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ABSTRACT 

Background: Mesenchymal Stem Cells (MSC) are ideal candidates for regenerative and 

immunomodulatory therapies. The use of xenogeneic protein free GMP-compliant growth media is a 

prerequisite for clinical MSC isolation and expansion. Human platelet lysate (HPL) has been efficiently 

implemented into MSC clinical manufacturing as a substitute for fetal bovine serum (FBS). As the use of 

human-derived blood materials alleviates immunologic risks, but not the transmission of blood-borne 

viruses, the aim of our study was to test an even safer alternative than HPL to FBS: HPL subjected to 

pathogen inactivation by psoralen (iHPL). 

Methods: Bone Marrow samples were plated and expanded using 3 culture media, α-MEM + 10 % HPL 

or iHPL or FBS, MSC morphology, growth and immunophenotype were analyzed at each passage; 

karyotype, tumorigenicity and sterility at the third passage. Statistical analyses were performed. 

Results: MSCs cultivated in the 3 different conditions did not show any significant differences in terms 

of CFU-F number, immunophenotype and multipotent capacity. Conversely, HPL/iHPL-MSCs appeared 

smaller, more numerous, had higher proliferative potential and showed a higher Oct-3/4 and NANOG 

protein expression than FBS-MSCs. Although HPL/iHPL-MSCs exhibit characteristics attributable to 

higher primitive stemness than FBS-MSCs, no tumorigenic mutations or katyotype modifications were 

observed. 

Discussion: We demonstrated that iHPL represents a good, safer than HPL, GMP-compliant alternative 

to FBS for MSC clinical production which is even more advantageous in terms of cellular growth and 

stemness. 

Keywords: Mesenchymal Stem Cells (MSCs), Good Manufacturing Practice (GMP), Human Platelet 

Lysate (HPL), Inactivation, Psoralen 



LIST OF ABBREVIATIONS 

a-MEM = alpha-Minimum Essential Medium  

ATMP = Advanced Therapy Medicinal Products 

BC-PC = buffy coat-platelet concentrate 

BM = bone marrow 

CAD = Compound Adsorption Device 

CFU-F = Fibroblast Colony-forming Units 

cPD = cumulative population Doubling 

FBS = foetal bovine serum 

GF = growth factors 

GMP = good manufacturing practice 

HPL = human platelet lysate 

HS = human serum 

iHPL= inactivated human platelet lysate 

IP = inactivated pathogens 



MSC = Mesenchymal Stem Cells 

Oct-3/4 = Octamer-3/4 

PI = Pathogen Inactivation  

PBS = Phosphate Buffer Saline 

PDGF = Platelet-Derived Growth Factor 

PLT = platelet 

SD = Standard Deviation 



INTRODUCTION 

Rapid progress in the fields of biotechnology and medicine has led to the development of new treatments 

and innovative medicinal products. Among them, new cell-based medicinal products (CBMPs), 

containing viable human cells of autologous or allogeneic origin, have a high potential for cell-based 

therapies for various severe diseases. In particular, Mesenchymal Stem Cells (MSCs), can be easily 

isolated from bone marrow (BM) thanks to their capacity to adhere and proliferate and expand in culture 

(1, 2). They are multipotent stem cells with high immunomodulant proprieties and produce multiple 

cytokines, growth factors, adhesion molecules: all important factors which influence the hematopoietic 

microenvironment (3, 4). The particular characteristics and high plasticity of these cells, make them very 

relevant in the fields of cell therapy, tissue repair and in tissue engineering strategies, as therapeutic 

products tailored to a number of clinical scenarios: from degenerative to post-traumatic diseases caused 

by damage or cell loss.(5, 6). The increasing use of MSCs as Advanced Therapy Medicinal Products 

(ATMP) has led to production processes that need to meet Good Manufacturing Practices (GMP) (7, 8). 

The regulatory context for ATMPs is established by Regulation (EC) N. 1394/2007 which is designed to 

facilitate the patient access to these products, while guaranteeing the highest level of safety for patients 

(9) . 

In order to ensure product safety and efficacy, GMP guarantee that products are consistently produced 

and controlled to the quality standards required for their intended use, from collection to release, 

including cell harvesting, cell manipulation processes, maximum number of cell passages, combination 

with other components of the product, filling, packaging etc … . Although human MSCs themselves are 

not highly immunogenic, when expanded in xenogeneic sera such as in fetal bovine serum (FBS), they 

are likely to generate immune responses in some patients after administration (10, 11). It was shown that 

a single preparation of 108 hMSCs grown under standard conditions in FBS carry with it approximately 

7–30 mg of FBS proteins (10). Thus, in view of a clinical GMP production, the use of xenogenic serum is 

complicated as there is high lot-to-lot variability and it is associated with a risk of transmitting infectious 

agents and immunizing effects (12, 13). 



On these bases, regulatory guidelines for GMP productions, aimed at minimizing the use of FBS, used in 

most expansion protocols as a cell culturing medium supplement, have further reinforced an intensive 

search for safer media supplementation alternatives (14). Serum-free medium is unable to promote MSC 

expansion unless several recombinant human growth factors (GF) such as platelet-derived growth factor 

(PDGF), fibroblast growth factor (FGF), transforming growth factor (TGF)-β, and epidermal growth 

factor (EGF) are added to the medium. However, 1) defining the optimal amount of GF is difficult, 2) 

only a few GFs are licensed for therapeutic use, 3) recombinant Human-GFs are expensive, and 4) 

isolated GF cannot replace the different physiological functions of FBS (15-17).  

Interesting works have evidenced the possibility of replacing FBS with autologous or allogeneic platelet 

lysate obtained from a single-donor or pooled human serum or platelets as they contain a plethora of 

growth-promoting factors. Moreover, it is being established as a safe and efficient MSC culture 

supplement for robust MSC cultivation, thus offering certain advantages as potential FBS substitutes (18-

21). Analyses of platelet lysates, and subcellular fractions have shown that numerous bioactive molecules 

are stored within distinct platelet organelles including adhesive proteins, coagulation factors, mitogens, 

protease inhibitors, and proteoglycans (22). Although the use of human-derived blood materials alleviates 

the immunologic risks of FBS, the possibility of transmitting blood-borne viruses remains, especially 

when materials from multiple donors are pooled to provide a sufficient volume for therapeutic-scale MSC 

expansion and to limit individual donor variability. Pathogen inactivation (PI) technologies are aimed at 

enhancing blood safety through the inactivation of emerging pathogens, both known and as yet-

unidentified ones, that are not detected by current screening or testing protocols. Since 1990, significant 

progress has been made in pathogen inactivation technology, which at present is widely available in 

European blood services, with multiple CE (an abbreviation of Conformité Européenne, French for 

"European Conformity")  marked products to treat both platelets and plasma for transfusion. The CE 

marking states that the product is assessed before being placed on the market and meets EU safety, health 

and environmental protection requirements. 



The European experience with pathogen inactivated platelets and plasma now numbers millions of units, 

with a safety record that has been widely reported in the literature (23). 

Demonstration of the PI capacity of these techniques is beyond the scope of this publication, however 

extensively validation studies, using blood products with high titers of added bacteria, enveloped and 

non-enveloped viruses, and protozoa, have been performed to prove their efficacy (24).  

Therefore, the application of PI technique on platelets to be used for the preparation of Human Platelet 

Lysate (HPL) to supplement culture medium for MSC expansion in a GMP setting, seems to be highly 

desirable as it might obviate the problem of virus transmission. 

In this study, the pathogen inactivation process was performed with Intercept Blood System technology 

(INTERCEPT, Cerus Europe BV, Amersfoort, Netherlands), that uses a photoactive compound, a 

derivative of Psoralen (Amotosalem) and long-wavelength ultraviolet (UVA) illumination. Upon 

exposure to UVA light, Amotosalem becomes reactive and forms a chemical crosslink that locks-up the 

strands of RNA and DNA, blocking and inactivating the replication of viruses, bacteria and leukocytes in 

PLT concentrates (25-28).  

In our study, to ensure that the inactivation process does not induce changes in the cells, we set up, in 

parallel, cultures of MSCs in FBS, the standard supplement, HPL, widely used as a cell growth 

supplement and discussed in the literature, and iHPL. We then compared the effects of the three 

supplements on cell growth, immunophenotype, multipotent capacity, karyotype, tumorigenesis and 

stemness protein expression. Both HPL and iHPL batches were prepared according to the blood bank 

procedures (29), where, in keeping with the current normative provisions, a high standardization is 

strongly recommended. 

 

MATERIALS AND METHODS 

Human Platelet Lysate (HPL) preparation 



Whole Blood (450 ± 45 mL) collection from 60 healthy blood donors was performed in a triple bag 

system (Fresenius Kabi, Bad Homburg, Germany) containing 63 ml of Citrate-Phosphate-Dextrose (CPD) 

as anticoagulant. According to Italian laws and European guidelines, routine testing of blood donors was 

performed for the following: ABO blood groups, irregular red blood cell antibodies and infectious 

markers (Hepatitis B and C, HIV 1-2 and Treponema pallidum). The blood units were centrifuged and 

separated into Plasma, Buffy Coat and Red Blood Cells using an automated blood component separator 

(Compomat G5, Fresenius Kabi; Bad Homburg, Germany).  

For Buffy Coat-Platelet Concentrate (BC-PCs) preparation, four 0-group Buffy Coats were pooled with 

one AB-group plasma, then centrifuged and automatically separated through a leukoreduction filter using 

the TACSI system  (Terumo BCT Europe, N.V. Zaventem, Belgium).  

Twelve BC-PCs were prepared and six experimental replicates were performed. Each replicate was 

prepared from two BC-PC units using a pool and split process, resulting in 6 test units (n=6) and 6 paired 

control units (n=6). 

Samples were taken from each unit to evaluate that platelet concentration, platelet content and 

leucocyte contamination complied with any specifications set for transfusional purposes and for use 

with the inactivation processing set.  

Platelet concentration was determined with a haematology analyser (Sysmex XE-2100) and residual 

white blood cells contamination with flow cytometric method (BD Leukocount kit; BD Biosciences). 

Each control unit remained untreated; the test unit was sterile docked to an INTERCEPT Large 

Volume processing set (CERUS Corporation, Concord, CA, USA) and processed according to the 

manufacturer’s instructions. The component was treated with 3 J cm−2 UVA light, in the presence of 

150μM Amotosalen. Following treatment, the BC-PC was transferred to the associated Compound 

Adsorption Device (CAD) bag and incubated for 16 h, with agitation at 22°C, to reduce to low level 

residual Amotosalen and free photoproducts. 

Samples were taken from each unit to evaluate platelet concentration, recovery post inactivation 

treatment and sterility (BacT/ALERT, bioMérieux).  

All BC-PCs were frozen at – 35°C and thawed at 37°C three times to obtain platelet fragmentation and 

growth factors release. The BC-PCs were subsequently centrifuged at 5000g for 8 min to remove 

platelet bodies and collect the supernatant.  

To improve standardization and reduce individual donor variations, all six untreated supernatant units 

were pooled in a single HPL unit, resulting in a batch of 60 different donors. The same was done with 

the other six treated units. Each batch of HPL was then divided into aliquots of 100-150 ml and frozen 

again at -35°C until use.  

To eliminate any traces of residual platelet, HPL was filtered by 0.2µ filters before the use. 



Each batch of HPL and iHPL was tested for the presence of endogenous and adventitious viruses. DNA 

extraction was performed starting with 1 ml of HPL and iHPL followed by an extraction step using the 

automatic extractor easyMAG (Biomérieux, Marcy l’Etoile, France) according to the manufacturer’s 

instruction,  and eluted in a final volume of 50 µl. For endogenous viruses, five microliters of elute 

were added to 20 µl of amplification mix for detection of HCMV and EBV(Q- CMV Real Time 

Complete Kit, EBV Q-PCR Alert Kit, ELITech Group, Puteaux,), reconstituted following the 

manufacturer’s instructions, and amplified with the following thermal profile: 50°C 2’, 95°C 10’, 45 

cycles of 95°C 15’’, 60°C 1’. Twenty microliters of elute were added to 20 µl of amplification mix for 

detection of parvovirus B19 (Parvovirus B19 Elitè MGB Kit, ELITech Group), reconstituted following 

the manufacturer’s instructions, and amplified with the following thermal profile: 50°C 2’, 95°C 2’, 45 

cycles of 95°C 15’’, 60°C 40’’, 72°C 20’’. For simultaneously detection of 15 mayor respiratory 

viruses (RSVa, RSVb, Influenza A, Influenza B, Adenovirus, Coronavirus 229E/NL63, Coronavirus 

OC43, Parainfluenza 1,2,3,4, Rhinovirus A,B,C, Bocavirus 1,2,3,4, Enterovirus, e Metapneumovirus) 

RV15 OneStep ACE detection (Seegene, Seoul, Korea) was used according to the manufacturer’s 

instruction. 

 

Harvest and preparation of MSCs 

BM cells were harvested from the iliac crest of adult or pediatric donors who underwent BM collection 

for a related patient after informed consent. We used a part of the BM initially dedicated to transplant or 

when available, an unfiltered BM collection bag (Baxter Healthcare Corporation, IL, USA) which was 

normally discarded before BM infusion. The bag was washed 3 times with Phosphate Buffer Saline (PBS) 

1X (Lonza, Versviers, Belgium) and the cells were centrifuged 400 g for 10 minutes, counted and plated 

directly in different culture media.  

First, we tested HPL at a concentration of 10%, 7% or 5% with 20 IU/ml heparin to assess the best result 

in terms of cellular growth.  

Then the whole BM sample was equally spited in 3 cellular culture conditions: alpha-Minimum Essential 

Medium Eagle (a-MEM) (SIGMA-ALDRICH®, LTO Irvine, Ayrshire, UK) containing 10% of 1) FBS , 



2) HPL or 3) iHPL. The seeding density of starting whole BM was at 10000 cells /cm2 as previously 

reported (30). 

After 7 days, the non-adherent cells were removed and discarded. The adherent cells were re-fed every 5-

7 days and when they reached confluence, they were detached, counted using the fast read® disposable 

chamber as previously described in Gunetti et al. (31) and re-plated for a further 3-5 passages at 1000 

cells/cm2. We considered MSCs at Passage 1 (P1) the first which were harvested and re-plated. The 

cellular condition was maintained from cellular plating of whole BM and during the expansion process. 

We indicated the following passages with increasing numbers: P2, P3,etc.. On the basis of our experience 

and our previous reported data (30) we retained that  3 passages suffice for clinical applications. For this 

reason all data are obtained on MSC expanded until P3. 

 

Colony-Forming Unit-Fibroblasts (CFU-F) 

In order to quantify MSC precursors, we performed a CFU-F test: the BM cells were plated directly in α-

MEM (SIGMA-ALDRICH®, LTO Irvine, Ayrshire, UK) containing 10% FBS , HPL or iHPL at 

densities of [10000] cells/cm2 or [100000] cells/cm2  in a 6-well plate (SPL Life Science, Eumhyeon-ri, 

Korea). MSC clonogenic precursors were scored macroscopically after 7-10 days from seeding and 

clusters of more than 50 cells were considered colonies. All experiments were performed in duplicate and 

by 2 different operators. The CFU-Fs means were expressed as fibroblastic clones obtained from 1 

million BM cells (CFU-F/106 cells). 

MSC Cellular Growth Evaluation 

In order to evaluate the cellular growth, the cell growth rate was expressed in terms of population 

doubling (PD) using the formula (log N/log 2), where N is the cell number of the detached cells divided 

by the initial number of seeded cells and the expansion in terms of cumulative PD (cPD). 

MSC Cytofluorimetric Analysis 



To analyze the immunophenotype, flow cytometer analysis was performed on adherent cells at each 

passage. Briefly, 200000 cells were incubated with the appropriate amount of antibody according the 

specific antibody titration as described in Rustichelli et al.(32)  for 20 minutes with anti CD90 FITC, 

CD73 PE, CD34 FITC, CD14 FITC, CD45 FITC (Becton Dickinson, San Jose, CA, USA), CD 105 APC 

and CD146 APC (Miltenyi Biotec srl, Bologna, Italy). The labeled cells were thoroughly washed with 

PBS 1X and the cells ere acquired using  FACScanto II (Becton Dickinson) by DIVA software program  

The percentage of positive cells was calculated using the cells stained with Ig FITC/ PE/APC as a 

negative control and mean fluorescence intensities (MFI) was analyzed on the positive cells. 

MSC Immunocytochemistry 

To analyze the stemness protein expression we performed immonocytochemical staining for Octamer-3/4, 

(Oct 3/4) and for Homeobox transcription factor Nanog (NANOG). Briefly, the cells were fixed and 

permeabilized with methanol and acetone (1:1) at -20°C for 10 minutes. Non-specific binding was 

blocked with 5% NHS (normal horse serum) in Antibody (Ab) diluent. The cells were incubated with 

goat anti-NANOG (1:50 R&D Systems) and goat anti-Oct-3/4 antibodies (1:100 R&D Systems) and then 

with the secondary antibody Alexa fluor 488-coupled anti-mouse (Molecular Probes, Oregon, USA; 

1:200). Incubation with the primary antibody was performed over night at 4°C, while incubation with the 

secondary antibody was for 1 hour at room temperature. The cells were examined under epifluorescence 

microscopy (Axiovert 200, Carl Zeiss, AG, Germany) and analyzed by AxioVision Rel 4.2 (Carl Zeiss, 

AG, Germany). Positive cells were counted and compared with the total cell counts labeled with 4',6-

Diamidino-2-phenylindole (DAPI, Molecular Probe). 

RNA Extraction and Real-Time PCR. 

Total RNA was extracted using RNeasy Plus Mini Kits (Qiagen, Austin, Texas). Reverse-transcription 

polymerase chain reaction (RT-PCR) was carried out using the high-capacity cDNA reverse 

transcription kit (Applied Biosystems, Foster City, CA, USA) according to the manufacturer's 

instructions. RNA and cDNA concentrations were measured with a GeneQuant pro spectrometer 



(Amersham Biosciences, UK). We performed Real Time PCR to detect the transcripts for human Oct-

4 and NANOG using specific assays (assay ID: OCT-4 (POU2F2) Hs00231269_m1; NANOG: 

Hs04260366_g1; HPRT1:Hs02800695_m1) and TaqMan Universal PCR Master Mix (Applied 

Biosystems, FosterCity, CA, USA). 

Comparative Cycle threshold (ΔΔCT ) experiments were performed in accordance with the 

manufacturer’s specifications in a total reaction volume of 25 μL. All experiments were performed in 

three replicates. To normalize the PCR results, we used hypoxanthine phosphoribosyltransferase 1 

(HPRT1) as housekeeping gene. We perform the Relative Quantification (RQ) method which is based on 

the expression levels of a target gene versus a housekeeping gene and allows us to compare different RT-

PCR experiments (33) For each set of experiment we analyzed Nanog and Oct-4 mRNA expression levels 

in MSCs obtained in 3 different culture conditions at P3 and FBS-MSC condition  was used as reference 

sample .  

 

Potential Assay 

In order to analyze the multipotent capacity, MSCs at the 3rd passage in each culture condition were 

cultured in osteogenic, adipogenic and chondrogenic media (Lonza, Cologne, Germany) for 21 days, 

according to the manufacturer’s instructions. Briefly, 5000 and 10000 cells, respectively for control 

samples and for differentiation experiments, were seeded in a 6-well plate for osteogenesis and 

adipogenic culture conditions respectively. To induce osteogenesis and adipogenesis, the medium was 

replaced with specific complete induction medium (Stemcell Tecnologies). Osteogenic differentiation 

was demonstrated by the accumulation of crystalline hydroxapatite by Von Kossa staining; and the 

adipogenic differentiation, by the presence of intracellular lipid vesicles assessed by Oil Red O. MSC 

chondrogenic differentiation was obtained as previously described (2) and the differentiation was 

evaluated by Alcian Blue staining which identifies the presence of hyaluronic acid and sialomucin. 

 

http://www.lonza.com/about-lonza/company-profile/locations-worldwide/cologne-germany.aspx


MSC Karyotype Analysis 

To exclude cytogenetic transformation during ex vivo expansion, MSCs at the 3rd passage were detached 

and then cultivated until approximately 80% of confluence was reached. Karyotype analysis was 

performed after the cells were arrested at the metaphase by incubation with Colcemid (Invitrogen 

Corporation, Grand Island, NY, USA). The cells were then maintained in a hypotonic solution (0,075 M 

KCl), fixed with 3:1 methanol/acetic acid (Merck, Milan; Italy), and stained with Giemsa using standard 

laboratory protocols for chromosome analysis. A total of at least 50 cells at metaphase were analyzed 

using MackType software (Nikon Corporation, Japan) according to the ISCN (International System for 

Human Cytogenetic Nomenclature) (34). 

 

Tumorigenesis Tests  

In order to exclude the possible potential tumorogenicity induced by the ex vivo expansion of MSCs we 

performed soft agar tests. 

The cells, at the 3rd passage, in each culture condition were harvested, washed and seeded at a density of 

1000 cells/well in 24-well plates (SPL Life Science, Eumhyeon-ri, Korea) in duplicate. The test was 

performed using 0.8% and 0.3% agar in a-MEM +10% HPL/iHPL/FBS (final volume/well = 1ml), 

arranged respectively at the base and on the surface. 

The cells were incubated for 21 days at 37° C in the presence of 5% CO2. After incubation, the colonies 

were counted using the inverted microscope. 

A primary line of osteosarcoma was used as the positive control and a sample of whole BM from a 

healthy donor was used as the negative control. 

 

Microbiological control and Mycoplasma detection. 



For microbiological control, we collected supernatants at each passage and an aliquot of them was tested 

trough BacT/ALERT  (bioMérieux SA, France) (35) by the Bacteriology Laboratory of  City of Science 

and Health of Turin, S. Anna Hospital.  

We conduct the mycoplasma detection test (Mycoplasma Detection Kit, for conventional PCR, Minerva 

Biolabs, Germany), an aliquot of supernatant at each passage during the expansion process and on an 

amount of each growth supplement (pure HPL, iHPL and FBS). Briefly, the presence of a mycoplasma 

contamination of the analyzed samples was detected through a semi quantitative PCR reaction. As the 

positive control we used a positive control DNA, provided by the kit. To monitor the success of the 

extraction procedure, we used the internal control DNA of Venor®GeM. As negative control, we used the 

PCR grade water. 

 

Statistical Analysis 

Statistical analyses were performed using SPSS 20 (IBM, Chicago, IL, USA). 

Firstly, we investigated whether the distributions of each group were normally distributed by Shapiro-

Wilk test. As the distributions were not normal, we used the non-parametrical Friedman Test to compare 

the different groups. We considered a significant difference if the p value was <0.05. 

 

RESULTS  

HPL preparation and INTERCEPT treatment 

Two batches of Human Platelet Lysate, inactivated (i-HPL) and uninactivated (HPL), were prepared by 

pooling six paired leuko-reduced BC-PCs as described above. The average starting parameters of platelet 

content, volume, leukocyte content in the BC-PCs (Table 1) intended to PI treatment were in keeping 

with the recommended specifications both for the treatment of platelets with the INTERCEPT Large 

Volume processing system.and for transfusional use  



Compared with the paired untreated units, inactivated BC-PCs showed a lower platelet count due to the 

addition of Amotosalen and the consequent dilution. (Table 2) The multiple transfer steps, including the 

CAD incubation, reduced volume and platelet yield by up to 10%. 

Sterility testing was negative in all BC-PC units. 

In all batch of HPL and iHPL tested for the presence of endogenous and adventitious viruses only one 

sample resulted positive for Parvovirus B19 DNA (HPL). All iHPL resulted negative.  

 

MSC Harvest and Preparation 

Nineteen bone marrow samples were collected from healthy donors: 10 over 18 years of age (age range: 

39-50 years) and 9 with ages younger than 18 years (age range: 0.5-10 years). The study was conducted 

according to the Helsinki Declaration.  

 

MSC isolation and Expansion 

Adherent cell clones were observed in all the samples after 7 days’ culture and an adherent monolayer 

was achieved in the following 10-12 days. HPL/iHPL- MSCs but not FBS-MSCs reached confluence 7 

days after plating (P1). HPL-MSCs reached a mean ± standard deviation (SD) of cPDs after the 3rd 

passage of respectively 6.88 ± 0.049; 8.27 ± 0.82; 12.64 ± 1.11 when they were expanded in a-MEM + 

5%, 7% and 10% HPL respectively. At the 3rd passage, the cPDs of 10% HPL-MSCs were  significantly 

greater than those obtained by culturing the cells in -a-MEM + 5%/7% HPL and a-MEM + 10% FBS 

(5.04 ± 0.19), used as the control (p=0.029). On these bases, we chose a 10% HPL supplementation for all 

the following experiments. 

 

CFU-F potential and MSC morphology  



After 7 days, the number of CFU-F/106 cells was significantly greater when the cells were plated at 

10000 cells/cm2 (low density), compared to cells plated at 100000 cells/cm2 (high density) 

independently from the cellular condition. The mean CFU-F number was: 99.3 ± 11.07, 106.8 ± 12 

and 99.5 ± 9.6 at a plating density of 10000 cells/cm2 and 33.1 ± 4.75, 29.3 ± 14.7 and 30.9 ± 9.88 at a 

plating density of 100000 cells/cm2 respectively for HPL/iHPL/FBS MSCs (Fig. 1 A). Although the 

absolute number of colonies counted in the three culture conditions was not significantly different, we 

observed that MSCs from CFU-Fs grown in HPL and iHPL were smaller than those from FBS CFU-

Fs. Moreover, when CFU-Fs from HPL and iHPL–MSCs were detached and analyzed for cell 

numbers, they were more populated, small and dense (Fig. 1 B; a, b) and reached confluence faster 

(Fig. 1 B; d, e) than those cultured in FBS (Fig. 1 B; c, f). 

Moreover, we compared cells cultured in α-MEM + 10% HPL vs iHPL vs FBS and we observed that 

HPL/iHPL-MSCs appeared smaller, had well visible nucleoli, and were more homogeneous in the 

morphological characteristics (Fig. 1C; a, b) than FBS-MSCs. FBS-MSCs, instead, increased in size and 

showed a polygonal morphology with a large jagged cytoplasm (Fig. 1C; c). Furthermore, when 

HPL/iHPL-MSCs were detached and re-plated, after 12 hours’ of cell culture, they tended to reform 

colonies, emit prominent extensions morphologically similar to pseudopodia and, interestingly, create tri-

dimensional structures similar to embryoid bodies (Fig. 1 C; d, e) which we had never observed in FBS-

MSCs (Fig. 1 C; f).  

 

MSC expansion and immunophenotype  

 Cellular growth analysis showed that cPDs at the third passage were 11.16 ± 1.01; 11.00 ± 0.98; 7.16 

± 1.10 (means ± SD) respectively in HPL, iHPL and FBS-MSCs. Significant statistical differences 

were observed on the cellular growth in term of cPDs of HPL/iHPL-MSCs compared with FBS-MSCs 

at the 2nd and 3rd passages (p= 0.00041 and p= 0.00032 respectively) as shown in Fig. 2 which reported  



the cPDs of the three passage of all BM-MSCs cultured in each condition with the relative means with 

standard deviations. 

During the first 3 passages, MSCs were analyzed at each passage for the expression of: CD45, CD34 and 

CD14, hematopoietic surface antigens; CD90 (a membrane glycoprotein, also called Thy-1), used as a 

stem cell marker; CD105 (endoglin); CD73 (Ecto-5-prime-nucleotidase) and CD146 (cell surface 

glycoprotein MUC18). At the first passage, MSCs isolated from whole BM and cultured in a-MEM + 

10% HPL, iHPL and FBS, were CD45, CD34 and CD14 negative with an antigen expression of under 

5%, while they showed a high expression of CD90, CD73, CD105 and CD146. In all culture conditions, 

during the expansion time, the MSCs were negative for hematopoietic antigens, whereas at each passage, 

they expressed high percentages of CD90, CD73, CD105 and CD146. No statistical differences were 

observed among the three different media. Table 3 shows the mean percentage of antigen expression 

which was analyzed at the 1st, 2nd and 3rd passages on the cells cultured with 3 different supplemented 

media. The fluorescence means of the positive markers at the third passage showed a slight increase for 

CD90 marker and very slight for CD73 in HPL and iHPL-MSC in comparison with FBS-MSCs. InIn 

particular, fluorescent mean intensity was for CD90: 37301.14 ± 7569.091 , 31360.14 ± 5628.379 and 

25385.86 ± 4410.403, for CD73: 194 ± 73.347; 884.43 ± 703.200 and 194.00 ± 73.347 and for CD105: 

16834.86 ± 4153.280 ±; 17940 ± 4198.606 and 16054.43 ± 3829.858 respectively for HPLHPL, iHPL 

and FBS-MSCs but also here the differences were not significantly differenced  (p calculated by 

Friedman test for CD90 =0.276); for CD73 = 0.651and for CD105=0.867.  We noted a strong correlation 

between the values obtained in HPL and iHPL in all the marker analyzed , a correlation < 0.098 with 

p<0.001to demonstrated that PI doesn’t interfere with the MSC immunophenotype. 

 

Pluripotency markers expression analysis 

As HPL/iHPL-MSCs when detached and re-plated tended to form aggregates of cells similar, in structure, 

to embryoid bodies, which were not seen in FBS-MSCs, we analyzed embryonic stem cells markers such 



us Oct-3/4 and NANOG by immune-cytochemical technique and real time PCR. We observed positivity 

of these markers both at proteic and molecular level. In particular, we observed that the intensity of Oct-

3/4 and Nanog nuclear protein expression was higher in HPL/iHPL-MSCs compared to FBS-MSCs, in 

term of number and expression intensity. As shown in Fig. 3, in the cellular structures formed by 

HPL/iHPL-MSCs the fluorescence is more concentrated in the nucleus (Fig. 3 A; a, b and B; g, h) than 

that observed in isolated cells, in which both nuclear and perinuclear distribution appeared (Fig. 3 A; c 

and B; i) . By counting the positive cells we reported that HPL-MSCs were: 100% ± 0 and 100% ± 0; 

iHPL-MSCs: 100% ± 0 and 97% ± 3.1; FBS-MSCs: 89% ± 6.6 and 82% ± 13 respectively for Oct-3/4 

and NANOG protein expression.   These data were confirmed by real time PCR where in all analyzed 

samples we observed that HPL and iHPL induced a higher Oct-3/4 and Nanog gene expression in 

comparison with FBS (Oct-3/4 mean RQ values: 4.2 ± 2.7; 4.6 ± 2.2; 1 ± 0; NANOG mean RQ values: 

1.8 ± 0.6; 1.9 ± 1.6;1 ± 0 respectively for HPL, iHPL and FBS-MSCs). The rights panel in the Fig. 3 A 

and B showed an representative experiment of MSCs isolated and expanded from the same BM sample in 

3 different cellular conditions. Friedman test, both for protein and mRNA expression, showed a statistical 

significant difference for Oct-3/4 (p=0.050 and p = 0.022 respectively). 

 

MSC Differentiation Potential Assay 

The MSCs obtained in the 3 different conditions showed multipotent capacity because all samples, at the 

3rd passage differentiated into osteoblasts, adypocytes and chondrocytes as shown in Fig. 4.  

 

MSC Karyotype Analysis and Tumorigenesis tests 

Cells expanded in a-MEM + 10% HPL, iHPL and FBS did not show, at the third culture passage, any 

chromosome modifications.  



The absence of colonies in soft agar allowed us to exclude tumorigenic transformation of MSCs expanded 

in all conditions as showed in Fig. 5. 

 

MSC Viability and microbiological control 

At each passage, viability was over 95% in all cell culture conditions and all microbiological analyses, 

including the mycoplasma test, were negative. 

 

DISCUSSION 

This study shows that HPL itself is a safe and efficient MSC culture supplement for robust MSC 

cultivation, thus offering certain advantages compared to FBS, especially in terms of cell growth and 

stemness maintaining. Moreover, it represents a good GMP-compliant alternative to animal serum for 

MSC clinical production confirming the recent data reported in the literature (18, 36, 37).  

HPL preparation was performed according to blood bank procedures where a high standardization is 

strongly recommended. The development of HPL batches from a multiple source (i.e. from 60 

different donors), makes the HPL itself a virtually standardized medium supplement in both a growth 

factor concentration and in inter-donor variability.  

Moreover, as the risk of transmission of infective agents not routinely tested, or for which no tests are 

available remains, HPL quality and safety had to be greatly improved. This was done with 

photochemical treatment by Amotosalem and UVA, a technology that is efficient against the vast 

majority of known pathogens and which might also prevent the transmission of unknown pathogens 

(25, 38-41) 

INTERCEPT technology is routinely used for PI of PLTs and plasma for clinical use as it is able to 

inactivate a wide spectrum of bacteria, viruses, and parasites, as well as contaminating leukocytes (42-

46). INTERCEPT process and nucleic acids targeting PI technology is not, however, effective against 

prion diseases, therefore the risk of prion transmission by treated lysates would remain. It is true that 

precautionary measures such as donor selection and leucocyte depletion can be taken. 

The INTERCEPT Blood System is a Class III medical device, that means a registration which 

requires regulatory review of preclinical and clinical data. This system is routinely used in many 

blood centers in Europe, the Middle East and many other countries with at least 700000 



INTERCEPT treated units transfused world-wide (38, 40). The manufacturer has supported an 

extensive program of post-market surveillance and hemovigilance studies to monitor the 

introduction of INTERCEPT products in Europe. In studies of over 30000 treated PLT units and 

over 30000 treated plasma units to date in a broad patient population, INTERCEPT PLTs and 

Plasma have  a safety profile comparable with conventional components. The efficacy and safety of 

INTERCEPT PLTs have been established in 11 trials and over 1000 patients (47). 

Moreover the recent Swiss haemovigilance data, reporting two years routine transfusion of 62,500 

inactivated Platelet Concentrates, support the improvement safety profile and the successfully 

prevention of septic transfusion reactions after the introduction of the pathogen inactivation technique 

on  platelet components (48).  

INTERCEPT -treated platelets have received additional country-specific regulatory approvals in 

France, Germany, and Switzerland (23). A new application of this widely used technique might be a 

new niche for blood banks. The latter, in fact, could use this method to provide safer products for 

clinical cell culture and transplantation and, by doing so, increase safety for patients.  

To our knowledge, no data have been reported about PI on PLT lysate for MSC expansion Although, a 

recent study on the use of PI-HS compared with uninactived pathogen-PI-HS (49) showed that PI does 

not exert a negative impact on human islets of Langerhans, MSCs, T cells or cell lines and may even 

have a positive effect by the down-regulation of inflammatory mediators induced by DNA or RNA 

strands released from damaged cells. We sought to compare simultaneously HPL and iHPL with FBS 

to exclude abnormalities in MSC isolation and expansion due to the inactivation itself.  

The literature has widely reported the efficacy of psoralen-UVA inactivation using blood products 

with high titers of added bacteria, enveloped and non-enveloped viruses, and protozoa and the 

demonstration of the inactivation of contaminating pathogens was beyond the scope of this 

publication. However, we tested on lots of HPL and iHPL a number of viruses that are not required by 

Regulatory Authority and not routinely tested by Trasfusional Center. The negativity of almost all of 

the viruses tested show that a good selection of donors by the Transfusion Center  is a fundamental  

requirement to have safe starting blood component. Parvovirus B19 can be transmitted from 

asymptomatic blood donors to the recipients of their blood components. High rates of seroconversion, 

as well as a few cases of symptomatic illness and hypoplastic anemia, have been described in patients 

receiving clotting factor concentrates, which were derived from large plasma pools. The virus is 

relatively heat-stable, and it resists treatment with solvents and detergents. B19 DNA was found by 

PCR in plasma-derived clotting factor concentrates from various manufacturers and treated with 

different virus-inactivation methods by many investigators. Clinically evident transfusion-transmitted 

B19 infection, however, is infrequent, even in susceptible hosts such as HIV-infected hemophilia 



patients receiving clotting factor concentrates. We had only a positivity for Parvovirus B19.  virus … 

in a lot of HPL which resulted negative after inactivation to testify the PI process also in our hand is 

efficient and offers more safety. 

In our hands, INTERCEPT treatment on HPL resulted in a 10% loss of platelets but these data confirmed 

those reported by Wagner et al (50), and did not affect cell culture behavior.  

We consider that PI treatment carries on the possibility that traces of psoralens may contaminate iHPL. 

Using the Compound Adsorption Device (CAD), the levels of residual Amotosalem are greatly reduced 

and the psoralen concentration in platelets is about 0.5 micromolar, that is the approximate concentration 

in the iHP. We reduced ten times this concentration using HPL at 10% in the cell culture. We don’t test 

the presence of psoralen inside the MSCs espnded in HPL but considering that during extracorporeal 

photochemotherapy , which is used in variants of cutaneous T cell lymphomas, graft-versus-host disease, 

systemic sclerosis, in solid organ transplant rejection and Crohn's disease (51),  a leukocyte fraction from 

the peripheral blood is exposed to about 40-50 mM of photo activated 8-methoxypsoralen and reinfused 

into the patient without collateral effects, we consider the psoralen traces in our MSC clinical product 

absolutely negligible and safe. However, as for transfusional purposes INTERCEPT products are 

contraindicated in patients with a history of allergic response to psoralens , we consider to declare in the 

certificate of analysis  that traces of psoralens might be present in the MSCs isolated and expanded in 

GMP for the clinical application to exclude their use in psoralen allergic patients.  

In this work, we found that HPL and iHPL had similar characteristics: they were more advantageous, in 

terms of cellular growth, than FBS and they did not interfere with mesenchymal phenotypes as they did 

not modify the mesenchymal marker molecule expression, Moreover, HPL and iHPL did not cause 

chromosomal alterations or karyotype modifications in cells expanded up to the 3rd passage. Interestingly, 

when whole BM was seeded in HPL and iHPL no significant differences in the CFU-F number were 

observed compared with FBS-MSC, but they appeared more dense and richer in term of cells/colony. 

This observation was confirmed in terms of the number of detached cells at each passage because HPL 

and iHPL-MSCs showed higher proliferative potential. Moreover, they were smaller and more 

morphologically homogeneous than FBS-MSC. Differences in their CFU-F potential and colony 

morphology may be representative and possibly predictive of cell fate and function. Recently, Gothard et 

al. (52) reported that CFU-Fs can be analyzed combining two different pieces of information: diameter 

and density, which are properties related to and affected by cell proliferation, and mobility and 



differentiation potential. On these bases (53), small and dense colonies, which we observed in HPL and 

iHPL –MSCs, represent the BM-MSC fraction with good CFU-F capacity. These data suggested a higher 

clonal expansion of HPL/iHPL-MSCs, that might be predictive of greater stemness than FBS-MSCs.  

In one batch of HPL and iHPL, we tested the presence of growth factors such as PDGF and FGF. We did 

not observe any differences in terms of quantity (data not shown), but we maintain that the growth 

promoting effect of HPL and iHPL is probably due to growth factors or specific compounds which are 

released from the platelet fraction . 

Another important aspect observed in both HPL or iHPL was the formation of spherical structures similar 

to embryoid bodies which, together with the pseudopodia emission (Fig. 2), suggested that HPL/iHPL-

MSCs had a more primitive stemness than FBS-MSC, as shown in MSCs isolated from neonatal tissues 

compared with adult tissue (54). As reported in the literature, the pseudopodia emission may suggest a 

trend of the cells to migrate and, consequently, to repopulate damaged tissues and organs with potential 

implications for regenerative medicine (55). The entity of this occurrence is higher in HPL/iHPL-MSCs 

compared to FBS-MSCs. 

To verify whether these morphological and proliferative characteristics of the HPL/iHPL-MSCs might be 

linked to more stemness than FBS-MSC, we analyzed the presence of pluripotentency markers such as 

Oct-3/4 and NANOG, which we had already observed in MSCs isolated from neonatal tissue such as the 

amniotic fluid (56). Oct-3/4, is a key transcription factor essential to the pluripotent and self-renewing 

phenotypes of undifferentiated embryonic stem cells (ESCs) (57). NANOG is a homeodomain protein 

present in pluripotent human cells which plays a critical role in the regulation of the cell fate of the 

pluripotent inner cell mass during embryonic development, maintaining the pluripotent epiblast and 

preventing differentiation to the primitive endoderm (58). NANOG is thought to function in concert with 

other factors such as Oct-3/4 itself. Interestingly, the spheroid structures that were observed in HPL and 

iHPL, not only during the seeding, but also when the MSCs were detached and replaced in the next 



passages after the 1st, were highly positive for both Oct 3-4 and NANOG. Moreover, during the 

expansion HPL and iHPl induce a selection of more primitive MSCs in comparison with FBS.  

Although HPL/iHPL-MSCs exhibit increased cell growth, in terms of cPD, and characteristics 

attributable to higher primitive stemness than FBS-MSCs, we demonstrated that neither the HPL nor 

iHPL caused in vitro tumorigenic mutations or karyotype modifications in cells expanded up to the 3rd 

step. These data are in accordance (only for HPL) with that reported in the literature about GMP-

compliant isolation and expansion of BM-MSC (59-61). Moreover, we previously reported that, by 

plating whole BM at a low cellular density, it was possible to expand high numbers of MSCs for clinical 

use (30). In the present study, we further showed that, independently from the culture condition, the 

number of CFU-F/106 cells was significantly greater when the whole BM cells were plated at a low 

density, compared with cells plated at a high density. These results emphasized the advantage of the low 

seeding density of whole BM to isolate MSCs for large scale use. The use of HPL as an alternative to 

FBS to isolate and expand MSC confirmed that it is possible to obtain a number of MSCs for clinical 

doses further reducing the manufacturing time, limiting the passage or reducing the starting volume of 

BM. Finally, we demonstrated that PI treatment did not modify the characteristics of HPL, it does make it 

safer and more suitable for MSC isolation and expansion for clinical use and might be a requirement 

usable for the GMP MSC expansion . 
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Figure Legends  

Figure 1: HPL and iHPL-MSCs showed differences in CFU-F and cellular morphology in 

comparison with FBS-MSCs  

A: CFU-F numbers of HPL (white triangle ), iHPL (grey rumble), FBS (black square)-MSCs plated 

at seeding densities of 10000 cells/cm2 and 100000 cells/cm2. Each symbol represents an experiment (N= 

9) and no significant differences were observed. 

B: Representative phase pictures at 5X magnification of CFU-Fs in the 3 different conditions: HPL 

(a) and iHPL (b)-MSC CFU-Fs were more dense, homogeneous and populated of cells than FBS-CFU-Fs 

(c). Moreover, HPL and iHPL-MSCs (d, e) reached the confluence faster than FBS (f)- MSCs 

C) Representative phase pictures at 40X magnification showing the MSCs in the 3 different culture 

conditions after 3 and 12 hours from plating : HPL and iHPL-MSCs emitted prominent extensions (a, 

b) and formed spherical structures similar to embryoid bodies (d, e) . FBS- MSCs showed a polygonal 

morphology with large jagged cytoplasm (c) and did not form three-dimensional structures (f)  

Figure 2: HPL and iHPL-MSCs showed higher proliferative potential than FBS-MSCs 

A, B, C: Cumulative PD (cPD) of HPL, iHPL , FBS–MSCs (dashed lines). Results are shown as the 

cPD value at the first three passage of each 16 independent experiments in the three culturing condition. 

The means ± SD are represented in each graph as a black thick line. HPL and iHPL-MSCs showed a 

higher proliferative potential than FBS-MSCs from the second passage of culture. Asterisks indicate 

statistically significant differences (P<0.01).  

 

Figure 3: HPL and iHPL-MSCs showed more embryonic stem cell markers protein and mRNA 

expression than FBS-MSCs  

A and B:  On left part of the panel, Immunocytochemistry analysis of embryonic markers in HPL 

(left column), iHPL(central column) and FBS (right column)-MSCs (40X magnification); in the 

right part of the panel a representative experiment of real time PCR: Oct-3/4 (a, b, c) and NANOG 



(g,h, i) were more expressed in HPL and iHPL-MSCs in comparison to FBS-MSCs both in term of 

protein both in term of mRNA. For immunocytochemistry , pictures are representative of 3 experiments 

and DAPI staining was used to evidence the nucleus of each analyzed cell (d, e, f ,l, m, n). For real time 

PCR, 5 experiments were conducted but the two panels show the most representative experiment. 

 

Figure 4: MSC Differentiation Potential Assay after 3 weeks of specific induction in MSCs in the 3 

different conditions. 

Van Kossa staining (a, b, c) evidenced the presence of calcium oxalates in osteoblasts, Oil Red showed 

intracytoplasmatic vacuoles in adypocytes (d, e, f) and Alcian Blue (g, h, i)  the hyaluronic acid for 

chondrocytes respectively in HPL (left column), iHPL (central column) and FBS (right column)-MSCs 

(N=19). 

Figure 5: Soft agar assay to exclude tumorigenesis potential in MSCs in the 3 different conditions 

(N=3) HPL, iHPL, FBS-MSCs (a, b, c) did not form colonies as whole BM used as negative control (d, e, 

f) compared to primary osteosarcoma tumor cells used as positive control (g, h, i).  

 

Table 1: Characteristic of BC-PCs prior to and after inactivation treatment 

 
Large Volume Set 
specifications (range) 

Pre inactivation 
n=6 

Post inactivation 
n=6 

Platelet content (x 1011) 2.5 - 7.0 2.5 – 3.3 2.1 – 2.8 
Volume ml 255 - 390 307 - 321 286 - 309 
CAD Agitation Duration 16-24 hours n/a 16 
Leukocyte content (106/unit) 1 - 0.03- 0.84 
 

The values were expressed as mean ± SD 

 

Table 2: Characteristics of inactivated BC-PCs and uninactivated BC-PCs  

 Inactivated 
BC-PCs 

Uninactivated  
BC-PCs 



Volume ml 299 ± 9.0 321 ± 8.9 
Platelet count (x103/µl) 836 ± 85 895 ± 116 
Platelet content (x 1011) 2.5 ± 0.3 2.9 ± 0.3 
Leukocyte content (106/unit) 0.18 ± 0.3 0.19 ± 0.3 
 

The values were expressed as mean ± SD 

 

Table 3: Immunophenotypic analysis of HPL-MSCs vs iHPL-MSC vs FBS-MSC 

 HPL-MSCs iHPL-MSCs FBS-MSCs 

Passage P1 P2 P3 P1 P2 P3 P1 P2 P3 
CD90 99.1±1.4 100±0.1 99.6±0.1 98.5±2.5 97.8±3.8 99±0.9 98.8±0.6 99±0.4 98.9±0.5 

CD73 99.1±1.0 98.5±1.4 97.9±0.1 98.8±1.0 99.1±1.0 99.1±1.0 97.4±1.6 95.5±3.1 98.7±0.7 

CD105 93.9±2.1 95.7±2.7 92.7±6.4 92±6.6 88±5.2 95.9±4.6 95±4.3 91.6±5.3 98.1±1.6 

CD34/45/1  1.4±1.0 0.44±0.1 0.4±0.3 1.8±0.6 0.6±0.6 0.3±0.8 1.8±1.7 0.5±0.2 0.4±0.4 

CD146 92.5±1.9 93.8±2.3 92.2±1.9 85.2±6.0 91.7±6.2 93±1.1 94.2±5.0 94.7±2.7 90.8±4.0 

 

Values are expressed as the mean percentage of fluorescence ± Standard Deviation of MSC antigen 

expression analyzed at the 1st, 2nd and 3rd passages for each experimental condition (N=16). No significant 

differences were observed. 
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