
This full text was downloaded from iris - AperTO: https://iris.unito.it/

iris - AperTO

University of Turin’s Institutional Research Information System and Open Access Institutional Repository

This is the author's final version of the contribution published as:

Roberto Micalizio. Plan repair driven by model-based agent diagnosis.
INTELLIGENZA ARTIFICIALE. 8 (1) pp: 71-85.
DOI: 10.3233/IA-140062

When citing, please refer to the published version.

Link to this full text:
http://hdl.handle.net/2318/154738

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Institutional Research Information System University of Turin

https://core.ac.uk/display/301964097?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Plan Repair Driven by Model-Based Agent

Diagnosis

Roberto Micalizio

Dipartimento di Informatica

Università di Torino
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Abstract

Repairing a plan executed in a partially observable environment is a challeng-

ing task; especially when the plan to be repaired is part of a Multiagent Plan

(MAP), and hence the synchronization among the agents further constrains the

repair process.

The paper formalizes a local plan repair strategy, where each agent in a MAP is

responsible for controlling (monitoring and diagnosing) the actions it executes, and

for autonomously repairing its own plan whenever an action failure is detected.

The paper also describes how to mitigate the impact of an action failure on the

plans of other agents when the local recovery strategy fails.

1 Introduction

Many real complex tasks find proper solutions in the adoption of a Multiagent Plan

(MAP), in which a team of agents cooperate with one another to reach a common goal

by performing actions concurrently.

The actual execution of a MAP, however, can be affected by the possible occurrence

of plan threats (e.g., agent faults in [1]), that can disrupt the nominal progress of the

plan by causing the failure of some actions. The occurrence of a plan threat does not

prevent, in general, the agents from completing their activities, but the MAP needs to

be repaired: a new planning process is required to overcome the effects of the occurred

action failure, and achieve the global goal in some alternative way.

Dealing with action failures in a multi-agent setting is particularly challenging.

First of all, since the agents cooperate by exchanging services, the local failure of an

agent can easily propagate in the global MAP, that like in a domino effect, could start

a series of harmful effects on the plan of other agents. Moreover, even though an im-

paired agent does not provide services to other agents, it may still represent a latent

menace for them because it may lock critical resources indefinitely.

To cope with these issues, the paper proposes a local approach to autonomous plan
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repair. In particular, the framework we propose enables each agent to perform a closed

control loop over the actions in its local plan. This control loop includes three main

tasks: plan monitoring, agent diagnosis, and plan repair. In this paper we discuss how

these three activities can be realized and concatenated even when the system where the

agents operate is just partially observable. The limited amount of observations repre-

sents a challenge: the monitoring can just estimate the agent state as a set of alternatives

(i.e., a belief state), and the agent diagnosis is typically ambiguous (i.e., a set of alter-

native explanations); as a consequence the plan repair step must be able to deal with

uncertain initial states and non-deterministic actions.

The paper is organized as follows: first, we introduce some basic notions on multi-

agent plans; then we formalize the three steps of the control loop–monitoring, diagno-

sis, and repair. Since the repair strategy is based on a planning phase, we also sketch

the conformant planner that we employ in our framework. Then we present some ex-

perimental results, and discuss some related works.

2 Related works

In [1] a model-based approach to plan diagnosis is presented, in this approach the

authors relate the health status of a planning agent to the outcome of the planning

activity. A similar approach has been adopted in this paper, however, we have explicitly

considered a multiagent setting, in which the impaired agent tries to recover from an

action failure without affecting the plans of other teammates.

The multi-agent setting is discussed in [15], where the authors introduce the notion

of plan diagnosis as the subset of actions whose failure is consistent with the anomalous

observed behavior of the system. In contrast to our work, this approach does not relate

the failure of an action to the health status of the agents; it focus just on the detection

of abnormal actions.

In [8, 9] the authors introduce the notion of social diagnosis to find the cause of

coordination failures. In their approach, however, they do not explicitly consider plans,

rather they model a hierarchy of behaviors: each agent selects independently from

others the more appropriate behavior given its own beliefs.

The plan repair task has been addressed by a number of works (see e.g., [5, 6, 17]),

which consider both self-interested and collaborative agents; however these works are

not directly applicable in our framework.

These approaches in fact are mainly focused on repairing coordination flaws occurring

during plan execution, thus they involve a re-scheduling task rather than performing

a re-planning step (see the GPGP solution in [5]). In [6] a solution for reorganizing

the tasks among the (collaborative) agents is presented: this approach is driven by

the results of a diagnostic engine which explains detected plan failures. In this case,

however, the explanations are derived from a causal model where anomalous events

(e.g., resource unavailable) are organized in a fault tree, and the reaction to plan failure

is a proper precompiled repairing solution.
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3 Background

Multiagent Plans (MAPs). In this paper, a MAP is a system where a team T of agents

actively cooperate for reaching a common goal G. For the sake of discussion, the

model of a MAP is a simplified version of the formalism presented in [4] (which is an

extension of the definition of a partial-order plan introduced in [18]). In particular, the

MAP P is a tuple 〈A,E,CL,RE〉, where:

• A is the set of the action instances the agents have to execute. Two pseudo-

actions, a0 and a∞, belong to A: a0 (the starting action), has no preconditions,

and its effects specify the propositions that are initially true; a∞ (the ending

action), has no effects, and its preconditions specify the propositions which must

hold in the final state (i.e., the goal G of the MAP). Except for a0 and a∞, each

action instance a ∈ A is assigned to a specific agent i ∈ T .

• E is a set of precedence links between actions: a precedence link a ≺ a′ in E

indicates that the execution of a must precede the execution of a′.

• CL is a set of causal links of the form cl : a
q
→ a′; cl states that action a provides

action a′ with service q (q is an atom occurring in the preconditions of a′).

• RE is a set of precedence links ruling the access to the resources. Since critical

resources can only be accessed in mutual exclusion (see also the concurrency

requirement in [15]), two actions a and a′, assigned to different agents, cannot

be executed at the same time instant if they require the same resource res. We

assume that the planning process producing P also resolves the conflicts for

accessing the resources by adding either a ≺res a
′ or a′ ≺res a. To keep a trace

of these additional precedence links, they are labeled with the identifier of the

specific resource they refer to, and are collected in the set RE.

Local Plans. The MAP P is decomposed into as many local plans as there are agents

in the team: each local plan P i is assigned to an agent i, and reaches a specific sub-goal

Gi.

Formally, the local plan for agent i is the tuple

P i=〈Ai, Ei, CLi, T i
in, T

i
out, REi

in, REi
out〉whereAi, Ei andCLi have the same mean-

ing of the sets A, E and CL, respectively, restricted to actions assigned to agent i. Ai

includes also two special actions ai0 and ai
∞

which specify, respectively, the initial and

final conditions for the sub-plan P i. T i
in (T i

out) is a set of incoming (outgoing) causal

links of the form a
q
→ a′ where a′ (a) belongs to Ai and a (a′) is assigned to another

agent j in the team. Similarly, REi
in (REi

out) is a set of incoming (outgoing) prece-

dence links of the form a ≺res a′ where a′ (a) belongs to Ai and a (a′) is assigned to

another agent j in the team.

We assume that each local plan P i is a totally ordered sequence of actions: P i =
〈ai0, a

i
1, . . . , a

i
∞
〉.

Distributed plan execution. An agent executes its next action as soon as the action

preconditions have been satisfied (the notions of preconditions and effects of an action

will be formalized in the following section). However, an agent can execute no more
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than one action in a given time instant. In particular, the time is assumed to be a dis-

crete sequence of instants, and actions take one unit of time to be completed.

In the following the notation ail(t) will denote that the l-th action in the local plan P i

is executed by agent i at time t; when unnecessary, however, t will be omitted.

Coordination during plan execution. Since agents execute actions concurrently, they

need to coordinate their activities in order to avoid the violation of the constraints de-

fined during the planning phase. Effective coordination among agents is obtained by

exploiting the causal and precedence links in the global MAP.

As pointed out in [5], coordination between two agents i and j is required when i pro-

vides j with a service q; this is modeled by a causal link cl : aih
q
→ a

j
k in the MAP P .

(As an effect of the MAP decomposition, cl belongs both to T i
out and to T

j
in.) Since

an agent can observe (at most) the direct effects of the actions it executes, only agent i

has the chance of observing the achievement (or the absence) of q; thereby, the agent i

must notify agent j about the outcome of action aih.

Similarly, the consistent access to the resources is a form of coordination which in-

volves precedence links. For example, the precedence link pl : aih ≺res a
j
k means

that agent i will release resource res to agent j just after the execution of action aih;

resource res will be used by agent j to execute action a
j
k. Of course, pl belongs both

to REi
out and to RE

j
in.

Since the system is distributed, an agent does not have a global view of the status

of all the system resources, but it knows just the status of the resources it holds. After

having released resource res, agent i will not have access to the actual status of res.

In the following we will denote as AvRes(i , t) (available resources) the subset of re-

sources assigned to agent i at time t; i.e., only agent i observes and knows the actual

status of those resources.

l o a d ( P a c k 1 ,  R e p )

2

g o ( R e p ,  D e s k 1 )

3

u n l o a d ( P a c k 1 ,  D e s k 1 )

4

g o ( D e s k 1 ,  P a r k i n g )  . . . .
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Figure 1: A simple example of MAP.

Example 1. Figure 1 shows a simple example of MAP we deal with. The domain of

this MAP is an office-like environment similar to the ones presented in [10, 16]. In this

domain, a team of agents has to deliver a number of packages to the employees’ desks:

an agent can load/unload a package from/to one desk, and carry one “heavy” package,
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or two “light” packages around the office building. Critical resources are doors (con-

necting two rooms), desks, and repositories (special cabinets containing many pack-

ages). Critical resources can be used by only one agent per time; moreover, a desk can

contain up to one package.

In the special case of Figure 1, the MAP involves two agents: A1 and A2, whose

local plans are enclosed within dashed rectangles. Pseudo-actions a0 and a∞ model,

respectively, the initial state and the goal state. Local plans are totally ordered, so

precedence links in E are not shown to simplify the picture. On the other hand, dashed

edges between actions are used to represent precedence links in RE. For instance, the

link from action 2 to action 5 states that action 5 requires resource Rep, and hence it

can only start when action 2 terminates and releases Rep. Solid edges instead represent

causal links; i.e., services that an action produces as a precondition for another action;

in the picture, causal links are labeled with the provided service. For instance, the

causal link from action 3 to action 8 states action 3 produces the service at(Pack1,

Desk1), which is one of the preconditions for action 8. �

4 Monitoring and Diagnosing a MAP

In this section we formalize the first two steps of the local control loop: the plan moni-

toring and the agent diagnosis activities. Before that, however, we first introduce some

fundamental notions about the representation of the state of an agent and of the obser-

vations an agent collects during the plan execution phase.

Agent state. The state of agent i is modeled by a set of state variables VARi, parti-

tioned into three subsets END i, ENV i and HLT i. END i and ENV i denote the set

of endogenous (e.g., the agent’s position) and environment (e.g., the resources state)

status variables, respectively. Because of the partitioning, each agent i maintains a pri-

vate copy of the resource status variables; therefore for each resource resk ∈ RES

(k : 1..|RES |) the private variable resk,i is included in the set ENV i. The consis-

tency among all these copies is assured by the fact that conflicts for accessing the

resources are solved at planning level. The precedence links in RE guarantee in fact

that, at each time t, a resource resk is available just for an agent i (i.e., resk belongs

to AvRes(i , t)); therefore for any other agent j ∈ T \ {i} the status of the resk is

unknown.

Since we are interested in monitoring the plan execution even when something goes

wrong, we introduce a further set HLT i of variables for modeling the health status of an

agent. For each agent functionality f , a variable vf ∈ HLT i represents the health sta-

tus of f . Generally speaking, the domain of variable vf is a set {ok, abn1, . . . , abnn}
where ok denotes the nominal mode, while abn1, . . . , abnn denote anomalous or de-

graded modes. An action failure can be therefore explained in terms of faults in a

subset of functionalities of a specific agent.

System observability. We assume that after the execution of an action ail(t) the agent

i receives a set obsi(t + 1) of observations, that conveys information about a subset

of variables in VARi. Given the partial observability, an agent can directly observe

just the state of its available resources, and the value of a subset of variables in END i,
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Table 1: The extended model of action a2:go(Rep,Desk1) (a simplified version).

active variables at time t active variables at time t+1

pos loaded pwr engTmp pos loaded pwr engTmp

1 nominal Rep empty ok ok Desk1 empty ok ok

2 nominal Rep obj ok ok Desk1 obj ok ok

3 degraded Rep empty low ok Desk1 empty low ok

4 degraded Rep empty ok hot Desk1 empty ok hot

5 faulty Rep obj low ok Rep obj low ok

6 faulty Rep obj ok hot Rep obj ok hot

7 faulty Rep obj ok ok Rep obj low ok

8 faulty Rep obj ok ok Desk1 obj low ok

whereas the variables in HLT i are not directly observable and their actual value can

be just inferred. As a consequence, at each time t the agent i can just estimate a set

of alternative states which are consistent with the received observations; in literature

this set is known as belief state, and in the following the notation Bi(t) will refer to the

belief of agent i inferred at time t.

Action models. In order to monitor the execution of action ail(t), agent i needs a model

for estimating all the possible, nominal as well as anomalous, evolutions of the action

itself. In our framework, an action model is a tuple 〈var(ail), ∆(ail(t))〉, where:

• var(ail(t)) ⊆ VARi is the subset of active state variables; namely, the variables

over which the preconditions and the effects of the action are defined.

• ∆(ail) ⊆ var(ail(t))×var(ail(t)) is a transition relation defined over the active

variable, and representing the set of possible evolutions in the agent state when

the agent performs ail . More precisely, ∆(ail) can be thought of as a set of tuples

of the form 〈st, st+1〉, where st is a (partial) agent state at time t (when the action

starts) and st+1 is another (partial) agent state at time t+1 (when the action ends).

For brevity, in the following we will denote as PRE (ail) (i.e., preconditions) the

projection of ∆(ail) over the state variables at time t, and EFF (ail(t)) (i.e., effects) the

projection of ∆(ail) over the state variables at time t+1.

Example 2. Table 1 reports a simplified model for the go action in our office domain.

The action requires an agent to move from its current location to another one. For sim-

plicity, Table 1 shows the instantiated model of a go action, rather than a template, in

which the initial location is repository Rep, whereas desk Desk1 is the final location.

The outcome of a go action depends on the health state of a subset of functionalities;

in the specific case: pwr represents the available power (i.e., battery charge) which can

either be ok or low; similarly, engTmp models the temperature of the engine which is

either nominal ok, or abnormal hot. Finally, it is worth noting that the outcome of a

go action can also be affected by contextual conditions, as for instance the presence
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of a block on board the agent, encoded by variable loaded. All these variables are

therefore taken into account in the definition of the go action model for the monitoring

purpose. More precisely, each entry of such a relation represents a possible state tran-

sition defined over the active variables. Note that the first four entries and the last one

represent situations in which the action achieves its expected effects. However, only

the first two entries are not affected by faults. The other entries represent situations in

which the nominal expected effects are not achieved. �

Given action ail , healthVar(ail)=HLT
i∩var(ail) denotes the set of variables rep-

resenting the health status of the functionalities which directly affect the outcome of

action ail . These variables are fundamental to infer the expected, nominal effects of ail
given its model ∆(ail). First, we define the healthy formula healthy(ail) of action ail as

the restriction of each variable v ∈ healthVar(ail) to the nominal behavioral mode ok.

It is easy to see that the healthy formula of an action represents the nominal health sta-

tus required to agent i for successfully completing the action itself. Then the nominal

effects are defined as follows.

Definition 1 The set of the nominal effects of action ail is nomEff(ail)={q ∈ EFF (ail)\
HLT i |PRE (ail)∪ healthy(ail) |= q}.

Intuitively, the nominal effects of action ail are only achieved when all the func-

tionalities mentioned in healthVar (ail) are in their nominal mode ok. Note that the

health variables are not part of the nominal effects; indeed, these variables are not even

observable.See for instance transitions 1 and 2 of the action model in Table 1. On

the other hand, when at least one variable v ∈ healthVar(ail) assumes an anomalous

mode (i.e., a functionality is not in the nominal mode), the behavior of the action may

be non-deterministic and some of the expected effects may be missing. For instance,

transitions 7 and 8 of the action model in Table 1 share the same preconditions, but

evolve differently due to the occurrence of a fault affecting the power functionality: in

the first case the agent is unable to move from its initial position Rep, in the second

one, instead, the agent gets in position Desk1.

In the following,A will denote the set of action models an agent exploits for mon-

itoring the progress of its own plan.

The estimation of the agent status. The estimation process aims at predicting the

state of agent i at time t + 1 after the execution of an action ail(t). However, because

of the non determinism in the action models, and the partial system observability, the

estimation process can in general infer just a set of alternative agent states (i.e.; a belief

state) rather than the actual agent state. The estimation can be formalized in terms of

the relational algebra operators as follows.

Definition 2 Let Bi(t) be the belief state of agent i, let ∆(ail(t)) be the model of the

action executed at time t, the agent belief state at time t+ 1 is:

Bi(t+ 1) =

PROJECTIONt+1[
SELECTIONobsi(t+1) (B

i(t) JOIN ∆(ail(t)))]

The (natural) join operation Bi(t) JOIN ∆(ail(t)) is the predictive step by means of

which all the possible agent states at time t + 1 are estimated. The selection SE-

LECTIONobsi(t+1), refines the predictions by pruning off all those estimates which are
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inconsistent with the agent observations. Finally, the belief state Bi(t+ 1) is obtained

by projecting the resulting estimates over the status variables of agent i at time t+ 1.

Action outcome. The outcome of an action is either succeeded or failed. However,

since agent belief states are typically ambiguous, determining the outcome of an action

might be not easy. In this paper we adopt a strong committed policy, and assume that

as soon as an action has been completed with success, the agent receives an amount of

observations which is sufficient to detect the achievement of all action nominal effects.

More precisely, given a belief Bi(t+ 1), agent i determines the successful completion

of action ail(t) as follows:

Definition 3 The outcome of action ail(t), is succeeded iff ∀q ∈ nomEff (ail(t)), ∀s ∈
Bi(t+ 1), s |= q.

Thus, action ail(t) is successfully completed only when all atoms q in nomEff (ail(t))
are satisfied in every state s in Bi(t+ 1): all the nominal effects of ail(t) hold in every

possible state estimated after the execution of the action. When we cannot assert that

action ail(t) is succeeded, we assume that the action is failed. This conservative as-

sumption can be released along the line discussed in [11, 12], in which a weak commit-

ted policy is introduced, allowing an action outcome to be pending when the available

observations are not sufficient for discriminating between success and failure.

Agent diagnosis. Whenever an agent i detects the failure of one of its action, say ail(t),
the agent starts a diagnostic procedure. In principle, an agent belief state Bi(t + 1) is

already a diagnosis for the detected failure of action ail(t): B
i(t + 1) contains all the

possible states of agent i consistent with the observations gathered by i, and each of

these states is a possible explanation for the failure. However, an agent belief state

is in general highly ambiguous, and it is not really useful to identify the root causes

of the action failure. Indeed, our objective is to understand why an action has failed,

and try to recover from this failure by overcoming its root causes. This means that the

agent belief state needs to be refined in order to become a useful source of diagnostic

information.

As we have already noticed in Definition 1, an action ail achieves its expected,

nominal effects only when the healthy formula healthy(ail) holds. Thus, since we

have detected the failure of ail , the healthy formula must not hold; that is, at least one

functionality of agent i is not properly working.

Therefore, an explanation expressed in terms of the status variables in healthVar(ail),
rather than all the agent state variables, is sufficient to identify the root causes of the

action failure.

More formally, by using the operators of the relational algebra, an agent diagnosis

is inferred as

Di=PROJECTIONhealthV ar(ai

l
)B

i(t+ 1)

An agent diagnosis is therefore a relation defined over the variables in healthVar (ail),
where each entry represents a possible explanation for the failure. Of course, Di can

still be ambiguous, but its cardinality is usually negligible if compared with the cardi-

nality of the original belief state.
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Example 3. Let us consider a simple scenario in which after the execution of action

a2 :go(Rep, Desk1) of our running example, agent A1 receives as observation the

atom pos =Rep. From the action model exemplified in Table 1, it is easy to conclude

that action a2 has not reached its expected effects. In fact, only transitions 5, 6, and

7 are consistent with two elements: 1) the current position of A1 is still Rep (just ob-

served); and 2) the agent is currently loaded with an object (the previous action was a

load, which has been completed successfully, otherwise the agent would have stopped

due to the strong committed policy). Agent A1 therefore infers a diagnosis by project-

ing the belief state estimated with the three transitions mentioned above over the health

variables in healthVar (a2). The result is the following set of possible explanations:

DA1 = {〈pwr :low , engTmp :ok〉

〈pwr :ok, engTmp :high〉}

The first explanation blames a low charge in the battery as a root cause of the failure

of action a2. Indeed, the action model for the go action states that when an agent

is loaded with a block (either light or heavy), and its battery charge is low, then the

agent cannot move. Similarly, the second explanation blames a high temperature in the

engine as the root cause of the failure; also in this case, in fact, an agent cannot move

if it is loaded with an object. It is worth noting that, even though the go action cannot

be completed under these contextual conditions, other actions could be performed. For

instance, an unload action can be performed even though the battery charge is low or

the engine temperature is high. This is essential for the plan repair purpose, as we will

see in the next section. �

Missing Goals. As noted earlier, the agents in the team T cooperate one another by ex-

changing services; that is, there exist causal dependencies between actions of different

agents. As a consequence, the failure of action ail prevents the execution of the actions

in the plan segment [ail+1, a
i
∞
] and, since some services will never be provided, it can

indirectly impact the local plans of the other teammates.

The set of the services that agent i can no longer provide due to the failure is denoted

as the set of missing goals; singling out these services is important as, in principle,

it would be sufficient to find an alternative way to provide them in order to reach the

global goal G despite the failure of action ail(t).

Definition 4 Given the failure of action ail ,

let [ail+1, . . . , a
i
∞
] be the plan segment the agent i is unable to complete, the set of

missing goals is: MG(i)={ service q|
∀aik ∈ [ail, . . . , a

i
∞
], q ∈ nomEff (aik), and

q ∈ PRE(ai
∞
) or

∃ a causal link cl ∈ CL such that

cl : aik
q
→ a

j
h; i 6= j)}

Namely, the service q is a missing goal when q is a nominal effect no longer provided

by an action in the plan segment [ail, . . . , a
i
∞
], and when either q is an atom appearing

in the sub-goal Gi (i.e., q is a precondition of the special action ai
∞

) or q is a service

agent i should provide to another agent j.
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5 Plan Repair: a local strategy

In this section we discuss a methodology for repairing the local plan P i, interrupted

after the failure of action ail has been detected. Essentially, this repairing process con-

sists in a re-planning step intended to overcome, if possible, the harmful effects of the

failure. In the next section we sketch the planning algorithm activated by agent i; in

this section we focus on which goals should be reached for the recovering purpose. As

noted above, the set of missing goals can be used to this end; unfortunately, when the

recovery is driven by the missing goals it requires global changes; in fact, the missing

goals are long term objectives, that can be reached by acquiring new resources; the ac-

quisition of a resource, however, imposes the coordination with other teammates, and

hence new causal and precedence links are to be introduced in the global MAP P ; it

follows that a number of other agents in the team have to change their local plans.

The local strategy we propose, instead, tries to recover from the failure of ail just by

changing the local plan P i, without any direct impact on the plans of other teammates.

The idea of a local strategy stems from the observation that in many cases an agent

is still able to do something useful even if its health status is not completely nominal.

By exploiting this possibility, we first formalize a local replanning strategy intended to

overcome the causes of an action failure, and then restore the plan execution from the

point where it was stopped. However, when such a replanning step fails, we also show

how the agent in trouble can reduce the impact of the failure in the MAP P by moving

into a safe status.

Repairing the interrupted local plan. This step is based on the observation that the

plan segment [ail+1, . . . , a
i
∞
] could be carried out if the root causes of the failure of

action ail were removed.

These root causes have been singled out by the diagnostic inferences: the agent

diagnosis Di explains the failure of ail as a combination of anomalous conditions in the

functionalities of agent i; therefore, to overcome the causes of this failure the agent i

has to restore a healthy condition in those functionalities. To this end the agent i can

exploit a set AR of repairing actions, each of which restores the healthy condition in

a specific agent functionality. Of course, it is possible that some faults cannot be au-

tonomously repaired by an agent. For example, in our office domain, a robotic agent

can autonomously fix a low charge in the battery by means of a recharge repair-

ing action; whereas a fault in the mobility functionality cannot be fixed by the agent

autonomously, and requires an external (possibly human) intervention.

Therefore, relying on the agent diagnosis Di, agent i assesses whether one (or a

set of) repair action(s) exists. If recover actions do not exist, agent i gives up the

synthesis of a recovery plan and tries to reach a safe status (see later). If recovery

actions exist, the agent i tries to reach a new goal K consisting in: 1) restoring the

healthy conditions in its functionalities by executing an appropriate set of repairing

actions; and 2) restarting the execution of the plan from the failed action ail. A repairing

plan Pri is a plan which meets these two goals, and it can be found by resolving the

following planning problem:

Definition 5 The repairing plan Pri=[ari0, . . . , ar
i
∞
] is a solution of the planning

problem
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〈I,F ,A, AvRes(i, t), Di〉; where:

• I (initial state) corresponds to the agent belief state: EFF (ari0) ≡ B
i(t + 1)

(i.e., the belief state inferred after the execution of action ail(t)).

• F (final state) is the goalK defined as

PRE (ari
∞
) ≡ {∀v ∈ healthV ar(ail), v = ok} ∧ PRE (ail)

• A ⊆ A ∪AR is the set of action models which can be used during the planning

process given the agent diagnosis Di, and the available resources AvRes(i, t).

A repairing plan Pri must also satisfy two demanding requirements:

Requirement 1 Since the repairing plan Pri can impose local changes only, no new

resources can be acquired: the actions inPri can just exploit the resources in AvRes(i, t),
already acquired by agent i at the time of the failure.

Requirement 2 Since the belief state Bi(t + 1) is potentially ambiguous (the actual

agent health status is not precisely known) the repairing plan Pri must be conformant,

namely, it must be executable no matter the actual health status of agent i.

An important consequence of the conformant requirement is the following property.

Property 1 For each action arik ∈ Pri it must hold healthy(arik) ∪Di 6⊢ ⊥

Property 1 states that all the actions in the repairing plan must be executable despite the

current status of agent i is not healthy. Therefore, when no action is executable given

the agent diagnosis Di, a repairing plan does not exist.

In some cases an agent diagnosis could explain an action failure both with faults

that are repairable, and with faults that are not. For instance, the failure of a go action

could be explained either as a low battery level (repairable), or as a broken engine (not

repairable). In such a situation, any attempt to find a conformant plan that restores

the nominal behaviors in both the battery and the engine will fail as there is no way,

for an agent, to self-repair its own engine. To deal with agent diagnoses as such, we

propose a preference criterion based on the repairability of faults. More precisely, we

keep an explanation exp in Di as far as all the faults assumed in exp are repairable;

exp is pruned off, otherwise. Of course, if after this refinement, the agent diagnosis

gets empty, then there is no way to recover from the action failure (all explanations

include at least one non-repairable fault), and hence the repairing procedure is not even

attempted.

Assuming that the planPri exists, agent i yields its new local planP ∗i = [ari0, . . . , ar
i
∞
]◦

[ail, . . . , a
i
∞
]; where ◦ denotes the concatenation between two plans (i.e., the second

plan can be executed just after the last action of the first plan has been executed).

Property 2 The recovery plan P ∗i is feasible and executable.

Due to space reason the proof is omitted, intuitively the feasibility of the recovery plan

P ∗i stems by two characteristics: 1) every plan segment is feasible on its own as it has

been produced by a specific planning step, and 2) the preconditions of the action ari
∞

of the first plan matches with the effects of the action ail of the second one. A more

important property is the following one:

11



Property 3 The recovery plan P ∗i meets all the services inMG(i).

Property 3 guarantees that, by executingP ∗i in lieu of [ail, . . . , a
i
∞
], agent i can recover

from the failure of action ail and achieve its sub-goal Gi despite the failure.

Reaching the Safe Status. The repairing plan Pri, however, may not exist. In fact,

the faults assumed in Di may be not repairable, or a conformant solution may not exist.

When the plan recovery process fails, the impaired agent can be seen as a latent menace

for the other team members (e.g., when the agent locks indefinitely critical resources).

We complement the first step of the local strategy by means of a further step intended

to lead the impaired agent i into a safe status Si. In this paper, we define a safe status

as a condition where all the resources used by i at time t–the time of the failure of

action ail(t)–have been released. Also this step can be modeled as a planning problem

as follows:

Definition 6 The plan-to-safe-statusPsi=[asi0, . . . , as
i
∞
] is a solution of the planning

problem

〈I,F ,A, AvRes(i, t), Di〉; where:

• I (initial state) corresponds to the agent belief state: EFF (asi0) ≡ B
i(t + 1)

(i.e., the belief state inferred after the execution of action ail(t)).

• F (final state) is the safe status Si, defined as

PRE (asi
∞
) ≡ ∀resk ∈ AvRes(i, t), resk,i = free.

• A is as before the set of action models which can be used during the plan-

ning process given the agent diagnosis Di and the set of available resources

AvRes(i, t).

Of course, also the plan-to-safe-status Psi must satisfy the requirements 1 and 2; thus

property 1 can be extended to the actions in Psi too. Repairing actions can be used

also during this planning step, in some cases in fact it is required to restore the healthy

status in some functionalities to release a resource.

When the plan-to-safe-status Psi exists, it becomes the new local plan assigned to

agent i; that is P ∗i = Psi, and all the actions in [ail , . . . , a
i
∞
] are aborted. Therefore,

even though agent i is unable to reach its goal Gi, it moves into safe status in order to

do not hinder the other team members in their activities.

When the recovery strategy fails. The recovery strategy fails when neither the plan to

a repaired state, nor the plan to a safe status exists. In this case, we adopt a conservative

policy and we impose that the impaired agent gives up the execution of its local plan.

Performing further actions, in fact, may lead the agent in dangerous conditions; for

example, the agent could lock indefinitely some resources preventing others to access

them.

The failure of the local recovery strategy does not imply, in general, that the action

failure cannot be recovered from, but different, global strategies should be activated.

These strategies (out the scope of this paper), are driven by the set of missing goals,

and may require the cooperation of a subset of agents, or the activation of a global

re-planning step.

The algorithm. The high-level algorithm of the control loop performed by each
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LocalControLoop(P i,Bi(0))
1. t← 0

2. while there are actions in P i to be executed do

3. ail ← nextAction(P i)

4. if PRE (ail) are satisfied in Bi(t) then

5. EXECUTE ail
6. gather observations obsi(t+ 1)
7. Bi(t+ 1)←Monitoring(Bi(t), ∆(ail))
8. if outcome(ail,B

i(t+ 1)) equals failed then

9. Di ← Infer-Diagnosis(Bi(t+ 1), healthVar(ail))
10. Pri ← ConfPlan(Bi(t+ 1), K, A, AvRes(i, t), Di)

11. if Pri is not empty then

12. P i ← Pri ◦ [ail , .., a
i
∞
]

13. else

14. Psi ← ConfPlan(Bi(t), S, A, AvRes(i, t), Di)

15. if (Psi is not empty) then

16. P i ← Psi

17. else

18. invoke a global recovery strategy

19. end if

20. end if

21. end if

22. t← t+ 1
23. end if

24. end while

Figure 2: The control loop algorithm.

agent i ∈ T is showed in Figure 2. The algorithm consists in a while loop, where at

each iteration agent i singles out the next action ail to be executed. The action ail is

executed iff its preconditions are satisfied in the current belief state Bi(t). After the

action execution, i gathers the available observations and detects the outcome of ail
(see Definition 3). In case the action outcome is failed, first the diagnostic inference

are activated, and then the conformant planner is invoked to find a plan to a repaired

state (Definition 5), or alternatively a plan to safe status (Definition 6). When both the

planning steps fail, the agent i sends a message to all the other agents about its failure,

and interrupts the execution of its local plan P i.

6 Conformant Planning

In this section we just sketch the main steps performed by the conformat planner we

propose, more details can be found in [10].

The high-level algorithm of the conformant planner we propose is showed in Figure

3. The simple idea at the basis of our planner is to create a macro-operator Φ which
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ConfPlan(I,F ,A,AvRes(i, t), Di)
1. Φ← Build-Φ(A,AvRes(i, t), Di)
2. PSET0 ← I
3. h← 0
4. solved←false

5. while not solved and h < MAXDEPTH do

6. PSETh+1 ← PSETh JOIN Φ
7. PSETh+1 ← PruneNotConformant(PSETh,PSETh+1)
8. if PSETh+1 is empty then

9. return ∅
10. end if

11. solved← CheckGoal(PSETh+1,F)
12. if solved equals true then

13. π ←ExtractPlan(PSETh+1)
14. else

15. h← h+ 1
16. end if

17. end while

18. return π

Figure 3: The high-level algorithm for the synthesis of a conformant plan.

gathers, in a disjunctive form, all the models of the actions that can be used during the

plan repair phase. This task is performed by function Build-Φ (line 1), which takes

in input the set of action models A, the set of available resources AvRes(i, t), and

the (preferred) agent diagnosis Di. The function selects from A all those actions that

can be performed given the set of resources currently assigned to agent i, and that are

consistent with the diagnosis Di. In other words, an action that requires a functionality

assumed faulty in Di, or that requires a resource that the agent does not hold, is not

included in Φ.

The macro-operator Φ is subsequently used to extend the set of current plan hy-

potheses. To keep a trace of such plan hypotheses, we introduce a further structure,

named PSET .

Intuitively, PSETh can be seen as a set of trajectories, where each trajectory tr

has the form

〈Bi(0), a1,B
i(1), a2, . . . , ah,B

i(h)〉.

Each Bi(k) (k : 0..h) represents an agent belief state, while each ak (k : 1..h) rep-

resents an action that brings belief state Bi(k − 1) to evolve into belief state Bi(k).
In particular, we call these actions “conformant” in the sense that each action ak is

applicable in every state s ∈ Bi(k − 1). In other words, PSETh represents the set

of conformant plans of length h found so far. At the beginning of the algorithm, of

course, PSET0 is set to the initial belief state I (line 2).

After these preliminary steps, the algorithm starts a while loop that terminates either

when a conformant plan has been found, or when a maximum depthMAXDEPTH has

been reached. In this second case, introduced to guarantee the termination of the algo-
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Figure 4: An example of how the PSET structure is extended.

rithm, the algorithm has explored all the space of plans no longer than MAXDEPTH

actions without finding a solution, and hence terminates with a failure.

At each iteration of the while loop, the current PSET structure is extended by

means of the macro-operator Φ (line 6). Such an extension consists in applying each

action in Φ to each belief state in the frontier of PSETh; namely, to each belief state

at depth h. The result of this operation is a new set of plan hypotheses PSETh+1,

which are an action longer than the previous ones. Note that this extension is carried

out by means of a natural JOIN, which does not guarantee that PSETh+1 contains

conformat actions only. For this reason, the newly created PSETh+1 is refined by

removing all those belief states produced by non-conformant actions (line 7). If the

resulting PSETh+1 gets empty, the planning process terminates with the guarantee

that no conformat plan exists for the given problem. Otherwise, the algorithm checks

whether some of the belief states in the frontier of PSETh+1 satisfy the goal. In the

positive case, a conformant plan has been found, so it is extracted and returned as a

result. In the negative case, the loop is repeated.

Figure 4 gives an intuition of how the search proceeds. Belief states are represented

as boxes. Grey boxes are those along a solution. The macro-operatorΦ contains all the

actions that can be used to find a conformant plan (i.e., ar1, ar2 . . . arn). The operator

is applied to each belief state in the frontier of the current PSET structure starting

from the initial belief I. After three steps of the algorithm, a solution is found since a

belief state satisfies the goal F , and hence the plan 〈ar1, ar2, arn〉 is returned.

The planning algorithm ConfPlan has some interesting properties.

Property 4 (Optimality) If ConfPlan terminates with success, it finds all the optimal

(i.e., with the minimum number of actions) conformant plans.

Intuitively, the proof follows by the fact that the algorithm implements an exhaustive,
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forward-chaining search. Thus, it is possible to demonstrate that if a conformant plan

π found by ConfPlan is longer than another conformant plan π′, for the same problem,

then π′ must mention at least one action that is not included in the macro-operator Φ,

but in this case, π′ would not be executable by the impaired agent i.

Property 5 (Soundness) If ConfPlan terminates with a failure because the setPSET

gets empty, then there not exists a conformant plan to solve the problem.

Also this property follows by the fact that the search is exhaustive: if the PSETh+1

gets empty when h+ 1 ≤ MAXDEPTH , it means that no action in Φ is applicable

as a conformant action to any of the belief states in the frontier of PSETh. Therefore,

no solutions longer than h actions are possible.

Property 6 (Incompleteness) If ConfPlan terminates with a failure because the thresh-

old MAXDEPTH has been reached, a conformant plan longer than MAXDEPTH

actions might exist.

The incompleteness of the ConfPlan algorithm comes from the fact that the search

is made in a forward chaining manner without backtracking. Thus, to guarantee the

termination even in presence of infinite paths, we need to set an artificial limit to the

search space, which introduces the incompleteness.

Example 4. Let us consider again the situation depicted in Example 4. In particular,

let us consider the agent diagnosis Di inferred after the failure of action a2. Relying

on such a diagnosis, agent A1 starts a plan repair phase. First of all, the agent checks

whether the faults assumed by the agent diagnosis are repairable or not; i.e., whether

there exists an action that restores the nominal behavioral mode in the functionality af-

fected by those faults. In our specific case, the two faults are both repairable. Thereby,

agent A1 proceeds by building the Φ macro-operator by considering the resources it

currently holds AvRes(A1, t) = {Rep,Desk1,Pack1} (where t is the current time);

in addition, A1 has also access to the Parking area, which is not a resource since it

is not constrained. Therefore, the set A of actions that A1 can perform is:

• load(Rep, Pack1), unload(Rep, Pack1)

• load(Desk1, Pack1), unload(Desk1, Pack1)

• go(Rep, Desk1), unload(Desk1, Rep)

• go(Rep, Parking), unload(Parking, Rep)

• go(Desk1, Parking), unload(Parking, Desk1)

In addition to this set, agent A1 also considers the actions that can be used to fix the

faulty functionalities; the set AR is:

• recharge()

• refillcoolant().
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Table 2: Main characteristics of the simulated plans (avg. values) in each scenario.

SCN3 SCN4 SCN5 SCN6 SCN7 SCN8

# actions 66 70 94 135 180 256

# casual links 223 238 333 387 467 361

# subgoals 46 51 77 73 74 95

# actions per agent 22 18 19 23 26 32

# subgoals per agent 15 13 16 12 11 12

Both actions can be performed only when the agent is located within a parking area.

The first one is used to recharge the battery, and hence produces the effect pwr = ok.

The second one is used to cool down the engine by refilling the coolant tank, and hence

produces the effect engTmp = ok.

Once the actions to be included in Φ have been identified, the agent uses Φ as

previously discussed in order to find a conformant plan. Indeed, the agent is able to

find two alternative conformant plans. The first one is Solution 1:

• unload(Rep, Pack1)

• go(Rep, Parking)

• recharge()

• refillcoolant()

• go(Parking, Rep)

• load(Rep, Pack1)

The alternative Solution 2 is similar to the previous one, but the two repairing actions

are switched. It is worth noting that the first action of the repairing plan undoes the

effects achieved by the previous action a1, but this is necessary in order to allow the

agent move even when its functionalities are not in their nominal mode. Then, the

agent moves to a parking area where it can perform repairing actions. After this step,

the functionalities assumed faulty within the agent diagnosis are now properly working;

thus, the agent can resume the execution of the plan. More precisely, the agent moves

back to Rep, and loads again Pack1. At the end of the repairing plan, the agent is now

ready to perform again the failed action a2; this second time, however, the root causes

of the failure have been removed so the action is expected to be completed successfully.

�

7 Experimental results.

The proposed control loop has been implemented in Java JDK 1.7. The symbolic

formalism of the Ordered Binary Decision Diagrams (OBDDs) [2] has been used to
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encode the agents’ belief states, and the non-deterministic models of the actions. Mon-

itoring, diagnosis and planning are therefore implemented in terms of standard OBDDs

operators (see [3, 7, 10]). Agents are threads running on the same PC 1.

In our experiments we have (software) simulated the office domain introduced in

Example 3, in which a team of robotic agents offers a mail delivery service. In par-

ticular, as a test case, the environment we used in our experiments consists of 5 office

rooms, and involves 2 repositories, 9 desks, 8 doors (connecting two rooms; it is pos-

sible to have more doors between the same two rooms), and 12 blocks. All these

elements are considered as critical resources, shared by the agents. In addition, there

are three parking areas, which are not critical resources, and where agents can perform

their repairing actions.

In order to prove the effectiveness of the local recovery strategy, we have consid-

ered six alternative scenarios including from 3 to 8 agents. In each scenario we have

simulated the execution of 40 MAPs, whose main characteristics are reported in Table

2.

In these six scenarios, we compared the behavior of four strategies when the actual

execution of MAPs is affected by the occurrence of faults. More precisely, we ran-

domly injected one fault in each MAP; namely, we randomly selected only one agent,

and affected one of its functionalities with a fault. The methodology we have pre-

sented easily deals with multiple faults. More precisely, it may be possible to degrade

the functionalities of different agents, or even to degrade the functionalities of the same

agent more times. In the experimental analysis discussed in this paper, however, we

restricted ourselves to a single fault per MAP in order to avoid masking effects that can

occur in case of multiple faults.

To test the effectiveness of the repair strategy, each injected fault is repairable, in

the sense that there exists a repairing action. However, in some cases an agent cannot

recover from a failure because some contextual conditions may prevent the agent from

performing the needed repairing actions. For instance, the closest parking area is not

reachable by the impaired agent given the current set of resources (doors, in particular)

held by the agent itself.

The four strategies we compared are: no-repair, the agent in trouble does not handle

the failure (the agent just stops the execution of its local plan); safe-status, whenever an

action failure occurs, the agent in trouble moves into a safe status; repair, the agent tries

to repair its own plan, when the repair process fails the agent stops the plan execution;

r+s (repair and safe-status), a combination of the previous scenarios: first the agent

tries to repair its plan, in case this step fails the agent reaches a safe status. In the

following we also report experimental data under nominal conditions (i.e., when no

fault occurs), in order to have a benchmark for the different strategies.

Figure 5 shows the average number of actions that have been performed in four

strategies. From the picture it emerges that the best strategy is r+s. This strategy,

in fact, is the most flexible as it can take advantage of both a plan repair, and when

this is not possible, of a plan-to-safe-status, which tries to mitigate the impact of an

action failure. In Figure 6 we show the number of subgoals actually achieved in the six

scenarios by the four strategies. Also in this case strategy r+s is the best choice as it

1Intel Core i5CPU, 2.53GHz, RAM 4GB, Windows7
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Figure 5: The average number of performed actions in the four repair strategies.
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Figure 6: The average number of achieved subgoals in the four repair strategies.

gets the highest number of subgoals.

It is worth noting that the monitoring task is performed very effectively. Indeed,

since each agent monitors and diagnoses its own local plan without the need of inter-

acting with others, the monitoring (and diagnosis) computational time is independent

of the number of agents in the team. In fact, in all the six scenarios, the CPU time for

monitoring a single execution step is in the order of 200 ms., the observed maximum

is 302 ms.

The repair phase involving the conformant planner is, instead, slightly more ex-

pensive, see Table 3. Of course, strategy no-repair is not included as its repair cost is

always zero (indeed, this strategy does not attempt any plan repair). The table reports

the average CPU time that has been spent for planning either to a repaired state, or to a

safe-status.

The safestatus strategy can just plan to a safe-status, such a planning problem is in

general simpler that a plan repair problem, and hence it is the cheapest strategy, but its

effectiveness is limited, as we have already shown.

The repair strategy can just plan to a repaired state from which the nominal plan

execution can be resumed. Such a planning problem is more complex since it has to

restore the nominal conditions in the agent’s functionalities, and to satisfy the precon-
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Table 3: CPU time [msec] for the repair process.

repaired safestatus

SCN3

r+s 725 ± 102 937 ± 242

repair 705 ± 115 -

safestatus - 213 ± 56

SCN4

r+s 839 ± 151 987 ± 224

repair 820 ± 127 -

safestatus - 198 ± 75

SCN5

r+s 878 ± 180 1125± 235

repair 825 ± 137 -

safestatus - 219 ± 84

SCN6

r+s 925 ± 230 1323± 257

repair 889 ± 221 -

safestatus - 247 ± 91

SCN7

r+s 1105 ± 234 1402± 224

repair 1078 ± 172 -

safestatus - 257 ± 104

SCN8

r+s 1356 ± 254 1547± 232

repair 1289 ± 145 -

safestatus - 287 ± 127

ditions for the plan segment still to be performed.

The r+s strategy can plan both to a repaired state and to a safe-status. Indeed, when

a plan to a repaired state exists, the strategy behaves similarly to the repair strategy.

However, when such a planning step fails, the r+s strategy tries a plan to safe-status,

in these cases the computational cost of r+s is in the order of one second or more.

It is worth noting, however, that even though r+s can invoke, at least in some cases,

the conformant planner twice, the computational cost is not doubled. This happens

because in most of the cases r+s detects very early that a conformant plan to a repaired

state does not exist, and hence the overhead introduced by this planning step is still

acceptable.

The computational cost of the conformant planner is mainly due to the dimensions

of the OBDDs it has to handle. More precisely, while the monitoring phase handles

just one action model, whose average size is 364 nodes, the Φ macro-operator involves

40 actions, on average, and its size is 4876 nodes. The OBDD encoding Φ is then used

at each step of the conformant algorithm to increase the lengths of the current plans. In

particular, the found repairing plans include, on average, 8 actions.

8 Conclusions

In this paper we have formalized a closed loop of control involving three main activi-

ties: plan execution monitoring, agent diagnosis and plan repair.

The paper contributes to show the importance of a repair strategy driven by a fail-
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ure analysis which highlight the root causes of an action failure. Depending on the

(possibly multiple) faults and on the activities of the agent in trouble, different course

of actions are synthesized either for recovering the action failure (if the local repairing

plan exists), or to bring the agent in a safe status and limit the impact of the failure.

The experimental results show that the proposed methodology is adequate to promptly

react to an action failure and to actually mitigate the harmful effects of the failure. Also

the computational cost of the approach is affordable since the search for a recovery plan

is strongly constrained by the agent diagnosis.

The proposed framework can be extended to deal with more sophisticated notions

multi-agent plan. First of all, concurrency constraints can be introduced to model joint

actions (see e.g., [11]). A more interesting extension concerns the temporal dimension

(see e.g., [13, 14]). Dealing with temporal plans has a strong impact on the conformant

planner, which has to find a repairing plan that meets the set of missing goals, and that

can be executed without violating any temporal constraint.
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