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ABSTRACT

This paper introduces an experimental digital sound syn-
thesis technique called Permutation synthesis, which fo-
cuses around creating new waveforms by moving groups of
samples (chunks) of existing waves. Similarly to granular
synthesis, permutation synthesis is a time-based technique,
i.e. it operates directly on the discrete waveform: by means
of varying the length of the chunks, several perceptual ef-
fects can be obtained. The most important parameter in
permutation synthesis is the permutation frequency, which
is inversely proportional to the chunk length; the resolu-
tion of this parameter is directly related to the sampling
frequency (given the fact that a chunk is always an integer
number of samples), thus a time-quantisation error is de-
fined.

An algorithm for real-time permutation implemented as a
SuperCollider plug-in is described, consisting of 3 UGens

performing permutation synthesis in slightly different ways.

The resulting signals are then analysed and their time and
spectral effects are justified by defining formulas that ana-
Iytically quantify the results.

1. PERMUTATION SYNTHESIS AND THE
TIME-DOMAIN APPROACH

Permutation synthesis, i.e. a synthesis by permutation of
samples, is a time-based technique. Historically, the most
well-known synthesis techniques (from additive to subtrac-
tive to various members of the modulation family) have
their roots in the spectral domain. The time-based family
is younger in comparison, and typically many of the tech-
niques belonging to this area share an experimental, em-
pirical approach.

Among them, granular synthesis is perhaps the most no-
table: taking small grains of existing sounds, shaping them
with an envelope and then scattering them in time and fre-
quency with variable rates introduced a whole new per-
spective in the creation of sounds [1]. Permutation synthe-
sis is similar to a particular variant of granular synthesis,
the so-called time-granulation [1]: here grains are taken
from one or more existing files, an envelope is applied,
and then the grains are reproduced over time. If the source
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of the grain is a single audio stream, granulation results in
scrambling parts of the same signal, which is the principle
of permutation synthesis. However, most granulation ap-
proaches operate by applying an envelope, thus eliminating
most of the discontinuities. Moreover, grains are typically
scattered in time following some stochastic distributions.
On the contrary, in permutation synthesis time discontinu-
ities are the main feature, and the scrambling process is
organised following a precise time-pattern.

Other techniques like synthesis by fragmentation and growth
or PSOLA are based on the same principle: moving, re-
placing, repeating groups of samples whose duration is
typically under the time resolution of the human ear, thus
resulting in radically new sounds.

Not every newly produced sound must come from an exist-
ing one: techniques like dynamic stochastic synthesis and
synthesis by instruction give the user full creativity by let-
ting him or her start from scratch: by guiding the position
of the next sample in the former case, and by using a logic
gate paradigm in the latter (In general see [2],[3]).

2. DESIGN

At its core, permutation synthesis is quite simple, design-
wise: an array of samples is given as an input to the per-
mutation process, the array is then divided into chunks of a
given dimension, the chunks are rearranged in a new order,
and the rearranged array is the output (see Figure 1). This
rearrangement often creates situations in which two sam-
ples that were meant to be away from each other are now
adjacent, and this typically results in a waveform disconti-
nuity. As already said, discontinuities are the heart of per-
mutation synthesis: they both distort and enrich the result-
ing sound; by simply moving block of samples (chunks), a
new waveform is created that retains some features of the
original one and introduces new ones.

As the process operates in the digital domain, the require-
ments are minimal: a stream of samples and a buffer where
to store them in order to retrieve them for rearranging. The
parameters supplied by the user are permutation frequency
(internally converted into the chunk size) and the pattern
after which the chunks will be scrambled. An interesting
side effect of the permutation technique is that the process
does not affect global amplitude of the signal, as it sim-
ply re-organises the waveform. Thus, no digital distortion
(in the sense of clipping) is introduced by the process, and
the amplitude peak of the source signal is translated in the
amplitude peak of the processed one.
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a)

Figure 1. Permutation steps: a) the original audio source;
b) division into chunks of length [; ¢) chunk scrambling; d)
the permuted audio output.

2.1 Permutation frequency

Scrambling chunks is a trivial task, but indeed the time
information related to a sample depends on the sampling
frequency. A size of 50 samples does not provide any in-
formation on how much the chunk lasts; the chunk size
parameter is then set implicitly by defining the permuta-
tion frequency (f,) that indicates how often a new chunk
occurs in time (to put it in another way: it is the discon-
tinuity frequency). The size in samples of each chunk is
then obtained by dividing the sampling frequency by f,.

2.2 Time quantisation error

The conversion from frequency to chunk size leads indeed
to non-integer values, that are not legal for the discrete do-
main. As a main concern is to maintain permutation fre-
quency constant, all chunks are forced to have the same
integer size by rounding. As an example, for f; = 48
KHz and f;, = 850 Hz the chunk length is approximately
56.47 samples which gets rounded to 56. This means that
different permutation frequencies could lead to the same
rounded chunk size, which just in one case is the exact
result of the division; in fact, the actual permutation fre-
quency given by a 56 samples-long chunk is around 857
Hz. The difference between the expected f, and the actual
fp can be seen as a time quantisation error.

The time quantisation error can be seen as an analogous
in the time domain to digital quantisation error for am-
plitude, as it decreases with higher sampling frequencies.
Moreover, for a given f it (globally) increases along with

fp (see Figure 3); time quantisation errors is more rele-
vant with low sampling frequencies and/or high permuta-
tion frequencies, as shown in Figure 3.
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Figure 2. Desired f,, (straight line) versus actual f,, (stairs)
given by a sampling frequency of 44100 Hz.

As f,, increases, the time quantisation error varies back
and forth, always returning to zero but less and less fre-
quently; however it is clear that its local (absolute) maxi-
mum increases with the permutation frequency and trans-
versely decreases with higher sampling frequencies (see
Figure 3).
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Figure 3. Time quantisation error for a sampling fre-
quency of 44100 Hz.

2.3 Latency

If permutation synthesis is implemented in a real-time con-
text, the presence of a buffer brings up a latency issue. An
efficient indexing approach can be devised, in which sam-
ples are immediately written on the buffer according to the
rearranged pattern, then the buffer is read from beginning
to end and sent out to the audio stream. Changing the order



of the samples inevitably leads to store sample chunks that
are going to be played later, waiting for incoming samples
to be played first. This means that to further minimise la-
tency the buffer could be read while it is being written on,
but never in a way that would lead to reading a position of a
sample that still has to happen, and this is highly dependent
on the chosen pattern.

3. PERMUTATION RESULTING EFFECTS

Until now it has been simply stated that discontinuities are
the heart of permutation synthesis because they enrich and
distort the sound. A more analytical discussion follows.

3.1 Perceptual effects

In permutation synthesis the more interesting perceptual

phenomena take place in the permutation range [5, 30] msec,

in which various possibilities occur, from a continuous per-
ceptual scenario to a discrete one. Depending on the per-
mutation frequency, four perceptual behaviours emerge:

o 2 < f, < 20 = arpeggio effect: discontinuities are
clearly audible as clicks and the chunk length is such
that an entire note or syllable could be swapped with
another.

e 20 < fp, < 100 = modulation effect: the tim-
bre is affected and notes are distorted with a sort of
tremolo effect, each discontinuity is perceived as a
new attack phase of the note.

e 100 < f, < 6000 = harmonic distortion effect: a
sort of robotic buzz is audible, proportional to f,
which affects the pitch of each note; discontinuities
are no longer perceived.

e f, > 6000 = dynamic distortion effect: from this
values onward, the permutation yields a similar ef-
fect to dynamic saturation filters even though not
even a single sample amplitude has been changed.

The transition between subsequent behaviours is very

smooth and strongly depends on the listener perception and
the source sound, to the point that in some cases there is
a large range of values in which two adjacent behaviours
overlap.
However it is still worth noting that for sounds that have a
periodic spectrum like pitched notes f, highly affects the
pitch when it is around the fundamental, whereas for per-
cussive sounds the effect resembles a notch filter, flavoring
sounds according to f,.

3.2 Temporal effects

The temporal effects, or more properly the waveform ef-
fects, are of course more predictable even without actu-
ally hearing the permuted sounds. However, for the sake
of readability of the resulting waveforms, from now on the
simplest scenario has been chosen: a sinusoid as the source
and an even-odd ( [1,0] ) pattern for the permutation. If
the permutation frequency is set as an even multiple of the
sinusoid frequency, we are in fact permuting inside the pe-
riod, creating a new waveform with the same pitch as the
original but a different timbre, as seen in figure 4. If the
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Figure 4. Permuting inside the period: with a sampling
frequency of 44100 Hz a sinusoid at 220.5 Hz changes its
waveform by being permuted with f,, = 882 Hz (top) and
fp = 8820 Hz (bottom).

permutation frequency is unrelated to the fundamental (for
example by simply choosing a value which is not an in-
teger multiple) a waveform whose real period is the least
common multiple between the fundamental and f, is ob-
tained, but there can be still a noticeable pattern given by
the periodic occurrence of discontinuities and the swapped
portions of period of the original sinusoid, as seen in figure
5.
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Figure 5. Waveform and spectrum of a 220.5 Hz sinusoid
permuted with f, = 715 Hz.

3.3 Spectral effects

The effects of permutation synthesis on the sound spectrum
are here analyzed to provide a theoretical background to
the perceptual features presented in Section 3.1. Here we
keep using a simple waveform and an odd-even permuta-
tion pattern in order to have figures with an easily readable



spectrum and a simpler analytic demonstration of the phe-
nomenon in section 4.

The spectrum in Figure 5 shows that, if a sinusoid is per-
muted with f, = 715 Hz, then pairs of harmonic peaks
are added to the fundamental frequency. These pairs of
peaks appear near the odd harmonics of f,,/2 (which are
not present) respectively at the frequencies (2n+ 1) %’” —f

and (2n+1) % + f. Obviously, those peaks that result in a
negative frequency are aliased on the positive frequencies
of the spectrum. Equation (1) represents this effect in an
analytical form.

sin(27 ft) — sin(27 f) + io sin (271' [(zn +1T - f] t) +

n=0

+ sin (277 [(2n + 1)% + f} t> I

4. ANALYTICAL DEMONSTRATION

If the permutation process is thought of as a kind of mod-
ulation of the source with a rectangular wave, then all the
empirical observations presented in the previous sections
can be justified by the following analytical demonstration.
Let us rewrite the process of permuting a chunk of samples
with frequency f,, as follows:

e take two copies of the source.

e apply arectangular periodic windowing function (whose

period is twice the chunk length) to the first source,
obtaining the even chunks.

e apply the same windowing function, but phase-inverted,

to the second source, obtaining the odd chunks.

e translate the first windowed copy (i.e., the odd chunks)
forward and the second windowed copy (the even
chunks) backward by an amount of samples equal to
the chunk length.

e sum the two signals.

If we invert the roles of the two signals and we consider
the windowing function as the carrier signal and the source
as the modulator, the whole process can be seen as a ring
modulation of an unipolar square wave with a 50% duty
cycle.

This perspective justifies the position of the peak pairs, in
fact, the modulated signal spectrum, i.e. the square wave,
contains only components of odd-integer harmonics fre-
quencies centered at integer multiples of its fundamental
frequency f,/2.

Moreover, we see the peak pairs and not the the square
wave odd harmonics themselves because ring modulation
suppresses the carrier signal and creates sidebands of the
positive and negative modulator frequency centered around
the carrier frequencies [2]. Lastly, the presence of the mod-
ulator original spectrum frequencies is due to the fact that
the unipolar square wave is not zero mean and so it has
a continuous component at 0 Hz that is suppressed, but
produces the peak at +f. All of the above considerations
were made concerning the odd-even pattern, but the same
logic and steps apply to any other pattern with few minor
changes: the windowing function would then be a sum of

step functions which would be translated according to each
index of the chosen pattern.

5. IMPLEMENTATION

Permutation synthesis has been proposed preliminary with-
out any analytical treatment in [4], that introduces a Non
Real-Time implementation in the SuperCollider language,
based on swapping chunks of values from an array repre-
senting the signal. The implementation was intended as
a proof of concept, is computationally inefficient and not
suited for Real-Time. A general algorithm for real-time
permutation synthesis is shown in Figure 6.
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Figure 6. A general implementation for permutation syn-
thesis.

The process is split into two parallel phases, Record and
Playback. On top, a source (In) is recorded onto a recircu-
lating buffer that wraps around overwriting old values at
its beginning with new incoming ones. The second phase
is Playback. Here a Player reads values from the buffer:
its index must be provided by an opportune signal genera-
tor (Phasor) that is fed with a sawtooth-like signal. Buffer
dimension is not particularly crucial if only it is able to
store some periods of the incoming signal. This schema is
apt to be implemented in various standard synthesis pack-
ages, such as Csound, PD, Max, SuperCollider, at the user
level. However, in order to accurately check what hap-
pens at the sample level (typically not directly or easily ac-
cessible to the user in the aforementioned software pack-
ages), a real-time implementation of permutation synthe-
sis has been written as a SuperCollider plug-in, i.e. as an
extension of SuperCollider which consists of one or more
UGens, a UGen being a basic specialised processing unit.
By implementing a UGen, substantially a new audio prim-
itive, also a greater efficiency is gained.

The SuperCollider environment ! [5] has proven to be an
apt choice as it allows to seamlessly bridge sound synthesis
and algorithmic composition, thus providing also a high-
level layer by which immediately experimenting with per-
mutation synthesis in a musical context.

The SuperCollider architecture consists of two components:
a server (named scsynth), dedicated to audio synthesis and
processing, and a client (sclang), providing a language in-
terface to the server. Every set of UGens must have an SC
class on the language side that is bound to a C++ class, ex-
tending the server side [6].

The PermUGens plug-in is defined as a set of 3 different

Uhttp://supercollider.sourceforge.net



UGens which allow the user to permute an existing audio
source:

e PermMod swaps couples of chunks in an odd-even
manner for a given f,.

e PermModArray lets the user choose the number of
chunks and the permuting pattern by providing an ar-
ray of integers. As an example, the array [1, 0,2, 3]
will swap the first two chunks while leaving the sec-
ond two as they are.

e PermModT is similar to PermMod but adds a sec-
ond frequency parameter whose ratio with f,, causes
the introduction of a tail, a spare chunk with a differ-
ent length, that is combined to the standard chunk.

The client side of each UGen is a simple SC class which
defines the input parameters and does a first rough check
of their validity. As an example, PermMod has an audio-
rate (*ar) method which takes an audio input (in), f, (freq,
set to 100 if not specified) and the standard SuperCollider
mul and add parameters; if in is not audio-rate no infor-
mation is even sent to the server module and no UGen is
instantiated.

The server side is where audio processing really hap-
pens, written in C/C++ code. Inside the C++ class every
UGen has several modules, the most important being the
calculation functions to which the input audio samples are
fed and the output is generated. Before talking into detail
about the calculation function(s) of one of the PermUGens,
it is worth noting that also the constructor has a very im-
portant role: for example in the case of PermModArray
besides checking the validity of every input parameter and
calculating the chunk length, it also calculates the jumping
pattern from the array of integer fed by the user (more on
that later); moreover it decides which calculation function
to use and tests it by feeding it one single sample of audio.
Since PermModArray is the most complete of the PermU-
Gens, it is worth having a look at some extracts of the code
to understand how it works.

In the actual implementation every PermUGen utilizes two
buffers of the same size: while one is written the other is
read and vice versa, therefore this is not the optimal setup
latency-wise (see 2.3). Further versions of the algorithm
should improve this feature.

As stated in section 2, every PermUGen relies on an in-
dexing mechanism rather than actually moving the sam-
ples: this means that there is a single read variable that
cycles throughout the buffers from beginning to end and
back; the difference being that when it comes to the writ-
ing buffer read is summed to a jump amount in order to
write samples according to the permuting pattern, while
at the following cycle (which is when that buffer becomes
the reading one) it gets read in sequential order as shown
below:

if (swapped==false) {

swapbufl [read+ (pattern[index] xchunkl) ]=in[i];
out [i]=swapbuf2[read];
}

else{

swapbuf2 [read+ (pattern[index] xchunkl) ]=in[i];
out [i]=swapbufl [read];

In the case of PermModArray the permuting pattern is
inserted by the user when instantiating the UGen and it
consists of an array of integers of length n: to be valid it
must contain every cardinal number from 0 to n—1 (for ex-
ample [2,1,3,0]); as anticipated in the previous paragraph,
the jumping pattern (which is simply called pattern[] in
the previous code extract) is calculated from the permuting
one, and it is just another array of integers of the same size,
but containing the jump amounts instead of the desired or-
der of the chunks.

The most important thing when implementing a real-time
synthesis UGen is allowing the user to change parameters
on-the-fly. The rate at which this can occur is called con-
trol rate (*kr) and its period corresponds to the audio buffer
(typically 64 samples).

Since the chosen calculation function is called every con-
trol period, it also bears the responsibility of checking if
a parameter has changed and to adjust the pipeline to re-
flect these changes. The algorithm allows to change f, as
well as the permuting pattern in real time and change the
buffer size accordingly, that is, every time the new (actual)
chunk length is different from the previous or the number
of chunks has changed. For example if a value of the per-
muting pattern changes, the jumping pattern must be recal-
culated; whether f,, changes, the buffers have to be deallo-
cated and reallocated and the chunk length recalculated for
the next cycle. Here is an extract of the code triggered by
a change of f:

if (newchunkl!=chunkl || numchunks!=newnumchunks) {

RTFree (unit->mWorld, unit->swapbufl);
RTFree (unit->mWorld, unit->swapbuf2);

unit->chunkl = newchunkl;
read = 0;
index= 0;

6. EXAMPLES

The SuperCollider Permutation UGens can be used in var-
ious ways: they may serve as a distortion filter as well as a
component of more complex UGen topologies of a virtual
synthesizer (in SuperCollider called a SynthDef)? .

6.1 Basic usage

A basic test unit has been provided in the help files, that al-
lows to experiment with permutation effect by controlling
the signal and the permutation frequency by means of the
mouse:

{PermMod.ar (SinOsc.ar (MouseY.kr (0,440)),
MouseX.kr (500, 8800))}.play

In the above example the source audio fed to the UGen
is a sinusoid whose frequency is changed in real time ev-
ery control period (*kr) proportionally to the Y coordinate
of the mouse; f, is also changed the same way but pro-
portionally to the X coordinate. With this configuration,
every position of the arrow cursor on screen leads to a dif-
ferent distortion of a different note and the interesting part

2Some audio examples are available here:
fonurgia.unito.it/wp/?page_1d=606
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is hearing the effects generated by the real-time variation
of the aforementioned parameters. Figure 7 is a sonogram
of a signal resulting from the previous code, in which the
user is controlling via mouse the two frequencies. It clearly
shows that spectral richness can be obtained also by a min-
imal example. Discrete steps in the spectrum depends in-
deed by the chunk integer size constraint.
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Figure 7. Effects of permutation on a sinusoid.

6.2 Wavetable permutation

In the example below, PermMod is a module of a more
complex SynthDef that is capable of playing different notes
by repitching an existing wave file. The pitch of each note
is extracted and forced to chromatic scale by the .cpsmidi
method, then this data is used to pilot the f, parameter,
therefore creating a new timbre.
c = Buffer.read(s, "C:/Folder/Shamisen-C4.wav");
SynthDef (\dist, { arg rate = 1;
var sig = PlayBuf.ar(l, c, rate:rate,
doneAction:2) ;
var pt = Pitch.kr(sig) [0].cpsmidi ;
Out.ar (0, PermMod.ar (
sig, LFPulse.kr (
1+ (pt-36) .midicps, 0,0.5,
pt.midicps+1, (pt+24) .midicps)))

}
) .add ;

The example shows an application of permutation as a
processing stage rather than as a pure synthesis technique.

6.3 Sequential Random Modulation

The next example consists of several stages of daisy chained
modulations of a sine wave in which almost every signal
and/or real-time parameter is driven by one or more of
the three PermUGens. Since the code is too long to be
included in the present paper, Figure 8 shows a diagram
of its modules 3. The main concept is that the last Per-
ModArray UGen receives as its input a sinusoidal signal
that has been already modulated by a previous PerModAr-
ray. This kind of iterated arrangement has been proposed
many times for standard modulation techniques, in partic-
ular frequency and phase modulations[2] and shows how
permutation is apt to be used as possible replacement in

3 We thank Marinos Koutsomichalis for providing the example and the
diagram.

the same arrangements. An empirical investigation shows
that the permutation algorithm introduces a DC bias, that
in the example is removed as the final processing stage.
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Figure 8. Modulation-Permutation diagram.

7. CONCLUSIONS

Permutation synthesis belongs to the family of non-standard
synthesis technique. It does not refer to the electronic sig-
nal paradigm per se, rather it fully exploits the discrete na-
ture of digital signals. It is a fairly simple method, indeed
a purely digital member of the modulation family: never-
theless, it allows to obtain complex signals that show rich
spectra but also specific temporal features, that depend on
the time-domain operation at its basis. The permutation
synthesis SuperCollider plug-ins have been compiled for
Windows and Mac (but Linux porting is not an issue), and
will be made available via the Quarks extension system in
SuperCollider: user feedback is indeed relevant to assess
the interest of the technique and to provide new examples
of musical usage.
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