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We present a first-principle computation of the jet quenching parameter, which describes the momentum
broadening of a high-energy parton moving through the deconfined state of QCD matter at high
temperature. Following an idea originally proposed by Caron-Huot, we explain how one can evaluate the
soft contribution to the collision kernel characterizing this real-time phenomenon, analyzing certain gauge-
invariant operators in a dimensionally reduced effective theory (electrostatic QCD), which can be studied
nonperturbatively via simulations on a Euclidean lattice. Our high-precision numerical computations at two
different temperatures indicate that soft contributions to the jet quenching parameter are large. After
discussing the systematic uncertainties involved, we present a quantitative estimate for the jet quenching
parameter in the temperature range accessible at heavy-ion colliders, and compare it to results from
phenomenological models as well as to strong-coupling computations based on the holographic
correspondence.
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Introduction.—As first proposed by Bjorken [1], jet
quenching provides a very important experimental signa-
ture for the creation of the quark-gluon plasma (QGP) in
heavy-ion collisions [2]. When a hard parton propagates
through the deconfined medium, multiple interactions with
the QGP constituents induce energy loss and momentum
broadening. This leads to suppression of back-to-back
correlations among final-state hadrons, and of particle
yields at large transverse momenta.
A first-principle, quantitative theoretical description of

this phenomenon is, however, very challenging, given that
both perturbative and nonperturbative dynamics is involved
[3]. The momentum broadening of a parton can be
described in terms of a phenomenological parameter q̂,
defined as the average increase in the squared transverse
momentum component per unit length [4]. This quantity
can be computed as the second moment of the differential
transverse collision rate Cðp⊥Þ describing the interaction
between the hard parton (in the eikonal approximation) and
the plasma constituents:

q̂ ¼ hp2⊥i
L

¼
Z

d2p⊥
ð2πÞ2 p

2⊥Cðp⊥Þ: (1)

A leading-order (LO) perturbative evaluation of q̂ was
carried out in Ref. [5] and later extended to the next-to-
leading order (NLO) in Ref. [6]. However, as is well
known, perturbative computations in thermal QCD cannot
be pushed to arbitrarily high order, due to the presence of
infrared divergences which reveal the intrinsically non-
perturbative nature of interactions for long-wavelength
modes. In addition, at the temperatures probed at RHIC

(and at LHC) the accuracy of LO or NLO perturbative
computations may be questioned.
The gauge-string duality [7] provides a framework in

which the phenomenon can be studied nonperturbatively, in
the strong-coupling limit and in the large-N approximation.
Following this approach, a holographic computation of q̂
(for a light hard parton) was presented in Ref. [8]; for
related studies, see also Refs. [9]. However, since the
holographic dual of QCD is not known exactly, these types
of computations are usually carried out for models (e.g., the
N ¼ 4 supersymmetric Yang-Mills theory), which are only
expected to reproduce the features of QCD qualitatively or
semiquantitatively.
Lattice simulations are the standard tool for nonperturba-

tive, first-principle computations in QCD, but since they
are based on the regularization of the theory in a Euclidean
spacetime, they are not well suited for real-time phenomena,
and typically require some analytical continuation. How-
ever, a closer inspection of the problem reveals that con-
tributions from the parametrically different (“hard” OðπTÞ,
“soft” OðgTÞ, and “ultrasoft” Oðg2T=πÞ) energy scales of
the QGP can be disentangled from each other. In particular,
following an idea first proposed in Ref. [6], and later
discussed also in Refs. [10–14], it is possible to show that
the contribution to jet quenching from soft modes can be
directly evaluated in lattice simulations of a purely bosonic,
dimensionally reduced effective theory (electrostatic QCD,
or EQCD [15]). The latter, defined by the Lagrangian

L ¼ 1

4
Fa
ijF

a
ij þ TrððDiA0Þ2Þ þm2

ETrðA2
0Þ þ λ3ðTrðA2

0ÞÞ2;
(2)
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is three-dimensional SUð3ÞYang-Mills theory coupled to an
adjoint scalar field A0. The values of its parameters (the
dimensionful, three-dimensional gauge coupling gE and
the coefficients for the quadratic and quartic terms in the
scalar potential) are fixed by a matching procedure, to
reproduce the physics of high-temperature QCD.
Lattice formulation.—The lattice regularization of the

theory described by the Lagrangian density (2) is straight-
forward (see Ref. [16] and references therein). We chose
parameter values corresponding to QCD with nf ¼ 2 light
quark flavors, at two temperatures T ≃ 398 MeV and
2 GeV, respectively, equal to about twice and ten times
the deconfinement temperature.
The contribution to jet quenching from soft QGP modes

can be extracted from the two-point correlation function of
long light-cone Wilson lines (stretching, for example, along
the x3 − t ¼ const direction at fixed x1 and x2, and
separated by a distance r along the x1 direction), which
can be made gauge-invariant by “closing the loop”with two
transverse parallel transporters, and taking the trace over
color indices [10]. In the lattice regularization of EQCD,
each lightlike side of this loop becomes a “staircase” path,
built from products of unitary parallel transporters U3ðxÞ
over one lattice spacing unit a to the x3 direction, and
matrices HðxÞ ¼ exp½−ag2EA0ðxÞ�, which are EQCD ana-
logues of the parallel transporters along paths of length a in
the real-time direction. Note that HðxÞ is Hermitian (rather
than unitary). Suppressing the coordinate dependence, the
lattice operator corresponding to a single light-cone Wilson
line is then: L3 ¼

QðU3HÞ. Denoting the path-ordered
product of gauge links U1ðxÞ along the transverse direction
as L1, the original light-cone Wilson loop can be repre-
sented in lattice EQCD as a “decorated” Wilson loop (see
Fig. 1) defined as

Wðl; rÞ ¼ TrðL3L1L−1
3 L†

1Þ; (3)

where l denotes the length of the loop along the x3
direction. Wðl; rÞ enjoys well-defined renormalization

properties [17]. We compute the hWðl; rÞi expectation
values with a multilevel algorithm [18] and extract the
coordinate-space expression for the differential transverse
collision kernel,

VðrÞ ¼ − lim
l→∞

1

l
lnhWðl; rÞi; (4)

which equals the transverse Fourier transform of −Cðp⊥Þ
(up to an additive term, which is inessential to our
discussion). Note that the presence of “real time” in
Wðl; rÞ implies that this operator is actually very different
from a usual spatial Wilson loop. In particular, perturbation
theory predicts a partial cancellation between the gauge and
scalar propagators [5,6,12,19]. In turn, this implies that
VðrÞ starts from zero and is a decreasing function at very
small r, while at distances larger than the inverse of the
Debye mass mD it includes a linear term of positive slope
7g4ECfCa=ð64πÞ, with Cf ¼ 4=3, Ca ¼ 3 [6,12].
Results.—Using Eq. (4), we extracted the differential

transverse collision kernel V as a function of the separation
r between the lightlike Wilson lines, at the two temper-
atures that we investigated. Our simulation results exhibit
good scaling properties: data obtained from lattices of
different spacing a (recall that, in three-dimensional SUð3Þ
lattice gauge theory, β ¼ 6=ðag2EÞ) fall within a narrow
band. This indicates that discretization effects are under
control, and that our data allow us to obtain a reliable
extrapolation to the continuum limit.
Since the jet quenching parameter is the second moment

of Cðp⊥Þ, the soft contribution to q̂ is encoded in the
curvature of VðrÞ. Following a procedure similar to the
one used in Ref. [11], we fit V=g2E to a functional form
including linear, quadratic, and quadratic-times-logarithmic
terms in rg2E, i.e., c1rg

2
E þ c2ðrg2EÞ2 þ c3ðrg2EÞ2 lnðrg2EÞ, and

estimate the contribution to q̂ from soft modes as
f4c2 þ 2c3½2þ γ þ 4 lnðr0g2E=

ffiffiffi
2

p Þ�gg6E, where γ is the
Euler-Mascheroni constant and r0 denotes Sommer’s scale
[20], with r0g2E ≃ 2.2 [21]. At the two temperatures consid-
ered, we find that the total contribution to q̂ from soft modes
is significantly larger than the perturbativeNLOexpectation,

q̂NLO ¼ g4T2mDCfCa
3π2 þ 10 − 4 ln 2

32π2
; (5)

(where, at this order, mD ¼ mE þOðg2TÞ, with mE ¼
gT

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðCa þ nftfÞ=3
p

and tf ¼ 1=2). The fact that contribu-
tions beyond NLO (which are intrinsically nonperturbative)
are large is not surprising: at those temperatures also the
DebyemassmD receives anumerically largenonperturbative
correction [22], which dominates over the leading perturba-
tive term (mE). In fact, it is interesting to note that, when
plotted in terms of the nonperturbatively evaluated Debye
mass, our lattice results forVðrÞ become compatiblewith the
theoretical NLO curve [6,12], as seen in Fig. 2 (which also
shows that this rescaling in terms of the Debye mass makes

L1 L1

L3 H

r

L3
−1

FIG. 1 (color online). The “decorated” Wilson loop Wðl; rÞ
describing a two-point correlation function of light-cone Wilson
lines involves Hermitian parallel transportersHðxÞ along the real-
time direction.
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thedatasetsat the twodifferent temperaturescompatiblewith
each other: this suggests that, essentially, the temperature
dependenceofV is inheritedfrommD).Physicallyreasonable
values of the coupling g2 ∼ 2.6 [23] for RHIC temperatures
(at which the LO contribution to the jet quenching parameter
is known to be subdominant [6]) then lead us to estimate
q̂≃ 6 GeV2=fm. This value is in the same ballpark as those
obtained from holography [8,9], as well as from certain
phenomenological models [24] (although the latter are
somewhat dependent on the details of the approach that is
used [25], and more recent studies tend to favor smaller
values [26]).
Conclusions.—In this Letter, we presented a nonpertur-

bative investigation of the momentum broadening of a hard
parton (specifically, a light quark) in thequark-gluonplasma.
Although Monte Carlo simulations on a Euclidean lattice
are generally ill-suited for studying phenomena involving
real-time dynamics (because they require some analytical
continuation), in the present work, following an idea origi-
nally proposed in Ref. [6], we extracted the contribution to
the jet quenching parameter from soft QGP modes, with
momenta OðgTÞ, in a high-precision numerical study of a
dimensionally reduced, Euclidean and purely bosonic effec-
tive theory (EQCD). Recent works discussing related ideas
include Refs. [10–14], while a different approach to study
jet quenching on the lattice was suggested in Ref. [27].
Our nonperturbative estimate of the soft contribution to q̂

in the dimensionally reduced effective theory is obtained
from the numerical evaluation of a lattice operator describ-
ing (a gauge-invariant version of) the two-point correlator
of light-cone Wilson lines. Our results give direct access to
VðrÞ, which is related to the Fourier transform of the
collision kernel Cðp⊥Þ. While, by construction, our effec-
tive theory approach misses the contribution to q̂ from hard

thermal modes with momentaOðπTÞ (which, however, can
be reliably estimated perturbatively, and is numerically
subdominant), we remark that it does so in a well-defined
way, consistent with the modern theoretical approach to
thermal QCD [15,23]. Although the separation between
hard, soft and ultrasoft scales may be partially blurred at
temperatures accessible to present-technology experiments,
in this work we presented a first concrete attempt to provide
a quantitative, first-principle estimate for q̂ that is free from
uncontrolled approximations. We found that soft contribu-
tions to q̂ are significantly larger than the perturbative
prediction up to NLO. However, this mismatch can be
accommodated, by expressing the results in terms of the
nonperturbatively evaluated Debye mass. Our final result
for q̂ at RHIC temperatures is about 6 GeV2=fm (with total
uncertainty around 15%–20%). While this estimate should
be taken cum grano salis, given that the very definition of q̂
is affected by intrinsic ambiguities (see Ref. [11] for a
discussion), we stress that all sources of uncertainty related
to the lattice regularization are under control, and system-
atically improvable. In particular, our simulations were
carried out with large and fine lattices, so finite-volume and
finite-cutoff effects are small. Finally, a recent classical
lattice gauge theory study [13] finds conclusions that are
compatible with ours.
To extend this study, the determination of VðrÞ could be

refined using an improved formulation of the lattice action,
for which a multilevel algorithm has been recently pro-
posed [28]. We also plan to repeat the present calculation
at several different temperatures T, in order to study the
dependence of q̂ on T. As the temperature is increased, the
QGP should interpolate between a regime dominated by
nonperturbative physics, and one in which it becomes
weakly coupled. It would also be interesting to study the
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FIG. 2 (color online). Thecoordinate-spacecollisionkernelV, extracted fromexpectationvaluesofWðl; rÞcomputednonperturbatively
in our EQCD simulations. Symbols of different colors correspond to different lattice spacings, while the dashed black line (and the
gray band) indicate the continuum limit (and the associated uncertainty). The lhs panel shows results for T ≃ 398 MeV, the one on the rhs
forT ≃ 2 GeV.BothV andrare shown in theappropriateunits of theDebyescreeningmassmD, as evaluatednonperturbatively inRef. [22].
The NLO perturbative prediction [6,12] is also shown (solid black line).
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dependence of q̂ on the number of color charges N, in
particular in the large-N limit [29], which provides insight
into many properties of real-world QCD (see Refs. [30])
and plays a crucial role in all holographic computations.
Lattice studies in both four [31] and three [32] spacetime
dimensions show that static equilibrium quantities charac-
terizing the QGP have very mild (nontrivial) dependence on
N. It would be interesting to see if this also holds for
quantities involved in real-time dynamics.
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