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Abstract: A series of amine functionalized mixed linkerMOFs of idealized structural formula 

Zr6O4(OH)4(BDC)6-6X(ABDC)6X (BDC = benzene-1,4-dicarboxylic acid, ABDC = 2-

aminobenzene-1,4-dicarboxylic acid) has been prepared by solvo- thermal synthesis.  The 

materials have been characterized by TGA, PXRD and FTIR spectroscopy with the aim of 

elucidating the effect that varying degrees of amine functionalisation has on the stability (thermal 

and chemical) and porosity of the framework. This work includes the first application of UV-

visible spectroscopy in the quantification of ABDC in mixed linkerMOFs.   

1. Introduction   

Metal-organic frameworks are crystalline materials that comprise metal ions or clusters 

coordinated to often rigid organic molecules forming three- dimensional porous structures.
1-4

 

This combination of inorganic and organic building blocks gives rise to near infinite structural 

and chemical possibilities. Such potential has resulted in these materials generating great interest 

in gas separation/storage,
5-6

 catalysis,
7-9

 and drug delivery
10-11

 applications. One emerging area 

which opens yet more possibilities is Post-Synthetic Modification (PSM).
12-13

 To this end, the 

basicity and reactivity of pendant -NH2 groups has resulted in amine functionalized MOFs being 

the most often exploited materials for this purpose.
14-17

  Moreover, many amine functionalized 

MOFs have shown improved CO2 uptake
18-20

 versus their non-functionalized, isostructural 

analogues. Designing MOFs with tailored functional sites is the path way to develop materials 

for advanced applications. However, often it has been found that fully functionalized materials 

are thermally less stable; imposing challenges in solvent removal and activation of the 

framework.
15, 21

  In order to circumvent this problem, it has recently been shown that diluting the 

extent of functionalisation via a “mixed linker” (ML) approach is effective tuning the stability of 
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the material.
22-25

 Furthermore, varying the composition of mixed linkerMOFs can result in 

systematic alteration of the gas adsorption capacity and selectivity of the material. Such an 

approach has been previously been adopted on several MOF topologies, namely MOF-5,
26

 MIL-

53-Al,
27-28

 CAU-10,
29

 and MIL-101
30

 where a mixture of benzene-1,4-dicarboxylic acid (BDC) 

and its amino-, bromo-, nitro-, methyl- functionalized derivatives were used as linkers. In these 

studies, various properties of the materials were significantly influenced by the amount and type 

of functionality introduced in to the framework; namely the surface area (MOF-5),
26

 the 

breathing pressure (MIL-53)
28

 and sorption properties (CAU-10)
29

 were observed to have been 

affected. In order to design mixed linkerMOFs for a particular purpose, it is important to first 

gain an understanding of how the properties of the materials are affected by altering the ratio 

between the linkers. To allow such correlations to be made, mixed linkerMOFs with varying 

degrees of functionalization must be synthesized and thoroughly characterized.  

UiO-66,
31-34

 a Zr(IV)-based MOF has recently received great interest due to its high thermal and 

chemical stability. In accordance with observations on other framework types, UiO-66-NH2, the 

fully amino functionalized isostructural analogue, is thermally less stable than unmodified UiO-

66.
15

 Moreover, post-synthetic modification of UiO-66-NH2 can be challenging due to the steric 

hindrance imposed by the large density of pendant –NH2 groups pointing into the cavities.
35-37

 

The desired –NH2 content may thus vary depending on the application, i.e. it may be beneficial 

to maximize –NH2 loading for the carbon capture and storage applications, whereas a more 

diluted –NH2 loading might be preferred from a post-synthetic modification and catalysis point 

of view.  

The only existing study on amine based mixed linkerMOFs of the UiO-66 topology was 

reported by Kim et al.
38

 Where a mixture of amino- and bromo- functionalized BDC was used to 

form UiO-66-Br-NH2, a MOF which was found to be more thermally stable than UiO-66-NH2. 

Moreover, selective post-synthetic modification of these functional groups in mixed linkerMOF 

was demonstrated.   

In this contribution, we present the synthesis and characterization of mixed linkerMOFs of the 

UiO-66 framework topology, prepared using a mixture of BDC and 2-aminobenzene-1,4-

dicarboxylic acid (ABDC). The series of samples has been characterized for their thermal and 

chemical stability; ease of activation and porosity. Following the use of an original digestion 
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method (OH
-
 instead of F

- 
based media) the ABDC content of the MOFs was quantified by UV-

visible spectroscopy for the first time, with the results validated by the more conventional 
1
H 

NMR method.  

2. Materials and Methods 

2.1 Material Synthesis All chemicals were obtained from commercial vendors and used without 

further purification. The reaction mixtures were prepared in a volumetric flask by sequentially 

adding N,N-dimethylformamide, ZrCl4, H2O, and linker, and in a 350 : 1 : 1.3 : 1 molar ratio at 

room temperature. The linker portion consisted of five different mixtures of BDC and ABDC, 

resulting in five different materials. Specifically, the molar fractions of ABDC with respect to 

BDC were: 0, 0.25, 0.50, 0.75, and 1. The five resulting materials are hereafter labeled UiO-66, 

UiO-66-NH2-25, UiO-66-NH2-50, UiO-66-NH2-75, and UiO-66-NH2, respectively. See Table S1 

for the masses of the synthesis reagents. The flasks were then sealed and placed in an oven at 

100 °C where the synthesis was performed under static conditions for 72 hours. The resulting 

products precipitated as microcrystalline powders which were then separated from the solution 

by centrifugation and washed three times in DMF (40 mL). Water exchanged samples were 

obtained by washing the materials three times in excess of water at 80 °C for 2 hours. Finally, all 

the samples were dried at 60 °C in air for 24 hours. All syntheses were successfully reproduced 

and resulted in a 90-95 % yield of MOF material. In a parallel study by our group, the UiO-66 

synthesis conditions have been optimized in order to limit the number of missing linkers. A 

second set of mixed ligand BDC/ABDC UiO-66 samples has been synthesized based on this 

method and is described in section F of the supporting information.  

2.2Methods  

2.2.1Physico-chemical characterization  Powder X-ray diffraction patterns were collected on a 

Bruker D8 Discovery diffractometer equipped with a focusing Ge-monochromator, using Cu-Kα 

radiation(xx=1.5418 Å) and a Bruker LYNXEYE detector. PXRD were collected in reflectance 

Bragg-Brentano geometry in the 2 range from 3 to 50°. Thermo-gravimetric analysis was 

performed on typically ca. 25-30 mg of powdered sample loaded inside a platinum crucible on a 

Stanton Redcroft TG-DSC instrument. Samples were heated at a ramp 5 
°
C per minute to 700 

°
C; 

under the flow of N2 and O2 with flow rates 20 and 5 mL per minute respectively. Nitrogen 

sorption measurements were performed on a BelSorb mini II instrument at 77 K. Prior to 
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adsorption measurements samples were pretreated (activated) under vacuum for 1h at 80 
°
C and 

2 h at 200 
°
C. BrunauerEmmettTeller (BET) and Langmuir surface areas were calculated by 

fitting the isotherm data in the p/p0 range of 0 - 0.1. The chemical stability of the MOFs was 

evaluated by suspending the samples in water (RT for 1 month, 100 
°
C for 24 h), 1M HCl (24h) 

and 1M NaOH (24h) in separate experiments. To confirm the framework stability, powder XRDs 

were measured before and after the chemical treatment for each sample.  

2.2.2 Quantitative analysis of linker Prior to measurement, MOF samples were digested by 

adding a weighed amount of sample (10-20 mg for UV-vis, 20 mg for 
1
H NMR) to a 1M NaOH-

H2O solution (for Uv-vis) and 600 L of a 1M NaOH-D2O solution (for 
1
HNMR) and allowing 

the mixture to stand for 24 Hours. This hydroxide based procedure dissolves only the organic 

portion of the material (linker and pore filling solvent), while the inorganic component of the 

MOF form zirconium hydroxide, which sinks to the bottom and is not measured.  Both 

absorbance and reflectance, UV-visible spectra were collected on a Shimadzu UV-3600 

spectrophotometer. The spectra were recorded in 200-800 nm wavelength range.  
1
H NMR 

spectra were recorded on Bruker Avance DPX-300 NMR Spectrometer (300 MHz). The 

relaxation delay (d1) was set to 20 seconds to ensure that reliable integrals were obtained, 

allowing for the relative concentrations of the various organic species to be accurately 

determined. The number of scans was 64. 

3 .Results and Discussion 

3.1 Synthesis and Structure: The simplest way to prepare mixed linkerMOFs is to use a 

mixture of isostructural linkers of similar denticity and utilize them in a procedure closely 

resembling that used to obtain the non-functional analogue. Only few examples in the literature 

that follow such an approach, with most groups instead are optimizing the synthesis conditions 

specifically to obtain mixed linkerMOFs. Kleist et al
26

 have reported that the choice of reaction 

conditions plays a crucial role in the synthesis of mixed linkerMOFs based on the MOF-5 

structure. Lammert et al
30

 also found that both the metal precursor and the solvent plays a key 

role in the synthesis of mixed linkerMOFs in MIL-101 system. In this work on the UiO-66 

topology, mixed linkerMOFs and phase pure UiO-66 and UiO-66-NH2 were successfully 

prepared under very similar synthesis conditions. The PXRD patterns of samples prepared with 
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25, 50, 75 mol% of ABDC are reported in Figure1, clearly showing the crystalline nature of all 

the samples and matches perfectly with patterns of phase pure UiO-66 and UiO-66-NH2 

confirming the synthesis of isostuctural mixed-linker frameworks with a FCC structure.   

Refinements of the PXRD patterns using Pawley method (Accelyer Material studio 6.6) show no 

significant change in the lattice parameter, 20.77 to 22.74Å, going from UiO-66 to UiO-66-NH2. 

This very small change in the lattice constant and small size of crystallites (SEM ~100nm) does 

not allow us to gather information on the distribution of linkers.  

 

Figure 1. Comparison of the powder X-ray diffraction patterns of the mixed linkerMOF series. 

PXRD patterns up to 50
o
, 2 are given in Figure S1.   

3.2 Quantitative analysis of linkers  

Quantitative analysis of linkers in MOFs (in particular ABDC) has been done by measuring the 

solutions obtained by disassembling the framework in an appropriate media. Although the 

disassembly of Zr-MOFs in 1M NaOH was reported
15

 before the recent development of fluoride 

based media,
17

 it had not been exploited further as a digestive media for quantitative analysis. 

The toxicity associated with fluoride based media and has led us to opt to continue working with 

1M NaOH solution for MOF disassembly. Moreover, the analysis (PXRD and TGA-DSC, Figure 
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S4) of the undissolved solid obtained after the disassembly of MOF in 1M NaOH shows no sign 

of residual organic linker that confirms all the linker present at MOF is dissolved in solution. 

DR-UV-Vis spectroscopy measurements (Figure S2, supporting information) provided a 

qualitative indication that the fraction of ABDC in the materials decreased in the order UiO-66-

NH2 > UiO-66-NH2-75 > UiO-66-NH2-50 > UiO-66-NH2-25 as would be expected. This was 

evidenced by the decreasing intensity of a band at λmax = 328 nm in the DR-UV-Vis spectra.    

This band is assigned to the electronic transition from the non-bonding to anti-bonding molecular 

orbital of ABDC (n*) and is responsible for the yellow color of both the linker molecule and 

the MOFs it forms.
34

 In order to quantify the ABDC content with UV-visible spectroscopy, a 

calibration curve (inset of Figure 2) is required, allowing the Beer-Lambert law to be applied. 

The curve was obtained by recording the absorption spectra of standard solutions of ABDC of 

varying concentration in a 1M NaOH media. The spectral absorbance at 329 nm was then plotted 

against the concentration. The absorbance spectra of the standard solutions are given in the 

supporting information (Figure S3).  

 

 

Figure 2. a) Uv-visible absorbance spectra of MOFs disassembled in 1M aqueous NaOH 

solution for 24h: UiO-66-NH2, UiO-66-NH2-75, UiO-66-NH2-50, UiO-66-NH2-25, and UiO-66. 

The inset shows the calibration curve obtained by plotting the integrated absorbance (IA) at max 

329nm of a standard solution of ABDC against concentration.  
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The concentration of ABDC in the MOFs can then be determined by measuring absorption 

spectra on the digest solutions and interpolating the absorbance at 328 nm on the calibration 

curve.  Table S2 details the method used to calculate the ABDC content in the mixed 

linkerMOFs using this data. 

Providing a qualitative illustration of the results, Figure 3 shows the normalized 
1
HNMR spectra 

obtained on the digestion solutions of all five samples in the series. As expected from the UV-vis 

data, when going through the series from UiO-66 to UiO-66-NH2, the ABDC proton signal (3  

1H, part b) systematically increases in intensity while the BDC proton signal (4H, part a) 

decreases. This result confirms that, ABDC substitutes for BDC to an increasing extent 

throughout the series.  

The quantitative analysis of these results (see section E of the supporting information for details 

of the method) affords the values presented in Table 1 alongside those of the UV-visible 

spectroscopy results. It can be seen that the values for ABDC content obtained by both 

spectroscopic methods are in satisfactory agreement. This validates the use of UV-Visible 

spectroscopy applied to the quantitative analysis of ABDC containing mixed linkerMOFs. 

Furthermore, it is seen that the extent to which the substituted linker is incorporated into the 

crystalline product is nearly the same as that expected by the ABDC:BDC ratio used in the 

synthesis mixtures. This was found not to be the case for another synthesis method where an 

excess of linker (2:1 ligand to metal ratio) was used. There, the results indicated a clear 

preference for the non-functionalised BDC linker (see section F of the supporting information for 

more details).  
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Figure 3. Normalized 
1
HNMR spectra of the mixed linkerMOFs series digested for 24h in a 

1M solution of NaOH in D2O: UiO-66-NH2, UiO-66-NH2-75, UiO-66-NH2-50, UiO-66-NH2-25, 

and UiO-66. Proton signal associated with BDC (Part a) and Signals associated with ABDC (Part 

b). Signals in part b are multiplied by the factor of 4 for easy visual comparison of the signal 

intensities.  

 

Table 1. mol %  of ABDC used in the synthesis of 

mixed linkerMOFs are compared with mol% of 

ABDC determined by UV-visible and NMR 

spectroscopy. 

MOF [ABDC] mol % 

 Synthesis UV-Vis NMR 

UiO-66 0 0 0 

UiO-66-NH2-25 25 30 30 

UiO-66-NH2-50 50 54 57 

UiO-66-NH2-75 75 70 77 

UiO-66-NH2 100 104 100 

 

3.3 Thermal stability and activation  

Activation, the process of solvent removal from the pores of the framework, allows access to the 

porosity to the sample and thus an important step in the development of MOFs for commercial 

applications as adsorbents and as catalysts.
21

 Many MOFs are synthesized in DMF, which has a 

high boiling point and is strongly adsorbed inside the pores, especially so in MOFs with a high 



9 
 

loading of polar functional groups such as amines. The complete removal of such strongly 

adsorbed molecules usually requires high temperatures (ca. 250 
o
C) and the application of 

vacuum conditions which cause many MOFs to decompose. This problem can be overcome by 

post synthetically exchanging DMF with more volatile solvents which do not affect the 

crystallinity of the samples.
21

 In this work, activation was facilitated by the post synthetic 

exchange of DMF with water, a procedure which proved to be very effective, especially in 

samples with high amino content. In order to investigate the effect that the ABDC content has on 

the thermal stability and activation of the frameworks, all five samples in the series were 

characterized by TGA, thermal treatments followed by PXRD, and FTIR spectroscopy.  

3.3.1 Thermo-gravimetric Analysis  

Figure 4a and 4b present the TG-DSC results of the as-synthesized and water exchanged samples 

respectively. Three steps weight loss are observed on the TGA curves of the as synthesized 

samples. The initial 5-6% weight loss is observed up to 80 °C, while the second (25-28%) is 

observed in the range 100-280 °C. Such weight losses are due to the removal of solvent and the 

dehydroxylation of the zirconium oxo-clusters. The third and last weight loss step is due to the 

framework decomposition (Tdec) and, occurs at a slightly different temperature on each  

 

  

Figure 4. TG-DSC results of as prepared (part a) and water washed (part b) MOFs: UiO-66.; 

UiO-66-NH2-25; UiO-66-NH2-50; UiO-66-NH2-75 and UiO-66-NH2. TGA curves are reported 

in solid lines, while the DSC curves are dash-dotted. The end weight of the TGA run is 

normalized to 100% of ZrO2, expected product in the aerobic thermal decomposition of Zr-MOF.  
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In case of UiO-66-NH2, UiO-66-NH2-75 and UiO-66-NH2-50 this last step is not preceded by a 

clear plateau, indicating that the framework in fact starts to decompose before the solvent is 

totally removed. One last observation from the TGA curves is that there is a clear systematic 

increase in the decomposition temperature of the framework as the loading of ABDC in the 

framework decreases. A similar trend of stability has been observed in IRMOF-3/ MOF-5 based 

mixed ligand frameworks.
26

 The DSC data reported in Figure 4a clearly indicates the exothermic 

nature of the framework decomposition, corresponding to the burning of linkers. In order to 

determine whether the mixed linkerMOF microcrystals studied in this work contain randomly 

distributed linker or are simply a physical mixture of pure UiO-66 and UiO-66-NH2 MOFs 

phases, a separate TG-DSC experiment was performed on a physically mixed UiO-66 and UiO-

66-NH2 (molar ratio 1:1) sample. These results are compared to that obtained on the UiO-66-

NH2-50 sample in Figure S7. It is found that very little difference can be observed between the 

two samples on the basis of their TGA results however; the DSC curves of the two 

measurements have clearly distinct profiles. In particular, the DSC curve of the physical mixture 

shows two well separated heat signals at 430 (broad) and 490 
°
C (sharp), corresponding to the 

decomposition of the UiO-66 and UiO-66-NH2 phases respectively. In contrast, the 

decomposition to the decomposition of UiO-66-NH2-50 sample is signified by only a single, 

broad peak extending over a temperature range of 400-50 
°
C. This result provides convincing 

evidence that the linkers of the samples prepared here are indeed randomly distributed linker 

from crystal to crystal and are not just a physical mixture of the UiO-66 and UiO-66-NH2 MOFs 

phases. 

Figure 4b shows the TG-DSC results for the water exchanged samples. Each MOF 

sample loses 5-6 % of their initial weight in the temperature range 25-250 
°
C, and is indicative of 

the removal of water from the pores. This weight loss is very small compared with the equivalent 

weight losses observed in the DMF containing as synthesized samples, suggesting that the DMF 

was removed very effectively by the water exchange procedure. Moreover, the solvent exchange 

seems to have had no effect on the decomposition temperature of the materials such that the 

previously established relation between the ABDC content and framework stability is 

maintained. The DSC curves of the water washed samples suggest that the decomposition of the 

framework is more sharply defined and exothermic when compared to the as synthesized 
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samples. This is likely due to the fact that the decomposition is no longer occurring 

simultaneously with the endothermic solvent removal process, allowing the observation of the 

framework collapse as a much more precise exothermic event. 

3.3.2 Infrared spectroscopy 

While TG-DSC profiles are very useful for following the behavior of samples during the heat 

treatments, and helping to identify suitable activation conditions, PXRD and FTIR are the 

techniques of choice for ensuring that the samples remain intact after the specific activation 

procedure. The full set of samples in the as synthesized and water washed forms as well as after 

thermal treatment at 200 
°
C for 12 hours in air have been measured by both PXRD and DRIFT 

spectroscopy. The DRIFT results are displayed in Figure 5. Generally speaking it is possible to 

follow the solvent exchange and removal (progressive decreasing of specific finger print due to 

the solvent) and/or MOF framework decomposition (broadening of the bands below 1650 cm
-1

.  

Other noteworthy observations from the DRIFT results are as follows: i) a strong absorption 

band at about 1665 cm
-1

 (dashed pink line), assigned to the (C=O) stretching of DMF, is seen 

only in the synthesized samples. The absence of this band in the water exchanged samples, gives 

additional evidence for the complete exchange of DMF with water;
32

 ii) absorption bands at 1338 

and 1261 cm
-1

 (dashed grey line, associated with ABDC) are seen to increase in intensity, as the 

ABDC content of the MOF increases; iii) the IR spectra collected after the thermal treatment 

show no broadening or weakening of the absorption bands, testifying that no dramatic change in 

the long range order of the material has taken place. This is backed up by the corresponding 

PXRD patterns shown in Figure S8 in the supporting information.  The patterns show that all the 

samples retain high crystallinity even after a prolonged thermal treatment. To our knowledge, 

such rigorous thermal stability tests (12h treatment) have not been reported before on any MOF. 
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Figure 5. DRIFT spectra of a) UiO-66, b) UiO-66-NH2-25, c) UiO-66-NH2-50, d) UiO-66-NH2-

75 and e) UiO-66-NH2. Three curves from top to bottom represent the sample as prepared (grey), 

water washed (dark grey) and after heating for 12h at 200 
°
C in air (same color code as in 

previous figures). DRIFT spectra were recorded on samples diluted with KBr. The pink and grey 

dash-dot lines mark the peaks associated with DMF and ABDC linker respectively, while the 

asterisks shows the absorption peak associated with hydroxyl groups on the Zr-clusters. 

3.3.3 N2 sorption  

Nitrogen sorption isotherms measured at 77K on the samples which were exchanged for water 

are shown in Figure 6. All the samples were heated at 200 °C for 2 hours under vacuum prior to 

the adsorption of nitrogen.  

 All the samples show type-I isotherms, confirming the microporous nature of the mixed 

linkerMOFs. The fully functionalized amino MOF is less porous than the parent UiO-66. This 

is as expected since the NH2 group will block some of the void space.
15

 Moreover, the surface 

area and pore volume is observed to systematically decrease (inset Figure 6) as the ABDC 

content of the framework increases.  Table 2 lists the surface area (BET and Langmuir) and pore 

volumes of the samples calculated using the data in the p/p0 range 0 - 0.10 of the isotherm. All 

samples were found to remain intact after solvent removal, as evidenced by PXRD 

measurements performed on the materials following these N2 adsorption measurements (Figure 

S9). While the addition of NH2 functional groups reduces the internal volume, missing linkers 
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will have the opposite effect. The surface area for the parent UiO-66 indicates that 3 of 24 linkers 

are missing.
39

 Changes in linker ratio in the synthesis will probably also alter the amount of 

missing linkers prohibiting a quantitative calculation of amine substitution based on absorption 

measurements alone. 

 
Figure 6. N2 sorption isotherm at 77K measure on water washed samples of UiO-66; UiO-66-

NH2-25, UiO-66-NH2-50, UiO-66-NH2-75, and UiO-66-NH2. The solid and open squares 

symbols represent the adsorption and desorption loop, respectively.   

 

Table 2. Surface areas and pore volume (Vm) of MOFs 

calculated from the N2 sorption isotherm at 77K.  Prior to the 

N2 adsorption both samples were pretreated under vacuum 

for 1h at 80 
°
C and for 2h at 150 

°
C. 

Sample 
BET 

[m
2
 g

-1
] 

Langmuir 

[m
2
 g

-1
] 

Vm 

[cm
3
(STP) g

-1
] 

UiO-66 1331 1444 306 

UiO-66-NH2-25 1284 1378 295 

UiO-66-NH2-50 1252 1361 288 

UiO-66-NH2-75 1198 1298 275 

UiO-66-NH2 1161 1254 267 

 

3.4 Chemical stability  

The chemical stability of the series of materials was confirmed by measuring PXRD patterns 

before and after the treatment with aqueous (at RT and 100 
°
C), acidic (1M HCl), and basic (1M 

NaOH) media. Figure 7 shows the results of chemical stability tests on UiO-66, UiO-66-NH2-50 

and UiO-66-NH2 (see Figure S10 for the results on UiO-66-NH2-25 and UiO-66-NH2-75). The 

PXRD pattern obtained of the samples after the aqueous treatments (RT for 2 months and under 
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reflux for 24 hours) do not show any significant change. However porosity of these samples 

when refluxed in water for 24h show significant decrease in the porosity (Figure S11). 

Interestingly, ABDC functionalized MOFs were found to degrade more slowly than UiO-66 

under acidic conditions, as previously reported by Krista and coworkers.
40

 Of course all samples 

undergo complete amorphization under basic conditions.  

 

Figure 7. Powder XRD patterns of  MOFs as prepared (with same color code used in previous 

figures), and after the treatment of 1 month in water(red), 24h reflux in water (brown),24h in 1M 

HCl (magenta) and 24h 1M NaOH (orange).    

 

4. Conclusion  

A series of mixed linkerMOFs with UiO-66 topology have been successfully prepared using 

mixture of ABDC and BDC. The thermal stability and porosity of the frameworks are 

significantly influenced by the ratio between ABDC and BDC in the framework. With this series 

we have successfully demonstrated, that UV-Vis spectroscopy can be used for the quantitative 

determination of ABDC in mixed-linkerMOFs. We have also demonstrated that 1M NaOH can 

be used as a media for the disassembly of Zr-based MOFs for the quantitative analysis of linkers 

in amine functionalized mixed-linkerMOFs.  By providing a method which allows control over 

the loading of the amino functionality, many opportunities for further studies on sorption and 

post synthetic modifications are afforded. 
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Table of content Synopsis 

A series of amine functionalized mixedlinker MOFs of UiO-66 topology has been prepared and 

thoroughly characterized by TGA, PXRD, Uv-visible and FTIR spectroscopy with the aim of 

elucidating the effect that varying degrees of amine functionalisation has on the stability (thermal 

and chemical) and porosity of the framework. This work includes the first application of UV-

visible spectroscopy in the quantification of ABDC in mixed linkerMOFs.    
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A) Synthesis details and powder X-ray diffractions patterns (3-50
o
) of the mixed linker 

MOFs prepared at 100 
°
C with M:L ration 1:1 and without addition of HCl.   

Table S1. Synthesis of the  Mixed ligand MOFs 

MOFs Reagent amount 

 ZrCl4 (g) BDC (g) ABDC (g) H2O (ml) DMF (ml) 

UiO-66 1 0.712 0 0.10 110 

UiO-66-NH2-25 1 0.5346 0.1943 0.10 110 

UiO-66-NH2-50 1 0.3564 0.3886 0.10 110 

UiO-66-NH2-75 1 0.1782 0.5830 0.10 110 

UiO-66-NH2 1 0 0.7773 0.10 110 

 

 
Figure S1: Comparison of the powder X-ray diffraction patterns of the as synthesized mixed 

linker MOF series in the 4-50
o
, 2 range.  
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B) Diffuse Reflectance UV-visible spectra of as synthesized mixed linkerMOFs series. 

 

Figure S2. Diffuse reflectance Uv-visible spectra of samples containing DMF: UiO-66, UiO-66-

NH2-25, UiO-66-NH2-50, UiO-66-NH2-75, and UiO-66-NH2.   

 

C) UV-visible absorbance spectra of ABDC standard solution in 1M NaOH . 

 

Figure S3: Absorbance spectra of the ABDC standard solutions in 1M aqueous NaOH solution. 

These spectra are used to obtain the calibration curve shown in figure 2 inset of the paper.  
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D) PXRD and TGA-DSC of the undissolved solid obtained after MOF digestion. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S4. The PXRD and TG-DSC of the undissolved solid obtained after the digestion of UiO-

66-NH2 MOF sample in 1M NaOH. PXRD clearly shows no sign of residual MOF while TG-

DSC results show no weight loss and exothermic heat signal expected for the burning of 

ligand/organic residue.  In the diffraction pattern a peak at 21.41, 2 is due to the plastic foil used 

to cover the sample while collecting the data.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



6 
 

E) Quantitative analysis of ABDC linker in the mixed linker-MOFs series by UV-visible 

spectroscopy. 

Table S2. The quantitative analyses of ABDC linker in the series of mixed linker-MOFs, 

Samples were digested in 35 ml of 1M NaOH-D2O for 24h. Absorbance spectra of solutions 

were recorded after filtering out the white precipitate (most probably of zirconium hydroxide). 

MOF 

Sample

Mass   

mg 

Actual mass 

of MOF
a
  

mg 

Calc. mass 

of ABDC
b
 

mg 

Calc. 

[ABDC10
-4

]
c
  

mol L
-1

 

Exp. 

[ABDC10
-4

]  

mol L
-1

 

Exp. 

mol % of 

ABDC
 d
 

UiO-66-NH2 10.1 7.07 4.34 6.42 6.69 104 

UiO-66-NH2-75 10.4 7.28 3.39 5.02 4.70 70 

UiO-66-NH2-50 15.5 10.85 3.41 5.06 5.50 54 

UiO-66-NH2-25 20.0 14.0 2.23 3.31 4.0 30 

a
Actual mass of MOF (65 weight %  of the sample Mass) is the sample mass excluding solvent.  

b
Theoretical mass of ABDC = 

                

                 
                    , where x and the theoretical 

molecular weight of MOF is derived from the idealized chemical formula: Zr6(O)4(OH)4(ABDC)6x 

(BDC)6-6x , where x = 0.25, 0.5, 0.75, and 1, for UiO-66-NH2-25, -50, -75, and UiO-66-NH2 respectively.  

c
             [    ]  

                   

                        
  

 d
              

            [    ]

           [    ]
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F) Quantitative analysis of ABDC linker in the mixed linker-MOFs series by 
1
H-NMR 

spectroscopy 

The mol % of ABDC was calculated from the integrals by first integrating the BDC signal 

(Figure 3a) and defining the integral as 12 protons (3 molecules, since the number of protons 

represented by the BDC signal is 4). The 3 ABDC signals were then integrated relative to this 

number (Figure 3b). In order for the relative concentration of ABDC to be represented by one 

number, the average of the three integrals (representing 1 proton each) was used. Finally, the 

following three formulae were applied to calculate the ABDC content of the samples: 
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G) Synthesis, PXRD and 
1
HNMR spectra of mixed linkerMOFs series prepared with 

M:L=1:2, and  2 molar equivalent of HCl at  220 
°
C. 

Table S3. Synthesis of Mixed linker-MOFs prepared at 220 
°
C 

MOFs Reagent amount 

 ZrCl4 (g) BDC (g) ABDC (g) HCL (ml) DMF (ml) 

UiO-66 3.52 5.02 0 2.68 91.25 

ML-MOF-1 3.52 3.77 1.37 2.68 91.25 

ML-MOF-2 3.52 2.51 2.73 2.68 91.25 

ML-MOF-3 3.52 1.25 4.10 2.68 91.25 

UiO-66-NH2 3.52 0 5.64 2.68 91.25 

 

In this series of samples, the total amount of DMF was split in two/three equal parts for the 

synthesis of phase pure/mixed linkerMOFs respectively. ZrCl4, BDC and ABDC were 

dissolved separately in different portions of DMF. All 35% HCl was added to the flask 

designated to ZrCl4 prior to the addition of metal salt. Following the successful dissolution of all 

synthesis components, the two/three solutions were mixed together, transferred to 200 ml Teflon-

lined autoclaves, and heated to 220 
°
C for 20 hours under static conditions. The powder 

precipitates were filtered, washed in boiling water and finally dried at 60 
°
C in air.   

 

Figure S4. Comparison of the PXRD patterns of the mixed linker-MOFs. 



9 
 

 

Figure S5. Normalized 
1
H NMR spectra of digested samples of a mixed linkerMOF series 

prepared at 220 
°
C and with a metal to linker ratio of 1:2. Samples were digested for 24h in a 1M 

solution of NaOH in D2O. Signals of ABDC proton in part b are multiplied by factor of 3, for 

easy visual comparison of the signal intensities. 

Table S4. mol% of ABDC determined by 
1
HNMR spectroscopy. 

Sample 
mol % of 

ABDC 

ML-MOF-1 4 

ML-MOF-2 15 

ML-MOF-3 53 

UiO-66-NH2 100 
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Figure S6. N2 adsorption at 77K on the set of mixed linker-MOF prepared at 220 C with 1:2 

metal to linker ration, and with addition of HCl. 
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H) Comparison of TG-DTA results of UiO-66-NH2-50 with 1:1 physical mixture of UiO-

66 + UiO-66-NH2. 

 

 

Figure S7.  TGA-DSC analyses of physically prepared mixture with 1:1 molar ration of UiO-66 

and UiO-66-NH2, with UiO-66-NH2 -50. Part A and B show the data obtained on as prepared 

and water washed samples respectively. Samples were heated from 25 to700 
°
C, at rate of 1 

°
C 

min
-1

 under dry air flux (N2, at 20ml/min and O2 at, 5ml/min).  

As previously seen, very little difference in the weight loss behavior and the distinct, broad heat 

signal for UiO-66-NH2-50 is observed for water washed samples.  This not only confirms the 

reproducibility of the data but also prove our proposed hypothesis that the sample prepared here 

indeed contain randomly distributed linker and not the mixture of separate phase. 

 

 

 

 

 

 

 

a) b) 
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I) Thermal stability of mixed linker MOFs :PXRD 

 

Figure S8: Powder XRD patterns of a) UiO-66, b) UiO-66-NH2-25, c) UiO-66-NH2-50, d) UiO-

66-NH2-75 and e) UiO-66-NH2. Within each plot are three curves which from top to bottom 

represent the sample as synthesized (with the same color code used in previous figures), water 

washed (dark grey) and after heating at 200 
°
C for 12h in air (grey).   

UiO-66 

UiO-66-NH2-25 

UiO-66-NH2-50 

UiO-66-NH2-75 

UiO-66-NH2 
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J) PXRD after N2 sorption  experiments 

 

Figure S9: PXRD patterns of the mixed linker -MOFs after N2 sorption experiments, elucidating 

the framework stability to the removal of solvents. 

 

K) Chemical stability of UiO-66-NH2-25 and UiO-66-NH2-75. 

 

Figure S10: PXRD patterns of MOFs as prepared (with same color code used in previous 

figures), and after the treatment of 1 month in water(red), 24h reflux in water (brown),24h in 

1M HCl (magenta) and 24h 1M NaOH (orange). 
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L) N2 adsorption on MOFs refluxed in water for 24h. 

 

 
 

Figure S11. N2 sorption of MOFs; UiO-66 (square), UiO-66-NH2-50 (triangle) and UiO-

66-NH2 (star) water washed at 80 C (black) and after reflux in water for 24h (red). 

 


