.1.13,

$$
\sigma(A)=\left\{\lambda_{i} \cdot \mu_{k}: \lambda_{i} \in \sigma\left(A_{1}\right), \mu_{k} \in \sigma\left(A_{2}\right)\right\}
$$

In this section we will study the asymptotics of the counting function of $A=A_{1} \otimes A_{2}$,

$$
\begin{equation*}
N_{A}(\tau)=\sum_{\lambda_{i} \mu_{k}<\tau} 1 \tag{3.28}
\end{equation*}
$$

The asymptotic expansion of $N_{A_{1} \otimes A_{2}}(\tau)$ is related with the position of the first poles of the spectral $\zeta$-function associated with $A_{1}$ and $A_{2}$, as sketched in the following pictures.
Case $\frac{n_{2}}{m_{2}}<\frac{n_{1}-1}{m_{2}}$



$$
\text { Case } \frac{n_{2}}{m_{2}}=\frac{n_{1}-1}{m_{2}}
$$



$$
\text { Case } \frac{n_{2}}{m_{2}}>\frac{n_{1}-1}{m_{2}}
$$



In [GPRV14 the authors analyze the same class of operators and find

$$
N_{A}(\tau)=\frac{C_{1}}{n_{1}} \zeta\left(A_{2}, \frac{n_{1}}{m_{1}}\right) \tau^{\frac{n_{1}}{m_{1}}}+\mathcal{O}\left(\tau^{\delta}\right)
$$

where $\min \left\{\frac{n_{1}-1}{m_{1}}, \frac{n_{2}}{m_{2}}\right\}<\delta<\frac{n_{1}}{m_{1}}$. We are able to refine the above estimate.

### 3.3.1 The main Theorem

In this subsection we will prove our main Theorem. The next Proposition 3.3 .1 will be crucial in our proof of the Weyl law with sharp remainder for
tensor products. It follows as consequence of well known properties of the spectra of positive self-adjoint operators.

Proposition 3.3.1. Let $M$ be a closed manifold of dimension $n$, and $A \in$ $\mathrm{L}_{\mathrm{cl}}^{m}(M), m>0$, be elliptic, positive and self-adjoint, with spectrum $\sigma(A)=$ $\left\{\mu_{k}\right\}_{k \in \mathbb{N}}$. Define

$$
F_{A}(\tau, c)=\sum_{\mu_{k}<\tau} \frac{1}{\mu_{k}^{c}}= \begin{cases}F_{1}(\tau) & \text { if } \quad c>\frac{n}{m}  \tag{3.29}\\ F_{2}(\tau) & \text { if } \quad c=\frac{n}{m} \\ F_{3}(\tau) & \text { if } \quad c<\frac{n}{m}\end{cases}
$$

Then,

$$
\limsup _{\tau \rightarrow+\infty} \frac{\zeta(A, c)-F_{1}(\tau)}{\tau^{\frac{n}{m}-c}}=\kappa_{1}, \limsup _{\tau \rightarrow+\infty} \frac{F_{2}(\tau)}{\log \tau}=\kappa_{2}, \limsup _{\tau \rightarrow+\infty} \frac{F_{3}(\tau)}{\tau^{\frac{n}{m}-c}}=\kappa_{3}
$$

for suitable positive constants $\kappa_{1}, \kappa_{2}, \kappa_{3}$. That is, for $\tau \rightarrow+\infty$,

$$
\zeta(A, c)-F_{1}(\tau)=\mathcal{O}\left(\tau^{\frac{n}{m}-c}\right), F_{2}(\tau)=\mathcal{O}(\log \tau), F_{3}(\tau)=\mathcal{O}\left(\tau^{\frac{n}{m}-c}\right)
$$

Proof. If $c>\frac{n}{m}$ it is immediate that the series $\sum_{k=0}^{\infty} \frac{1}{\mu_{k}^{c}}$ is convergent, in view of the holomorphic properties of the spectral $\zeta$-function associated with $A$. To prove the asymptotic properties of $\zeta(A, c)-F_{1}(\tau)$, we switch to $B=A^{1 / m}$, so that the order of $B$ is one and $\sigma(B)=\mu_{k}^{1 / m}$. We have

$$
\begin{align*}
\zeta(A, c)-F_{1}(\tau) & =\sum_{\mu_{k} \geq \tau} \frac{1}{\mu_{k}^{c}}=\sum_{\mu_{k}^{1 / m} \geq \tau^{1 / m}} \frac{1}{\left(\mu_{k}^{1 / m}\right)^{c m}} \\
& =\int_{\tau^{1 / m}}^{+\infty} \frac{1}{\mu^{c m}} d N_{B}(\mu) \tag{3.30}
\end{align*}
$$

Since $B$ is of order one, it is well known that

$$
\begin{equation*}
N_{B}(\lambda+1)-N_{B}(\lambda) \leq \sharp\{\sigma(B) \cap[\lambda, \lambda+1]\}=\mathcal{O}\left(\lambda^{n-1}\right), \lambda \rightarrow+\infty \tag{3.31}
\end{equation*}
$$

(see, e.g., GS94, § 12]). Using (3.31) and the properties of Stieltjes integral,
we obtain, for $\tau \rightarrow+\infty$,

$$
\begin{aligned}
\zeta(A, c)-F_{1}(\tau) & =\int_{\tau^{1 / m}}^{+\infty} \frac{1}{\mu^{c m}} d N_{B}(\mu) \\
& \leq \sum_{j=\left[\tau^{1 / m}\right]-1}^{\infty} \sup _{\mu \in[j, j+1]}\left(\frac{1}{\mu^{c m}}\right)\left(N_{B}(j+1)-N_{B}(j)\right) \\
& \leq \kappa \sum_{j=\left[\tau^{1 / m}\right]-1}^{\infty} \frac{1}{j^{c m-n+1}} \\
& \leq \kappa \int_{\left[\tau^{1 / m}\right]-1}^{+\infty} \frac{1}{(t-1)^{c m-n+1}} d t \\
& =\kappa \frac{1}{c m-n}\left[\tau^{1 / m}-2\right]^{n-m c} \in \mathcal{O}\left(\tau^{\frac{n}{m}-c}\right)
\end{aligned}
$$

where $[a]$ denotes the minimum integer such that $[a] \geq a$.
To prove the results for $F_{2}$ and $F_{3}$ we can assume, without loss of generality, that $\mu_{0}=\tilde{\mu}_{0}=1$. Using again the properties of the Stieltjes integral, we write
$F_{A}(\tau, c)=\int_{1}^{\tau^{1 / m}} \frac{1}{\mu^{c m}} d N_{B}(\mu) \leq \sum_{j=1}^{\left[\tau^{1 / m}\right]} \sup _{\mu \in[j, j+1]}\left(\frac{1}{\mu^{c m}}\right)\left(N_{B}(j+1)-N_{B}(j)\right)$.
Let us initially suppose that $c>0$, so that $\frac{1}{x^{c}}$ is a decreasing function on $[1,+\infty)$. In view of (3.31), we have

$$
\begin{align*}
\int_{1}^{\tau^{1 / m}} \frac{1}{\mu^{c m}} d N_{B}(\mu) & \leq \sum_{j=1}^{\left[\tau^{1 / m}\right]} \frac{1}{j^{c m}} \mathcal{O}\left(j^{n-1}\right) \leq \widetilde{\kappa} \sum_{j=1}^{\left[\tau^{1 / m}\right]} \frac{1}{j^{c m-n+1}} \\
& \leq \widetilde{\kappa}\left(\int_{1}^{\left[\tau^{1 / m}\right]} t^{n-c m-1} d t+1\right) \tag{3.32}
\end{align*}
$$

By integration, we find

$$
F_{A}(\tau, c)=\int_{1}^{\tau^{1 / m}} \frac{1}{\mu^{c m}} d N_{B}(\mu) \leq \begin{cases}\frac{\widetilde{\kappa}_{1}}{n-c m} \tau^{\frac{n}{m}-c} & \text { if } \quad 0<c<\frac{n}{m} \\ \frac{\widetilde{\kappa}_{2}}{m} \log \tau & \text { if } \quad c=\frac{n}{m}\end{cases}
$$

as claimed. Finally, if $c \leq 0$, then $\frac{1}{\mu^{c}}$ is a non-decreasing function and also in this case, similarly to (3.32), we obtain

$$
F_{A}(\tau, c) \leq \kappa \int_{1}^{\left[\tau^{1 / m}\right]}(x+1)^{n-c m-1} d x \leq \frac{\widetilde{\kappa}_{3}}{n-c m} \tau^{\frac{n}{m}-c}
$$

The proof is complete.

Now, we consider the tensor product of 2 operators $A=A_{1} \otimes A_{2}, A_{i} \in$ $\mathrm{L}_{\mathrm{cl}}^{m_{i}}\left(M_{i}\right), m_{i}>0, i=1,2$. For simplicity, we start with the case $m_{1}=1$ and $n_{1}>\frac{n_{2}}{m_{2}}$. Without loss of generality, we can assum $\oint^{5} \lambda_{j}>1$ and $\mu_{k}>1$ for all $j, k$. Let us now summarize the hypotheses on the factors $A_{1}, A_{2}$.

## Assumptions 3.3.2.

$M_{1}, M_{2}$ smooth closed manifolds of dimensions $n_{1}, n_{2}$, respectively;

$$
A=A_{1} \otimes A_{2}, A_{1} \in \mathrm{~L}_{\mathrm{cl}}^{1}\left(M_{1}\right), A_{2} \in \mathrm{~L}_{\mathrm{cl}}^{m_{2}}\left(M_{2}\right), \quad m_{2}>0, n_{1}>\frac{n_{2}}{m_{2}}
$$

$A_{1}, A_{2}$ positive, self-adjoint, elliptic;

$$
\sigma\left(A_{1}\right)=\left\{\lambda_{j}\right\}_{j \in \mathbb{N}}, \sigma\left(A_{2}\right)=\left\{\mu_{k}\right\}_{k \in \mathbb{N}}, \quad \lambda_{j}>1, \mu_{k}>1, \text { for all } j, k
$$

Since $\lambda_{j}, \mu_{k}>1$ for all $j, k$, using (3.10, we have ${ }^{6}$

$$
\begin{align*}
N_{A}(\tau) & =\sum_{\lambda_{j} \cdot \mu_{k}<\tau} 1=\sum_{\mu_{k}<\tau}\left(\sum_{\lambda_{j} \cdot \mu_{k}<\tau} 1\right)= \\
& =\sum_{\mu_{k}<\tau} N_{\mu_{k} A_{1}}(\tau)=\sum_{\mu_{k}<\tau} N_{A_{1}}\left(\frac{\tau}{\mu_{k}}\right) . \tag{3.33}
\end{align*}
$$

Proposition 3.3.3. Let $A, A_{1}$ and $A_{2}$ be as in Assumptions 3.3.2. Then,

$$
N_{A}(\tau)=\sum_{\mu_{k}<\tau}\left(\frac{C_{1}}{n_{1}}\left(\frac{\tau}{\mu_{k}}\right)^{n_{1}}+\frac{1}{\mu_{k}^{n_{1}-1}} r_{k}(\tau)\right)
$$

with

$$
\begin{equation*}
C_{1}=\frac{1}{(2 \pi)^{n_{1}}} \iint_{\mathbb{S}^{*} M_{1}} \frac{d \theta_{1} d x_{1}}{\left[a_{m_{1}}\left(x_{1}, \theta_{1}\right)\right]^{\frac{n_{1}}{m_{1}}}}, \tag{3.34}
\end{equation*}
$$

and $r_{k}(\tau)$ is $\mathcal{O}\left(\tau^{n_{1}-1}\right)$, uniformly with respect to $\mu_{k}$. That is, there exists a positive constant $C$ such that

$$
\begin{equation*}
\left|r_{k}(\tau)\right| \leq C \tau^{n_{1}-1}, \quad \text { for all } k \in \mathbb{N} \tag{3.35}
\end{equation*}
$$

Proof. By (3.33) we have

$$
N_{A}(\tau)=\sum_{\mu_{k}<\tau} N_{A_{1}}\left(\frac{\tau}{\mu_{k}}\right)
$$

[^6]Using Theorem 3.2.10, we can write

$$
\begin{equation*}
N_{A}(\tau)=\sum_{\mu_{k}<\tau}\left(\frac{C_{1}}{n_{1}} \frac{\tau^{n_{1}}}{\mu_{k}^{n_{1}}}+R_{A}\left(\frac{\tau}{\mu_{k}}\right)\right) \tag{3.36}
\end{equation*}
$$

Theorem 3.2.10 implies that

$$
\left|R_{A}(t)\right| \leq \kappa t^{n_{1}-1}, \quad t>1
$$

for a suitable constant $\kappa$. Since $\mu_{k}<\tau \Rightarrow \frac{\tau}{\mu_{k}}>1$ in the summation (3.36), we can write

$$
\left|R_{A}\left(\frac{\tau}{\mu_{k}}\right)\right| \leq C\left(\frac{\tau}{\mu_{k}}\right)^{n_{1}-1}
$$

Hence, setting

$$
r_{k}(\tau)=\mu_{k}^{n_{1}-1} R_{A}\left(\frac{\tau}{\mu_{k}}\right)
$$

we have the assertion.

Remark 3.3.4. For an alternative proof of Proposition 3.3 .3 involving FIO theory, see Appendix 3.27 .

Lemma 3.3.5. Let $A, A_{1}, A_{2}$ be as in Assumptions 3.3.2, and assume $n_{1}>$ $\frac{n_{2}}{m_{2}}$. Then we have, for $\tau \rightarrow+\infty$,

$$
N_{A}(\tau)= \begin{cases}\frac{C_{1}}{n_{1}} \zeta\left(A_{2}, n_{1}\right) \tau^{n_{1}}+\mathcal{O}\left(\tau^{n_{1}-1}\right) & \text { if } \quad \frac{n_{2}}{m_{2}}<n_{1}-1 \\ \frac{C_{1}}{n_{1}} \zeta\left(A_{2}, n_{1}\right) \tau^{n_{1}}+\mathcal{O}\left(\tau^{n_{1}-1} \log \tau\right) & \text { if } \quad \frac{n_{2}}{m_{2}}=n_{1}-1 \\ \frac{C_{1}}{n_{1}} \zeta\left(A_{2}, n_{1}\right) \tau^{n_{1}}+\mathcal{O}\left(\tau^{\frac{n_{2}}{m_{2}}}\right) & \text { if } \quad \frac{n_{2}}{m_{2}}>n_{1}-1\end{cases}
$$

where $C_{1}$ is given by (3.34).
Proof. Using Proposition 3.3 .3 we obtain

$$
N_{A}(\tau)=\sum_{\mu_{k}<\tau}\left(\frac{C_{1}}{n_{1}}\left(\frac{\tau}{\mu_{k}}\right)^{n_{1}}+\frac{1}{\mu_{k}^{n_{1}-1}} r_{k}(\tau)\right)
$$

where $r_{k}(\tau)$ is uniformly $\mathcal{O}\left(\tau^{n_{1}-1}\right)$ for $\tau \rightarrow+\infty$, in the sense of (3.35). We
can then write

$$
\begin{align*}
\mid N_{A}(\tau) & \left.-\frac{C_{1}}{n_{1}} \zeta\left(A_{2}, n_{1}\right) \tau^{n_{1}} \right\rvert\, \\
& =\left|\sum_{\mu_{k}<\tau}\left(\frac{C_{1}}{n_{1}} \frac{\tau^{n_{1}}}{\mu_{k}^{n_{1}}}+\frac{1}{\mu_{k}^{n_{1}-1}} r_{k}\left(\tau^{n_{1}-1}\right)\right)-\frac{C_{1}}{n_{1}} \zeta\left(A_{2}, n_{1}\right) \tau^{n_{1}}\right| \\
& \leq \frac{C_{1}}{n_{1}} \tau^{n_{1}}\left|F_{A_{2}}\left(\tau, n_{1}\right)-\zeta\left(A_{2}, n_{1}\right)\right|+\left|\sum_{\mu_{k}<\tau} \frac{1}{\mu_{k}^{n_{1}-1}} r_{k}\left(\tau^{n_{1}-1}\right)\right| \\
& \leq \frac{C_{1}}{n_{1}} \tau^{n_{1}}\left|F_{A_{2}}\left(\tau, n_{1}\right)-\zeta\left(A_{2}, n_{1}\right)\right|+C \tau^{n_{1}-1} F_{A_{2}}\left(\tau, n_{1}-1\right) . \tag{3.37}
\end{align*}
$$

Let us start with the case $n_{1}-1>\frac{n_{2}}{m}$. Using (3.37), we find

$$
\begin{aligned}
& \limsup _{\tau \rightarrow+\infty} \frac{\left|N_{A}(\tau)-\frac{C_{1}}{n_{1}} \zeta\left(A_{2}, n_{1}\right) \tau^{n_{1}}\right|}{\tau^{n_{1}-1}} \\
& \quad \leq \frac{C_{1}}{n_{1}} \limsup _{\tau \rightarrow+\infty} \tau\left|\zeta\left(A_{2}, n_{1}\right)-F_{A_{2}}\left(\tau, n_{1}\right)\right|+C \limsup _{\tau \rightarrow+\infty} F_{A_{2}}\left(\tau, n_{1}-1\right) .
\end{aligned}
$$

Since

$$
n_{1}>n_{1}-1>\frac{n_{2}}{m_{2}} \Rightarrow \frac{n_{2}}{m_{2}}-n_{1}<-1,
$$

$\zeta\left(A_{2}, n_{1}\right)-F_{1}(\tau)=\mathcal{O}\left(\tau^{\frac{n_{2}}{m_{2}}-n_{1}}\right)$ for $\tau \rightarrow+\infty$, in view of Proposition 3.3.1.
It follows that

$$
\limsup _{\tau \rightarrow+\infty} \tau\left|\zeta\left(A_{2}, n_{1}\right)-F_{1}(\tau)\right| \leq \widetilde{C} \limsup _{\tau \rightarrow+\infty} \tau^{\frac{n_{2}}{m_{2}}-n_{1}+1}=0
$$

which implies

$$
\limsup _{\tau \rightarrow+\infty} \frac{\left|N_{A}(\tau)-\frac{C_{1}}{n_{1}} \zeta\left(A_{2}, n_{1}\right) \tau^{n_{1}}\right|}{\tau^{n_{1}-1}} \leq C \limsup _{\tau \rightarrow+\infty} F_{A_{2}}\left(\tau, n_{1}-1\right)=C \zeta\left(A_{2}, n_{1}-1\right)
$$

Since $n_{1}-1>\frac{n_{2}}{m_{2}}, \zeta\left(A_{2}, n_{1}-1\right)$ is finite, and we have the desired assertion.
In the case $n_{1}-1=\frac{n_{2}}{m_{2}}$, from (3.37) we analogously get

$$
\begin{aligned}
& \limsup _{\tau \rightarrow+\infty} \frac{\left|N_{A}(\tau)-\frac{C_{1}}{n_{1}} \zeta\left(A_{2}, n_{1}\right) \tau^{n_{1}}\right|}{\tau^{n_{1}-1} \log \tau} \\
& \quad \leq \frac{C_{1}}{n_{1}} \limsup _{\tau \rightarrow+\infty} \frac{\tau}{\log \tau}\left|\zeta\left(A_{2}, n_{1}\right)-F_{A_{2}}\left(\tau, n_{1}\right)\right|+C \limsup _{\tau \rightarrow+\infty} \frac{1}{\log \tau} F_{A_{2}}\left(\tau, \frac{n_{2}}{m_{2}}\right) .
\end{aligned}
$$

Since $n_{1}>n_{1}-1=\frac{n_{2}}{m_{2}}$, in view of Proposition 3.3.1 we find

$$
\zeta\left(A_{2}, n_{1}\right)-F_{1}(\tau)=\mathcal{O}\left(\tau^{-1}\right), \quad F_{A_{2}}\left(\tau, \frac{n_{2}}{m_{2}}\right)=F_{2}(\tau)=\mathcal{O}(\log \tau)
$$

so that

$$
\limsup _{\tau \rightarrow+\infty} \frac{\left|N_{A}(\tau)-\frac{C_{1}}{n_{1}} \zeta\left(A_{2}, n_{1}\right) \tau^{n_{1}}\right|}{\tau^{n_{1}-1} \log \tau} \leq \widetilde{C},
$$

as claimed.
Finally, in the case $n_{1}-1<\frac{n_{2}}{m_{2}}$, 3.37) gives

$$
\begin{aligned}
\limsup _{\tau \rightarrow+\infty} & \frac{\left|N_{A}(\tau)-\frac{C_{1}}{n_{1}} \zeta\left(A_{2}, n_{1}\right) \tau^{n_{1}}\right|}{\tau^{\frac{n_{2}}{m_{2}}}} \\
\leq & \frac{C_{1}}{n_{1}} \limsup _{\tau \rightarrow+\infty} \tau^{n_{1}-\frac{n_{2}}{m_{2}}}\left|\zeta\left(A_{2}, n_{1}\right)-F_{A_{2}}\left(\tau, n_{1}\right)\right|+ \\
& C \limsup _{\tau \rightarrow+\infty}^{n_{1}-1-\frac{n_{2}}{m_{2}}} F_{A_{2}}\left(\tau, n_{1}-1\right) .
\end{aligned}
$$

Since $n_{1}>\frac{n_{2}}{m_{2}}>n_{1}-1$, Proposition 3.3.1 implies

$$
\zeta\left(A_{2}, n_{1}\right)-F_{1}(\tau)=\mathcal{O}\left(\tau^{\frac{n_{2}}{m_{2}}-n_{1}}\right), \quad F_{A_{2}}\left(\tau, n_{1}-1\right)=F_{3}(\tau)=\mathcal{O}\left(\tau^{\frac{n_{2}}{m}-n_{1}+1}\right)
$$

Therefore,

$$
\limsup _{\tau \rightarrow+\infty} \frac{\left|N_{A}(\tau)-\frac{C_{1}}{n_{1}} \zeta\left(A_{2}, n_{1}\right) \tau^{n_{1}}\right|}{\tau^{\frac{n_{2}}{m_{2}}}}<+\infty
$$

The proof is complete.
We can now prove our main result.
Theorem 3.3.6. Let $M_{1}, M_{2}$ be two closed manifolds of dimension $n_{1}, n_{2}$, respectively. Let $A=A_{1} \otimes A_{2}$, where $A_{j} \in \mathrm{~L}_{\mathrm{cl}}^{m_{j}}\left(M_{j}\right), m_{j}>0, j=1,2$, are positive, self-adjoint, invertible operators, with $\frac{n_{1}}{m_{1}}>\frac{n_{2}}{m_{2}}$. Then, for $\tau \rightarrow+\infty$,

$$
N_{A}(\tau)= \begin{cases}\frac{C_{1}}{n_{1}} \zeta\left(A_{2}, \frac{n_{1}}{m_{1}}\right) \tau^{\frac{n_{1}}{m_{1}}}+\mathcal{O}\left(\tau^{\frac{n_{1}-1}{m_{1}}}\right) & \text { if } \frac{n_{2}}{m_{2}}<\frac{n_{1}-1}{m_{1}}, \\ \frac{C_{1}}{n_{1}} \zeta\left(A_{2}, \frac{n_{1}}{m_{1}}\right) \tau^{\frac{n_{1}}{m_{1}}}+\mathcal{O}\left(\tau^{\frac{n_{1}-1}{m_{1}}} \log \tau\right) & \text { if } \frac{n_{2}}{m_{2}}=\frac{n_{1}-1}{m_{1}}, \\ \frac{C_{1}}{n_{1}} \zeta\left(A_{2}, \frac{n_{1}}{m_{1}}\right) \tau^{\frac{n_{1}}{m_{1}}}+\mathcal{O}\left(\tau^{\frac{n_{2}}{m_{2}}}\right) & \text { if } \frac{n_{2}}{m_{2}}>\frac{n_{1}-1}{m_{1}},\end{cases}
$$

where $C_{1}$ is given by (3.34).
Proof. Without loss of generality, we can assume $m_{1}=1$, possibly considering an appropriate power of $A$. Moreover, again without loss of the generality, we can assume that all the eigenvalues are strictly larger than one, so that the Assumptions 3.3 .2 are fulfilled. Then, the claim follows from Lemma 3.3.5

Remark 3.3.7. In this chapter we always worked in the case of usual Hörmander pseudodifferential operators on closed manifolds, $A_{i} \in \mathrm{~L}^{m_{i}}\left(M_{i}\right)$, $i=1,2$. However, it should be noticed that the case of global Shubin operators, $A_{i} \in \mathrm{G}^{m_{i}}\left(\mathbb{R}^{n_{i}}\right), i=1,2$ can be treated in a completely similar fashion.

### 3.3.2 Sharpness of the result

In this subsection we show that the estimates of Theorem 3.3.6 are sharp. Again, we consider $-\Delta_{\mathbb{S}^{n}}$, the usual Laplace operator on the $n$-dimensional sphere $\mathbb{S}^{n}$, and recall Theorem 3.2.11. In particular, for the 1-dimensional sphere $-\Delta_{\mathbb{S} 1}$ we have

$$
\begin{aligned}
\lambda_{k} & =k^{2} \\
\sharp\left(k^{2}\right) & =\binom{1+k}{1}-\binom{k-1}{1}=2 ;
\end{aligned}
$$

for the 2-dimensional sphere $-\Delta_{\mathbb{S}^{2}}$ we have

$$
\begin{aligned}
\lambda_{k} & =k(k+1)=k^{2}+k \\
\sharp\left(k^{2}+k\right) & =\binom{2+k}{2}-\binom{k}{2}=\frac{(k+2)(k+1)}{2}-\frac{k(k-1)}{2}=2 k+1 .
\end{aligned}
$$

Now, we set

$$
A_{1}=\left(-\Delta_{\mathbb{S}^{2}}+2\right)-2\left(-\Delta_{\mathbb{S}^{2}}+\frac{1}{4}\right)^{\frac{1}{2}} \in \mathrm{~L}_{\mathrm{cl}}^{2}\left(\mathbb{S}^{2}\right), A_{2}=-\Delta_{\mathbb{S}^{1}}+1 \in \mathrm{~L}_{\mathrm{cl}}^{2}\left(\mathbb{S}^{1}\right)
$$

where $A_{1}$ is considered as an unbounded operator on $L^{2}\left(\mathbb{S}^{2}\right)$, and $A_{2}$ is considered as an unbounded operator on $L^{2}\left(\mathbb{S}^{1}\right)$. By the functional calculus of operators,

$$
\begin{align*}
& \sigma\left(A_{1}\right)=\left\{k^{2}-k+1 \mid k \in \mathbb{N}, \sharp\left(k^{2}-k+1\right)=(2 k+1)\right\}  \tag{3.38}\\
& \sigma\left(A_{2}\right)=\left\{n^{2}+1 \mid n \in \mathbb{N}, \sharp\left(n^{2}+1\right)=2\right\}, \tag{3.39}
\end{align*}
$$

since the eigenfunction of $A_{1}$ and $-\Delta_{\mathbb{S}^{2}}$ are the same. Notice that all the eigenvalues of $A_{1}$ are larger then 1 , therefore

$$
\begin{equation*}
N_{A_{1}}(\tau)=0, \quad \tau \leq 1 \tag{3.40}
\end{equation*}
$$

Knowing precisely the eigenvalues of $A_{1}$ together with their multiplicities, we can write, for $\tau>1$,

$$
\begin{aligned}
N_{A_{1}}(\tau) & =\sum_{k^{2}-k+1<\tau} \sharp\left(k^{2}-k+1\right) \\
& =\sum_{k^{2}-k+1<\tau}(2 k+1)=\sum_{k=0}^{\bar{k}}(2 k+1)
\end{aligned}
$$

where

$$
\bar{k}^{2}-\bar{k}+1<\tau \leq(\bar{k}+1)^{2}-(\bar{k}+1)+1=\bar{k}^{2}+\bar{k}+1, \tau>1
$$

That is,

$$
\begin{equation*}
N_{A_{1}}(\tau)=\sum_{k=0}^{\bar{k}}(2 k+1)=\sum_{k^{2}+k \leq \bar{k}^{2}+\bar{k}} \sharp\left(k^{2}+k\right)=N_{-\Delta_{\mathbb{S}^{2}}}\left(\bar{k}^{2}+\bar{k}+\frac{1}{2}\right), \tag{3.41}
\end{equation*}
$$

provided that

$$
\bar{k}^{2}-\bar{k}+1<\tau \leq(\bar{k}+1)^{2}-(\bar{k}+1)+1=\bar{k}^{2}+\bar{k}+1, \tau>1
$$

Using (3.24), we have, for each $\bar{k} \in \mathbb{N}$,

$$
N_{-\Delta_{\mathbb{S}^{2}}}\left(\bar{k}^{2}+\bar{k}+\frac{1}{2}\right)=\bar{k}^{2}+2 \bar{k}+1
$$

So, in view of (3.41), supposing $\tau>1$, we find

$$
\begin{aligned}
& N_{A_{1}}(\tau)=\bar{k}^{2}+2 \bar{k}+1 \\
& \qquad \bar{k}^{2}-\bar{k}+1<\tau \leq(\bar{k}+1)^{2}-(\bar{k}+1)+1=\bar{k}^{2}+\bar{k}+1
\end{aligned}
$$

The asymptotic expansion in Theorem 3.2.10 implies that

$$
N_{A_{1}}(\tau)=\tau+R(\tau), \quad R=\mathcal{O}\left(\tau^{\frac{1}{2}}\right)
$$

We can then obtain a bound for $R(\tau)$ :

$$
\begin{aligned}
R(\tau) & =N_{A_{1}}(\tau)-\tau \\
& =\bar{k}^{2}+2 \bar{k}+1-\tau, \quad \bar{k}^{2}-\bar{k}+1<\tau \leq \bar{k}^{2}+\bar{k}+1
\end{aligned}
$$

Therefore, for $\tau>16$,

$$
R(\tau) \geq \bar{k}^{2}+2 \bar{k}+1-\bar{k}^{2}-\bar{k}-1=\bar{k}>\frac{3 \sqrt{\tau}}{4}
$$

which implies, in particular, that the remainder is positive for $\tau>16$. We also have

$$
R(\tau)<\bar{k}^{2}+2 \bar{k}+1-\bar{k}^{2}+\bar{k}-1=2 \bar{k}<4 \sqrt{\tau}
$$

and we can conclude that

$$
\begin{equation*}
\frac{3 \sqrt{\tau}}{4} \leq R(\tau) \leq 4 \sqrt{\tau}, \quad \tau>16 \tag{3.42}
\end{equation*}
$$

Summing up, we proved that

$$
\begin{align*}
& N_{A_{1}}(\tau)=\tau+R(\tau)  \tag{3.43}\\
& N_{A_{2}}(\tau)=2 \tau^{1 / 2}+\mathcal{O}(1) \tag{3.44}
\end{align*}
$$

where the $R(\tau)$ in 3.43 satisfies 3.42 . Notice that both $A_{1}$ and $A_{2}$ are elliptic, invertible and positive, so it is possible to consider powers of these operators of arbitrary exponent. Now, we examine separately the three different situations that can arise.

Case $\frac{n_{1}}{m_{1}}>\frac{n_{2}}{m_{2}}$ and $\frac{n_{1}-1}{m_{1}}>\frac{n_{2}}{m_{2}}$
Let us consider the operator

$$
B=A_{1} \otimes A_{2}^{2}
$$

Clearly $\frac{n_{1}}{m_{1}}=\frac{2}{2}=1>\frac{n_{2}}{m_{2}}=\frac{1}{4}$ and $\frac{n_{1}-1}{m_{1}}=\frac{1}{2}>\frac{n_{2}}{m_{2}}=\frac{1}{4}$, so we are in the first case of Theorem 3.3.6, which states that

$$
\begin{equation*}
N_{B}(\tau)=\zeta\left(A_{2}^{2}, 1\right) \tau+\mathcal{O}\left(\tau^{1 / 2}\right) \tag{3.45}
\end{equation*}
$$

By equations (3.38) and 3.39 we obtain

$$
\begin{aligned}
\sigma(B)=\left\{\left(k^{2}-k+1\right)\left(n^{2}+1\right)^{2}\right. & \mid k, n \in \mathbb{N}, \\
& \left.\sharp\left(\left(k^{2}-k+1\right)\left(n^{2}+1\right)^{2}\right)=2(2 k+1)\right\} .
\end{aligned}
$$

Therefore,

$$
\begin{align*}
N_{B}(\tau) & =\sum_{\left(k^{2}-k+1\right)\left(n^{2}+1\right)^{2}<\tau}^{n \in \mathbb{N}, k \in \mathbb{N}} \sharp\left(\left(k^{2}-k+1\right)\left(n^{2}+1\right)^{2}\right) \\
& =\sum_{\left(k^{2}-k+1\right)\left(n^{2}+1\right)^{2}<\tau}^{n \in \mathbb{N}, k \in \mathbb{N}} 2(2 k+1) \\
& =2 \sum_{\left(k^{2}-k+1\right)<\frac{\tau}{\left(n^{2}+1\right)^{2}}}^{n \in \mathbb{N}, k \in \mathbb{N}} \sharp\left(k^{2}-k+1\right) \\
& =2 \sum_{\left(n^{2}+1\right)^{2}<\tau}^{n \in \mathbb{N}} N_{A_{1}}\left(\frac{\tau}{\left(n^{2}+1\right)^{2}}\right)  \tag{3.46}\\
& =2\left(\sum_{\left(n^{2}+1\right)^{2}<\tau}^{n \in \mathbb{N}} \frac{\tau}{\left(n^{2}+1\right)^{2}}+R\left(\frac{\tau}{\left(n^{2}+1\right)^{2}}\right)\right) . \tag{3.47}
\end{align*}
$$

Notice that in 3.46 we have made use of 3.40 to reduce the summation. Let us now show that the estimate 3.45 is indeed sharp, that is

$$
\limsup _{\tau \rightarrow+\infty} \frac{\left|N_{B}(\tau)-\zeta\left(A_{2}^{2}, 1\right) \tau\right|}{\tau^{1 / 2}}>0
$$

by direct computation. In view of (3.47), we can write

$$
\begin{align*}
& \limsup _{\tau \rightarrow+\infty} \frac{\left|N_{B}(\tau)-\zeta\left(A_{2}^{2}, 1\right) \tau\right|}{\tau^{1 / 2}} \\
& =\limsup _{\tau \rightarrow+\infty} \frac{\left|2 \sum_{\left(n^{2}+1\right)^{2}<\tau}\left(\frac{\tau}{\left(n^{2}+1\right)^{2}}+R\left(\frac{\tau}{\left(n^{2}+1\right)^{2}}\right)\right)-\zeta\left(A_{2}^{2}, 1\right) \tau\right|}{\tau^{1 / 2}} \\
& =\limsup _{\tau \rightarrow+\infty} \frac{\left|2 \sum_{\left(n^{2}+1\right)^{2}<\tau} \frac{\tau}{\left(n^{2}+1\right)^{2}}-\zeta\left(A_{2}^{2}, 1\right) \tau+2 \sum_{\left(n^{2}+1\right)^{2}<\tau} R\left(\frac{\tau}{\left(n^{2}+1\right)^{2}}\right)\right|}{\tau^{1 / 2}} \tag{3.48}
\end{align*}
$$

We notice that

$$
\begin{aligned}
\limsup _{\tau \rightarrow+\infty} \frac{\left|2 \sum_{\left(n^{2}+1\right)^{2}<\tau \frac{\tau}{\left(n^{2}+1\right)^{2}}}-\zeta\left(A_{2}^{2}, 1\right) \tau\right|}{\tau^{1 / 2}} \\
=\limsup _{\tau \rightarrow+\infty} \tau^{1 / 2}\left(F_{A_{2}^{2}}(\tau, 1)-\zeta\left(A_{2}^{2}, 1\right)\right)
\end{aligned}
$$

where we have used the notation introduced in Proposition 3.3.1. By Proposition 3.3.1. $F_{A_{2}^{2}}(\tau, 1)-\zeta\left(A_{2}^{2}, 1\right)=\mathcal{O}\left(\tau^{-\frac{3}{4}}\right)$, therefore ${ }^{7}$.

$$
\limsup _{\tau \rightarrow+\infty} \frac{\left\lvert\, 2 \sum_{\left.\left(n^{2}+1\right)^{2}<\tau \frac{\tau}{\left(n^{2}+1\right)^{2}}-\zeta\left(A_{2}^{2}, 1\right) \tau \right\rvert\,}^{\tau^{1 / 2}}=0 . . . . . .\right.}{}
$$

Since, for all $\tau$,

$$
\sum_{\left(n^{2}+1\right)^{2}<\tau} 2 \frac{\tau}{\left(n^{2}+1\right)^{2}}-\zeta\left(A_{2}^{2}, 1\right) \tau \leq 0
$$

[^7](3.48) becomes
\[

$$
\begin{aligned}
& \limsup _{\tau \rightarrow+\infty} \frac{\left|N_{B}(\tau)-\zeta\left(A_{2}^{2}, 1\right) \tau\right|}{\tau^{1 / 2}} \\
& \geq-\limsup _{\tau \rightarrow+\infty} \frac{\zeta\left(A_{2}^{2}, 1\right)-2 \sum_{\left(n^{2}+1\right)^{2}<\tau \frac{\tau}{\left(n^{2}+1\right)^{2}}}^{\tau^{1 / 2}}+2 \limsup _{\tau \rightarrow+\infty} \sum_{\left(n^{2}+1\right)^{2}<\tau} \frac{\left|R\left(\frac{\tau}{\left(n^{2}+1\right)^{2}}\right)\right|}{\tau^{1 / 2}}}{\geq \frac{3}{2} \limsup _{\tau \rightarrow+\infty} \sum_{\left(n^{2}+1\right)^{2}<\tau} \frac{\tau^{1 / 2}}{\left(n^{2}+1\right) \tau^{1 / 2}}} \\
& =\frac{3}{2} \zeta\left(A_{2}^{2}, \frac{1}{2}\right) .
\end{aligned}
$$
\]

Here, we have used the estimates (3.42) and that the quantities $\frac{n_{1}}{m_{1}}=1$ and $\frac{n_{1}-1}{n_{2}}=\frac{1}{2}$ are larger than $\frac{n_{2}}{m_{2}}=\frac{1}{4}$. The latter implies that $\zeta\left(A_{2}^{2}, \frac{1}{2}\right)$ is a finite, positive quantity ${ }^{8}$, in view of the holomorphic properties of the spectral $\zeta$-function of elliptic positive pseudodifferential operators on closed manifolds, see See67]. This proves the desired result.

Case $\frac{n_{1}}{m_{1}}>\frac{n_{2}}{m_{2}}$ and $\frac{n_{1}-1}{m_{1}}=\frac{n_{2}}{m_{2}}$

We consider the operator

$$
C=A_{1} \otimes A_{2}
$$

Clearly $\frac{n_{1}}{m_{1}}=\frac{2}{2}=1>\frac{n_{2}}{m_{2}}=\frac{1}{2}$ and $\frac{n_{1}-1}{m_{1}}=\frac{1}{2}=\frac{n_{2}}{m_{2}}$ so that we are in second case of Theorem 3.3.6, which now states that

$$
N_{C}(\tau)=\zeta\left(A_{2}, 1\right) \tau+\mathcal{O}\left(\tau^{1 / 2} \log \tau\right)
$$

Using (3.38) and 3.39 we obtain explicitly the spectrum of $C$, namely

$$
\sigma(C)=\left\{\left(k^{2}-k+1\right)\left(n^{2}+1\right) \mid \sharp\left(\left(k^{2}-k+1\right)\left(n^{2}+1\right)\right)=2(2 k+1)\right\} .
$$

[^8]Therefore, using (3.40),

$$
\begin{align*}
N_{C}(\tau) & =\sum_{\left(k^{2}-k+1\right)\left(n^{2}+1\right)<\tau}^{n \in \mathbb{N}, k \in \mathbb{N}} 2(2 k+1) \\
& =2 \sum_{\left(k^{2}-k+1\right)<\frac{\tau}{n^{2}+1}}^{n \in \mathbb{N}, k \in \mathbb{N}} \sharp\left(k^{2}+k+1\right) \\
& =2 \sum_{\left(n^{2}+1\right)<\tau}^{n \in \mathbb{N}} N_{A_{1}}\left(\frac{\tau}{n^{2}+1}\right) \\
& =2 \sum_{n^{2}+1<\tau}^{n \in \mathbb{N}}\left(\frac{\tau}{n^{2}+1}+R\left(\frac{\tau}{n^{2}+1}\right)\right) . \tag{3.49}
\end{align*}
$$

Let us check directly that

$$
\begin{equation*}
\limsup _{\tau \rightarrow+\infty} \frac{\left|N_{C}(\tau)-\zeta\left(A_{2}, 1\right) \tau\right|}{\tau^{1 / 2} \log \tau}>0 \tag{3.50}
\end{equation*}
$$

Using (3.49) and (3.42) we can write

$$
\begin{align*}
\limsup _{\tau \rightarrow+\infty} & \frac{\left|N_{C}(\tau)-\zeta\left(A_{2}, 1\right) \tau\right|}{\tau^{1 / 2} \log \tau} \\
& =\limsup _{\tau \rightarrow+\infty} \frac{\left|2 \sum_{n^{2}+1<\tau}\left(\frac{\tau}{n^{2}+1}+R\left(\frac{\tau}{n^{2}+1}\right)\right)-\zeta\left(A_{2}, 1\right) \tau\right|}{\tau^{1 / 2} \log \tau} \\
& \geq-\limsup _{\tau \rightarrow+\infty} \frac{\tau^{1 / 2}\left(\zeta\left(A_{2}, 1\right)-2 \sum_{n^{2}+1<\tau} \frac{1}{n^{2}+1}\right)}{\log \tau} \\
& +\limsup _{\tau \rightarrow+\infty} \frac{3}{4} \tau^{1 / 2} \frac{2 \sum_{n^{2}+1<\tau} \frac{1}{\tau^{1 / 2} \log \tau}}{} \\
\geq & -\limsup _{\tau \rightarrow+\infty} \tau^{\frac{1}{2}} \frac{2 \frac{2 \sum_{n^{2}+1 \geq \tau}}{\log \tau}}{n^{2}+1}+\limsup _{\tau \rightarrow+\infty} \frac{3}{2} \frac{\sum_{n^{2}+1<\tau} \frac{1}{\left(n^{2}+1\right)^{1 / 2}}}{\log \tau} \tag{3.51}
\end{align*}
$$

Finally, using the results of Proposition 3.3.1 (or directly, by integral inequalities), we obtain that

Moreover,

$$
\limsup _{\tau \rightarrow+\infty} \frac{3}{2} \frac{\sum_{n^{2}+1<\tau} \frac{1}{n^{2}+1}}{\log \tau}=\frac{3}{4}
$$

so that, by means of 3.51 , the desired result is proven also in this second case.

Case $\frac{n_{1}}{m_{1}}>\frac{n_{2}}{m_{2}}$ and $\frac{n_{1}-1}{m_{1}}<\frac{n_{2}}{m_{2}}$
In this situation we consider the operator

$$
D=A_{1} \otimes A_{2}^{\frac{3}{4}}
$$

Clearly, $\frac{n_{1}}{m_{1}}=\frac{2}{2}=1>\frac{n_{2}}{m_{2}}=\frac{2}{3}$ and $\frac{n_{1}-1}{m_{1}}=\frac{1}{2}<\frac{n_{2}}{m_{2}}=\frac{2}{3}$, so we are in the third case of Theorem 3.3.6, which implies that

$$
\begin{equation*}
N_{D}(\tau)=\zeta\left(A_{2}^{\frac{3}{4}}, 1\right) \tau+\mathcal{O}\left(\tau^{\frac{2}{3}}\right) \tag{3.52}
\end{equation*}
$$

It is immediate to observe that

$$
\begin{align*}
\sigma(D)=\left\{\left(k^{2}+k+1\right)\right. & \left(n^{2}+1\right)^{3 / 4} \mid \\
& \left.\sharp\left(\left(k^{2}+k+1\right)\left(n^{2}+1\right)^{3 / 4}\right)=2(2 k+1)\right\} . \tag{3.53}
\end{align*}
$$

Therefore, using again (3.40), we obtain

$$
\begin{align*}
N_{D}(\tau) & =\sum_{\left(k^{2}-k+1\right)}^{n \in \mathbb{N}, k \in \mathbb{N}} 2(2 k+1) \\
& =2 \sum_{\left.\left(n^{2}+1\right)^{3 / 4}<\tau+1\right)<\frac{\tau}{\left(n^{2}+1\right)^{3 / 4}}}^{n \in \mathbb{N}, k \in \mathbb{N}} \sharp\left(k^{2}-k+1\right) \\
& =2 \sum_{\left(n^{2}+1\right)^{3 / 4}<\tau}^{n \in \mathbb{N}} N_{A_{1}}\left(\frac{\tau}{\left(n^{2}+1\right)^{3 / 4}}\right) \\
& =2 \sum_{\left(n^{2}+1\right)^{3 / 4}<\tau}^{n \in \mathbb{N}}\left(\frac{\tau}{\left(n^{2}+1\right)^{3 / 4}}+R\left(\frac{\tau}{\left(n^{2}+1\right)^{3 / 4}}\right)\right) . \tag{3.54}
\end{align*}
$$

Let us now compute directly

$$
\limsup _{\tau \rightarrow+\infty} \frac{\left|N_{D}(\tau)-\zeta\left(A_{2}^{3 / 4}, 1\right) \tau\right|}{\tau^{2 / 3}}
$$

By (3.54), we find

$$
\begin{aligned}
& \limsup _{\tau \rightarrow+\infty} \frac{\left|N_{D}(\tau)-\zeta\left(A_{2}^{3 / 4}, 1\right) \tau\right|}{\tau^{2 / 3}} \\
& =\limsup _{\tau \rightarrow+\infty} \frac{\left|2 \sum_{\left(n^{2}+1\right)^{3 / 4}<\tau}\left(\frac{\tau}{\left(n^{2}+1\right)^{3 / 4}}+R\left(\frac{\tau}{\left(n^{2}+1\right)^{\frac{3}{4}}}\right)\right)-\zeta\left(A_{2}^{3 / 4}, 1\right) \tau\right|}{\tau^{2 / 3}} \\
& =\limsup _{\tau \rightarrow+\infty} \tau^{-2 / 3} \cdot \left\lvert\, 2 \sum_{\left(n^{2}+1\right)^{3 / 4}<\tau} \frac{\tau}{\left(n^{2}+1\right)^{3 / 4}}-\zeta\left(A_{2}^{3 / 4}, 1\right) \tau+\right. \\
& \left.+2 \sum_{\left(n^{2}+1\right)^{3 / 4}<\tau} R\left(\frac{\tau}{\left(n^{2}+1\right)^{\frac{3}{4}}}\right) \right\rvert\, .
\end{aligned}
$$

We also notice that

$$
\begin{aligned}
\lim _{\tau \rightarrow+\infty} & \frac{\left|2 \sum_{\left(n^{2}+1\right)^{3 / 4}<\tau} \frac{\tau}{\left(n^{2}+1\right)^{3 / 4}}-\zeta\left(A_{2}^{3 / 4}, 1\right) \tau\right|}{\tau^{2 / 3}} \\
& =\lim _{\tau \rightarrow+\infty} \frac{\zeta\left(A_{2}^{3 / 4}, 1\right) \tau-2 \sum_{\left(n^{2}+1\right)^{3 / 4}<\tau} \frac{\tau}{\left(n^{2}+1\right)^{3 / 4}}}{\tau^{2 / 3}} \\
& =\lim _{\tau \rightarrow+\infty} 2 \tau^{1 / 3} \sum_{\left(n^{2}+1\right)^{3 / 4} \geq \tau} \frac{1}{\left(n^{2}+1\right)^{3 / 4}},
\end{aligned}
$$

and that

$$
\sum_{(n+1)^{3 / 2} \geq \tau} \frac{1}{(n+1)^{3 / 2}} \leq \sum_{\left(n^{2}+1\right)^{3 / 4} \geq \tau} \frac{1}{\left(n^{2}+1\right)^{3 / 4}} \leq \sum_{n^{3 / 2} \geq \tau} \frac{1}{n^{3 / 2}}
$$

Using the standard integral criteria of series convergence, one can easily check that

$$
\lim _{\tau \rightarrow+\infty} \tau^{1 / 3} \sum_{(n+1)^{3 / 2} \geq \tau} \frac{1}{(n+1)^{3 / 2}}=\lim _{\tau \rightarrow+\infty} \tau^{1 / 3} \sum_{n^{3 / 2} \geq \tau} \frac{1}{n^{3 / 2}}=2
$$

Hence

$$
\begin{equation*}
\lim _{\tau \rightarrow+\infty} 2 \tau^{1 / 3} \sum_{\left(n^{2}+1\right)^{3 / 4} \geq \tau} \frac{1}{\left(n^{2}+1\right)^{3 / 4}}=4 \tag{3.55}
\end{equation*}
$$

By a similar argument, we also have that

$$
\begin{equation*}
\lim _{\tau \rightarrow+\infty} \tau^{-1 / 6} \sum_{\left(n^{2}+1\right)^{3 / 4}<\tau} \frac{1}{\left(n^{2}+1\right)^{3 / 8}}=4 . \tag{3.56}
\end{equation*}
$$

In view of (3.42), (3.55) and (3.56) we finally obtain

$$
\begin{align*}
& \limsup _{\tau \rightarrow+\infty} \frac{\left|N_{D}(\tau)-\zeta\left(A_{2}^{3 / 4}, 1\right) \tau\right|}{\tau^{2 / 3}} \\
& \geq \limsup _{\tau \rightarrow+\infty} \frac{N_{D}(\tau)-\zeta\left(A_{2}^{3 / 4}, 1\right) \tau}{\tau^{2 / 3}} \\
&=-\lim _{\tau \rightarrow+\infty} 2 \tau^{1 / 3} \sum_{\left(n^{2}+1\right)^{3 / 4} \geq \tau} \frac{1}{\left(n^{2}+1\right)^{3 / 4}} \\
&+\limsup _{\tau \rightarrow+\infty} 2 \frac{\sum_{\left(n^{2}+1\right)^{3 / 4}<\tau} R\left(\frac{\tau}{\left(n^{2}+1\right)^{3 / 4}}\right)}{\tau^{2 / 3}} \\
& \geq \geq 4+\frac{3}{2} \limsup _{\tau \rightarrow+\infty} \tau^{-1 / 6} \sum_{\left(n^{2}+1\right)^{3 / 4}<\tau} \frac{1}{\left(n^{2}+1\right)^{3 / 8}} \\
& \geq-4+6=2>0 . \tag{3.57}
\end{align*}
$$

Equation 3.57) proves the desired result also in this last case.

### 3.3.3 Appendix. An alternative proof of Proposition 3.3.3

In this appendix we will give an alternative proof of Proposition 3.3.3, which stresses the connection with FIO theory. First, we recall the following Tauberian Theorem, whose proof can be found in Hel84.

Theorem 3.3.8. Let $\rho \in \mathscr{S}(\mathbb{R})$ such that $\rho \geq 0, \rho(0)>0, \hat{\rho}$ is even, compactly supported, and such that $\hat{\rho}(0)=1$. If

$$
\begin{equation*}
\int \rho(\lambda-\mu) d N(\mu)=C_{1} \lambda^{n-1}+\mathcal{O}\left(\lambda^{n-2}\right), \quad \lambda \rightarrow+\infty \tag{3.58}
\end{equation*}
$$

then

$$
N(\lambda)=\frac{C_{1}}{n} \lambda^{n}+\mathcal{O}\left(\lambda^{n-1}\right), \quad \lambda \rightarrow+\infty
$$

Remark 3.3.9. A key point in the proof of Theorem 3.3 .8 is the decomposition

$$
\int_{-\infty}^{\tau} \int_{-\infty}^{+\infty} \rho(\lambda-\mu) d N(\mu) d \lambda=N(\tau)+\mathcal{A}(\tau)+\mathcal{B}_{2}(\tau)+\mathcal{B}_{3}(\tau)+\mathcal{C}(\tau)
$$

with

$$
\begin{aligned}
\mathcal{A}(\tau) & =\int_{-\infty}^{\tau} \int_{\mu>\tau+K} \rho(\lambda-\mu) d N(\mu) d \lambda \\
\mathcal{B}_{2}(\tau) & =-\int_{\tau}^{+\infty} \int_{\mu<\tau-K} \rho(\lambda-\mu) d N(\mu) d \lambda \\
\mathcal{B}_{3}(\tau) & =-\int_{\tau-K \leq \mu<\tau} d N(\mu) \\
\mathcal{C}(\tau) & =\int_{-\infty}^{\tau} \int_{|\mu-\tau| \leq K} \rho(\lambda-\mu) d N(\mu) d \lambda
\end{aligned}
$$

for a fixed $K>0$. Moreover, all the terms $\mathcal{A}(\cdot), \mathcal{B}_{2}(\cdot), \mathcal{B}_{3}(\cdot)$ and $\mathcal{C}(\cdot)$ are $\mathcal{O}\left(\tau^{n-1}\right)$ for $\tau>1$. For further details see Hel84, §10].

Lemma 3.3.10. Let $\rho$ be as in (3.58). Then, for $n_{1}>1$,

$$
\begin{aligned}
& \int_{-\infty}^{+\infty} \frac{1}{\mu_{k}} \rho\left(\frac{\lambda-\sigma}{\mu_{k}}\right) d N_{\mu_{k} A_{1}}(\sigma) \\
& \quad= \begin{cases}\frac{1}{\mu_{k}}\left(C_{1}\left(\frac{\lambda}{\mu_{k}}\right)^{n_{1}-1}+R_{n_{1}-2}\left(\frac{\lambda}{\mu_{k}}\right)\right) & \text { for } \frac{\lambda}{\mu_{k}}>1 \\
\frac{1}{\mu_{k}} R_{-\infty}\left(\frac{\lambda}{\mu_{k}}\right) & \text { for } \frac{\lambda}{\mu_{k}} \rightarrow-\infty\end{cases}
\end{aligned}
$$

where

$$
C_{1}=\frac{1}{(2 \pi)^{n_{1}}} \int_{a_{1}\left(z_{1}\right) \leq 1} d z_{1}
$$

$R_{n_{1}-2}(\tau)=\mathcal{O}\left(\tau^{n_{1}-2}\right)$ and $R_{-\infty}(\tau)=\mathcal{O}\left(\tau^{-\infty}\right)$. If $n_{1}=1$, then the term $R_{n_{1}-2}(\tau)$ actually is $\mathcal{O}\left(\tau^{-2}\right)$.

Proof. We have

$$
\int_{-\infty}^{+\infty} \frac{1}{\mu_{k}} \rho\left(\frac{\lambda-\sigma}{\mu_{k}}\right) d N_{\mu_{k} A_{1}}(\sigma)=\frac{1}{\mu_{k}} \int_{-\infty}^{+\infty} \rho\left(\frac{\lambda}{\mu_{k}}-\sigma^{\prime}\right) d N_{A_{1}}\left(\sigma^{\prime}\right)
$$

Now let us consider

$$
\int_{-\infty}^{+\infty} \rho\left(\frac{\lambda}{\mu_{k}}-\sigma^{\prime}\right) d N_{A_{1}}\left(\sigma^{\prime}\right)
$$

Following the ideas in Subsection 3.2.2, we have

$$
\begin{aligned}
& \int_{-\infty}^{+\infty} \rho\left(\frac{\lambda}{\mu_{k}}-\sigma^{\prime}\right) d N_{A_{1}}\left(\sigma^{\prime}\right)=\sum_{\sigma_{i}^{\prime} \in \sigma\left(A_{1}\right)} \rho\left(\frac{\lambda}{\mu_{k}}-\sigma_{i}\right) \\
&=\sum_{k=1}^{N} \int \psi_{j}(t) e^{i\left(-\frac{\lambda}{\mu_{k}} t+\varphi_{j}\left(t, x_{1}, \xi_{1}\right)-x_{1} \xi_{1}\right)} \\
& \hat{\rho}(t) a_{j}\left(t, x_{1}, \xi_{1}\right) d x_{1} d t d \xi_{1} \\
&+\mathcal{O}\left(\left|\frac{\lambda}{\mu_{k}}\right|^{-\infty}\right),
\end{aligned}
$$

where $\left\{\psi_{j}\right\}$ is a partition of unity over $M_{1}$. Then, we need to study, for each $k$, an integral of the form

$$
I\left(x_{1}, \frac{\lambda}{\mu_{k}}\right)=\int e^{i\left(-\frac{\lambda}{\mu_{k}} t+\varphi\left(t, x_{1}, \xi_{1}\right)-x_{1} \xi_{1}\right)} \hat{\rho}(t) a\left(t, x_{1}, \xi_{1}\right) d t d \xi_{1}
$$

where $a$ is of order zero and $\varphi$ is the solution of the eikonal equation related to $A_{1}$. We set

$$
\Phi\left(t, x_{1}, \xi_{1}, \frac{\lambda}{\mu_{k}}\right):=-\frac{\lambda}{\mu_{k}} t+\varphi\left(t, x_{1}, \xi_{1}\right)-x_{1} \xi_{1}
$$

and observe that, for $\frac{\lambda}{\mu_{k}} \rightarrow-\infty$ we have

$$
\partial_{t} \Phi\left(t, x_{1}, \xi_{1}, \frac{\lambda}{\mu_{k}}\right) \succ\left\langle\xi_{1}\right\rangle+\left|\frac{\lambda}{\mu_{k}}\right|
$$

which means, via integration by parts with respect to $t$, that the term is $\mathcal{O}\left(\left|\frac{\lambda}{\mu_{k}}\right|^{-\infty}\right)$. Now we choose a cut-off function $H \in \mathcal{C}_{0}^{\infty}(\mathbb{R})$ such that $\operatorname{supp} H \subseteq\left[C^{-1}, C\right], 0 \leq H \leq 1$ and $H \equiv 1$ on $\left[C^{-1}, C\right]$, for a suitable $C \gg 1$. Again, for $\xi_{1} \in \operatorname{supp}\left(1-H\left(\frac{(\cdot)}{\lambda / \mu_{k}}\right)\right)$, we have $\partial_{t} \Phi\left(t, x_{1}, \xi_{1}, \frac{\lambda}{\mu_{k}}\right) \succ$ $\left\langle\xi_{1}\right\rangle+\left|\frac{\lambda}{\mu_{k}}\right|$, thus

$$
I\left(x_{1}, \frac{\lambda}{\mu_{k}}\right)=\int e^{i \Phi} H\left(\frac{\xi_{1}}{\lambda / \mu_{k}}\right) \hat{\rho}(t) a\left(t, x_{1}, \xi_{1}\right) d t d \xi_{1}+\mathcal{O}\left(\left|\frac{\lambda}{\mu_{k}}\right|^{-\infty}\right)
$$

To study the remaining part, we switch to polar coordinates $\xi_{1}=\frac{\lambda}{\mu_{k}} r_{1} \omega_{1}$, $r_{1} \in[0,+\infty), \omega_{1} \in \mathbb{S}^{n_{1}-1}$, and use the Taylor approximation of $\Phi$ at $t=0$. We get

$$
\begin{aligned}
& I\left(x_{1}, \frac{\lambda}{\mu_{k}}\right)=\left(\frac{\lambda}{\mu_{k}}\right)^{n_{1}} \int_{\mathbb{S}^{n_{1}-1}} \int e^{i \frac{\lambda}{\mu_{k}}\left(-t+t r_{1} a_{1}\left(x_{1}, \omega_{1}\right)+r_{1} \mathcal{O}\left(t^{2}\right)\right)} \\
& \hat{\rho}(t) H\left(r_{1} \omega_{1}\right) a\left(t, x_{1}, \frac{\lambda}{\mu_{k}} r_{1} \omega_{1}\right) r_{1}^{n_{1}-1} d r_{1} d t d \omega_{1}
\end{aligned}
$$

To conclude, we apply the Stationary Phase Theorem to the $d r_{1} d t$ integral around the unique critical point $t=0, r_{1}=\frac{1}{a_{1}\left(x_{1}, \omega_{1}\right)}$, observing that, since $r \sim 1, D_{r}^{2} a\left(t, x_{1}, \frac{\lambda}{\mu_{k}} r_{1} \omega_{1}\right)$ is in the span of

$$
\left(\partial_{\xi}^{\alpha} a\right)\left(t, x_{1}, \frac{\lambda}{\mu_{k}} r_{1} \omega_{1}\right)\left(\frac{\lambda}{\mu_{k}}\right)^{2} \prec\left\langle\frac{\lambda}{\mu_{k}} r_{1} \omega_{1}\right\rangle^{-2}\left(\frac{\lambda}{\mu_{k}}\right)^{2} \prec 1,
$$

$|\alpha|=2$. We obtain
$I\left(x_{1}, \frac{\lambda}{\mu_{k}}\right)=\left(\frac{\lambda}{\mu_{k}}\right)^{n_{1}-1} \hat{\rho}(0) \frac{1}{(2 \pi)^{n_{1}}} \int_{\mathbb{S}^{n_{1}-1}} \frac{1}{\left(a_{1}\left(x_{1}, \omega_{1}\right)\right)^{n_{1}}} d \omega_{1}+\mathcal{O}\left(\frac{\lambda}{\mu_{k}}\right)^{n_{1}-2}$,
which is our claim. If $n_{1}=1$ we conclude as in GS94.
We can now prove the following Proposition.
Proposition 3.3.11. Let $\rho$ be as in (3.58). Then

$$
\begin{align*}
& \sum_{\mu_{k}<\tau} \int_{-\infty}^{\tau} \int_{-\infty}^{+\infty} \frac{1}{\mu_{k}} \rho\left(\frac{\lambda-\sigma}{\mu_{k}}\right) d N_{\mu_{k} A_{1}}(\sigma) d \lambda \\
& =N_{A}(\tau)+\sum_{\mu_{k}<\tau}\left(\mathcal{A}\left(\frac{\tau}{\mu_{k}}\right)+\mathcal{B}_{2}\left(\frac{\tau}{\mu_{k}}\right)+\mathcal{B}_{3}\left(\frac{\tau}{\mu_{k}}\right)+\mathcal{C}\left(\frac{\tau}{\mu_{k}}\right)\right), \tag{3.59}
\end{align*}
$$

and $\mathcal{A}(\tau), \mathcal{B}_{2}(\tau), \mathcal{B}_{3}(\tau)$ and $\mathcal{C}(\tau)$ are are as in Remark 3.3.9, that is,

$$
\mathcal{A}_{j}(\tau), \mathcal{B}_{2, j}(\tau), \mathcal{B}_{3, j}(\tau), \mathcal{C}_{j}(\tau)=\mathcal{O}\left(\left(\frac{\tau}{\mu_{k}}\right)^{n_{1}-1}\right)
$$

uniformly with respect to $\mu_{k}$.
Proof. First, we have, as a consequence of (3.59) and (3.33),

$$
\begin{align*}
& \sum_{\mu_{k}<\tau} \int_{-\infty}^{\tau} \int_{-\infty}^{+\infty} \frac{1}{\mu_{k}} \rho\left(\frac{\lambda-\sigma}{\mu_{k}}\right) d N_{\mu_{k} A_{1}}(\sigma) d \lambda \\
& =\sum_{\mu_{k}<\tau}\left(N_{\mu_{k} A_{1}}(\tau)+\mathcal{A}_{j}(\tau)+\mathcal{B}_{2, j}(\tau)+\mathcal{B}_{3, j}(\tau)+\mathcal{C}_{j}(\tau)\right)  \tag{3.60}\\
& =N_{A}(\tau)+\sum_{\mu_{k}<\tau}\left(\mathcal{A}_{j}(\tau)+\mathcal{B}_{2, j}(\tau)+\mathcal{B}_{3, j}(\tau)+\mathcal{C}_{j}(\tau)\right)  \tag{3.61}\\
& =N_{A}(\tau)+\sum_{\mu_{k}<\tau}\left(\mathcal{A}\left(\frac{\tau}{\mu_{k}}\right)+\mathcal{B}_{2}\left(\frac{\tau}{\mu_{k}}\right)+\mathcal{B}_{3}\left(\frac{\tau}{\mu_{k}}\right)+\mathcal{C}\left(\frac{\tau}{\mu_{k}}\right)\right) .
\end{align*}
$$

Now, fix $K>0$, and divide the leftover term in (3.61) as

$$
\begin{align*}
\mathcal{A}_{j}(\tau) & =\int_{-\infty}^{\tau} \int_{\sigma>\tau+\mu_{k} K} \frac{1}{\mu_{k}} \rho\left(\frac{\lambda-\sigma}{\mu_{k}}\right) d N_{\mu_{k} A_{1}}(\sigma) d \lambda  \tag{3.62}\\
\mathcal{B}_{j}(\tau) & =\int_{-\infty}^{\tau} \int_{\sigma<\tau-\mu_{k} K} \frac{1}{\mu_{k}} \rho\left(\frac{\lambda-\sigma}{\mu_{k}}\right) d N_{\mu_{k} A_{1}}(\sigma) d \lambda  \tag{3.63}\\
\mathcal{C}_{j}(\tau) & =\int_{-\infty}^{\tau} \int_{|\sigma-\tau| \leq \mu_{k} K} \frac{1}{\mu_{k}} \rho\left(\frac{\lambda-\sigma}{\mu_{k}}\right) d N_{\mu_{k} A_{1}}(\sigma) d \lambda \tag{3.64}
\end{align*}
$$

It is clear that

$$
\int_{-\infty}^{\tau} \int_{-\infty}^{+\infty} \frac{1}{\mu_{k}} \rho\left(\frac{\lambda-\sigma}{\mu_{k}}\right) d N_{\mu_{k} A_{1}}(\sigma) d \lambda=\mathcal{A}_{j}(\tau)+\mathcal{B}_{j}(\tau)+\mathcal{C}_{j}(\tau)
$$

We begin to analyze $\mathcal{B}_{j}(\tau)$. The integrand function is uniformly bounded and integrable in the domain of integration, in view of Lemma 3.3.10. So, changing the order of integration, we can write

$$
\begin{aligned}
\mathcal{B}_{j}(\tau) & =\int_{\sigma<\tau-\mu_{k} K} d N_{\mu_{k} A_{1}}(\sigma)-\int_{\sigma<\tau-\mu_{k} K} \int_{\tau}^{+\infty} \frac{1}{\mu_{k}} \rho\left(\frac{\lambda-\sigma}{\mu_{k}}\right) d N_{\mu_{k} A_{1}}(\sigma) d \lambda \\
& =\mathcal{B}_{1, j}(\tau)+\mathcal{B}_{2, j}(\tau)
\end{aligned}
$$

In the above equation we have used the hypothesis

$$
\int_{-\infty}^{+\infty} \frac{1}{\mu_{k}} \rho\left(\frac{\lambda-\sigma}{\mu_{k}}\right) d \lambda=\int_{-\infty}^{+\infty} \rho(\lambda) d \lambda=\widehat{\rho}(0)=1
$$

We can decompose $\mathcal{B}_{1, j}(\tau)$

$$
\begin{aligned}
\mathcal{B}_{1, j}(\tau) & =N_{\mu_{k} A_{1}}(\tau)-\int_{\tau-\mu_{k} K \leq \sigma<\tau} d N_{\mu_{k} A_{1}}(\sigma) \\
& =N_{\mu_{k} A_{1}}(\tau)+\mathcal{B}_{3, j}(\tau) .
\end{aligned}
$$

The above equation clarifies the presence of $N_{A}(\tau)$ in the first term of (3.59). We can write

$$
\begin{align*}
\mathcal{A}_{j}(\tau) & =\int_{\sigma>\tau+\mu_{k} K} \int_{-\infty}^{\tau} \frac{1}{\mu_{k}} \rho\left(\frac{\lambda-\sigma}{\mu_{k}}\right) d N_{\mu_{k} A_{1}}(\sigma) d \lambda \\
& =\int_{\mu_{k} \sigma^{\prime}>\tau+\mu_{k} K} \int_{-\infty}^{\tau} \frac{1}{\mu_{k}} \rho\left(\frac{\lambda}{\mu_{k}}-\sigma^{\prime}\right) d N_{A_{1}}\left(\sigma^{\prime}\right) d \lambda  \tag{3.65}\\
& =\int_{\mu_{k} \sigma^{\prime}>\tau+\mu_{k} K} \int_{-\infty}^{\frac{\tau}{\mu_{k}}} \rho\left(\lambda^{\prime}-\sigma^{\prime}\right) d N_{A_{1}}\left(\sigma^{\prime}\right) d \lambda^{\prime}  \tag{3.66}\\
& =\int_{\sigma^{\prime}>\frac{\tau}{\mu_{k}}+K} \int_{-\infty}^{\frac{\tau}{\mu_{k}}} \rho\left(\lambda^{\prime}-\sigma^{\prime}\right) d N_{A_{1}}\left(\sigma^{\prime}\right) d \lambda^{\prime}=\mathcal{A}\left(\frac{\tau}{\mu_{k}}\right), \tag{3.67}
\end{align*}
$$

where, in (3.65), we have used the fact that, for all $S \subseteq \mathbb{R}$,

$$
\begin{aligned}
\int_{\theta \in S} f(\theta) d N_{\mu_{k} A_{1}}(\theta) & =\sum_{\theta \in S \cap \sigma\left(\mu_{k} A_{1}\right)} f(\theta) \\
& =\sum_{\mu_{k} \theta^{\prime} \in S \wedge \theta^{\prime} \in \sigma\left(A_{1}\right)} f\left(\mu_{k} \theta^{\prime}\right)=\int_{\mu_{k} \theta^{\prime} \in S} f\left(\mu_{k} \theta^{\prime}\right) d N_{A_{1}}\left(\theta^{\prime}\right),
\end{aligned}
$$

while in $\sqrt{3.66}$ we have used the change of variable $\frac{\lambda}{\mu_{k}}=\lambda^{\prime}$. Again from Remark 3.3.9, we have

$$
\mathcal{A}(\eta)=\mathcal{O}\left(\eta^{n_{1}-1}\right), \quad \eta>1
$$

and in our case $\eta=\frac{\tau}{\mu_{k}}$, since the sum in (3.61) is over $\mu_{k}<\tau \Leftrightarrow \frac{\tau}{\mu_{k}}>1$. Hence

$$
\mathcal{A}_{j}(\tau)=\mathcal{A}\left(\frac{\tau}{\mu_{k}}\right)=\mathcal{O}\left(\left(\frac{\tau}{\mu_{k}}\right)^{n_{1}-1}\right)
$$

We can repeat the same argument for the other terms:

$$
\begin{aligned}
\mathcal{B}_{j, 2}(\tau) & =\int_{\sigma<\tau-\mu_{k} K} \int_{\tau}^{\infty} \frac{1}{\mu_{k}} \rho\left(\frac{\lambda-\sigma}{\mu_{k}}\right) d N_{\mu_{k} A_{1}}(\sigma) d \lambda \\
& =\int_{\mu_{k} \sigma^{\prime}<\tau-\mu_{k} K} \int_{\tau}^{\infty} \frac{1}{\mu_{k}} \rho\left(\frac{\lambda}{\mu_{k}}-\sigma^{\prime}\right) d N_{A_{1}}\left(\sigma^{\prime}\right) d \lambda \\
& =\int_{\mu_{k} \sigma^{\prime}<\tau-\mu_{k} K} \int_{\frac{\tau}{\mu_{k}}}^{\infty} \rho\left(\lambda^{\prime}-\sigma^{\prime}\right) d N_{A_{1}}\left(\sigma^{\prime}\right) d \lambda^{\prime} \\
& =\int_{\sigma^{\prime}<\frac{\tau}{\mu_{k}}-K} \int_{\frac{\tau}{\mu_{k}}}^{\infty} \rho\left(\lambda^{\prime}-\sigma^{\prime}\right) d N_{A_{1}}\left(\sigma^{\prime}\right) d \lambda^{\prime}=\mathcal{B}_{2}\left(\frac{\tau}{\mu_{k}}\right)
\end{aligned}
$$

$$
\begin{aligned}
\mathcal{B}_{j, 3}(\tau) & =\int_{\tau-\mu_{k} K \leq \sigma<\tau} d N_{\mu_{k} A_{1}}(\sigma) \\
& =\int_{\tau-\mu_{k} K \leq \mu_{k} \sigma^{\prime}<\tau} d N_{A_{1}}\left(\sigma^{\prime}\right) \\
& =\int_{\frac{\tau}{\mu_{k}}-K \leq \sigma^{\prime}<\frac{\tau}{\mu_{k}}} d N_{A_{1}}\left(\sigma^{\prime}\right)=\mathcal{B}_{j, 3}\left(\frac{\tau}{\mu_{k}}\right)
\end{aligned}
$$

$$
\begin{aligned}
\mathcal{C}_{j}(\tau) & =\int_{|\sigma-\tau| \leq \mu_{k} K} \int_{-\infty}^{\tau} \frac{1}{\mu_{k}} \rho\left(\frac{\lambda-\sigma}{\mu_{k}}\right) d N_{\mu_{k} A_{1}}(\sigma) d \lambda \\
& =\int_{\left|\mu_{k} \sigma^{\prime}-\tau\right| \leq \mu_{k} K} \int_{-\infty}^{\tau} \frac{1}{\mu_{k}} \rho\left(\frac{\lambda}{\mu_{k}}-\sigma^{\prime}\right) d N_{A_{1}}\left(\sigma^{\prime}\right) d \lambda \\
& =\int_{\left|\mu_{k} \sigma^{\prime}-\tau\right| \leq \mu_{k} K} \int_{-\infty}^{\frac{\tau}{\mu_{k}}} \rho\left(\lambda^{\prime}-\sigma^{\prime}\right) d N_{A_{1}}\left(\sigma^{\prime}\right) d \lambda^{\prime} \\
& =\int_{\left|\sigma^{\prime}-\frac{\tau}{\mu_{k}}\right| \leq K} \int_{-\infty}^{\frac{\tau}{\mu_{k}}} \rho\left(\lambda^{\prime}-\sigma^{\prime}\right) d N_{A_{1}}\left(\sigma^{\prime}\right) d \lambda^{\prime}=\mathcal{C}\left(\frac{\tau}{\mu_{k}}\right) .
\end{aligned}
$$

This proves the claim in view of the properties of $\mathcal{A}(\cdot), \mathcal{B}_{2}(\cdot), \mathcal{B}_{3}(\cdot)$ and $\mathcal{C}(\cdot)$ and the fact that $\frac{\tau}{\mu_{k}}>1$.

In view of Proposition 3.3.11 and Lemma 3.3.10, we have:
Proposition 3.3.12. Let $A, A_{1}$ and $A_{2}$ be as in Assumptions 3.3.2. Then

$$
N_{A}(\tau)=\sum_{\mu_{k}<\tau}\left(\frac{C_{1}}{n_{1}}\left(\frac{\tau}{\mu_{k}}\right)^{n_{1}}+\frac{1}{\mu_{k}^{n_{1}}} r_{j}(\tau)\right),
$$

where $C_{1}$ is given by (3.34), and $r_{j}(\tau)$ is $\mathcal{O}\left(\tau^{n-1}\right)$ uniformly with respect to $\mu_{k}$, that is there exists a constant $C$ such that

$$
\begin{equation*}
r_{j}(\tau) \leq C \tau^{n_{1}-1}, \quad \text { for all } j \in \mathbb{N} . \tag{3.68}
\end{equation*}
$$

Proof. By Proposition 3.3.11, we have

$$
\begin{aligned}
N_{A}(\tau) & =\sum_{\mu_{k}<\tau} \int_{-\infty}^{\tau} \int_{-\infty}^{+\infty} \frac{1}{\mu_{k}} \rho\left(\frac{\lambda-\sigma}{\mu_{k}}\right) d N_{\mu_{k} A_{1}} d \lambda \\
& -\sum_{\mu_{k}<\tau}\left(\mathcal{A}\left(\frac{\tau}{\mu_{k}}\right)+\mathcal{B}_{2}\left(\frac{\tau}{\mu_{k}}\right)+\mathcal{B}_{3}\left(\frac{\tau}{\mu_{k}}\right)+\mathcal{C}\left(\frac{\tau}{\mu_{k}}\right)\right) .
\end{aligned}
$$

Lemma 3.3.10 implies that

$$
\begin{aligned}
\int_{\mu_{k}}^{\tau} \int_{-\infty}^{+\infty} \frac{1}{\mu_{k}} & \rho\left(\frac{\lambda-\sigma}{\mu_{k}}\right) d N_{\mu_{k} A_{1}}(\sigma) d \lambda \\
& =\int_{\mu_{k}}^{\tau} \frac{1}{\mu_{k}}\left(C_{1}\left(\frac{\lambda}{\mu_{k}}\right)^{n_{1}-1}+\mathcal{O}\left(\frac{\lambda}{\mu_{k}}\right)^{n_{1}-2}\right) d \lambda \\
& =\frac{C_{1}}{n_{1}}\left(\frac{\tau}{\mu_{k}}\right)^{n_{1}}+\mathcal{O}\left(\left(\frac{\tau}{\mu_{k}}\right)^{n_{1}-1}\right),
\end{aligned}
$$

since $\frac{\lambda}{\mu_{k}}>1$. Moreover, we know that

$$
g(\lambda)=\int_{-\infty}^{+\infty} \rho(\lambda-\sigma) d N_{A_{1}}(\sigma)=\mathcal{O}\left(|\lambda|^{-\infty}\right)
$$

for $\lambda \rightarrow-\infty$, and that $g$ is bounded on every compact sets, due to the Schwartz decay of $\rho$ and of the polynomial growth of the counting function. Thus,

$$
\begin{aligned}
\int_{-\infty}^{\mu_{k}} \int_{-\infty}^{+\infty} \frac{1}{\mu_{k}} & \rho\left(\frac{\lambda-\sigma}{\mu_{k}}\right) d N_{\mu_{k} A_{1}}(\sigma) d \lambda \\
& =\int_{-\infty}^{\mu_{k}} \int_{-\infty}^{+\infty} \frac{1}{\mu_{k}} \rho\left(\frac{\lambda}{\mu_{k}}-\sigma^{\prime}\right) d N_{A_{1}}\left(\sigma^{\prime}\right) d \lambda \\
& =\int_{-\infty}^{1} \int_{-\infty}^{+\infty} \rho\left(\lambda^{\prime}-\sigma^{\prime}\right) d N_{A_{1}}\left(\sigma^{\prime}\right) d \lambda^{\prime} \\
& =\int_{-\infty}^{1}\left(1+\left|\lambda^{\prime}\right|\right)^{-3}\left(1+\left|\lambda^{\prime}\right|\right)^{3} \int_{-\infty}^{+\infty} \rho\left(\lambda^{\prime}-\sigma^{\prime}\right) d N_{A_{1}}\left(\sigma^{\prime}\right) d \lambda^{\prime} \\
& \leq \int_{-\infty}^{1}\left(1+\left|\lambda^{\prime}\right|\right)^{-3} C^{\prime} d \lambda^{\prime} \leq C
\end{aligned}
$$

for some constant $C>0$ independent from $\mu_{k}$. Hence, we get the claim from the properties of $\mathcal{A}(\cdot), \mathcal{B}_{2}(\cdot), \mathcal{B}_{3}(\cdot)$ and $\mathcal{C}(\cdot)$.

## Chapter 4

## Fredholm properties

In this chapter we will show the equivalence of bi-ellipticity and Fredholm property for a class of global bisingular operator.

### 4.1 Fredholm operators

First, let us recall some general properties of Fredholm operators. For more details, see, e.g., Shu01].

Definition 4.1.1. Let $E_{1}, E_{2}$ be Banach spaces. Denote by $\mathcal{K}\left(E_{1}, E_{2}\right) \subset$ $\mathcal{L}\left(E_{1}, E_{2}\right)$ the subset of all compact linear operators $E_{1} \rightarrow E_{2}$.

Definition 4.1.2. Let $E_{1}, E_{2}$ be Banach spaces, and $A \in \mathcal{L}\left(E_{1}, E_{2}\right)$. $A$ is called a Fredholm operator if $\operatorname{dim} \operatorname{Ker} A<+\infty$ and $\operatorname{dim} \operatorname{Coker} A<+\infty$, where we recall that

$$
\text { Coker } A:=E_{2} / \operatorname{Im} A \text {. }
$$

The next two results give relations between the class of Fredholm operators and of compact operators.

Proposition 4.1.3. Let $E$ be a Banach space, and $R \in \mathcal{K}(E, E)$. Then $I+R$ is a Fredholm operator from $E$ to itself.

Proof. Since

$$
\left.I\right|_{\operatorname{Ker}(I+R)}=-\left.R\right|_{\operatorname{Ker}(I+R)} \in \mathcal{K}(E, E),
$$

the closed unit ball in $\operatorname{Ker}(I+R)$ is a compact set, because, in $\operatorname{Ker}(I+R)$,

$$
\overline{B_{1}(0)}=\overline{I\left(B_{1}(0)\right)}=\overline{-R\left(B_{1}(0)\right)},
$$

and the image of a bounded set under the action of a compact operator has compact closure. Thus, $\operatorname{dim} \operatorname{Ker}(I+R)<+\infty$. Moreover, $R^{*}$ is also compact, which means that $\operatorname{dim} \operatorname{Ker}\left(I+R^{*}\right)<+\infty$. To prove that $I+R$
is a Fredholm operator we only need to show the closedness of $\operatorname{Im}(I+R)$, since then

$$
\operatorname{dim} \operatorname{Coker}(I+R)=\operatorname{dim} \operatorname{Ker}\left(I+R^{*}\right)<+\infty
$$

Let $\left\{x_{n}\right\} \subset E$, and $y_{n}:=(I+R) x_{n} \rightarrow y \in E$, as $n \rightarrow+\infty$. We need to verify the existence of an $x \in E$ such as $(I+R) x=y$.
Let $L$ be any closed subspace complementary to $\operatorname{Ker}(I+R)$ in $E$. For every $x_{n} \in E$, we have a unique decomposition $x_{n}=v_{n}+v_{n}^{\prime}$, where $v_{n} \in \operatorname{Ker}(I+R)$ and $v_{n}^{\prime} \in L$. Thus, adding to $\left\{x_{n}\right\}$ vectors from $\operatorname{Ker}(I+R)$, which obviously does not change $y_{n}$, we may assume that $x_{n} \in L$ for all $n$.
Let us show that the sequence $\left\{x_{n}\right\}$ is bounded. Indeed, if this is not the case, taking a subsequence of $\left\{x_{n}\right\}$, we may assume that $\left\|x_{n}\right\| \rightarrow+\infty$, as $n \rightarrow+\infty$. But then, setting

$$
x_{n}^{\prime}:=x_{n} /\left\|x_{n}\right\|, \quad y_{n}^{\prime}:=(I+R) x_{n}^{\prime}=y_{n} /\left\|x_{n}\right\|
$$

we have that $y_{n}^{\prime} \rightarrow 0$, as $n \rightarrow+\infty$, since $\left\{y_{n}\right\}$ is bounded. By construction, $\left\|x_{n}^{\prime}\right\|=1$ for all $n$, so that we have, up to a subsequence, the existence of

$$
\lim _{n \rightarrow+\infty} R x_{n}^{\prime}=x^{\prime}
$$

But then

$$
\lim _{n \rightarrow+\infty} x_{n}^{\prime}=\lim _{n \rightarrow+\infty}\left(-R x_{n}^{\prime}\right)=-x^{\prime}
$$

and clearly $\left\|x^{\prime}\right\|=1, x^{\prime} \in L$. Moreover

$$
(I+R) x^{\prime}=\lim _{n \rightarrow+\infty}(I+R) x_{n}^{\prime}=-x^{\prime}+x^{\prime}=0
$$

and this contradicts the choice of $L$. Thus, the sequence $\left\{x_{n}\right\}$ is bounded, and we have, up to a subsequence, that

$$
\lim _{n \rightarrow+\infty} R x_{n}
$$

exists, and, consequently, so does

$$
\lim _{n \rightarrow+\infty} x_{n}=y-\lim _{n \rightarrow+\infty} R x_{n}
$$

Denoting $x:=\lim _{n \rightarrow+\infty} x_{n}$, we have that $(I+R) x=y$, proving the closedness of $\operatorname{Im}(I+R)$.

Theorem 4.1.4. Let $A \in \mathcal{L}\left(E_{1}, E_{2}\right)$ and let $B_{1}, B_{2} \in \mathcal{L}\left(E_{2}, E_{1}\right)$ be such that

$$
B_{1} A=I+R_{1}, \quad A B_{2}=I+R_{2}
$$

where $R_{j} \in \mathcal{K}\left(E_{j}, E_{j}\right), j=1,2$. Then, $A$ is a Fredholm operator from $E_{1}$ to $E_{2}$.

Proof. By Proposition 4.1 .3 one has that $I+R_{j}$, is a Fredholm operator from $E_{j}$ to itself, $j=1,2$. Then

$$
\operatorname{Ker} A \subset \operatorname{Ker}\left(B_{1} A\right)=\operatorname{Ker}\left(I+R_{1}\right)
$$

thus $\operatorname{dim} \operatorname{Ker} A \leq \operatorname{dim} \operatorname{Ker}\left(I+R_{1}\right)<+\infty$. Moreover, we have that

$$
\operatorname{Im} A \supset \operatorname{Im}\left(A B_{2}\right)=\operatorname{Im}\left(I+R_{2}\right)
$$

Given $x \in E_{2}$, let us denote by $x+\operatorname{Im} A$ the lateral class of $x$ in Coker $A=$ $E_{2} / \operatorname{Im} A$. Since $\operatorname{Im}\left(I+R_{2}\right) \subset \operatorname{Im} A$, one has a homomorphism $f: E_{2} /$ $\operatorname{Im}\left(I+R_{2}\right) \rightarrow E_{2} / \operatorname{Im} A$ given by $x+\operatorname{Im}\left(I+R_{2}\right) \mapsto x+\operatorname{Im} A$. Notice that $f$ is well defined: taking $x+v_{1}, x+v_{2} \in x+\operatorname{Im}\left(I+R_{2}\right), v_{1}, v_{2} \in \operatorname{Im}\left(I+R_{2}\right)$, we have that $f\left(x+v_{1}\right), f\left(x+v_{2}\right) \in x+\operatorname{Im} A$, since

$$
\begin{aligned}
f\left(x+v_{1}\right)-f\left(x+v_{2}\right) & =x+v_{1}-\left(x+v_{2}\right) \\
& =v_{1}-v_{2} \in \operatorname{Im}\left(I+R_{2}\right) \subset \operatorname{Im} A \Rightarrow v_{1}-v_{2} \in \operatorname{Im} A
\end{aligned}
$$

Next, let us show that $f$ is surjective. Given $y+\operatorname{Im} A$, we have to find $x+\operatorname{Im}\left(I+R_{2}\right)$ such that $f\left(x+\operatorname{Im}\left(I+R_{2}\right)\right)=y+\operatorname{Im} A$. Choose an element $v \in y+\operatorname{Im} A$ and set $x+\operatorname{Im}\left(I+R_{2}\right)=v+\operatorname{Im}\left(I+R_{2}\right)$. By definition of $f$,

$$
f\left(x+\operatorname{Im}\left(I+R_{2}\right)\right)=v+\operatorname{Im} A=y+\operatorname{Im} A
$$

as desired. Of course, choosing $v, v^{\prime} \in y+\operatorname{Im} A, v^{\prime} \neq v$, one obtains, in general, different classes $v^{\prime}+\operatorname{Im}\left(I+R_{2}\right), v+\operatorname{Im}\left(I+R_{2}\right)$, in Coker $\left(I+R_{2}\right)$. However, again by definition of $f$,

$$
f\left(v^{\prime}+\operatorname{Im}\left(I+R_{2}\right)\right)=v^{\prime}+\operatorname{Im} A=v+\operatorname{Im} A=y+\operatorname{Im} A
$$

Finally, by assumption, $\operatorname{Coker}\left(I+R_{2}\right)=E_{2} / \operatorname{Im}\left(I+R_{2}\right)$ is finite dimensional, and, by the surjectivity of $f: \operatorname{Coker}\left(I+R_{2}\right) \rightarrow \operatorname{Coker}(A)$, this holds also for Coker $A=E_{2} / \operatorname{Im} A$.

### 4.2 Global bisingular operators

In this section we present a class of global bisingular operators whose bisymbol are adapted to Shubin calculus, see [Shu01]. This calculus was recently studied by U. Battisti, T. Gramchev, S. Pilipović and L. Rodino (for additional details and the proofs, see [BGPR13]).
Definition 4.2.1. $\Gamma^{m_{1}, m_{2}}\left(\mathbb{R}^{n_{1}}, \mathbb{R}^{n_{2}}\right)$ is the set of all functions in $\mathcal{C}^{\infty}\left(\mathbb{R}^{n_{1}} \times\right.$ $\left.\mathbb{R}^{n_{2}} \times \mathbb{R}^{n_{1}} \times \mathbb{R}^{n_{2}}\right)$ such that, for all multi-indices $\alpha_{i}, \beta_{i}, i=1,2$, there exists a constant $C_{\alpha_{1}, \alpha_{2}, \beta_{1}, \beta_{2}}>0$ such that

$$
\begin{aligned}
&\left|D_{\xi_{1}}^{\alpha_{1}} D_{\xi_{2}}^{\alpha_{2}} D_{x_{1}}^{\beta_{1}} D_{x_{2}}^{\beta_{2}} a\left(x_{1}, x_{2}, \xi_{1}, \xi_{2}\right)\right| \\
& \leq C_{\alpha_{1}, \alpha_{2}, \beta_{1}, \beta_{2}}\left\langle\left(x_{1}, \xi_{1}\right)\right\rangle^{m_{1}-\left|\alpha_{1}\right|-\left|\beta_{1}\right|}\left\langle\left(x_{1}, \xi_{2}\right)\right\rangle^{m_{2}-\left|\alpha_{2}\right|-\left|\beta_{2}\right|}
\end{aligned}
$$

for all $x_{i}, \xi_{i} \in \mathbb{R}^{n_{i}}$. An element of $\Gamma^{m_{1}, m_{2}}\left(\mathbb{R}^{n_{1}}, \mathbb{R}^{n_{2}}\right)$ is called a (global) bi-symbol.

Definition 4.2.2. A linear operator $A: \mathcal{C}_{0}^{\infty}\left(\mathbb{R}^{n_{1}+n_{2}}\right) \rightarrow \mathcal{C}^{\infty}\left(\mathbb{R}^{n_{1}+n_{2}}\right)$ is called a (global) bisingular operator if it can be written in the form

$$
\begin{aligned}
& A(u)\left(x_{1}, x_{2}\right)=(\operatorname{Op}(a)[u])\left(x_{1}, x_{2}\right) \\
& \quad=\frac{1}{(2 \pi)^{n_{1}+n_{2}}} \int_{\mathbb{R}^{n_{1}}} \int_{\mathbb{R}^{n_{2}}} e^{i\left(x_{1} \cdot \xi_{1}+x_{2} \cdot \xi_{2}\right)} a\left(x_{1}, x_{2}, \xi_{1}, \xi_{2}\right) \hat{u}\left(\xi_{1}, \xi_{2}\right) d \xi_{1} d \xi_{2}
\end{aligned}
$$

where $a \in \Gamma^{m_{1}, m_{2}}\left(\mathbb{R}^{n_{1}}, \mathbb{R}^{n_{2}}\right) . \mathrm{G}^{m_{1}, m_{2}}\left(\mathbb{R}^{n_{1}}, \mathbb{R}^{n_{2}}\right)$ denotes the set of all bisingular operators with bi-symbol in $\Gamma^{m_{1}, m_{2}}\left(\mathbb{R}^{n_{1}}, \mathbb{R}^{n_{2}}\right)$. Moreover, we set

$$
\begin{aligned}
\Gamma^{\infty, \infty}\left(\mathbb{R}^{n_{1}}, \mathbb{R}^{n_{2}}\right):=\bigcup_{m_{1}, m_{2}} \Gamma^{m_{1}, m_{2}}\left(\mathbb{R}^{n_{1}}, \mathbb{R}^{n_{2}}\right), \\
\Gamma^{-\infty,-\infty}\left(\mathbb{R}^{n_{1}}, \mathbb{R}^{n_{2}}\right):=\bigcap_{m_{1}, m_{2}} \Gamma^{m_{1}, m_{2}}\left(\mathbb{R}^{n_{1}}, \mathbb{R}^{n_{2}}\right),
\end{aligned}
$$

and we denote by $\mathrm{G}^{\infty, \infty}\left(\mathbb{R}^{n_{1}}, \mathbb{R}^{n_{2}}\right), \mathrm{G}^{-\infty,-\infty}\left(\mathbb{R}^{n_{1}}, \mathbb{R}^{n_{2}}\right)$, respectively, the corresponding class of operators. The operators in $G^{-\infty,-\infty}\left(\mathbb{R}^{n_{1}}, \mathbb{R}^{n_{2}}\right)$ are called smoothing operators.

For the operators in $\Gamma^{\infty, \infty}\left(\mathbb{R}^{n_{1}}, \mathbb{R}^{n_{2}}\right)$ we have $\mathscr{S}\left(\mathbb{R}^{n_{1}} \times \mathbb{R}^{n_{2}}\right)$ and $\mathscr{S}^{\prime}\left(\mathbb{R}^{n_{1}} \times\right.$ $\mathbb{R}^{n_{2}}$ ) continuity, and

$$
\Gamma^{-\infty,-\infty}\left(\mathbb{R}^{n_{1}}, \mathbb{R}^{n_{2}}\right)=\mathscr{S}\left(\mathbb{R}^{n_{1}} \times \mathbb{R}^{n_{2}} \times \mathbb{R}^{n_{1}} \times \mathbb{R}^{n_{2}}\right)
$$

We associate with every $A \in \Gamma^{m_{1}, m_{2}}\left(\mathbb{R}^{n_{1}}, \mathbb{R}^{n_{2}}\right)$ the two maps

$$
\begin{align*}
& A^{1}: \mathbb{R}^{n_{1}} \times \mathbb{R}^{n_{1}} \rightarrow \mathrm{G}^{m_{2}}\left(\mathbb{R}^{n_{2}}\right):\left(x_{1}, \xi_{1}\right) \mapsto a\left(x_{1}, x_{2}, \xi_{1}, D_{2}\right) \\
& A^{2}: \mathbb{R}^{n_{2}} \times \mathbb{R}^{n_{2}} \rightarrow \mathrm{G}^{m_{1}}\left(\mathbb{R}^{n_{1}}\right):\left(x_{2}, \xi_{2}\right) \mapsto a\left(x_{1}, x_{2}, D_{1}, \xi_{2}\right) \tag{4.1}
\end{align*}
$$

Remark 4.2.3. Also the global version of bisingular calculus in Definition 4.2 .2 takes the form of an operator-valued calculus, cfr. Chapter 1 .

Theorem 4.2.4. Let $A \in \Gamma^{m_{1}, m_{2}}\left(\mathbb{R}^{n_{1}}, \mathbb{R}^{n_{2}}\right)$ and $B \in \Gamma^{p_{1}, p_{2}}\left(\mathbb{R}^{n_{1}}, \mathbb{R}^{n_{2}}\right)$. Then, $A B \in \Gamma^{m_{1}+p_{1}, m_{2}+p_{2}}\left(\mathbb{R}^{n_{1}}, \mathbb{R}^{n_{2}}\right)$.

Definition 4.2.5. Let $a \in \Gamma^{m_{1}, m_{2}}\left(\mathbb{R}^{n_{1}}, \mathbb{R}^{n_{2}}\right)$. Then $a$ has a homogeneous principal bi-symbol if
i) there exists $a_{m_{1} ;} \in \Gamma^{m_{1}, m_{2}}\left(\mathbb{R}^{n_{1}}, \mathbb{R}^{n_{2}}\right)$ such that

$$
\begin{aligned}
a_{m_{1} ; \cdot}\left(t x_{1}, x_{2}, t \xi_{1}, \xi_{2}\right) & =t^{m_{1}} a_{m_{1} ; \cdot}\left(x_{1}, x_{2}, \xi_{1}, \xi_{2}\right) \\
a-\psi_{1}\left(x_{1}, \xi_{1}\right) a_{m_{1} ; \cdot} & \in \Gamma^{m_{1}-1, m_{2}}
\end{aligned}
$$

for all $x_{2}, \xi_{2}$, for all $x_{1}, \xi_{1}$ such that $\left|x_{1}\right|+\left|\xi_{1}\right|>1$, and all $t>0$, where $\psi_{1}$ is an 0-excision function. Moreover, $a_{m_{1} ; \cdot}\left(x_{1}, x_{2}, \xi_{1}, D_{2}\right) \in \mathrm{G}_{\mathrm{cl}}^{m_{2}}\left(\mathbb{R}^{n_{2}}\right)$, so, being a classical global symbol on $\mathbb{R}^{n_{2}}$, it admits an asymptotic expansion with respect to $\left(x_{2}, \xi_{2}\right)$.
ii) there exists $a_{\cdot ; m_{2}} \in \Gamma^{m_{1}, m_{2}}\left(\mathbb{R}^{n_{1}}, \mathbb{R}^{n_{2}}\right)$ such that

$$
\begin{aligned}
a_{\cdot ; m_{2}}\left(x_{1}, t x_{2}, \xi_{1}, t \xi_{2}\right) & =t^{m_{2}} a_{\cdot ; m_{2}}\left(x_{1}, x_{2}, \xi_{1}, \xi_{2}\right) \\
a-\psi_{2}\left(x_{2}, \xi_{2}\right) a_{\cdot ; m_{2}} & \in \Gamma^{m_{1}, m_{2}-1}
\end{aligned}
$$

for all $x_{1}, \xi_{1}$, for all $x_{2}, \xi_{2}$ such that $\left|x_{2}\right|+\left|\xi_{2}\right|>1$, and all $t>0$, where $\psi_{2}$ is an 0-excision function. Moreover, $a_{\cdot ; m_{2}}\left(x_{1}, x_{2}, D_{1}, \xi_{2}\right) \in \mathrm{G}_{\mathrm{cl}}^{m_{1}}\left(\mathbb{R}^{n_{1}}\right)$, so, being a classical global symbol on $\mathbb{R}^{n_{1}}$, it admits an asymptotic expansion with respect to $\left(x_{1}, \xi_{1}\right)$.
 $a_{m_{1} ; m_{2}}$ such that

$$
\begin{aligned}
& a_{m_{1} ; \cdot}-\psi_{2}\left(x_{2}, \xi_{2}\right) a_{m_{1} ; m_{2}} \in \Gamma^{m_{1}, m_{2}-1}\left(\mathbb{R}^{n_{1}}, \mathbb{R}^{n_{2}}\right), \\
& a_{\cdot ; m_{2}}-\psi_{1}\left(x_{1}, \xi_{1}\right) a_{m_{1} ; m_{2}} \in \Gamma^{m_{1}-1, m_{2}}\left(\mathbb{R}^{n_{1}}, \mathbb{R}^{n_{2}}\right),
\end{aligned}
$$

and

$$
a-\psi_{1} a_{m_{1} ; \cdot}-\psi_{2} a_{\cdot ; m_{2}}+\psi_{1} \psi_{2} a_{m_{1} ; m_{2}} \in \Gamma^{m_{1}-1, m_{2}-1}\left(\mathbb{R}^{n_{1}}, \mathbb{R}^{n_{2}}\right)
$$

The bi-symbols which admit a full bi-homogeneous expansion in $\left(x_{1}, \xi_{1}\right)$ and $\left(x_{2}, \xi_{2}\right)$ are called classical bi-symbols, their class is denoted by $\Gamma_{\mathrm{cl}}^{m_{1}, m_{2}}\left(\mathbb{R}^{n_{1}}, \mathbb{R}^{n_{2}}\right)$, and the corresponding operator class by $\mathrm{G}_{\mathrm{cl}}^{m_{1}, m_{2}}\left(\mathbb{R}^{n_{1}}, \mathbb{R}^{n_{2}}\right)$.
Given $A \in \mathrm{G}_{\mathrm{cl}}^{m_{1}, m_{2}}\left(\mathbb{R}^{n_{1}}, \mathbb{R}^{n_{2}}\right)$, we can define maps $\sigma^{1}(A), \sigma^{2}(A), \sigma^{12}(A)$ as follows:

$$
\begin{aligned}
\sigma^{1}(A): & T^{*} \mathbb{R}^{n_{1}} \backslash 0 \rightarrow \mathrm{G}_{\mathrm{cl}}^{m_{2}}\left(\mathbb{R}^{n_{2}}\right) \\
& \left(x_{1}, \xi_{1}\right) \mapsto a_{m_{1} ; \cdot}\left(x_{1}, x_{2}, \xi_{1}, D_{2}\right) \\
\sigma^{2}(A): & T^{*} \mathbb{R}^{n_{2}} \backslash 0 \rightarrow \mathrm{G}_{\mathrm{cl}}^{m_{1}}\left(\mathbb{R}^{n_{1}}\right) \\
& \left(x_{2}, \xi_{2}\right) \mapsto a_{\cdot ; m_{2}}\left(x_{1}, x_{2}, D_{1}, \xi_{2}\right) \\
\sigma^{12}(A): & \left(T^{*} \mathbb{R}^{n_{1}} \backslash 0\right) \times\left(T^{*} \mathbb{R}^{n_{2}} \backslash 0\right) \rightarrow \mathbb{C} \\
& \left(x_{1}, x_{2}, \xi_{1}, \xi_{2}\right) \mapsto a_{m_{1} ; m_{2}}\left(x_{1}, x_{2}, \xi_{1}, \xi_{2}\right) .
\end{aligned}
$$

In this way, denoting by $\sigma_{P}(x, \xi)$ the principal symbol of an operator $P$, we have

$$
\begin{align*}
\sigma_{\sigma^{1}(A)\left(x_{1}, \xi_{1}\right)}\left(x_{2}, \xi_{2}\right) & =\sigma_{\sigma^{2}(A)\left(x_{2}, \xi_{2}\right)}\left(x_{1}, \xi_{1}\right) \\
& =\sigma^{12}(A)\left(x_{1}, x_{2}, \xi_{1}, \xi_{2}\right)=a_{m_{1} ; m_{2}}\left(x_{1}, x_{2}, \xi_{1}, \xi_{2}\right) \tag{4.2}
\end{align*}
$$

We call the couple $\left(\sigma^{1}(A), \sigma^{2}(A)\right)$ the principal bi-symbol of $A$.
We can now introduce the notion of bi-ellipticity. As in the case of the bisingular calculus on closed manifolds, we restrict ourselves to classical operators.

Definition 4.2.6. Let $A \in \mathrm{G}_{\mathrm{cl}}^{m_{1}, m_{2}}\left(\mathbb{R}^{n_{1}}, \mathbb{R}^{n_{2}}\right)$. We say that $A$ is bi-elliptic if
i) $\sigma^{12}(A)\left(v_{1}, v_{2}\right) \neq 0$ for all $\left(T^{*} \mathbb{R}^{n_{1}} \backslash 0\right) \times\left(T^{*} \mathbb{R}^{n_{2}} \backslash 0\right)$;
ii) $\sigma^{1}(A)\left(v_{1}\right)$ is invertible as an operator in $\mathrm{G}_{\mathrm{cl}}^{m_{2}}\left(\mathbb{R}^{n_{2}}\right)$ for all $v_{1} \in T^{*} \mathbb{R}^{n_{1}} \backslash 0$,
iii) $\sigma^{2}(A)\left(v_{2}\right)$ is invertible as an operator in $\mathrm{G}_{\mathrm{cl}}^{m_{1}}\left(\mathbb{R}^{n_{1}}\right)$ for all $v_{2} \in T^{*} \mathbb{R}^{n_{2}} \backslash 0$.

Also for this global calculus, it is possible to define adapted Sobolev spaces and prove some continuity results.

Definition 4.2.7. The Sobolev space of exponent $\left(s_{1}, s_{2}\right), s_{1}, s_{2} \in \mathbb{R}$, is the space

$$
\begin{aligned}
& \mathrm{Q}^{s_{1}, s_{2}}=\mathrm{Q}^{s_{1}, s_{2}}\left(\mathbb{R}^{n_{1}} \times \mathbb{R}^{n_{2}}\right) \\
& :=\left\{u \in \mathscr{S}^{\prime}\left(\mathbb{R}^{n_{1}} \times \mathbb{R}^{n_{2}}\right): \operatorname{Op}\left(\left\langle\left(x_{1}, \xi_{1}\right)\right\rangle^{s_{1}}\left\langle\left(x_{2}, \xi_{2}\right)\right\rangle^{s_{2}}\right) u \in L^{2}\left(\mathbb{R}^{n_{1}} \times \mathbb{R}^{n_{2}}\right)\right\}
\end{aligned}
$$

In particular,

$$
\mathrm{Q}^{0,0}\left(\mathbb{R}^{n_{1}} \times \mathbb{R}^{n_{2}}\right)=L^{2}\left(\mathbb{R}^{n_{1}} \times \mathbb{R}^{n_{2}}\right)
$$

For $u \in \mathrm{Q}^{s_{1}, s_{2}}$ set

$$
\|u\|_{s_{1}, s_{2}}:=\left\|\operatorname{Op}\left(\left\langle\left(x_{1}, \xi_{1}\right)\right\rangle^{s_{1}}\left\langle\left(x_{2}, \xi_{2}\right)\right\rangle^{s_{2}}\right) u\right\|_{2}
$$

Remark 4.2.8. We notice that, if $A \in \mathrm{G}_{\mathrm{cl}}^{m_{1}, m_{2}}\left(\mathbb{R}^{n_{1}}, \mathbb{R}^{n_{2}}\right)$ satisfies condition ii) and condition iii) of Definition 4.2.6, one can prove that both the operators $\sigma^{1}(A)\left(x_{1}, \xi_{1}\right) \in \mathrm{G}_{\mathrm{cl}}^{m_{2}}\left(\mathbb{R}^{n_{2}}\right)$ and $\sigma^{2}(A)\left(x_{2}, \xi_{2}\right) \in \mathrm{G}_{\mathrm{cl}}^{m_{1}}\left(\mathbb{R}^{n_{1}}\right)$ are injective Fredholm operators, therefore invertible operators also in the $\mathrm{Q}^{s}$ spaces ${ }^{1}$. for all $s \in \mathbb{R}$. Therefore, in Definition 4.2.6, it is equivalent to require invertibility of the operators on the Schwartz spaces or on the Sobolev $\mathrm{Q}^{s}$ spaces.

Proposition 4.2 .9 . If $s_{1} \geq s_{1}^{\prime}, s_{2} \geq s_{2}^{\prime}$, we have

$$
\mathrm{Q}^{s_{1}, s_{2}} \subset \mathrm{Q}^{s_{1}^{\prime}, s_{2}^{\prime}}
$$

and the embedding $\mathrm{Q}^{s_{1}, s_{2}} \hookrightarrow \mathrm{Q}^{s_{1}^{\prime}, s_{2}^{\prime}}$ is continuous. If $s_{1}>s_{1}^{\prime}, s_{2}>s_{2}^{\prime}$, the embedding is compact.

Proposition 4.2.10. A bisingular operator $A \in \mathrm{G}^{m_{1}, m_{2}}\left(\mathbb{R}^{n_{1}}, \mathbb{R}^{n_{2}}\right)$ extends to a continuous operator

$$
A: \mathrm{Q}^{s_{1}, s_{2}}\left(\mathbb{R}^{n_{1}} \times \mathbb{R}^{n_{2}}\right) \rightarrow \mathrm{Q}^{s_{1}-m_{1}, s_{2}-m_{2}}\left(\mathbb{R}^{n_{1}} \times \mathbb{R}^{n_{2}}\right)
$$

for every $s_{1}, s_{2} \in \mathbb{R}$.

[^9]We conclude this section with the analogue of Theorem 1.2.12,
Theorem 4.2.11. Let $A \in \mathrm{G}_{\mathrm{cl}}^{m_{1} m_{2}}\left(\mathbb{R}^{n_{1}}, \mathbb{R}^{n_{2}}\right)$ be bi-elliptic. Then, there exists $B \in \mathrm{~L}_{\mathrm{cl}}^{-m_{1},-m_{2}}\left(\mathbb{R}^{n_{1}}, \mathbb{R}^{n_{2}}\right)$ such that

$$
A B=I+K_{1} \quad B A=I+K_{2}
$$

where $I$ is the identity map and $K_{1}, K_{2}$ are smoothing operators. Moreover, the principal bi-symbol of $B$ is $\left(\sigma^{1}(A)^{-1}, \sigma^{2}(A)^{-1}\right)$.

### 4.3 Fredholm property for global bi-elliptic operators

Let $A \in \mathrm{G}_{\mathrm{cl}}^{m_{1}, m_{2}}\left(\mathbb{R}^{n_{1}}, \mathbb{R}^{n_{2}}\right)$. In this section we will prove the main result of this chapter, namely, that $A$ is bi-elliptic if and only if $A$ is a Fredholm operator.
First, let us see that we can, without loss of generality, restrict ourselves to operators $\tilde{A} \in \mathrm{G}_{\mathrm{cl}}^{0,0}\left(\mathbb{R}^{n_{1}}, \mathbb{R}^{n_{2}}\right)$. To do so, consider the so-called order reduction operators, that is, operators

$$
\Lambda_{m_{1}, m_{2}} \in \mathrm{G}_{\mathrm{cl}}^{m_{1}, m_{2}}\left(\mathbb{R}^{n_{1}}, \mathbb{R}^{n_{2}}\right)
$$

invertible, with inverse $\left(\Lambda_{m_{1}, m_{2}}\right)^{-1}=\Lambda_{-m_{1},-m_{2}}$. These operators are an isometry $\mathrm{Q}^{m_{1}, m_{2}} \rightarrow \mathrm{Q}^{0,0}=L^{2}$. For the construction of these operators in the Shubin calculus, see, e.g., NR11. Thus, from Proposition 4.2.10 and Theorem 4.2.4, the study of the operator

$$
A: \mathrm{Q}^{s_{1}, s_{2}} \rightarrow \mathrm{Q}^{s_{1}-m_{1}, s_{2}-m_{2}}
$$

is equivalent to the study of

$$
\tilde{A}: \mathrm{Q}^{0,0} \rightarrow \mathrm{Q}^{0,0}
$$

where

$$
\tilde{A}:=\Lambda_{s_{1}-m_{1}, s_{2}-m_{2}} A \Lambda_{-s_{1},-s_{2}} \in \mathrm{G}_{\mathrm{cl}}^{0,0}\left(\mathbb{R}^{n_{1}}, \mathbb{R}^{n_{2}}\right)
$$

In fact, the following diagram is commutative.

$$
\begin{array}{r}
\mathrm{Q}^{s_{1}, s_{2}}\left(\mathbb{R}^{n_{1}} \times \mathbb{R}^{n_{2}}\right) \xrightarrow{A} \mathrm{Q}^{s_{1}-m_{1}, s_{2}-m_{2}}\left(\mathbb{R}^{n_{1}} \times \mathbb{R}^{n_{2}}\right) \\
\left(\Lambda_{-s_{1},-s_{2}}\right)^{-1}=\Lambda_{s_{1}, s_{2}} \downarrow \\
\downarrow \\
\mathrm{Q}^{0,0}\left(\mathbb{R}^{n_{1}} \times \mathbb{R}^{n_{2}}\right) \xrightarrow{\tilde{A}}{ }^{\stackrel{\Lambda_{s_{1}-m_{1}, s_{2}-m_{2}}}{ }} \mathrm{Q}^{0,0}\left(\mathbb{R}^{n_{1}} \times \mathbb{R}^{n_{2}}\right)
\end{array}
$$

### 4.3.1 Sufficiency of bi-ellipticy

In this subsection we will prove that bi-ellipticity is a sufficient condition for a global bisingular operator to have the Fredholm property.
Proposition 4.3.1. Given $m_{1}, m_{2}>0, A \in \mathrm{G}_{\mathrm{cl}}^{-m_{1},-m_{2}}\left(\mathbb{R}^{n_{1}}, \mathbb{R}^{n_{2}}\right)$ is a compact operator from $\mathrm{H}^{s_{1}, s_{2}}$ to itself, for every $s_{1}, s_{2} \in \mathbb{R}$.

Proof. Since $m_{1}, m_{2}>0$, for every $\left(s_{1}, s_{2}\right) \in \mathbb{R}^{2}$ we obviously have $s_{1}<s_{1}+$ $m_{1}, s_{2}<s_{2}+m_{2}$, and, by Proposition 4.2.9, this means that $\mathrm{Q}^{s_{1}+m_{1}, s_{2}+m_{2}}$ is compactly embedded into $\mathrm{Q}^{s_{1}, s_{2}}$. Thus, by Proposition 4.2.4.

$$
A: \mathrm{Q}^{s_{1}, s_{2}} \rightarrow \mathrm{Q}^{s_{1}-\left(-m_{1}\right), s_{2}-\left(-m_{2}\right)}=\mathrm{Q}^{s_{1}+m_{2}, s_{2}+m_{2}} \subset \mathrm{Q}^{s_{1}, s_{2}},
$$

and the embedding is compact.
Theorem 4.3.2. Let $A \in \mathrm{G}_{\mathrm{cl}}^{0,0}\left(\mathbb{R}^{n_{1}}, \mathbb{R}^{n_{2}}\right)$, and let $A$ be bi-elliptic. Then, $A$ is a Fredholm operator from $L^{2}\left(\mathbb{R}^{n_{1}} \times \mathbb{R}^{n_{2}}\right)=\mathrm{Q}^{0,0}\left(\mathbb{R}^{n_{1}} \times \mathbb{R}^{n_{2}}\right)$ to itself.

Proof. From Theorem 4.2.11, we know that there exists $B \in \mathrm{~L}_{\mathrm{cl}}^{0,0}\left(\mathbb{R}^{n_{1}}, \mathbb{R}^{n_{2}}\right)$ such that

$$
A B=I+K_{1} \quad B A=I+K_{2},
$$

where $K_{1}, K_{2}$ are smoothing operators, that is, operators in $\mathrm{L}^{-\infty,-\infty}\left(\mathbb{R}^{n_{1}}, \mathbb{R}^{n_{2}}\right)$. Thus, from Proposition 4.3.1, $K_{1}$ and $K_{2}$ are compact operators from $L^{2}\left(\mathbb{R}^{n_{1}} \times\right.$ $\mathbb{R}^{n_{2}}$ ) to itself. In view of the abstract result from Section 4.1, this proves our claim.

### 4.3.2 Necessity of bi-ellipticy

In this subsection we prove that bi-ellipticity is a necessary condition for a global bisingular operator in order to have the Fredholm property. To this aim, we show a result in the more general class of operators with operatorvalued symbols in a Hilbert space. Theories of operator-valued symbols were originally developed by Schulze, see, e.g., [Sch98]. The following definitions are variants of his original concepts, adapted to the presently used Shubintype calculus. They are defined as follows:

Definition 4.3.3. Let $E$ be a Hilbert space. $\Gamma^{\mu}\left(\mathbb{R}^{n}, \mathscr{L}(E)\right)$ is the set of all $a \in \mathcal{C}^{\infty}\left(\mathbb{R}^{n} \times \mathbb{R}^{n}, \mathscr{L}(E)\right)$ such that, for all multi-indices $\alpha, \beta$ there exists a constant $C_{\alpha, \beta}>0$ such that

$$
\left\|D_{\xi}^{\alpha} D_{x}^{\beta} a(x, \xi)\right\|_{\mathscr{L}(E)} \leq C_{\alpha, \beta}\langle(x, \xi)\rangle^{\mu-|\alpha|-|\beta|},
$$

for all $(x, \xi) \in \mathbb{R}^{n} \times \mathbb{R}^{n}$. An element of $\Gamma^{\mu}\left(\mathbb{R}^{n}, \mathscr{L}(E)\right)$ is called an operatorvalued symbol. The corresponding pseudodifferential operator $A: \mathcal{C}_{0}^{\infty}\left(\mathbb{R}^{n}, E\right) \rightarrow$ $\mathcal{C}^{\infty}\left(\mathbb{R}^{n}, E\right)$ is defined as

$$
A u(x):=(\mathrm{Op}(a)[u])(x):=\int e^{i x \xi} a(x, \xi) \hat{u}(\xi) d \xi, \quad u \in \mathcal{C}_{0}^{\infty}\left(\mathbb{R}^{n}, E\right),
$$

and the corresponding class by $\mathrm{G}^{\mu}\left(\mathbb{R}^{n}, \mathscr{L}(E)\right)$.
For this class of "abstract" symbols all the standard features of pseudodifferential calculus work essentially as in the case of scalar symbols. In particular, it is possible to define classical symbols, that is, the elements of $\Gamma^{\mu}\left(\mathbb{R}^{n}, \mathscr{L}(E)\right)$ which admit a homogeneous expansion in $(x, \xi)$, and their principal symbols $\sigma_{A}$. For more details and properties of operator-valued symbols, we refer to Sch98 and Tay74. From now on, we will assume that all operator-valued symbols are classical.
Remark 4.3.4. Given $A \in \mathrm{G}_{\mathrm{cl}}^{0,0}\left(\mathbb{R}^{n_{1}}, \mathbb{R}^{n_{2}}\right)$, we have

$$
\operatorname{Op}\left(A^{1}\right) \in \mathrm{G}^{0}\left(\mathbb{R}^{n_{1}}, \mathscr{L}\left(L^{2}\left(\mathbb{R}^{n_{2}}\right)\right)\right), \quad \operatorname{Op}\left(A^{2}\right) \in \mathrm{G}^{0}\left(\mathbb{R}^{n_{2}}, \mathscr{L}\left(L^{2}\left(\mathbb{R}^{n_{1}}\right)\right)\right)
$$

with $A^{1}, A^{2}$ as in (4.1). Moreover,

$$
\sigma_{\mathrm{Op}\left(A^{1}\right)}\left(x_{1}, \xi_{1}\right)=\sigma^{1}(A)\left(x_{1}, \xi_{1}\right), \quad \sigma_{\mathrm{Op}\left(A^{2}\right)}\left(x_{2}, \xi_{2}\right)=\sigma^{2}(A)\left(x_{2}, \xi_{2}\right)
$$

Definition 4.3.5. Let $b \in \Gamma^{\mu}\left(\mathbb{R}^{n}, \mathscr{L}(E)\right), \lambda>1,0<\tau<1 / 2$ and $\left(x_{0}, \xi_{0}\right) \in$ $\mathbb{R}^{n} \times \mathbb{R}^{n},\left|\left(x_{0}, \xi_{0}\right)\right|=1$, be fixed. We set

$$
\begin{equation*}
b_{\lambda}(x, \xi):=b\left(\lambda x_{0}+\lambda^{-\tau} x, \lambda \xi_{0}+\lambda^{\tau} \xi\right) . \tag{4.3}
\end{equation*}
$$

Lemma 4.3.6. Let $b \in \Gamma^{\mu}\left(\mathbb{R}^{n}, \mathscr{L}(E)\right), b_{\lambda}$ as in 4.3), $\mu \leq 0,\left(x_{0}, \xi_{0}\right) \in$ $\mathbb{R}^{n} \times \mathbb{R}^{n},\left|\left(x_{0}, \xi_{0}\right)\right|=1$. Set

$$
\begin{equation*}
\rho:=\frac{\tau}{1-\tau} \tag{4.4}
\end{equation*}
$$

(notice that $0<\rho<1$, since $0<\tau<1 / 2$ ). Then, for any $\lambda \geq 1$, and any $\alpha, \beta \in \mathbb{Z}_{+}^{n}$, we have

$$
\begin{equation*}
\left\|D_{\xi}^{\alpha} D_{x}^{\beta} b_{\lambda}(x, \xi)\right\|_{\mathscr{L}(E)} \leq C_{\alpha, \beta} \lambda^{(1-\tau) \mu-|\beta| \tau}\langle(x, \xi)\rangle^{|\alpha|-\mu}, \tag{4.5}
\end{equation*}
$$

uniformly in $(x, \xi) \in \mathbb{R}^{n} \times \mathbb{R}^{n}$.
Proof. By direct computation, we get

$$
\begin{aligned}
\| D_{\xi}^{\alpha} D_{x}^{\beta} b\left(\lambda x_{0}+\lambda^{-\tau} x\right. & \left.\lambda \xi_{0}+\lambda^{\tau} \xi\right) \|_{\mathscr{L}(E)} \\
& \leq C_{\alpha, \beta} \lambda^{|\alpha| \tau-|\beta| \tau}\left\langle\left(\lambda x_{0}+\lambda^{-\tau} x, \lambda \xi_{0}+\lambda^{\tau} \xi\right)\right\rangle^{\mu-|\alpha|-|\beta|} \\
& \prec \lambda^{|\alpha| \tau-|\beta| \tau}\left\langle\left(\lambda x_{0}+\lambda^{-\tau} x, \lambda \xi_{0}+\lambda^{\tau} \xi\right)\right\rangle^{\mu-\rho|\alpha|} \\
& \prec \lambda^{|\alpha| \tau-|\beta| \tau}\left\langle\left(\lambda x_{0}, \lambda \xi_{0}\right)\right\rangle^{\mu-\rho|\alpha|}\left\langle\left(\lambda^{-\tau} x, \lambda^{\tau} \xi\right)\right\rangle^{\rho|\alpha|-\mu} \\
& \prec \lambda^{|\alpha| \tau-|\beta| \tau} \lambda^{\mu-\rho|\alpha|} \lambda^{\rho \tau|\alpha|-\tau \mu}\langle(x, \xi))^{\rho|\alpha|-\mu} \\
& \prec \lambda^{(1-\tau) \mu-|\beta| \tau} \lambda^{|\alpha|(\tau-\rho+\rho \tau)}\langle(x, \xi)\rangle^{\rho|\alpha|-\mu}
\end{aligned}
$$

where we used Peetre's inequality (1.1.1) and that $\rho|\alpha|-\mu \geq 0$. From (4.4),

$$
\tau-\rho+\rho \tau=\tau-\frac{\tau}{1-\tau}+\frac{\tau^{2}}{1-\tau}=0
$$

The proof is complete.

We can now prove the following Proposition:
Proposition 4.3.7. Let $\left(x_{0}, \xi_{0}\right) \in \mathbb{R}^{n} \times \mathbb{R}^{n},\left|\left(x_{0}, \xi_{0}\right)\right|=1$, and $0<\tau<1 / 2$ be fixed. Set

$$
R_{\lambda} u(x)=\lambda^{\tau n / 2} e^{i \lambda x \xi_{0}} u\left(\lambda^{\tau}\left(x-\lambda x_{0}\right)\right), \quad u \in \mathcal{C}_{0}^{\infty}\left(\mathbb{R}^{n}, E\right)
$$

Then
i) $R_{\lambda}$ is an invertible isometry $L^{2}\left(\mathbb{R}^{n}, E\right) \rightarrow L^{2}\left(\mathbb{R}^{n}, E\right)$;
ii) $R_{\lambda} u \rightarrow 0$ weakly in $L^{2}\left(\mathbb{R}^{n}, E\right)$ for $\lambda \rightarrow+\infty$;
iii) For any $A \in \mathrm{G}^{0}\left(\mathbb{R}^{n}, \mathscr{L}(E)\right)$ and $u \in L^{2}\left(\mathbb{R}^{n}, E\right)$ we have

$$
\left\|R_{\lambda}^{-1} A R_{\lambda} u-\sigma_{A}\left(x_{0}, \xi_{0}\right) u\right\|_{L^{2}\left(\mathbb{R}^{n}, E\right)} \rightarrow 0
$$

Proof. In this proof we follow the ideas in RS82, §2.3.4].
i) Obviously, we have $\left\|R_{\lambda} u\right\|_{L^{2}\left(\mathbb{R}^{n}, E\right)}=\|u\|_{L^{2}\left(\mathbb{R}^{n}, E\right)}$ for all $u \in \mathcal{C}_{0}^{\infty}\left(\mathbb{R}^{n}, E\right)$. We get the claim by density.
ii) Pick $u, v \in \mathcal{C}_{0}^{\infty}\left(\mathbb{R}^{n}, E\right)$, and notice that the inverse of $R_{\lambda}$ in given by

$$
R_{\lambda}^{-1} u(x)=\lambda^{-\tau n / 2} e^{-i \lambda\left(\lambda^{-\tau} x+\lambda x_{0}\right) \xi_{0}} u\left(\lambda^{-\tau} x+\lambda x_{0}\right)
$$

Hence,

$$
\begin{aligned}
\left|\left(R_{\lambda} u, v\right)_{L^{2}\left(\mathbb{R}^{n}, E\right)}\right| & \leq \lambda^{\tau n / 2} \int\left|\left(u\left(\lambda^{\tau}\left(x-\lambda x_{0}\right)\right), v(x)\right)_{E}\right| d x \\
& \leq \lambda^{-\tau n / 2} \int\left|\left(u(x), v\left(\lambda^{-\tau} x+\lambda x_{0}\right)\right)_{E}\right| d x \\
& \leq \lambda^{-\tau n / 2}\|u\|_{L^{1}\left(\mathbb{R}^{n}, E\right)}\|v\|_{L^{\infty}\left(\mathbb{R}^{n}, E\right)} \rightarrow 0
\end{aligned}
$$

for $\lambda \rightarrow+\infty$. Moreover, observe that

$$
\left|\left(R_{\lambda} u, v\right)\right| \leq\left\|R_{\lambda} u\right\|_{L^{2}\left(\mathbb{R}^{n}, E\right)}\|v\|_{L^{2}\left(\mathbb{R}^{n}, E\right)}=\|u\|_{L^{2}\left(\mathbb{R}^{n}, E\right)}\|v\|_{L^{2}\left(\mathbb{R}^{n}, E\right)}
$$

Fix $u, v \in L^{2}\left(\mathbb{R}^{n}, E\right)$, choose $\left\{u_{j}\right\},\left\{v_{j}\right\} \subset \mathcal{C}_{0}^{\infty}\left(\mathbb{R}^{n}, E\right)$ such that $u_{j} \rightarrow$ $u, v_{j} \rightarrow v$ in $L^{2}\left(\mathbb{R}^{n}, E\right)$ for $j \rightarrow+\infty$. Then,

$$
\begin{aligned}
\left|\left(R_{\lambda} u, v\right)\right| & \left.\leq\left|\left(R_{\lambda}\left(u-u_{j}\right), v\right)\right|+\mid\left(R_{\lambda} u_{j}, v-v_{j}\right)\right)\left|+\left|\left(R_{\lambda} u_{j}, v_{j}\right)\right|\right. \\
& \leq\left\|u-u_{j}\right\|_{L^{2}}\|v\|_{L^{2}}+\left\|u_{j}\right\|_{L^{2}}\left\|v-v_{j}\right\|_{L^{2}}+\left|\left(R_{\lambda} u_{j}, v_{j}\right)\right|
\end{aligned}
$$

Thus, for every $\varepsilon>0$ we can choose $N>0$ such that, for all $j>N$,

$$
\left\|u-u_{j}\right\|_{L^{2}}\|v\|_{L^{2}}+\left\|u_{j}\right\|_{L^{2}}\left\|v-v_{j}\right\|_{L^{2}} \leq \frac{\varepsilon}{2}
$$

and $\lambda \gg 1$ such that

$$
\left|\left(R_{\lambda} u_{j}, v_{j}\right)\right| \leq \frac{\varepsilon}{2}
$$

since $\left\|u_{j}\right\|,\left\|v_{j}\right\|$ are (uniformly) bounded with respect to $j$. This implies

$$
\left(R_{\lambda} u, v\right)_{L^{2}\left(\mathbb{R}^{n}, E\right)} \rightarrow 0 \text { for } \lambda \rightarrow+\infty,
$$

for all $v \in L^{2}\left(\mathbb{R}^{n}, E\right)$, that is, $R_{\lambda} u \rightarrow 0$ weakly in $L^{2}\left(\mathbb{R}^{n}, E\right)$.
iii) Let $A=\operatorname{Op}(a)$ with $a \in \Gamma^{0}\left(\mathbb{R}^{n}, \mathscr{L}(E)\right)$, and choose an excision function $\chi(x, \xi)$ such that $a(x, \xi)=\chi(x, \xi) \sigma_{A}(x, \xi)+r(x, \xi)$, where $r \in$ $\Gamma^{-1}\left(\mathbb{R}^{n}, \mathscr{L}(E)\right)$. From

$$
\widehat{R_{\lambda} u}(\xi)=\lambda^{-\tau n / 2} e^{-i \lambda x_{0}\left(\xi-\lambda \xi_{0}\right)} \hat{u}\left(\left(\xi-\lambda \xi_{0}\right) \lambda^{-\tau}\right),
$$

$u \in \mathcal{C}_{0}^{\infty}\left(\mathbb{R}^{n}, E\right)$, we get, by direct computation,

$$
\begin{aligned}
& R_{\lambda}^{-1} \mathrm{Op}(a) R_{\lambda} u(x) \\
& =\int e^{i x \xi}\left(\chi\left(\lambda x_{0}+\lambda^{-\tau} x, \lambda^{\tau} \xi+\lambda \xi_{0}\right) \sigma_{A}\left(\lambda x_{0}+\lambda^{-\tau} x, \lambda^{\tau} \xi+\lambda \xi_{0}\right)\right. \\
& \left.\quad+r\left(\lambda x_{0}+\lambda^{-\tau} x, \lambda^{\tau} \xi+\lambda \xi_{0}\right)\right) \hat{u}(\xi) d \xi
\end{aligned} \begin{aligned}
& =\int e^{i x \xi}\left(\chi\left(\lambda x_{0}+\lambda^{-\tau} x, \lambda^{\tau} \xi+\lambda \xi_{0}\right) \sigma_{A}\left(x_{0}+\lambda^{-\tau-1} x, \xi_{0}+\lambda^{\tau-1} \xi\right)\right. \\
& \left.\quad+r\left(\lambda x_{0}+\lambda^{-\tau} x, \lambda^{\tau} \xi+\lambda \xi_{0}\right)\right) \hat{u}(\xi) d \xi \\
& =\int e^{i x \xi}\left(a_{\lambda}^{\prime}(x, \xi)+r_{\lambda}(x, \xi)\right) \hat{u}(\xi) d \xi \\
& =\left(\mathrm{Op}\left(a_{\lambda}^{\prime}\right)+\mathrm{Op}\left(r_{\lambda}\right)\right) u(x),
\end{aligned}
$$

with

$$
a_{\lambda}^{\prime}(x, \xi)=\chi\left(\lambda x_{0}+\lambda^{-\tau} x, \lambda^{\tau} \xi+\lambda \xi_{0}\right) \sigma_{A}\left(x_{0}+\lambda^{-\tau-1} x, \xi_{0}+\lambda^{\tau-1} \xi\right),
$$

and $r_{\lambda} \in \Gamma^{-1}\left(\mathbb{R}^{n}, \mathscr{L}(E)\right)$ as in 4.3). First, we want to show that, for $\lambda \rightarrow+\infty$,

$$
\begin{equation*}
\operatorname{Op}\left(r_{\lambda}\right) u \rightarrow 0 \quad \text { in } L^{2}\left(\mathbb{R}^{n}, E\right) . \tag{4.6}
\end{equation*}
$$

Due to Lebesgue's Theorem on dominated convergence, this is true provided we verify
a) $\operatorname{Op}\left(r_{\lambda}\right) u(x) \rightarrow 0$ in $E$ pointwise for $x \in \mathbb{R}^{n}$;
b) There exists $g \in L^{1}\left(\mathbb{R}^{n}\right)$ such that $\left\|\operatorname{Op}\left(r_{\lambda}\right) u(x)\right\|_{E} \prec g(x)$ for all $x \in \mathbb{R}^{n}$ and $\lambda \geq 1$.

Using (4.5) with $\mu=-1$, for fixed $x$ we get

$$
\begin{aligned}
\left\|r_{\lambda}(x, \xi) \hat{u}(\xi)\right\|_{E} & \leq\left\|r_{\lambda}(x, \xi)\right\|_{\mathscr{L}(E)}\|\hat{u}(\xi)\|_{E} \\
& \prec \lambda^{\tau-1}\langle(x, \xi)\rangle\|\hat{u}(\xi)\|_{E} \rightarrow 0
\end{aligned}
$$

for $\lambda \rightarrow+\infty$ for every $\xi \in \mathbb{R}$, because $\tau-1<0$. Since $u \in \mathcal{C}_{0}^{\infty}\left(\mathbb{R}^{n}, E\right)$, for any $N \in \mathbb{N}$ we have $\|\hat{u}(\xi)\|_{E} \prec\langle\xi\rangle^{-N}$, thus

$$
\left\|r_{\lambda}(x, \xi) \hat{u}(\xi)\right\|_{E} \prec \lambda^{\tau-1}\langle(x, \xi)\rangle\|\hat{u}(\xi)\|_{E} \prec\langle\xi\rangle^{1-N},
$$

which is in $L^{1}\left(\mathbb{R}_{\xi}^{n}, E\right)$ for $N>1+n$. This, by Lebesgue's Theorem on dominated convergence, implies a).
Now, for fixed $M \in \mathbb{N}$, consider $\langle x\rangle^{2 M} \operatorname{Op}\left(r_{\lambda}\right) u(x)$. By an integration by parts argument, we get

$$
\begin{aligned}
\langle x\rangle^{2 M} \mathrm{Op}\left(r_{\lambda}\right) u(x) & =\langle x\rangle^{2 M} \int e^{i x \xi} r_{\lambda}(x, \xi) \hat{u}(\xi) d \xi \\
& =\int e^{i x \xi}\left(1+\Delta_{\xi}\right)^{M}\left(r_{\lambda}(x, \xi) \hat{u}(\xi)\right) d \xi .
\end{aligned}
$$

Using again that $u \in \mathcal{C}_{0}^{\infty}\left(\mathbb{R}^{n}, E\right)$, 4.5) and Leibniz's product rule,

$$
\begin{aligned}
\left\|\langle x\rangle^{2 M} \operatorname{Op}\left(r_{\lambda}\right) u(x)\right\|_{E} & \leq \int\left\|\left(1+\Delta_{\xi}\right)^{M}\left(r_{\lambda}(x, \xi) \hat{u}(\xi)\right)\right\|_{E} d \xi \\
& \prec \int \lambda^{\tau-1}\langle(x, \xi)\rangle^{2 M \rho+1}\|\hat{u}(\xi)\|_{E} d \xi \\
& \prec\langle x\rangle^{2 M \rho+1} \int\langle\xi\rangle^{2 M \rho+1}\|\hat{u}(\xi)\|_{E} d \xi \\
& \prec\langle x\rangle^{2 M \rho+1} \int\langle\xi\rangle^{2 M \rho+1-N} d \xi<+\infty
\end{aligned}
$$

for any $N>2 M \rho+1+n$. Hence, for any $M \in \mathbb{N}$ with , $M>\frac{n+1}{2(1-\rho)}$,

$$
\left\|\mathrm{Op}\left(r_{\lambda}\right) u(x)\right\|_{E} \prec\langle x\rangle^{2 M(\rho-1)+1}:=g(x) \in L^{1}\left(\mathbb{R}^{n}\right)
$$

i.e. b) is verified. Thus, we have (4.6).

Now we consider

$$
\begin{aligned}
& \operatorname{Op}\left(a_{\lambda}^{\prime}\right) u(x) \\
& =\int e^{i x \xi}\left(\chi\left(\lambda x_{0}+\lambda^{-\tau} x, \lambda^{\tau} \xi+\lambda \xi_{0}\right) \sigma_{A}\left(x_{0}+\lambda^{-\tau-1} x, \xi_{0}+\lambda^{\tau-1} \xi\right)\right) \hat{u}(\xi) đ \xi
\end{aligned}
$$

For fixed $x$, we get
$\left(\chi\left(\lambda x_{0}+\lambda^{-\tau} x, \lambda^{\tau} \xi+\lambda \xi_{0}\right) \sigma_{A}\left(x_{0}+\lambda^{-\tau-1} x, \xi_{0}+\lambda^{\tau-1} \xi\right)\right) \hat{u}(\xi) \rightarrow \sigma_{A}\left(x_{0}, \xi_{0}\right) \hat{u}(\xi)$
for $\lambda \rightarrow+\infty$ for all $\xi \in \mathbb{R}^{n}$. Then, for fixed $x \in \mathbb{R}^{n}$,
$\left\|\left(a_{\lambda}^{\prime}(x, \xi)-\sigma_{A}(x, \xi)\right) \hat{u}(\xi)\right\|_{E} \prec\|\hat{u}(\xi)\|_{E} \sup _{(x, \xi) \in \mathbb{R}^{n} \times \mathbb{R}^{n}}\|\sigma(x, \xi)\|_{\mathcal{L}(E)} \prec\langle\xi\rangle^{-N^{\prime}}$,
hence

$$
\operatorname{Op}\left(a_{\lambda}^{\prime}\right) u(x) \rightarrow \sigma_{A}\left(x_{0}, \xi_{0}\right) \int e^{i x \xi} \hat{u}(\xi) d \xi=\sigma_{A}\left(x_{0}, \xi_{0}\right) u(x)
$$

for $\lambda \rightarrow+\infty$. Again, integration by parts yields

$$
\langle x\rangle^{2 M} \operatorname{Op}\left(a_{\lambda}^{\prime}\right) u(x)=\int e^{i x \xi}\left(1+\Delta_{\xi}\right)^{M}\left(a_{\lambda}^{\prime}(x, \xi) \hat{u}(\xi)\right) d \xi
$$

for arbitrary $M \in \mathbb{N}$, and

$$
\left\|\operatorname{Op}\left(a_{\lambda}^{\prime}\right) u(x)\right\|_{E} \prec\langle x\rangle^{2 M(\rho-1)} \in L^{1}\left(\mathbb{R}^{n}\right) \text { for } M>\frac{n}{2(1-\rho)}
$$

In the end, by Lebesgue's Theorem on dominated convergence, we get

$$
\operatorname{Op}\left(a_{\lambda}^{\prime}\right) u \rightarrow \sigma_{A}\left(x_{0}, \xi_{0}\right) u \quad \text { in } L^{2}\left(\mathbb{R}^{n}, E\right)
$$

for $\lambda \rightarrow+\infty$, and this, together with (4.6), completes the proof.

Using the previous Proposition 4.3.7, we can prove the following result on the invertibility of the principal symbol for operators in $\mathrm{G}^{0}\left(\mathbb{R}^{n}, \mathscr{L}(E)\right)$ with the Fredholm property.

Theorem 4.3.8. Let $A=\mathrm{Op}(a) \in \mathrm{G}^{0}\left(\mathbb{R}^{n}, \mathscr{L}(E)\right)$ induce a Fredholm operator $L^{2}\left(\mathbb{R}^{n}, E\right) \rightarrow L^{2}\left(\mathbb{R}^{n}, E\right)$. Then, $\sigma_{A}$ is invertible.

Proof. In this proof we set $\|\cdot\|:=\|\cdot\|_{L^{2}\left(\mathbb{R}^{n}, E\right)}$. Let $B \in \mathcal{L}\left(L^{2}\left(\mathbb{R}^{n}, E\right)\right)$ denote a Fredholm inverse of $A$, i.e.

$$
B A=I+K
$$

where $K$ is compact in $L^{2}\left(\mathbb{R}^{n}, E\right)$. Choose $u \in L^{2}\left(\mathbb{R}^{n}, E\right)$. Using the isometric operator $R_{\lambda}$, for fixed $\left(x_{0}, \xi_{0}\right) \in \mathbb{R}^{n} \times \mathbb{R}^{n},\left|\left(x_{0}, \xi_{0}\right)\right|=1$, as introduced in Proposition 4.3.7, we get

$$
\begin{aligned}
\|u\|=\left\|R_{\lambda} u\right\| & =\left\|(B A-K) R_{\lambda} u\right\| \\
& \leq\|B\|_{\mathscr{L}\left(L^{2}\left(\mathbb{R}^{n}, E\right)\right)}\left\|A R_{\lambda} u\right\|+\left\|K R_{\lambda} u\right\| \\
& \leq\|B\|_{\mathscr{L}\left(L^{2}\left(\mathbb{R}^{n}, E\right)\right)}\left\|R_{\lambda}^{-1} A R_{\lambda} u\right\|+\left\|K R_{\lambda} u\right\| \\
& \rightarrow\|B\|_{\mathscr{L}\left(L^{2}\left(\mathbb{R}^{n}, E\right)\right)}\left\|\sigma_{A}\left(x_{0}, \xi_{0}\right) u\right\|
\end{aligned}
$$

for $\lambda \rightarrow+\infty$ in $L^{2}\left(\mathbb{R}^{n}, E\right)$, since $K R_{\lambda} u \rightarrow 0$, in view of the fact that $K$ is compact, and compact operators map weakly convergent sequences into strongly convergent ones, cfr., e.g., Bre86. Choosing $u=\phi \otimes e$, with $\phi \in L^{2}\left(\mathbb{R}^{n}\right),\|\phi\|_{L^{2}\left(\mathbb{R}^{n}\right)}=1$, and $e \in E$, we get by the previous equation

$$
\left\|\sigma_{A}\left(x_{0}, \xi_{0}\right) e\right\|_{E} \geq \frac{\|e\|_{E}}{\|B\|_{\mathscr{L}\left(L^{2}\left(\mathbb{R}^{n}, E\right)\right)}}
$$

i.e. $\sigma_{A}$ is injective. Moreover, since $A$ is Fredholm, also $A^{*}$, the adjoint of $A$, is Fredholm, i.e.

$$
B^{\prime} A^{*}=I+K^{\prime}
$$

for some $B^{\prime} \in \mathcal{L}\left(L^{2}\left(\mathbb{R}^{n}, E\right)\right)$ and $K^{\prime}$ compact. Analogously

$$
\left\|\sigma_{A^{*}}\left(x_{0}, \xi_{0}\right) e\right\|_{E} \geq \frac{\|e\|_{E}}{\left\|B^{\prime}\right\|_{\mathscr{L}\left(L^{2}\left(\mathbb{R}^{n}, E\right)\right)}}
$$

and since $\left(\sigma_{A}\right)^{*}=\sigma_{A^{*}}$, we get that $\sigma_{A}$ is bijective, as claimed.
Theorem 4.3.9. Let $A \in \mathrm{G}_{\mathrm{cl}}^{0,0}\left(\mathbb{R}^{n_{1}}, \mathbb{R}^{n_{2}}\right)$ induce a Fredholm operator from $L^{2}\left(\mathbb{R}^{n_{1}} \times \mathbb{R}^{n_{2}}\right)$ to itself. Then $A$ is bi-elliptic.

Proof. In view of Remark 4.3.4, we can consider $A$ as an operator belonging to $\mathrm{G}^{0}\left(\mathbb{R}^{n_{1}}, \mathscr{L}(E)\right)$ with $E=L^{2}\left(\mathbb{R}^{n_{2}}\right)$. Then, by Theorem 4.3.8, the operator valued principal symbol $\sigma_{\mathrm{Op}\left(A^{1}\right)}\left(x_{1}, \xi_{1}\right)=\sigma^{1}(A)\left(x_{1}, \xi_{1}\right)$ is everywhere invertible.
Analogously, by viewing $A$ as an operator in $\mathrm{G}^{0}\left(\mathbb{R}^{n_{2}}, \mathscr{L}(E)\right)$ with $E=$ $L^{2}\left(\mathbb{R}^{n_{1}}\right)$, also $\sigma^{2}(A)\left(x_{2}, \xi_{2}\right)$ is everywhere invertible.
Finally, fix $\left(x_{1}, x_{2}, \xi_{1}, \xi_{2}\right) \in\left(T^{*} \mathbb{R}^{n_{1}} \backslash 0\right) \times\left(T^{*} \mathbb{R}^{n_{2}} \backslash 0\right)$. Since $\sigma^{1}(A)\left(x_{1}, \xi_{1}\right) \in$ $\mathrm{G}_{\mathrm{cl}}^{m_{2}}\left(\mathbb{R}^{n_{2}}\right)$ is everywhere invertible, it is, in particular, non-characteristic at $\left(x_{2}, \xi_{2}\right)$. Thus

$$
\begin{equation*}
\sigma^{12}(A)\left(x_{1}, x_{2}, \xi_{1}, \xi_{2}\right)=\sigma_{\sigma^{1}(A)\left(x_{1}, \xi_{1}\right)}\left(x_{2}, \xi_{2}\right) \neq 0 \tag{4.7}
\end{equation*}
$$

where we used 4.2 . This, according to Definition 4.2 .6 , proves our claim.

Summing up, we have the following Theorem.
Theorem 4.3.10. Let $A \in \mathrm{G}_{\mathrm{cl}}^{0,0}\left(\mathbb{R}^{n_{1}}, \mathbb{R}^{n_{2}}\right)$. Then $A$ is bi-elliptic if and only if it induces a Fredholm operator from $L^{2}\left(\mathbb{R}^{n_{1}} \times \mathbb{R}^{n_{2}}\right)$ to itself.

Proof. The claim follows from Theorem 4.3.2 and Theorem 4.3.9.

## Bibliography

[ANPS09] W. Arendt, R. Nittka, W. Peter, and F. Steiner, Weyl's Law: Spectral Properties of the Laplacian in Mathematics and Physics, pp. 1-71, Wiley-VCH Verlag GmbH Co. KGaA, 2009.
[Ara88] J. Aramaki, On an extension of the Ikehara Tauberian theorem, Pacific J. Math. 133 (1988), no. 1, 13-30.
[AS68] M. F. Atiyah and I. M. Singer, The index of elliptic operators. I, Ann. of Math. (2) 87 (1968), 484-530.
[Bat12] U. Battisti, Weyl asymptotics of bisingular operators and Dirichlet divisor problems, Math. Z. (2012), no. 272, 1365-1381.
[BC11] U. Battisti and S. Coriasco, Wodzicki residue for operators on manifolds with cylindrical ends, Ann. Global Anal. Geom. 40 (2011), no. 2, 223-249.
[BEM71] M. Berger, P. Gauduchon E., and Mazet, Le spectre d'une variété riemannienne, Lecture notes in mathematics, Springer-Verlag, 1971.
[BGPR13] U. Battisti, T. Gramchev, S. Pilipović, and L. Rodino, Globally Bisingular Elliptic Operators, Operator Theory, PseudoDifferential Equations, and Mathematical Physics, Operator Theory: Advances and Applications, vol. 228, Birkhäuser, Basel, 2013.
[BN03] P. Boggiatto and F. Nicola, Non-commutative residues for anisotropic pseudo-differential operators in $\mathbb{R}^{n}$, J. Funct. Anal. 203 (2003), no. 2, 305-320.
[Bre86] H. Brezis, Analisi Funzionale: Teoria e applicazioni, Liguori Editore, 1986.
[BS14] M. Borsero and R. Schulz, Microlocal properties of bisingular operators, J. Pseudo-Differ. Oper. Appl. 5 (2014), no. 1, 43-67.
[Cha08] F. Chamizo, Lattice point counting and harmonic analysis, Proceedings of the Segundas Jornadas de Teoria de Numeros, Bibl. Rev. Mat. Iberoamericana, Rev. Mat. Iberoamericana, Madrid, 2008, pp. 83-99. MR 2603899 (2011f:11130)
[CJT13a] S. Coriasco, K. Johansson, and J. Toft, Global wave-front sets of Banach, Fréchet and Modulation space types, and pseudodifferential operators, J. of Diff. Eq. 254 (2013), 3228-3258.
[CJT13b] , Local wave-front sets of Banach and Fréchet types, and pseudo-differential operators, Monatshefte für Mathematik 169 (2013), no. 3-4, 285-316.
[CM03] S. Coriasco and L. Maniccia, Wave Front Set at Infinity and Hyperbolic Linear Operators with Multiple Characteristics, Ann. Global Anal. Geom. (2003), no. 24, 375-400.
[CM13] , On the Spectral Asymptotics of Operators on Manifolds with Ends, Abstract and Applied Analysis, Vol. 2013 (2013).
[Cor95] H. O. Cordes, The Technique of Pseudodifferential Operators, Cambridge University Press, 1995.
[DD13] K. Datchev and S. Dyatlov, Fractal Weyl laws for asymptotically hyperbolic manifolds, Geom. Funct. Anal. 23 (2013), no. 4, 11451206.
[DG75] J. J. Duistermaat and V. Guillemin, The spectrum of positive elliptic operators and periodic bicharacteristics, Invent. Math. 29 (1975), no. 1, 39-79. MR 0405514 (53 \#9307)
[DS58] N. Dunford and J. T. Schwartz, Linear Operators: General theory, Linear Operators, Interscience Publishers, 1958.
[Dud79a] R. V. Dudučava, On the index of bisingular integral operators. I., Math. Nachr. (1979), no. 91, 431-460.
[Dud79b] , On the index of bisingular integral operators. II., Math. Nachr. (1979), no. 92, 289-307.
[ES97] Y. V. Egorov and B.-W. Schulze, Pseudo-differential operators, singularities, applications, Operator Theory: Advances and Applications, vol. 91, Birkhäuser Verlagl, Basel, 1997.
[GH13] D. Grieser and E. Hunsicker, A Parametrix Construction for the Laplacian on $\mathbb{Q}$-rank 1 Locally Symmetric Spaces, Preprint (2013), in http://arxiv.org/abs/1212.3459v2.
[GL02] J. Gil and P. Loya, On the noncommutative residue and the heat trace expansion on conic manifolds, Manuscripta Math. 109 (2002), no. 3, 309-327.
[GPRV14] T. Gramchev, S. Pilipović, L. Rodino, and J. Vindas, Weyl asymptotics for tensor products of operators and Dirichlet divisors, Ann. Mat. Pura Appl. (2014), 1-19.
[GS94] A. Grigis and J. Sjöstrand, Microlocal Analysis for Differential Operators, An Introduction, Cambridge University Press, 1994.
[Gui85] V. Guillemin, A new proof of Weyl's formula on the asymptotic distribution of eigenvalues, Adv. in Math. 55 (1985), no. 2, 131160. MR MR772612 (86i:58135)
[Har16] G. H. Hardy, On Dirichlet's Divisor Problem, Proc. London Math. Soc. (2) 15 (1916), 1-25.
[Hel84] B. Helffer, Théorie spectrale pour des opérateurs globalement elliptiques, Astérisque, vol. 112, Société Mathématique de France, Paris, 1984, With an English summary. MR 743094 (86d:35151)
[Hör68] L. Hörmander, The spectral function of an elliptic operator, Acta Math. 121 (1968), 193-218. MR 0609014 ( 58 \#29418)
[Hör83] _ The Analysis of Linear Partial Differential Operators, vol. I, Springer-Verlag, 1983.
[Hör85a] , The Analysis of Linear Partial Differential Operators, vol. IV, Springer-Verlag, 1985.
[Hör85b] _, The Analysis of Linear Partial Differential Operators, vol. III, Springer-Verlag, 1985.
[Hör91] , Quadratic hyperbolic operators, Microlocal Analysis and Applications (L. Cattabriga and L. Rodino, eds.), Lecture Notes in Mathematics, vol. 1495, Springer Berlin Heidelberg, 1991, pp. 118-160.
[Hux03] M. N. Huxley, Exponential sums and lattice points. III, Proc. London Math. Soc. (3) 87 (2003), no. 3, 591-609.
[IKKN06] A. Ivić, E. Krätzel, M. Kühleitner, and W. G. Nowak, Lattice points in large regions and related arithmetic functions: recent developments in a very classic topic, Elementare und analytische Zahlentheorie, Schr. Wiss. Ges. Johann Wolfgang Goethe Univ. Frankfurt am Main, 20, Franz Steiner Verlag Stuttgart, Stuttgart, 2006, pp. 89-128.
[KG82] H. Kumano-Go, Pseudodifferential Operators, MIT-Press, 1982.
[Mel94] R. Melrose, Spectral and scattering theory for the Laplacian on asymptotically Euclidian spaces, 1994.
[Mel95] , Geometric scattering theory. Stanford Lectures, Cambridge University Press, 1995.
[Mel04] _ Lecture Notes for Graduate Analysis, available online at http://wwwmath.mit.edu/ rbm/18.155-F04-notes/Lecturenotes.pdf, last downloaded 07/10/2014, 2004.
[MM12] V. Mathai and R. Melrose, Geometry of pseudodifferential algebra bundle and fourier integral operators, Preprint (2012), in http://arxiv.org/abs/1210.0990.
[Mor08] S. Moroianu, Weyl laws on open manifolds, Math. Ann. 340 (2008), no. 1, 1-21.
[MR06] R. Melrose and F. Rochon, Index in K-theory for families of fibred cusp operators, K-theory 37 (2006), pp.25-104.
[MS75] A. Melin and J. Sjöstrand, Fourier integral operators with complex-valued phase functions, Fourier Integral Operators and Partial Differential Equations, Lecture Notes in Mathematics, vol. 459, Springer Berlin Heidelberg, 1975, pp. 120-223.
[Nic03] F. Nicola, Trace functionals for a class of pseudo-differential operators in $\mathbb{R}^{n}$, Math. Phys. Anal. Geom. 6 (2003), no. 1, 89-105.
[NR06] F. Nicola and L. Rodino, Residues and Index for Bisingular Operators, In: $C^{*}$-algebras and elliptic theory, Trends Math., Birkhäuser (2006), 187-202.
[NR11] , Global Pseudo-differential Calculus on Euclidean Spaces, Pseudo-Differential Operators, Springer, 2011.
[Par72] C. Parenti, Operatori pseudodifferenziali in $\mathbb{R}^{n}$ e applicazioni, Ann. Mat. Pura Appl. 93 (1972), 359-389.
[Pil71] V. S. Pilidi, Multidimensional bisingular operators, Dokl. Akad. Nauk SSSR (1971), no. 201, 787-789.
[Pil73] , Computation of the index of a bisingular operator., Funkcional. Anal. i Priložen. (1973), no. 7, 93-94.
[Rod75] L. Rodino, A class of pseudo differential operators on the product of two manifolds and applications, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (1975), no. 4, 287-302.
[Rod80] , Polysingular integral operators, Ann. Mat. Pura Appl. (1980), no. 124, 59-106.
[RS82] S. Rempel and B.-W. Schulze, Index theory of elliptic boundary problems, Mathematische Lehrbücher und Monographien: Mathematische Monographien, Akademie-Verlag, 1982.
[RSW07] L. Rodino, B-.W. Schulze, and M.W. Wong, Pseudo-differential Operators: Partial Differential Equations and Time-frequency Analysis, Fields Institute communications, American Mathematical Soc., 2007.
[Sch87] E. Schrohe, Spaces of weighted symbols and weighted sobolev spaces on manifolds, Pseudo-Differential Operators, Lecture Notes in Math., vol. 1256, Springer, Berlin, 1987, pp. 360-377.
[Sch98] B.-W. Schulze, Boundary Value Problems and Singular PseudoDifferential Operators, Pure and Applied Mathematics: A Wiley Series of Texts, Monographs and Tracts, Wiley, 1998.
[Sch11] , The iterative structure of the corner calculus, Pseudodifferential operators: analysis, applications and computations, Oper. Theory Adv. Appl., vol. 213, Birkhäuser/Springer Basel AG, Basel, 2011, pp. 79-103. MR 2867418
[See67] R. T. Seeley, Complex powers of an elliptic operator, Singular Integrals (Proc. Sympos. Pure Math., Chicago, Ill., 1966), Amer. Math. Soc., Providence, R.I., 1967, pp. 288-307. MR 0237943 (38 \#6220)
[Sei12] J. Seiler, Ellipticity in pseudodifferential algebras of Toeplitz type, Journal of Functional Analysis 263 (2012), no. 5, 1408-1434.
[Shu01] M. A. Shubin, Pseudodifferential Operators and Spectral Theory, second ed., Springer-Verlag, 2001.
[Sjö82] J. Sjöstrand, Singularites Analytiques Microlocales, Asterisque n.95, Soc. Math. De France, 1982.
[SV97] Y. Safarov and D. Vassiliev, The asymptotic distribution of eigenvalues of partial differential operators, Translations of Mathematical Monographs, vol. 155, American Mathematical Society, Providence, RI, 1997, Translated from the Russian manuscript by the authors.
[Tay74] M. E. Taylor, Pseudo differential operators, Lecture notes in mathematics, Springer-Verlag, 1974.
[Trè67] F. Trèves, Topological Vector Spaces, Distributions, and Kernels, Academic Press, 1967.
[Trè80] __ Introduction to pseudodifferential and Fourier integrals operators, University series in mathematics, vol. I, Plenum Press, 1980.
[Wei75] A. Weinstein, Fourier integral operators, quantization, and the spectra of Riemannian manifolds, Géométrie symplectique et physique mathématique (Colloq. Internat. CNRS, No. 237, Aix-en-Provence, 1974), Éditions Centre Nat. Recherche Sci., Paris, 1975, With questions by W. Klingenberg and K. Bleuler and replies by the author, pp. 289-298.


[^0]:    ${ }^{1}$ Being a classical symbol on $\Omega_{2}$, it admits an asymptotic expansion in homogeneous terms with respect to the $\xi_{2}$ variable.

[^1]:    ${ }^{1}$ We recall that $\Omega_{1}$ and $\Omega_{2}$ are closed manifolds, hence $\mathcal{D}^{\prime}\left(\Omega_{i}\right)=\mathcal{E}^{\prime}\left(\Omega_{i}\right), i=1,2$.

[^2]:    ${ }^{1}$ We recall that $A$ can be extended to a closed, unbounded operator with dense domain $A: \mathrm{H}^{m}(M) \subset L^{2}(M) \rightarrow L^{2}(M)$. For details, see Shu01.

[^3]:    ${ }^{2}$ For pseudodifferential operators with complex order see, for instance, Shu01.

[^4]:    ${ }^{3}$ If not, we set $l=\lambda_{1}-\varepsilon, \varepsilon>0$ small enough, consider $\tilde{A}:=\frac{1}{l} A$, and notice that

    $$
    \begin{equation*}
    N_{\tilde{A}}(\tau)=\sum_{l^{-1} \lambda_{i}<\tau} 1=\sum_{\lambda_{i}<\tau l} 1=N_{A}(\tau l) . \tag{3.10}
    \end{equation*}
    $$

[^5]:    ${ }^{4}$ Remember that all the eigenvalues are greater the one.

[^6]:    ${ }^{5}$ In fact, if that condition were not true, we could consider the operator $c^{2} A$, with $c=\left(\min \left\{\lambda_{j}, \mu_{k}\right\}-\varepsilon\right)^{-1}, \varepsilon>0$ small enough, and reason as in 3.10.
    ${ }^{6}$ Recall that $\lambda_{j}>1$ for all $j$. In the first term of 3.33 we can reduce the summation to $\mu_{k}<\tau$ since, otherwise, we would have $\lambda_{k} \cdot \mu_{k} \geq \tau$ for all $k$, and the second summation would be zero.

[^7]:    ${ }^{7}$ Actually, here one could prove directly that $F_{1}(\tau)-\zeta\left(A_{2}^{2}, 1\right)$ is asymptotic to $\tau^{-\frac{3}{4}}$.

[^8]:    ${ }^{8}$ The convergence of the involved series is straightforward.

[^9]:    ${ }^{1}$ The $\mathrm{Q}^{s}$ spaces are the scale of Sobolev spaces adapted to the global Shubin calculus. For more details, see Shu01.

