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Abstract 

For long, apoptotic cells have been considered as intrinsically tolerogenic or unable to elicit 

immune responses specific for dead cell-associated antigens. However, multiple stimuli can trigger 

a functionally peculiar type of apoptotic demise that does not go unnoticed by the adaptive arm of 

the immune system, which we named “immunogenic cell death” (ICD). ICD is preceded or 

accompanied by the emission of a series of immunostimulatory damage-associated molecular 

patterns (DAMPs) in a precise spatiotemporal configuration. Several anticancer agents that have 

been successfully employed in the clinic for decades, including various chemotherapeutics and 

radiotherapy, can elicit ICD. Moreover, defects in the components that underlie the capacity of the 

immune system to perceive cell death as immunogenic negatively influence disease outcome among 

cancer patients treated with ICD inducers. Thus, ICD has profound clinical and therapeutic 

implications. Unfortunately, the gold-standard approach to detect ICD relies on vaccination 

experiments involving immunocompetent murine models and syngeneic cancer cells, an approach 

that is incompatible with large screening campaigns. Here, we outline strategies conceived to detect 

surrogate markers of ICD in vitro and to screen large chemical libraries for putative ICD inducers, 

based on a high-content, high-throughput platform that we recently developed. Such platform 

allows for the detection of multiple DAMPs, like cell surface-exposed calreticulin, extracellular 

ATP and high mobility group box 1 (HMGB1), and/or the processes that underlie their emission, 

such as endoplasmic reticulum stress, autophagy and necrotic plasma membrane permeabilization. 

We surmise that this technology will facilitate the development of next-generation anticancer 

regimens, which kill malignant cells and simultaneously convert them into a cancer-specific 

therapeutic vaccine. 



Introduction 

Cell death can be classified based on several parameters, including morphological manifestations, 

biochemical features, kinetic considerations and functional outcomes.1-7 This said, how cell death 

has been investigated and conceived since its pristine descriptions (dating back to the mid-19th 

century)8 has obviously evolved along with the technological advances that have been made 

throughout the last one and a half centuries.9,10 Thus, morphology-based classifications postulating 

the existence of three cell death subroutines (i.e., type I, type II and type III cell death)2,11-14 have 

been progressively abandoned in favor of definitions that rely on objectively quantifiable functional 

features.3,15-19 Alongside, the long-standing conception according to which distinct types of cell 

death like apoptosis and necrosis would constitute mutually exclusive and diametrically opposed 

entities has been refuted. In particular, throughout the past two decades it has become clear that: (1) 

apoptosis is not the sole type of regulated cell death that contributes to (post-)embryonic 

development and adult tissue homeostasis;20 (2) similar to apoptosis, necrosis can occur in a 

regulated fashion, i.e., it can involve a genetically encoded molecular machinery;4,5,21 (3) similar to 

their necrotic counterparts, apoptotic cells can sometimes be detected by the immune system and 

elicit an adaptive immune response specific for dead cell-associated antigens.6,7,22,23 Thus, although 

apoptosis as a physiological process involved in (post-)embryonic development and tissue 

homeostasis invariably fails to engage the adaptive branch of the immune system,24,25 specific 

stimuli can promote an immunogenic variant of regulated cell death that manifests with both 

morphological and biochemical features of apoptosis.2,3,6 Of note, defects in the clearance of 

apoptotic cells by professional phagocytes have been associated with autoimmune conditions such 

as systemic lupus erythematosus (SLE) and chronic inflammation.26,27 However, it remains unclear 

whether this reflects the immunogenic potential of intact apoptotic corpses or the insurgence of 

secondary necrosis. 

Back in 2005, we were the first to report the unexpected finding that murine colorectal carcinoma 



CT26 cells as well as murine fibrosarcoma MCA205 cells exposed to a lethal dose of doxorubicin 

in vitro are capable of vaccinating syngeneic mice against a subsequent challenge with living cells 

of the same type.22 We dubbed such a functionally peculiar variant of cellular demise, manifesting 

with an apoptotic morphology and depending on the activity of apoptotic caspases, “immunogenic 

cell death” (ICD).22 It turned out that the unsuspected ability of doxorubicin (an anthracycline 

employed for the treatment of various carcinomas) to trigger ICD as a standalone intervention, 

hence converting dying cancer cells into a vaccine that is efficient in the absence of adjuvants, is 

shared by a relatively restricted set of lethal triggers.28-33 These include, but perhaps are not limited 

to, mitoxantrone and epirubicin (two other anthracyclines currently used in the clinic),34-37 

bleomycin (a glycopeptide antibiotic endowed with antineoplastic properties),38 oxaliplatin (a 

platinum derivative generally employed against colorectal carcinoma),39-42 cyclophosphamide (an 

alkylating agent approved for the treatment of neoplastic and autoimmune conditions),43-48 

etoposide (a topoisomerase inhibitor currently used for the treatment of several neoplasms) 

combined with the chemical inhibitor of glycolysis 2-deoxyglucose,49,50 patupilone (a microtubular 

inhibitor that has not yet been approved for use in humans),51-53 septacidin (an antifungal antibiotic 

produced by Streptomyces fibriatus)54,55 specific forms of radiation therapy,34,56-64 photodynamic 

therapy (a clinically approved anticancer intervention that involves the administration of a 

photosensitizing agent followed by light irradiation),65-73 high hydrostatic pressure,74 multiple 

oncolytic viruses,75-83 replication-defective viral vectors encoding a potentially cytotoxic product 

(e.g., thymidine kinase from herpes simplex virus type I, HSV-1) combined with viruses expressing 

an immunostimulatory molecule (e.g., fms-related tyrosine kinase 3 ligand, FLT3LG),84 the 

clinically employed proteasomal inhibitor bortezomib,85-87 shikonin (a component of Chinese herbal 

medicine),88 a monoclonal antibody specific for the epidermal growth factor receptor (EGFR),89 

capsaicin (a neurotoxic derivative of homovanillic acid found in chili peppers),90,91 and perhaps the 

n3-polyunsaturated fatty acid docosahexaenoic acid,92 as well as the transgene-driven expression of 

SMAC mimetics.93,94 In addition, some interventions are capable of converting non-immunogenic 



instances of cell death into bona fide ICD. These maneuvers include the administration of cardiac 

glycosides, which are particularly powerful in this respect as they promote per se all major 

manifestations of ICD (see below),95-97 or zoledronic acid (a bisphosphonate currently approved to 

treat osteoporosis and to prevent skeletal fractures in cancer patients with bone metastases),98,99 as 

well as the provision of co-stimulatory signals via CD40.100 This said, it should be kept in mind that 

the capacity of a given agent to cause ICD or exacerbate the immunogenicity of apoptosis cannot be 

predicted yet from its structural or chemical properties, since molecules as similar to each other as 

oxaliplatin and cisplatin do not share this functional profile.39,40 

The notion that apoptotic cancer cells do not always go undetected by the immune system has 

profound clinical repercussions.101 First, it implies that the immune system, at least under specific 

circumstances, can mount an adaptive immune response against (self) malignant cells, hence 

mediating antineoplastic effects or contributing to the therapeutic activity of conventional 

anticancer regimens. This concept represents the theoretical foundation of modern tumor 

immunology and anticancer immunotherapy.22,102,103 As a matter of fact, many chemotherapeutics 

that have been successfully used in the clinic throughout the past century have recently been 

discovered to mediate off-target immunostimulatory effects, ICD being one of the underlying 

mechanisms (though not the sole).104-106 Second, it implies that a large number of parameters 

reflecting the immunological competence of the host, including the type, quantity and localization 

of tumor-infiltrating lymphoid and myeloid cells,107-113 the amount of blood-borne memory T cells 

that are able to recognize antigens associated with apoptotic cancer cells,114 the circulating levels of 

various ICD-associated biomarkers, including the non-histone chromatin-binding protein high 

mobility group box 1 (HMGB1),46,115-117 as well as genetic polymorphisms affecting virtually all 

facets of the immune response,41,108,118,119 may be endowed with a robust prognostic or predictive 

value. This notion has already been demonstrated in several ICD-related clinical scenarios. Thus, 

the relative abundance of tumor-infiltrating CD8+ cytotoxic T lymphocytes (CTLs) and 



CD4+CD25+FOXP3+ regulatory T cells reportedly predicts the propensity of breast carcinoma 

patients to benefit from anthracycline- or oxaliplatin-based chemotherapy, respectively.52,120 Along 

similar lines, single nucleotide polymorphisms in the genes coding for ICD-relevant receptors such 

as Toll-like receptor 4 (TLR4) and purinergic receptor P2X, ligand-gated ion channel, 7 (P2RX7) 

have been shown to influence disease outcome among breast carcinoma patients treated with 

anthracycline-based chemotherapy.41,119 Taken together, these observations demonstrate that the 

induction of ICD is a therapeutically relevant objective, calling for the identification of novel ICD 

inducers and molecules that improve the immunogenicity of conventional variants of apoptosis. 

After summarizing the main molecular and cellular determinants that underlie ICD, we discuss the 

assays that are currently available for the detection of surrogate ICD markers and how these 

methods can be combined into a platform that is compatible with high-content, high-throughput 

applications. We surmise that this methodological approach will accelerate the discovery and 

development of therapeutic regimens that kill malignant cells in an immunogenic fashion. 

 



Immunogenic cell death signaling 

According to current models, ICD relies on the ability of specific stimuli to kill cells while 

provoking the spatiotemporally coordinated emission of immunogenic signals.7,121-129 Such signals 

are conveyed by damage-associated molecular patterns (DAMPs), i.e., molecules that are not 

accessible by the immune system in physiological conditions but are released or exposed on the 

outer leaflet of the plasma membrane during cytoprotective stress responses or upon cell 

death.103,130-133 Similar to their microbial counterparts, many (but not all) DAMPs exert robust 

immunostimulatory effects upon binding to pattern recognition receptors (PRRs) expressed by 

immune cells.121 So far, three DAMPs have been attributed a key role in the immunogenic potential 

of virtually all ICD inducers: the endoplasmic reticulum (ER) chaperone calreticulin 

(CALR),34,65,126,134-136 ATP,66,124,137-143 and HMGB1.41,46,115,116,144-147 In addition, many DAMPs 

have been shown to contribute to the immunogenicity of cell death in a limited amount of 

experimental scenarios. These include immunostimulatory cytokines like interferon α (IFNα),148,149 

various chaperones of the heat-shock protein (HSP) family, notably heat shock 70kDa protein 1A 

(HSPA1A, best known as HSP70) and heat shock protein 90kDa alpha (cytosolic), class A member 

1 (HSP90AA1, best known as HSP90),65,71,85,90,145,150-153 sphingomyelin metabolites (e.g., ceramide 

and sphingosine-1-phosphate),154 a plethora of mitochondrial products (e.g., mitochondrial DNA, 

N-formylated peptides, cardiolipin),155-157 cytosolic components like urate and F-actin,158-161 as well 

as products of the breakdown of the extracellular matrix (e.g., hyaluronan fragments).162,163 

CALR gets exposed on the cell surface early in the course of ICD, i.e., before the apoptosis-

associated shuffling of phosphatidylserine between the inner and outer leaflet of the plasma 

membrane.34,164,165 The molecular mechanisms underlying this ICD hallmark have been dissected in 

detail and appear to involve three distinct signaling modules: (1) an ER stress module centered 

around the phosphorylation of eukaryotic translation initiation factor 2A (EIF2A) and the resultant 

arrest in protein synthesis; (2) an apoptotic module involving the activation of caspase-8 and the 



consequent cleavage of B-cell receptor-associated protein 31 (BCAP31) as well as the pro-apoptotic 

Bcl-2 family members BCL2-associated X protein (BAX) and BCL2-antagonist/killer 1 (BAK1); 

and (3) an exocytosis module requiring the actin cytoskeleton as well as vesicle-associated 

membrane protein 1 (VAMP1) and synaptosomal-associated protein, 25kDa (SNAP25), two 

proteins involved in intracellular vesicular trafficking.36 Moreover, in some (but not all) models of 

ICD,67 CALR obligatorily translocates to the cell surface together with another ER chaperone, 

protein disulfide isomerase family A, member 3 (PDIA3).36,37 Upon binding to low density 

lipoprotein receptor-related protein 1 (LRP1, also known as CD91), membrane-exposed CALR 

delivers a major phagocytic signal to professional antigen-presenting cells (APCs) such as dendritic 

cells, de facto improving their capacity to take up dead cells and their corpses.66,91,166-173 

Interestingly, the phagocytosis-stimulatory effects of CALR is robustly counterbalanced by CD47, 

which is highly expressed by a large panel of solid and hematopoietic tumors.166 This latter 

observation suggests that various neoplasms benefit from avoiding the effects of CALR exposure, 

perhaps as this prevents the elicitation of an adaptive immune response against the malignant cells 

that “physiologically” succumb in the course of oncogenesis and tumor progression. Alternatively, 

the phagocytosis-inhibitory activity of CD47 may confer tumors with an advantage by increasing 

the local availability of macromolecules derived from the spontaneous demise (and degradation) of 

some of their cellular constituents. This possibility has not yet experimentally addressed. 

The ICD-associated release of ATP proceeds through a complex mechanism that involves (1) the 

apparent relocalization of vesicular ATP stores from lysosomes to autolysosomes; (2) the 

redistribution of lysosomal-associated membrane protein 1 (LAMP1) to the plasma membrane; (3) 

Rho-associated, coiled-coil containing protein kinase 1 (ROCK1)-mediated, myosin II-dependent 

cellular blebbing; and (4) the opening of pannexin 1 (PANX1) channels, 4 processes that rely on 

caspases.140,142,174 In a vast majority of models, the secretion of ATP by cells exposed to ICD 

inducers requires an intact autophagic machinery.83,138,139,175 In these settings, the genetic or 



pharmacological inhibition of autophagy limits ATP release by cells succumbing to ICD and hence 

negatively influences their ability to elicit an adaptive immune response upon inoculation in 

immunocompetent syngeneic mice.60,138,139 Along similar lines, the chemical inducer of autophagy 

STF-62247 increases the immunostimulatory potential of ICD as triggered by chlorin-e6-based 

photodynamic therapy (MK, unpublished observations). However, this does not seem to apply to all 

ICD inducers.68 Thus, the ability of hypericin-based photodynamic therapy to induce the secretion 

of ATP does not appear to change in autophagy-deficient versus autophagy-proficient cells.68,70,176 

Moreover, the former respond to hypericin-based photodynamic therapy by exposing higher 

amounts of CALR on the plasma membrane than the latter, hence exhibiting a superior 

immunogenic potential.68,70,176 Possibly, this reflects the incapacity of autophagy-deficient cells to 

clear oxidized proteins, resulting in an aggravation of the ER stress response that underlies CALR 

exposure in the course of ICD.68,70,176 Irrespective of these variations, extracellular ATP operates as 

a strong chemoattractant and promotes not only the recruitment of immune cells to sites of ICD, but 

also their differentiation, an effect that depends on purinergic receptor P2Y, G-protein coupled, 2 

(P2RY2).141,177-179 Moreover, extracellular ATP promotes the activation of the NLR family, pyrin 

domain containing 3 (NLRP3) inflammasome in APCs, hence stimulating the processing and 

release of interleukin (IL)-1β and IL-18.119,180-189 In line with this notion, the immunogenic potential 

of cells succumbing to ICD can be significantly reduced by pharmacological or genetic 

interventions that limit the availability of ATP in the pericellular space, such as the administration 

of recombinant apyrase (an ATP-degrading enzyme) or the transfection-enforced overexpression of 

ectonucleoside triphosphate diphosphohydrolase 1 (ENTPD1, best known as CD39), which 

converts ATP into ADP and AMP.190 Intriguingly, CD39 and 5'-nucleotidase, ecto (NT5E, best 

known as CD73), which transforms AMP into adenosine, are often overexpressed by malignant 

tissues. This reflects the advantage conferred to cancer cells by the conversion of extracellular ATP, 

which promotes immunosurveillance, into adenosine, which exerts potent immunosuppressive 

effects.191-197 Of note, autophagy is also important for the perception of cell death as immunogenic 



because it contributes to several aspects of cellular immune responses, including the differentiation, 

survival and activation of myeloid and lymphoid cells.198-200 

The release of HMGB1 from cells succumbing to ICD requires the permeabilization of both the 

nuclear and plasma membranes, de facto constituting a post-mortem event.3,41 Although autophagy 

has been proposed to contribute to the release of HMGB1 from dying cells, at least under some 

circumstances,201 the molecular machinery that underlies this crucial manifestation of ICD has not 

yet been elucidated in detail. This said, extracellular HMGB1 is well known to mediate robust pro-

inflammatory effects upon binding to several receptors on the surface of immune cells, including 

TLR2, TLR4 and advanced glycosylation end product-specific receptor (AGER, best known as 

RAGE).202-210 Moreover, extracellular HMGB1 reportedly exerts a chemotactic activity by forming 

a complex with chemokine (C-X-C motif) ligand 12 (CXCL12) that signals via chemokine (C-X-C 

motif) receptor 4 (CXCR4).211 Finally, at least under some circumstances, endogenous HMGB1 

appears to promote autophagy by interfering with the mutually inhibitory interaction between the 

central autophagic regulator beclin 1 (BECN1) and the anti-apoptotic protein B-cell 

CLL/lymphoma 2 (BCL2).212-214 It is therefore tempting to speculate, yet remains to be formally 

demonstrated, that the nuclear release of HMGB1 may contribute to the autophagic response of 

cells succumbing to ICD inducers. Of note, the biological activity of extracellular HMGB1 appears 

to be regulated by its redox state.215-221 Moreover, HMGB1 binds not only to TLR2, TLR4 and 

RAGE, but also to hepatitis A virus cellular receptor 2 (HAVCR2, best known as TIM-3), hence 

mediating immunosuppressive (as opposed to immunostimulatory) effects.222-224 Taken together, 

these observations suggest that the biological activity of HMGB1 exhibits a consistent-degree of 

context-dependency. Nonetheless, HMGB1-deficient malignant cells exposed to ICD inducers fail 

to elicit adaptive immune responses upon inoculation into immunocompetent syngeneic mice, a 

defect that can be corrected by the co-administration of synthetic TLR4 ligands.225-228 Together with 

the notion that Tlr4-/- mice fail to perceive anthracycline-treated syngeneic cells as 



immunogenic,41,229 this observation demonstrates the importance of the HMGB1-TLR4 signaling 

axis for ICD. 

In summary, the spatiotemporally coordinated emission of specific DAMPs promotes the 

recruitment of APCs to sites of ongoing ICD, their ability to take up dead cell-derived particulate 

material, as well as their capacity to prime an adaptive immune response.6 This generally proceeds 

in two phases, involving the sequential recruitment and activation of IL-17-secreting γδ T cells and 

αβ CTLs.31,230 The latter not only mediate direct antineoplastic effects, mostly by secreting 

interferon γ (IFNγ) and via the granzyme-perforin pathway, but also underlie the establishment of 

protective immunological memory (Figure 1).231  



Gold-standard methods to monitor ICD 

As it stands, the gold-standard approach to evaluate the ability of a specific stimulus to cause bona 

fide ICD relies on vaccination assays.6,22,30 In this setting, malignant cells are exposed in vitro to the 

lethal stimulus of choice, thoroughly washed (to remove the stimulus), resuspended in an adequate 

volume of PBS, and then inoculated subcutaneously into the flank of immunocompetent syngeneic 

mice. One week later, living cells of the same type are introduced subcutaneously into the opposite 

flank, and mice are routinely monitored for the appearance of a palpable neoplastic lesion (Figure 

2A). The proportion of mice that do not develop subcutaneous tumors reflects the degree of 

immunogenicity of cell death as induced by the lethal trigger under evaluation. As a note, murine 

cells succumbing to prototypic inducers of ICD such as doxorubicin and mitoxantrone effectively 

vaccinate 80% of mice.34,95,232 

As a confirmatory assay, putative ICD inducers can be assessed for their ability to mediate immune 

system-dependent therapeutic effects against established neoplastic lesions.6,34,233 In this scenario, 

grafted, genetically-driven or chemically-induced subcutaneous or orthotopic tumors are established 

in both immunocompetent and immunodeficient mice. Malignant lesions are then allowed to 

progress until a pre-determined size or time point, beyond which tumor-bearing mice are treated 

with the compound under evaluation (Figure 2B). In this experimental setup, bona fide ICD 

inducers mediate optimal therapeutic effects in immunocompetent, but not in immunodeficient, 

mice.34,41,95,119,233 Importantly, this latter approach is suitable to validate the results of vaccination 

experiments but cannot be employed alone to determine the capacity of a specific intervention to 

cause ICD. Indeed, even the activity of antineoplastic regimens that fail to render dying cells 

immunogenic but induce other immunostimulatory effects is negatively affected by the absence of a 

functional immune system.104,105 Among other molecules, this applies to the microtubular inhibitor 

paclitaxel and the nucleoside analogue gemcitabine.104,105 



The main drawbacks of these types of assay relate to the use of rodents and syngeneic tumor 

models: the need for a tightly controlled sterile facility (which is mandatory for working with 

immunodeficient animals), prolonged times for the establishment/growth of neoplastic lesions, and 

significant costs. Moreover, vaccination and therapeutic tests for the detection of ICD are limited by 

the relatively restricted number of syngeneic tumor models that are currently available. Thus, 

although they constitute the gold-standard approach for the detection of ICD, vaccination assays 

relying on immunocompetent mice and syngeneic cancer cells are intrinsically incompatible with 

large screening campaigns. To circumvent this issue, various techniques that allow for the detection 

of one or more ICD manifestations in vitro and in vivo have been developed.6,234 Monitoring the 

immunostimulatory activity of lead compounds (be it linked to the induction of ICD or reflecting 

other mechanisms) early in the drug discovery pipeline may indeed speed up significantly the 

development of novel anticancer agents.104  



Detection of surrogate ICD biomarkers 

A relatively ample panel of ICD-associated phenomena can be monitored in vitro to obtain insights 

into the ability of a specific intervention to provoke ICD (Table 1). 

Cell death. By definition, ICD inducers must be cytotoxic and provoke cell death above a minimal 

threshold level. Cancer cells emit indeed a wide panel of DAMPs in response to non-lethal 

perturbations of homeostasis. However, such DAMPs differ in both qualitative and quantitative 

terms from those emitted by cells of the same type dying in response to the same stimulus applied 

with a lethal intensity/duration. Living cells are less likely to be taken up by APCs and ignite an 

adaptive immune response than their dying counterparts. Moreover, if the fraction of dying cells is 

excessively low, neoplastic lesions develop at the vaccination site and protective immunity cannot 

be established.34,95 Thus, agents that stimulate all the key manifestations of ICD including CALR 

exposure, ATP secretion and HMGB1 release, but fail to exert robust cytotoxic effects cannot be 

considered as authentic ICD inducers. This is the case of cardiac glycosides including digoxin and 

digitoxin, which nonetheless are powerful at converting non-immunogenic instances of cell death 

into bona fide ICD, hence operating as potent immune adjuvant.95-97,235 

Several assays are commercially available to monitor cell death-associated parameters, the most 

reliable indicator of cell death being end-stage plasma membrane permeabilization.9,236 This can be 

conveniently monitored by so-called exclusion dyes like the DNA-binding chemicals propidium 

iodide (PI) and 4',6-diamidino-2-phenylindole (DAPI), which only accumulate in cells with 

permeabilized plasma membranes. PI and DAPI can be conveniently detected by flow cytometry or 

fluorescence microscopy (absorption/emission peaks: 535/617 and 358/461 nm, respectively). On 

flow cytometry, both PI and DAPI can be combined with fluorescence variants of the protein 

annexin A5 (ANXA5), permitting the detection of phosphatidylserine exposure,9,237,238 as well as 

with 3,3’-dihexyloxacarbocyanine iodide (DiOC6(3), absorption/emission peaks: 482/504 nm), 



allowing for the quantification of mitochondrial transmembrane potential (Δψm).239-241 The 

externalization of phosphatidylserine (a phospholipid normally restricted to the inner leaflet of the 

plasma membrane) accompanies indeed multiple (though not all) instances of apoptotic cell 

death,16,242-245 while the permanent dissipation of the Δψm as a result of mitochondrial outer 

membrane permeabilization (MOMP) constitutes one of the major hallmarks of mitochondrial 

apoptosis.17,18,246,247 Of note, DiOC6(3) is not compatible with fixation, but other Δψm-sensitive 

probes that exist are, including chloromethyltetramethylrosamine (absorption/emission peaks: 

554/576 nm).248 MOMP is accompanied by the massive activation of caspase-9 and -3, while 

caspase-8 is required for ICD upstream of MOMP. The activation of caspases can be documented 

by flow cytometry or fluorescence microscopy, either upon the immunostaining of cells with 

monoclonal antibodies specific for active caspase fragments, or with cell-permeant caspase 

substrates that become fluorescent upon cleavage.9,249,250 Alternatively, caspase activation can be 

detected in a semi-quantitative manner by immunoblotting, with antibodies specific for caspases 

(which are themselves activated by cleavage) or their substrates.250,251  

As MOMP ensues the assembly of BAX/BAK1-containing oligomers across the outer 

mitochondrial membrane, the process can also be monitored by means of green fluorescent protein 

(GFP)-BAX chimeras (GFP absorption/emission peaks: 395/509 nm). In this setting, the 

relocalization of BAX to mitochondria can be followed by fluorescence microscopy as a shift in 

GFP fluorescence from a diffuse to a punctate or network-like pattern.40,252 Finally, one of the major 

morphological modifications of apoptosis (and hence of ICD) is nuclear condensation 

(pyknosis).1,2,95 Also this process can be conveniently monitored by fluorescence microscopy, either 

in cells that constitutively express a GFP- or red fluorescent protein (RFP)-tagged variant of histone 

2B (RFP-H2B, absorption/emission peaks: 584/607 nm) or upon fixation and staining with the 

chromatinophilic dye Hoechst 33342 (absorption/emission peaks: 361/461 nm).40,95,235 

 



CALR exposure. Several assays are available to directly monitor the ICD-associated translocation 

of CALR on the outer leaflet of the plasma membrane. For instance, this can be achieved on flow 

cytometry, by staining non-permeabilized cells with a CALR-specific antibody, or in cells that 

stably express a CALR-HaloTag™ fusion protein.40,95 In the latter scenario, the HaloTag™ label 

can be visualized by a cell-impermeant fluorescent chemical, resulting in the specific detection of 

the CALR molecules that are effectively accessible for ligand binding from the extracellular 

microenvironment.40,95 In both cases, it is imperative to remove from the analysis dead (PI+ or 

DAPI+) cells, as the permeabilized plasma membrane allows both the CALR-specific antibody and 

the normally cell-impermeant HaloTag™ ligand to access intracellular CALR.34,40 Alternatively, 

CALR exposure can be monitored upon the biotinylation of cell surface proteins (which must be 

performed in pre-apoptotic conditions, when plasma membranes are intact, to avoid false-positive 

results owing to intracellular CALR), followed by streptavidin-mediated precipitation, and 

detection by immunoblotting,34,66,253 or by fluorescence microscopy, in cells that constitutively 

express a CALR-GFP fusion construct. For the sake of precision, it should be noted that the latter 

system does not detect CALR-GFP exposure in itself, but the ER perinuclear clustering that 

invariably accompanies exposure.20,232 We have also successfully employed a PDIA3-specific 

antibody and flow cytometry as well as PDIA3-GFP-expressing cells and fluorescence microscopy 

to (indirectly) assess CALR exposure in the course of ICD, as in our models PDIA3 invariably co-

translocates with CALR on the surface of cells exposed to ICD inducers.36,37,95 However, this does 

not apply to all experimental settings,66,67 implying that the PDIA3-GFP fusion is a useful 

confirmatory tool but cannot be employed as a standalone means to identify all instances of ICD. 

In some instances, it may be important to monitor CALR exposure along with the proficiency of the 

ER stress response. This may indeed allow for the identification of defects in the signaling pathway 

that leads to the translocation of CALR to the outer leaflet of the plasma membrane. Several assays 

are currently available for the detection of the different arms of the ER stress response.136,254-256 For 



instance, the phosphorylation state of EIF2A and/or of the major EIF2A kinases, including EIF2A 

kinase 1 (EIF2AK1, best known as HRI),257 EIF2AK2 (best known as PKR),258 and EIF2AK3 (best 

known as PERK),259-261 can be assessed by immunoblotting, flow cytometry or 

immunofluorescence microscopy with phosphoneoepitope-specific antibodies.260 The splicing 

status of X-box binding protein 1 (XBP1) mRNA, reflecting the activation of the ER stress sensor 

endoplasmic reticulum to nucleus signaling 1 (ERN1, best known as IRE1α), can be monitored by 

quantitative real-time RT-PCR,262 as well as by flow cytometry or fluorescence microscopy, either 

in cells that express a fluorescently-tagged version of XBP1263 or upon the administration of a self-

quenched RNA probe that can be cleaved by IRE1α.264 Finally, the nuclear redistribution of 

activating transcription factor 6 (ATF6) can be easily evaluated by fluorescence microscopy in cells 

that constitutively express GFP- or RFP-tagged variants of ATF6.52 As an alternative, ER stress can 

be indirectly monitored upon the formation of GTPase activating protein (SH3 domain) binding 

protein 1 (G3BP1)-containing granules in cells genetically modified to express a G3BP1-GFP 

fusion.40,265 This said, G3BP1 appears to redistribute to granules in response to a wide panel of 

stressful conditions that are not limited to specific perturbations of reticular homeostasis. Thus, 

monitoring G3BP1 aggregation can be useful to determine whether cells mount a stress response to 

a putative inducer of ICD, yet cannot be employed to formally imply the ER in this process. 

 

ATP secretion. The ICD-associated secretion of ATP can be monitored by two complementary 

approaches: directly, by quantification of extracellular ATP,137,180 or indirectly, by the assessment 

of residual intracellular ATP.137,139 The most employed method currently available for the 

quantification of ATP levels relies on the ability of eukaryotic luciferases to produce light while 

oxidizing D-(-)-luciferin (which must be added exogenously) in a ATP-dependent manner.266,267 

This can be applied to culture supernatants as well as to cell lysates, and hence is compatible with 

both the direct and indirect assessment of ATP secretion in the course of ICD. The vesicular pool of 



ATP can also be visualized by fluorescence microscopy upon staining cells with the ATP-binding 

fluorochrome quinacrine (absorption/emission peaks: 436/525 nm).268 Alternatively, intracellular 

ATP can be monitored in living cells by a fluorescence resonance energy transfer (FRET)-based 

assay involving a yellow fluorescent protein-cyan fluorescent protein (YFP-CFP) fusion containing 

a domain that changes its conformation upon ATP binding, hence shifting the spectral properties of 

the probe.269 

In some settings, it may be relevant to monitor the autophagic response that generally precedes and 

is required for ICD-associated ATP release. This can be achieved by a wide panel of techniques, 

whose detailed discussion goes largely beyond the scope of this set of recommendations.15,270,271 

This said, one of the most convenient approaches to obtain insights into the autophagic response of 

cells exposed to homeostatic perturbations relies on the use of a GFP- or RFP-tagged variant of 

microtubule-associated protein 1 light chain 3 (MAP1LC3, best known as LC3).272 In the course of 

autophagy, LC3 gets conjugated to phosphatidylethanolamine, hence acquiring the ability to 

accumulate into forming autophagosomes.273,274 In line with this notion, GFP-LC3 redistributes 

from a diffuse to a punctate pattern in cells mounting an autophagic response, a phenomenon that 

can readily be monitored by fluorescence microscopy.  

 

HMGB1 release. Similar to the secretion of ATP, the release of HMGB1 in the supernatant of cells 

undergoing ICD can be monitored directly or indirectly, as a function of residual intracellular 

HMGB1.41,207,275 The former approach relies on the immunoblotting-based assessment of HGMB1 

in concentrated cell supernatants, or (most often) on commercially available enzyme-linked 

immunosorbent assay (ELISA) kits specific for human or murine HMGB1. These kits generally 

allow for the precise quantification of HMGB1 concentrations in a wide panel of biological 

specimens, including culture supernatants, serum samples and interstitial fluids, yet may be 

relatively expensive for use in large-scale screening campaigns.95,147,275 Alternatively, HMGB1 



release can be assessed by fluorescence microscopy in cells expressing a GFP-tagged variant of 

HMGB1, as the loss of colocalization between the GFP signal and a nuclear staining (e.g., Hoechst 

33342, H2B-RFP).275 This said, the precise quantification of HMGB1 variants exhibiting 

differential redox states requires mass spectroscopy.276 

 

High-content, high-throughput platform. Cell death that is not accompanied by CALR exposure, 

ATP secretion and HMGB1 release is generally not perceived as immunogenic.34,41,119 In other 

words, the absence of only one such ICD-associated events often entails a consistent decrease in the 

immunogenicity of cell death, if not its total loss. This implies that the ability of a given 

intervention to promote ICD can be inferred in vitro only upon the concurrent evaluation of all ICD 

hallmarks. Indeed, cells succumbing to homeostatic perturbations that stimulate ATP secretion and 

HMGB1 release but not CALR exposure, such as the administration of cisplatin, fail to elicit 

adaptive immune responses upon inoculation into immunocompetent mice.34,39,40 This said, a 

platform that would allow for the simultaneous detection of cell death, CALR exposure, ATP 

secretion and HMGB1 release in the context of large screening campaigns was missing. To 

circumvent this obstacle to the identification of novel, perhaps clinically relevant bona fide inducers 

of ICD, we recently developed a robotized cell biology platform that allows for entirely automated 

compound handling and multiplex read-out capability (including fluorescence microscopy, flow 

cytometry and bioluminescence detection) in sterile conditions. We then designed fully automated 

workflows based on various combinations of the assays described above and including appropriate 

procedures for data handling/normalization and statistical analysis. This approach is compatible 

with the high-content, high-throughput screening of large chemical libraries, returning a cumulative 

score that represents the ability of a specific compound to promote the four tenets of ICD. 

Importantly, this integrated platform does not abolish the need to evaluate putative ICD inducers for 

their capacity to elicit protective anticancer immune responses in gold-standard vaccination assays. 



Nonetheless, it allows for the relatively straightforward identification of candidate molecules. By 

means of this approach, septacidin has been identified as a bona fide ICD inducer.232 Moreover, 

cardiac glycosides were found to robustly improve the immunogenic potential of cell death.95-97,235 

We expect this platform not only to allow for the discovery of other ICD inducers, but also to 

facilitate the understanding of the molecular pathways that underlie ICD and how these can be 

modulated for therapeutic purposes. 



Concluding remarks and future directions 

As described above, the simultaneous detection of cell death, CALR exposure, ATP secretion and 

HMGB1 release by means of a high-content-, high-throughput-compatible platform is useful for the 

identification of candidate ICD inducers among large chemical libraries. Nonetheless, vaccination 

assays involving immunocompetent mice and syngeneic cancer cells do not cease to constitute the 

gold-standard approach to formally identify bona fide triggers of ICD. 

Paradoxically, the major obstacle to the identification and development of clinically relevant ICD 

inducers appears to be represented by the murine system itself, as rodent and human cells do not 

necessarily respond to a specific stimulus in a comparable fashion. As a standalone example, mouse 

cells are highly resistant to the cytotoxic activity of cardiac glycosides, owing to the expression of a 

mutated subunit of their target, the Na2+/K+ ATPase.95,277 This implies that formally determining 

whether a given intervention provokes ICD in the human system is complicated. Humanized rodent 

models, i.e., immunodeficient mice reconstituted with a human immune system,278 may partially 

circumvent this issue. However, the interaction between human immune cells and the murine 

microenvironment may be negatively influenced by inter-species molecular variations that 

compromise the ability of the former to mount an appropriate immune response.279,280 Thus, 

although attempts are being made to limit such variations,281 experimental models that allow for the 

proper evaluation of ICD in the human system require further improvements. Finally, the procedure 

outlined above for the identification of novel ICD inducers assesses the biochemical processes that 

are required for the immunogenicity of anthracycline-induced cell death. However, ICD might exist 

in functionally distinct variants, implying that hitherto uncharacterized mechanisms might render 

cell death immunogenic. This possibility should be actively investigated in future studies. 

Irrespective of these caveats, we are confident that the screening of large chemical or small-

interfering RNA libraries combined with vaccination assays in the murine model will allow for the 



identification of novel, therapeutically relevant interventions for the induction or modulation of 

ICD. Moreover, the immunohistochemical detection of ICD-associated biomarkers in bioptic 

specimens from cancer patients may convey robust predictive or prognostic indications, at least 

under some circumstances.282,283 The implementation of well-designed, longitudinal 

immunomonitoring procedures into the clinical development of antineoplastic agents is required to 

ascertain the actual prognostic or predictive value of ICD-associated processes among oncological 

patients.284-286 Of note, a phase I clinical study has recently been launched to investigate the safety 

and preliminary therapeutic efficacy of adenoviral vectors genetically modified to trigger ICD, in 

subjects with malignant glioma and glioblastoma multiforme (NCT01811992). In this setting, 

serotype 5, replication-defective, first-generation adenoviruses encoding the HSV-1 thymidine 

kinase and similar vectors coding for FLT3LG are co-infused at the time of surgical tumor 

resection, followed by valacyclovir (a gancylovir-like prodrug converted by the viral thymidine 

kinase and cellular kinases into its triphosphate cytotoxic variant)287,288 in the context of current 

standard-of-care therapy (source https://clinicaltrials.gov/). The results of such a first-in-man study 

relying on the genetic induction of ICD in cancer patients are urgently awaited. 
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Legends to Figures 

Figure 1. Molecular and cellular mechanisms of immunogenic cell death. Cancer cells succumb 

to specific stimuli (e.g., anthracyclines, oxaliplatin, some forms of radiation therapy, photodynamic 

therapy) while emitting a spatiotemporally ordered combination of damage-associated molecular 

patterns (DAMPs). These signals include (but are not limited to) the pre-apoptotic exposure of the 

endoplasmic reticulum chaperone calreticulin (CALR) on the surface of dying cells, the secretion of 

ATP during the blebbing phase of apoptosis, and the release of the nuclear protein high mobility 

group box 1 (HMGB1) upon plasma membrane permeabilization. Upon binding to specific 

receptors, immunogenic cell death (ICD)-associated DAMPs promote the recruitment of antigen-

presenting cells (APCs) and stimulate their ability to take up particulate material and cross-present 

exogenous antigens to CD8+ cytotoxic T lymphocytes (CTLs) while secreting interleukin (IL)-1β. 

The consequent adaptive immune response also involves γδ T lymphocytes that produce IL-17. 

Both γδ T cells and αβ CTLs mediate direct antineoplastic effects by secreting interferon γ (IFNγ) 

and via the granzyme-perforin pathway. In addition, some CTLs acquire a memory phenotype, 

underlying the establishment of long-term immunological protection. 

Figure 2. Assays for the evaluation of immunogenic cell death in vivo. A. Vaccination assays. 

Murine cancer cells of choice are exposed in vitro to a putative inducer of immunogenic cell death 

(ICD), 1 μM mitoxantrone (positive control) or 50 μM cisplatin (negative control) for a 

predetermined time (normally 6-24 hours), then washed, resuspended in PBS, and eventually 

injected s.c. into one flank (vaccination site) of immunocompetent syngeneic mice (ideally 5-10 per 

group). One week later, mice are challenged with living cancer cells of the same type, which are 

inoculated s.c. into the contralateral flank (challenge site). Tumor incidence and growth are 

routinely monitored at both injection sites over a 1-2 months period. The development of neoplastic 

lesions at the vaccination site indicates that the stimulus under investigation is unable to cause cell 

death (under the circumstances under investigation) to a degree that is compatible with the 



elicitation of adaptive immunity. Conversely, in the absence of tumors at the vaccination site, the 

ability of the experimental maneuver under evaluation to promote bona fide ICD inversely 

correlates with the number of neoplastic lesions developed at the challenge site. As an indication, 

neoplastic cells exposed in vitro to 1 μM mitoxantrone for 6 hours and maintained in culture for 

additional 18 hours vaccinate approximately 80% of mice against a challenge with living cells of 

the same type. B. Therapeutic assays. Immunocompetent and immunodeficient syngeneic mice 

bearing grafted, genetically-driven or chemically-induced subcutaneous or orthotopic tumors are 

treated with a putative ICD inducer, mitoxantrone (positive control) or cisplatin (negative control) 

at therapeutic doses, followed by the monitoring of tumor size over a 1-3 weeks period. In this 

setting, bona fide ICD inducers mediate optimal antineoplastic effects in immunocompetent, but not 

in immunodeficient, mice. Since this is also the case of therapeutic interventions that exert off-

target immunostimulatory effects, this assay cannot be employed alone to discriminate between 

ICD and non-immunogenic cell death (nICD). Please note that all curves represented in this figure 

do not depict primary data but have been created for the sake of exemplification.  



Table 1. Assays for the detection of immunogenic cell death-associated processes in vitro. 

Process Parameter Platform Main advantage Main disadvantage Notes 

Cell death 

BAX activation 
Flow cytometry 

Fluorescence microscopy 
Immunoblotting 

Compatible with 
real-time detection 

Real-time detection requires 
transgenic cell lines 

Based on conformation-specific antibodies or 
cell lines expressing GFP-tagged BAX 

Δψm dissipation 
Flow cytometry 

Fluorescence microscopy 
Fluorometry 

Early process in the cascade 
of events leading to cell death 

The Δψm can be dissipated  
in the course of cell 

death-unrelated processes 

Several Δψm-sensitive probes with different 
spectral and biochemical properties are 

available, including DiOC(3) and CMTMRos 

Caspase activation 

Flow cytometry 
IF microscopy 

Fluorescence microscopy 
Fluorometry 

Immunoblotting 

Directly involved 
in CALR exposure 

Some caspases get activated 
in the course of cell 

death-unrelated processes 

Antibodies specific for active caspases or 
their substrates, as well as self-quenched 

peptides that emit upon cleavage are available 

Nuclear pyknosis Fluorescence microscopy 
Compatible with 

simultaneous assessments 

Prone to underestimation, 
owing to the detachment 

of cells from the substrate 

Based on chromatinophilic dyes 
like Hoechst 33342 or cell lines 

expressing RFP-tagged variants of H2B 

PMP 
Flow cytometry 

Fluorescence microscopy 
Light microscopy 

Straightforward and very 
reliable indicator of cell death 

End-stage measurement 
Several exclusion dyes with 

different spectral properties are available, 
including trypan blue, DAPI and PI 

Surface-exposed PS 
Flow cytometry 

Fluorescence microscopy 
Compatible with 

simultaneous assessments 
PS exposure does not 

always accompany cell death 
Based on fluorochrome-tagged 

variants of the protein annexin A5 

CALR exposure 
Surface-exposed 

CALR 

Flow cytometry 
Fluorescence microscopy 

Native gels 

Compatible with real- 
time detection and 

simultaneous assessments 

Real-time detection requires 
transgenic cell lines 

Based on CALR-specific antibodies, cell 
lines expressing HaloTag™-tagged CALR 

variants, GFP-tagged CALR variants, or GFP-
tagged PDIA3 variants, or the quantification 

of cell surface proteins upon biotinylation 

ER stress 

Phosphorylation of 
EIF2A or EIF2A kinases 

IF microscopy 
Immunoblotting 

EIF2A phosphorylation is 
required in CALR exposure 

Incompatible with high-
throughput platforms 

Based on phosphoneoepitope- 
specific antibodies 

XBP1 splicing Fluorescence microscopy 
Compatible with 

real-time detection 
Incomplete assessment of 

the ER stress response 
Based on cell lines expressing 
a fluorescent variant of XBP1 



ATF6 activation  Fluorescence microscopy 
Compatible with 

real-time detection 
Incomplete assessment of 

the ER stress response 
Based on cell lines expressing 
a fluorescent variant of ATF6 

Formation of stress 
granules 

Fluorescence microscopy 
Compatible with 

real-time detection 
Not specific for ER stress 

Based on cell lines stably expressing 
a GFP-tagged variant of G3BP1 

ATP secretion  

Extracellular ATP 
Luminometry 

HPLC-MS 
Very sensitive and compatible 

with real-time detection 
Extracellular ATP is exposed to 

several ectonucleotidases 

Extracellular ATP can be monitored 
in culture supernatants or in cells stably 

expressing luciferase on their surface 

Cytosolic ATP 
Fluorescence microscopy 

Luminometry 
HPLC-MS 

Cytosolic ATP is more stable 
than its extracellular counterpart 

Indirect indication 
of ATP secretion  

Residual cytosolic ATP can be monitored 
upon cell lysis or in cells expressing 
ATP-sensitive FRET-based probes 

Vesicular ATP 
Flow cytometry 

Fluorescence microscopy 
Compatible with 

real-time detection 
Indirect indication 
of ATP secretion  

Based on the fluorescent 
probe quinacrine  

Autophagy 
Autophagosome 

formation 

Fluorescence microscopy 
Immunoblotting 
Other techniques 

Can be monitored with a 
large panel of techniques 

Autophagy is not always 
required for the secretion of 
ATP in the course of ICD 

Cell lines stably expressing GFP-LC3 
offer a means to monitor the formation 

of autophagic vacuoles in real-time 

HMGB1 release 

Extracellular HMGB1 
ELISA 

Immunoblotting 
Mass spectroscopy 

Very sensitive and compatible 
with real-time detection 

Relatively expensive 
ELISA kits for the detection of HMGB1 
are available from commercial providers 

Intracellular HMGB1 
Fluorescence microscopy 

Immunoblotting 
Compatible with 

real-time detection 
Indirect indication 
of HMGB1 release 

Based on HGMB1-specific antibodies 
or cell lines expressing 

fluorescent variants of HMGB1 

 

Abbreviations: ATF6, activating transcription factor 6; BAX, BCL2-associated X protein; CALR, calreticulin; CMTMRos, chloromethyltetramethylrosamine; Δψm, mitochondrial 

transmembrane potential; DAPI, 4',6-diamidino-2-phenylindole; DiOC(3), 3,3’-dihexyloxacarbocyanine iodide; EIF2A, eukaryotic translation initiation factor 2A; ELISA, enzyme-

linked immunosorbent assay; ER, endoplasmic reticulum; FRET, fluorescence resonance energy transfer; G3BP1, GTPase activating protein (SH3 domain) binding protein 1; GFP, 

green fluorescence protein; H2B, histone 2B; HGMB1, high mobility group box 1; HPLC, high-performance liquid chromatography; ICD, immunogenic cell death; IF, 

immunofluorescence; MS, mass spectrometry; PDIA3, protein disulfide isomerase family A, member 3; PI, propidium iodide; PMP, plasma membrane permeabilization; PS, 

phosphatidylserine; RFP, red fluorescent protein; XBP1, X-box binding protein 1. 






