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Abstract: We study Casimir scaling and renormalization properties of Polyakov loops in

different irreducible representations in SU(N) gauge theories; in particular, we investigate

the approach to the large-N limit, by performing lattice simulations of Yang-Mills theories

with an increasing number of colors, from 2 to 6. We consider the twelve lowest irreducible

representations for each gauge group, and find strong numerical evidence for nearly per-

fect Casimir scaling of the bare Polyakov loops in the deconfined phase. Then we discuss

the temperature dependence of renormalized loops, which is found to be qualitatively and

quantitatively very similar for the various gauge groups. In particular, close to the decon-

finement transition, the renormalized Polyakov loop increases with the temperature, and

its logarithm reveals a characteristic dependence on the inverse of the square of the tem-

perature. At higher temperatures, the renormalized Polyakov loop overshoots one, reaches

a maximum, and then starts decreasing, in agreement with weak-coupling predictions. The

implications of these findings are discussed.
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1 Introduction and motivation

The change of state to a deconfined phase at high temperatures or densities is a very im-

portant phenomenon in quantum chromodynamics (QCD) and in other non-Abelian gauge

theories. While at zero and low temperatures the physical states are color-singlet hadronic

states, in the high-temperature limit the physical running coupling becomes small, due to

asymptotic freedom, and one expects that the physics should be described in terms of a gas

of weakly interacting quarks and gluons [1, 2]: the quark-gluon plasma (QGP) [3]. These

two qualitatively different phases should be separated by a phase transition or a crossover,

which has been searched for in an extensive experimental heavy-ion collision programme

since the 1980’s. The results obtained at SPS, RHIC and LHC during the last decade show,

indeed, convincing evidence for the creation of a new state of matter at temperatures about

160MeV, which behaves as an almost ideal fluid [4–10]. The experimental research on the

QCD phase diagram will be continued and extended at FAIR and NICA.

On the theoretical side, however, the quantitative understanding of the QCD plasma is

still an open problem. One of the reasons for this is that the deconfined plasma retains some

non-perturbative features even in the limit of high temperatures T . In particular, the pres-

ence of severe infrared divergences in weak-coupling expansions for thermal gauge theories

leads to non-analytical properties of the perturbative series for various physical observ-

ables, and to a breakdown of the correspondence between loop expansions and expansions

in powers of the coupling [11, 12]. As a consequence, the long-wavelength modes of the

QGP are strongly coupled at all temperatures, and thus cannot be treated perturbatively

— see ref. [13] for a review. Finally, at the typical temperatures probed in experiments,
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the physical coupling of QCD turns out to be relatively small, but not extremely so, and

perturbative predictions fail close to the deconfinement temperature [14–22].

For these reasons, the theoretical study of the QGP at temperatures close to the

deconfining transition is usually addressed with non-perturbative methods, including, in

particular, numerical simulations on the lattice [23–27]. During the last decade, lattice

computations of the equation of state in QCD with light dynamical quarks have reached

high levels of precision, and showed that the deconfinement at finite temperature and

vanishing quark chemical potential (for physical values of the quark masses) is a crossover,

rather than a genuine phase transition. In fact, in QCD with quarks of finite mass there is

no exact symmetry-breaking pattern to characterize the deconfinement.

By contrast, pure SU(N) Yang-Mills theories (which capture most of the qualitative

features of the physics of deconfinement) provide much a cleaner theoretical setup: in the

Euclidean formulation, it is easy to see that the Lagrangian of SU(N) Yang-Mills theories

at finite temperature is invariant under a global symmetry associated with the center of the

gauge group ZN [28]. The order parameter for this symmetry is the trace of the temporal

Wilson line, or Polyakov loop [29–31]:

L = 〈TrL(~x)〉 =
〈

TrP exp

[

ig0

∫ 1/T

0
dτA0(τ, ~x)

]〉

. (1.1)

In the thermodynamic limit, the ground-state expectation value of L is exactly vanishing

in the low-temperature phase, while it becomes non-zero above the critical deconfinement

temperature Tc, signaling the spontaneous breakdown of center symmetry. Although L,

per se, is not a physical observable, it can be interpreted as the trace of the propagator

of an external, infinitely massive probe color charge located at ~x: a vanishing L in the

ZN -symmetric ground state at low temperatures T < Tc means that the expectation value

of a static color charge is zero, and hence the system is confined. On the contrary, L is

non-zero in the high-temperature phase at T > Tc, corresponding to a finite free energy

for the probe color charge in the deconfined phase. Thus, L has the meaning of an order

parameter for the finite-temperature deconfinement transition in Yang-Mills theory. An-

other possible order parameter for the transition is given by the two-point Polyakov loop

correlation function: across the phase transition, it changes from confining to exponentially

screened. The Polyakov loop correlation function extracted from lattice simulations at finite

temperature is often used as an input for effective potential models for quarkonia [32–35];

however, certain subtleties related to the connection between the real- and the imaginary-

time formalism, and to the spectral decomposition into singlet and octet contributions to

the corresponding free energies have recently been pointed out in the literature [36–38].

Note that the free energy associated with the bare Polyakov loop defined by eq. (1.1)

is a divergent quantity, and hence needs to be renormalized [39].

In general, in SU(N) Yang-Mills theory the Polyakov loop is an order parameter for a

probe charge in a generic irreducible representation of the gauge group with non-zero N -

ality (i.e., a representation transforming non-trivially under the center of the group). The

free energy associated with charges in different irreducible representations is expected to be

proportional to the eigenvalue of the corresponding quadratic Casimir operator 〈C2〉 [40].
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This property is called “Casimir scaling”: it is not specific to Polyakov loops, and indeed it

has been studied for various other observables [41–51] (see also refs. [52–54] for a discussion).

For the Polyakov loop, perturbative calculations predict Casimir scaling to hold at the

lowest orders [55, 56] (deviations from Casimir scaling are predicted to occur only at O(g6)).

In this work, we study the behavior of bare and renormalized Polyakov loops in non-

Abelian gauge theories with a different number of colors, from 2 to 6, discussing various

renormalization methods, and comparing our results to those of recent, similar studies for

SU(3) [57–59] and SU(2) [60–62] Yang-Mills theories. In particular, we investigate the

features that emerge when N is large. The motivations for looking at the limit of a large

number of colors are manifold. First of all, the large-N limit of QCD at fixed ’t Hooft

coupling λ = g2N and fixed number of flavors Nf is known to lead to dramatic mathemat-

ical simplifications [63–68]. For the phase diagram of QCD-like theories, the large-N limit

has also interesting implications for new phases at high density [69, 70]. Furthermore, it

plays a technically crucial rôle in holographic computations, inspired by the conjectured

equivalence of maximally supersymmetric Yang-Mills theory with N = 4 supercharges in

four dimensions and supersymmetric type IIB string theory in a 10-dimensional AdS5×S5

spacetime [71–73]. This conjecture relates the large-N limit of the strongly coupled gauge

theory to the classical gravity limit of string theory in a five-dimensional anti-de Sitter

spacetime, which can be studied analytically. While at zero temperature the N = 4 the-

ory is qualitatively very different from QCD, there are arguments suggesting that at finite

temperature the two theories should share at least some qualitative (or semi-quantitative)

physical features [74]. Calculations based on the gauge/string duality have also been ex-

tended to various other models, which mimic the features of QCD either by breaking

explicitly some of the symmetries of the N = 4 theory using some additional ingredients

(“top-down” approach), or by constructing some ad hoc five-dimensional gravity model,

which should reproduce the properties of QCD (“bottom-up” approach). These models

are often used to study analytically certain features of the strongly coupled quark-gluon

plasma [75–79].

One important technical aspect in all holographic computations is that they are based

on the approximation of an infinite number of colors in the gauge theory: this limit allows

one to neglect loop effects in the dual string theory, i.e. to reduce it to its classical limit.

Recent lattice studies have showed that the large-N limit is indeed a good approximation

for the physical SU(3) case, both as it concerns spectral and thermal observables [80–96];

remarkably, this also holds for theories in 2 + 1 spacetime dimensions [97–102]. However,

the validity of the infinite-N approximation is, in general, a non-trivial issue, which can

depend on the observable considered, and should be studied on a case-by-case basis.

In the context of gauge/string duality, the behavior of the renormalized Polyakov

loop as a function of the temperature has been recently discussed in refs. [103–105]. In

particular, in ref. [103] it was argued that, in strongly coupled theories with a holographic

dual, the renormalized Polyakov loop should be monotonically increasing with T . This

is in contrast with perturbative computations [55, 56], which predict that the leading-

order correction to the free limit is positive, and hence that the renormalized loop Lren

should tend to unity from above in the high-temperature limit. However, it should be
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noted that these two theoretical predictions are expected to hold in the strong- and in

the weak-coupling regime, respectively. A holographic prediction for the renormalized

Polyakov loop was worked out analytically in ref. [104], using a simple holographic model

with one deformation parameter [106]. This work found that, at the leading order in a

high-temperature expansion, the logarithm of the Polyakov loop in the strong coupling

regime should be given by the sum of a constant plus a term proportional to (Tc/T )
2, an

effect which has also been observed and discussed in refs. [107–109].

The properties of renormalized Polyakov loops in theories based on different gauge

groups are also of interest for effective models of the quark-gluon plasma in the region near

Tc, see refs. [58, 110–118] and references therein. In particular, the behavior in the large-N

limit may reveal analogies with the third-order transition that one finds in 1 + 1 dimen-

sions [119, 120]. Moreover, at large N one expects that different irreducible representations

become equivalent, up to O(1/N) corrections: for example, the two-index symmetric and

antisymmetric representations are expected to be equivalent for N → ∞. Furthermore, us-

ing the group theoretical tools of composite representations [121–123] (see the appendix A

for details), it is possible to show that in the large-N limit the eigenvalue of the quadratic

Casimir remains O(N).

Finally, the finite-temperature properties of strongly coupled gauge theories based on

different gauge groups and with dynamical fermions in various representations are also

interesting for extended technicolor models [124, 125].

With this motivation, in this work we address a first-principle lattice study of Polyakov

loops at finite temperature in SU(N) gauge theories with a different number of colors N ,

and for several irreducible representations. In particular, we consider the twelve lowest non-

trivial irreducible representations of each gauge group, and investigate the Casimir scaling

at temperatures close to the deconfinement transition. Then we define non-perturbatively

renormalized Polyakov loops, discussing various renormalization methods that have re-

cently been proposed in the literature. While all our computations are performed in the

setup of the pure Yang-Mills theory, it is worth remarking that, in the ’t Hooft limit, the

dynamics of gluons dominates, with the contributions from virtual quark loops suppressed

by powers of 1/N : the large-N limit of QCD is a unitary quenched theory, and by virtue

of this, in this limit it is legitimate to consider only the glue sector of the theory on the

lattice. This allows one to avoid the complications arising from lattice fermions, and to

achieve a smoother approach to the planar limit (the leading-order finite-N corrections in

the glue sector are proportional to 1/N2).

In section 2 we define the setup of our lattice computations and the method to extract

the renormalized Polyakov loop free energies. Our results are presented in section 3, while

in section 4 we discuss their implications, and summarize our findings. Some useful group-

theoretical formulæ are listed in the appendix A.

Preliminary results of this study were presented in ref. [126].

2 Lattice simulation setup

Our numerical simulations are based on the regularization of SU(N) Yang-Mills theories

with N = 2, 3, 4, 5 and 6 colors on a four-dimensional Euclidean hypercubic, isotropic
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lattice Λ of spacing a, with periodic boundary conditions in all directions. We use natural

units (~ = c = kB = 1), so that the temperature equals the inverse of the size of the system

in the compactified Euclidean time direction: T = 1/(aNt), and denote the spatial volume

of the lattice as V = (aNs)
3. For most of our simulations at finite temperature, we used

lattices characterized by an aspect ratio Ns/Nt ≥ 4, which provides a good approximation

of the thermodynamic limit [127, 128]. The fundamental degrees of freedom in the lattice

regularization of the theory are a discrete (and finite, if one considers a finite hypervolume)

set of Uµ(x) matrices in the N ×N representation of the group, which are defined on (and

represent parallel transporters along) the oriented bonds between nearest-neighbor sites on

the lattice. The functional integral defining the continuum partition function of the system

is traded for a well-defined, finite, multi-dimensional ordinary integral:

Z =

∫

∏

x∈Λ

4
∏

α=1

dUα(x)e
−SE

L , (2.1)

where dUα(x) is the Haar measure for each Uα(x) ∈ SU(N) link matrix, and SE
L
denotes

a gauge-invariant lattice action. The simplest choice for SE
L
is given by the Wilson gauge

action [129]:

SW = β
∑

x∈Λ

∑

1≤µ<ν≤4

[

1− 1

N
ReTrU1,1

µ,ν(x)

]

, (2.2)

with β = 2N/g20 and:

U1,1
µ,ν(x) = Uµ(x)Uν(x+ aµ̂)U †

µ(x+ aν̂)U †
ν (x). (2.3)

However, in our study we used the tree-level improved gauge action [130–132]:

Simp = β
∑

x∈Λ

∑

1≤µ<ν≤4

{

3

2
− 1

N
ReTr

[

5

3
U1,1
µ,ν(x)−

1

12
U1,2
µ,ν(x)−

1

12
U1,2
ν,µ(x)

]}

, (2.4)

where:

U1,2
µ,ν(x) = Uµ(x)Uν(x+ aµ̂)Uν(x+ aµ̂+ aν̂)U †

µ(x+ 2aν̂)U †
ν (x+ aν̂)U †

ν (x). (2.5)

Assuming that the Uµ(x) group variables are related to the continuum gauge fields Aa
µ(x)ta

via: Uµ(x) = exp[iag0A
a
µ(x+aµ̂/2)ta], it is straightforward to show that both SW and Simp

tend to the Yang-Mills action in the continuum limit a → 0, but the tree-level improved

action defined by eq. (2.4) is characterized by smaller discretization effects than those of

the Wilson action. Expectation values of gauge-invariant physical observables O on the

lattice are defined by:

〈O〉 = 1

Z

∫

∏

x∈Λ

4
∏

µ=1

dUµ(x) O e−SE
L (2.6)

and can be estimated numerically by Monte Carlo sampling over a finite set of {Uα(x)}
configurations; in the following, we denote the number of configurations used in our com-

putations as nconf. The algorithm we used to generate the configurations is based on a
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N Ns Nt βmin βmax nβ nconf

2 20 5 1.5 16.5 46 2.5× 104

3 20 5 4 7.8 20 1.8× 104

4 20 5 7 7.45 4 2.5× 104

20 5 7.6 15.03 40 3× 104

24 5 7 9.85 20 2× 104

16 16 7.25 9.05 11 3× 103

5 20 5 12 16.6 30 2× 104

16 16 12.1 13.7 9 8× 103

6 20 5 17 25.6 40 2× 104

Table 1. Parameters of the lattice simulations used in this work. N denotes the number of colors,

Ns and Nt are the number of sites along the space-like and time-like sizes of the lattice, nβ is

the number of β-values that were simulated, in the βmin ≤ β ≤ βmax interval. For each set of

parameters, the number of thermalized configurations, that we used in our numerical estimates, is

shown in the last column.

3 + 1 combination of local overrelaxation [133, 134] and heat-bath [135, 136] updates on

N(N − 1)/2 SU(2) subgroups of SU(N) [137]. The parameters of our lattice simulations

are shown in table 1.

Converting the simulation results to physical units requires a definition of the lattice

scale. In order to set the scale for our simulations with the improved action, we calculated

the T = 0 static potential in lattice units from expectation values of Wilson loops 〈W (r, L)〉:

V (r) = a−1 lim
L→∞

ln
〈W (r, L− a)〉
〈W (r, L)〉 . (2.7)

In particular, we extracted the potential from Wilson loops defined from smeared links,

using five levels of smearing for the spacelike links (leaving the timelike links unsmeared).

The values of V (r) thus obtained are then fitted to the Cornell potential:

V (r) = σr + V0 +
γ

r
, (2.8)

enabling one to extract σ (as well as V0 and γ) in lattice units; statistical errors are

estimated with a jackknife analysis. All fits give χ2
red

values close to 1, and the γ parameter

is always very close to the bosonic string prediction: γ = −π/12 [138–140] (see figure 1

in ref. [126]).

Note that this non-perturbative definition of the scale is not unique: in general, it

would be equally legitimate to define the value of a (for a given β), using the lattice results

for a different dimensionful physical observable — for example, the critical temperature

Tc [141]. On a finite-spacing lattice, different physical observables are generally affected

by different discretization artifacts, and hence lead to slightly different definitions of the
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scale. This ambiguity is a systematic effect in the scale determination, but the associated

relative uncertainty is numerically small, and vanishes in the continuum limit a→ 0.

On the lattice, the trace of the bare Polyakov loop in the irreducible representation r

can be defined as:

Tr

Nt
∏

nt=1

U
(r)
t (~x, ant) , (2.9)

where g(r) denotes the value of the group element g in the irreducible representation r.

Note that the matrix elements of a generic g(r) can be easily obtained from those of g

in the defining representation, by means of basic relations of representation theory. In

particular, the characters of group elements in different irreducible representations can be

easily expressed using Young calculus and the Weyl formula [142, 143] (see the appendix A

for details).

Note, however, that, due to the finiteness of the number of degrees of freedom on any

finite lattice, the expectation value of the operator defined in eq. (2.9) would always be

vanishing, both in the confining and in the deconfined phase. In the latter, in particular,

the barriers separating different center sectors in the phase space are always finite for

a finite lattice, so that any (sufficiently long, ergodic) simulation would probe all center

sectors, leading to a vanishing expectation value for the average Polyakov loop. Since all

numerical simulations are necessarily performed on finite lattices, it is more convenient

to compute the expectation value of the modulus of the average Polyakov loop on each

gauge configuration:
∣

∣

∣

∣

∣

1

N3
s

∑

~x

Tr

Nt
∏

nt=1

U
(r)
t (~x, ant)

∣

∣

∣

∣

∣

. (2.10)

Although this quantity is not an exact order parameter, it is an efficient probe of the

deconfinement transition (for any irreducible representation r of non-zero N -ality), since

its expectation value tends to zero in the confining phase, while it remains finite in the

deconfined phase. Henceforth, we use eq. (2.10) to define the expectation values of bare

Polyakov loops in our lattice simulations.

3 Results

3.1 Setting the scale

To determine the scale for our simulations with the tree-level improved lattice action, we

fit our results for a2σ (as extracted from Cornell fits of the T = 0 potential using smeared

Wilson loops) at the largest couplings to the functional form:

a2σ = exp{−[A0 +A1(β − β0) +A2(β − β0)
2 +A3(β − β0)

3]}, (3.1)

where β = 2N/g20, and β0 is an arbitrary reference value in the β-range of our simulations.

As an example, fitting the SU(3) data taken from ref. [132] to eq. (3.1) (choosing

β0 = 4.3) yields:

a2σ=exp
{

−2.660(12)−3.145(66) · (β−4.3)+0.97(11) · (β−4.3)2−0.33(26) · (β−4.3)3
}

,

(3.2)
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with χ2
red

= 0.34. The corresponding data, together with the fitted curve, are shown in the

top panel of figure 1.

Similarly, our data for the SU(4) gauge group yield:

a2σ=

{

exp
{

−3.894(38)−1.21(14)(β−9)−0.41(16)(β−9)2−0.320(55)(β−9)3
}

for β < 8

exp{−1.165(29)β + 6.54(23)} for β ≥ 8
,

(3.3)

with χ2
red

= 1.22, and are shown in the central panel of figure 1, while for SU(5) we obtain:

a2σ =

{

exp
{

−3.021(15)− 0.682(17)(β − 13) + 0.214(30)(β − 13)2
}

for β < 12.7

exp{−0.636(35)β + 5.28(45)} for β ≥ 12.7
, (3.4)

with χ2
red

= 3.41, see the bottom panel in figure 1.

3.2 Casimir scaling

The first issue that we investigated is Casimir scaling of bare Polyakov loops, i.e., whether

the free energy associated to bare Polyakov loops in a given irreducible representation r

is proportional to the eigenvalue of the quadratic Casimir 〈C2〉 of that representation. To
study this problem, we rescaled the loop free energies by the ratio of the Casimir in the

given representation over the one in the fundamental representation f . This corresponds

to raising the values of the loops to the power 1/d, where:

d = 〈C2〉r/〈C2〉f (3.5)

(the values of d are reported in the appendix A).

Our results for the SU(4) gauge theory are displayed in figure 2, which shows the values

of L1/d for the twelve different representations, as obtained from simulations with the tree-

level improved action on a lattice with Nt = 5 and Ns = 20 sites along the Euclidean time

and spatial directions, respectively. If Casimir scaling holds, then this rescaling should make

the values corresponding to higher representations collapse onto those of the fundamental

representation (for which d = 1). Note that, in this plot, the data are displayed as a

function of β = 2N/g20: since the bare loops do not depend only on the temperature T , but

also on the bare coupling g0, it is natural to display these values (from simulations at fixed

Nt) as a function of β. This also allows one to avoid introducing any potential ambiguity

related to the definition of the temperature scale. In any case, the mapping between β

and T at fixed Nt is just a scale redefinition, which, for the parameters of interest, can

be directly obtained combining eq. (3.3) with the relation: T = 1/(aNt). In order to give

an idea of the temperatures involved, we also display tick marks corresponding to a few

reference temperatures along the upper horizontal axis.

Our results show an approximately perfect Casimir scaling in the deconfined phase, for

all the representations that we considered. Although the bare values of loops in different

representations vary by orders of magnitude, rescaling their free energies according to the

corresponding quadratic Casimir eigenvalues makes them fall onto the same, universal

– 8 –



J
H
E
P
0
5
(
2
0
1
2
)
0
6
9

3.8 3.9 4 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 5 5.1 5.2
β

0.001

0.01

0.1

1

σ 
a2

SU(3)

7.25 7.5 7.75 8 8.25 8.5 8.75 9 9.25
β

0.01

0.1

1

σ 
a2

SU(4)

11.8 12 12.2 12.4 12.6 12.8 13 13.2 13.4 13.6 13.8 14
β

0.01

0.03

0.05

0.1

0.3

σ 
a2

SU(5)

Figure 1. The top panel shows a fit of the results for the string tension in lattice units in the SU(3)

gauge theory, taken from ref. [132], to the functional form in eq. (3.2). The central and bottom

panels display the fits of our results for the string tension in lattice units to eq. (3.3) in SU(4) and

SU(5) Yang-Mills theories, respectively.

curve. Our data show that the only significant deviations from this behavior (apart from

the obvious ones in the confined phase, where Casimir scaling is not expected to hold)

are visible for strongly suppressed high representations, which are most sensitive to finite-

volume effects. For example, the rescaled bare loops in the representations denoted as 20′′,
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35, 50 and 56 show significant deviations from the curve of the other data for temperatures

T . 1.75 Tc, while they collapse on that curve at higher temperatures (for L1/d & 0.2). This

is simply due to the fact that, for these representations, for T . 1.75 Tc the expectation

value of the corresponding loops in the thermodynamic limit is smaller than the (non-

vanishing) average value of |L| computed on a lattice of finite volume. This is the same

effect that, on any finite lattice, is responsible for the non-vanishing values of |L| in the

confining phase.

Figure 3 gives evidence of this: the left panel shows our results for bare Polyakov loops

in the fundamental representation of SU(4), obtained from lattices of two different spatial

volumes, V = (20a)3 and V = (24a)3. The results of the two sets of simulations are compat-

ible with each other in the deconfined phase (signaling that finite-volume corrections to the

critical value of β are small for both ensembles), whereas the data obtained from the larger

lattice are strongly suppressed in the confining phase, in agreement with the expectation

that the average Polyakov loop is exactly zero in the thermodynamic limit. The right panel

shows the same comparison, for loops in the representation of size 56: for high-dimensional

representations like this, the thermodynamic limit value of the Polyakov loop is very small,

even in large regions of the deconfined phase, and thus it is overwhelmed by finite-size

artifacts on the lattices that we considered. As figure 2 shows, for such representations

it is only at very large values of β (i.e., at very high temperatures) that the contribution

surviving the thermodynamic limit becomes dominant over finite-volume artifacts.

In principle, one could perform an extrapolation to the thermodynamic limit, by re-

peating the simulations on a series of lattices of increasing volume. However, it should be

pointed out that this would require a non-trivial computational effort for higher represen-

tations, especially at temperatures close to the deconfinement region. While this task is

beyond the scope of the present work, we emphasize that the results displayed in the right

panel of figure 3 give strong support to the interpretation of the deviation from Casimir

scaling for high representations close to the deconfinement region in our data as a phe-

nomenon which is (at least partially) due finite-volume artifacts. In particular, this plot

(in which the scale on the vertical axis is logarithmic) shows that, for this high represen-

tation, an increase of the lattice volume by a factor approximately equal to 1.73 leads to a

nearly uniform shift of all data towards smaller values, and that this happens both in the

confined and in the deconfined phase. The comparison with the left panel, which shows

that in the same range of couplings (i.e., of temperatures) and for the same values of V ,

our numerical results for the fundamental representation are sensitive to this shift only in

the confined phase, is strongly suggestive that, at temperatures close to Tc, the numeri-

cal data for high representations are dominated by finite-volume effects, and, hence, that

the deviations from Casimir scaling observed in figure 2 do not necessarily survive in the

thermodynamic limit.

Our results for bare Polyakov loops in different representations (rescaled by dividing

the respective free energies by the factor d, proportional to the quadratic Casimir eigenvalue

of the corresponding representation) for the SU(2), SU(3), SU(5) and SU(6) theories are

displayed in figure 4: they reveal the same behavior observed for the SU(4) gauge group.

Furthermore, comparing the plots of the rescaled bare loops for different groups, one also
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Figure 2. Temperature dependence of bare SU(4) Polyakov loops in different representations,

after dividing their free energies by (a quantity proportional to) the eigenvalue of the corresponding

quadratic Casimir 〈C2〉r. This plot displays the results we obtained from simulations with the

tree-level improved action, on lattices with Nt = 5 and Ns = 20 sites along the compactified

time and spatial directions, respectively. The deviations from Casimir scaling observed for high

representations close to the deconfinement transition are, likely, due to finite-volume effects (see

the text for a detailed discussion).
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Figure 3. Left-hand side panel: Comparison of bare SU(4) Polyakov loops in the fundamental

representation, obtained from lattices of different volumes: in the confined phase, the results tend to

zero in the thermodynamic limit. Right-hand side panel: Loops in high-dimensional representations

(such as the 56, displayed in this plot), whose expectation values are strongly suppressed, are

particularly sensitive to finite-volume artifacts.
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Figure 4. The top left panel shows results analogous to those in figure 2, but for the SU(2) Yang-

Mills theory. The inset shows the convergence to a universal curve, in a parameter range where

finite-volume effects cease to dominate the results for higher representations. Similarly, the top

right panel shows the corresponding results for the SU(3) gauge group, whereas the bottom left and

bottom right plots display the results for the SU(5) and SU(6) theories, respectively.

observes that, when N grows, the numerical study of higher representations simplifies, in

the sense that they tend to be less sensitive to finite-volume effects. This is related to

the fact that, in general, for N → ∞ the quadratic Casimir grows only linearly with N ,

and with the number of fundamental and anti-fundamental indices out of which a generic

representation is built (see the appendix A for a discussion). For example, while the d

factor for the highest SU(2) representation considered here (i.e., for the twelfth lowest,

non-trivial) is equal to 56, its value for the twelfth SU(6) representation is less than 6.

As a consequence, from this point of view, the study of higher representations at large N

actually becomes simpler than for smaller gauge groups.

Note that, deep in the weak-coupling region, one could compare the simulation results

with the predictions from lattice perturbation theory. In particular, for the Wilson action

the latter have been known for many years [144]. However, since our simulations are based

on the tree-level improved action, rather than the Wilson action, we did not perform such

a comparison.
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3.3 Renormalized Polyakov loops

Finally, we present our results for the renormalized Polyakov loops, restricting our attention

to loops in the fundamental representation. Our renormalization procedure is based on the

determination of the constant term V0 in the T = 0 interquark potential extracted from

the lattice, at each value of the bare coupling. More precisely, we define the renormalized

Polyakov loop as:

〈Lren〉 = ZNt〈L〉, with: Z = eaV0/2, (3.6)

where aV0 is obtained from our fits of the interquark potential. Note that, in the expression

above, the renormalized loop Lren is expected to depend only on the physical temperature

T , while the bare one L depends both on g20 and on Nt. On the other hand, Z depends

only on g20.

Note that, since eq. (3.6) defines 〈Lren〉 in the fundamental representation through the

charge renormalization factor Z, it follows that the corresponding factors for any higher

representation can be defined as Zd, with d defined in eq. (3.5).1 As a consequence, with

this renormalization procedure, it follows that renormalized Polyakov loops in higher rep-

resentations obey Casimir scaling, if the corresponding bare ones do. This is no longer

necessarily true, if a different renormalization prescription is used (see below for a discus-

sion). However, previous studies of the SU(3) gauge theory revealed that renormalized

loops still obey Casimir scaling to very high accuracy, even when different renormalization

methods (involving renormalization factors which are, a priori, independent for each repre-

sentation) are used — see, e.g., ref. [59]. Since these alternative renormalization methods

are, typically, quite noisy and not ideally suited for computationally demanding simulations

of SU(N > 3) gauge theories, in the present work we restricted our analysis to the renor-

malization prescription defined by eq. (3.6), focusing our attention on the fundamental

representation.

For SU(4), in the temperature region that we are most interested in (i.e., in the de-

confined phase, close to Tc), our fits show that an accurate parameterization of Z(g20) is of

the form:

Z(g20) = exp[−0.166(21)g20 + 0.259(28)g40], (3.7)

for g20 ≤ 0.8; the quoted errors are conservative. Using eq. (3.7) to renormalize the bare

loops obtained from our simulations with Nt = 5, Ns = 20, we obtain the renormalized

1One could also imagine to define the renormalization factor for a higher representation r, by extracting

the constant term of the potential between static sources in that representation. However, this procedure

would be very tricky, for several reasons. In particular, sources in representations of vanishing N -ality at

T = 0 get completely screened at large distances, while for representations of non-zero N -ality it is well-

known that the confining behavior at asymptotically large distances is characterized by the string tension

of the smallest representation with the same N -ality (although, at intermediate distances, the slope of the

confining potential can be different). Moreover, extracting the confining potential from lattice calculations

of Wilson loops in higher representations is computationally very demanding, due to the strong suppression

of the signal-to-noise ratio, which is exponentially damped with the loop sizes and with the string tension.

These features make a proper definition of aV0 for high representations subtle, and its extraction from

lattice simulations particularly challenging.
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Polyakov loop values displayed in the top panel of figure 5, in which the displayed error-

bars also include an estimate of the systematic uncertainties related to scale setting and

renormalization prescription choice (which are discussed below). The inset shows a com-

parison of our data over a broader range (with extrapolation in the scale setting and in the

parameterization of the renormalization constant) with the perturbative prediction for this

gauge group, taken from refs. [55, 56]. In particular, the upper solid curve is obtained us-

ing one-loop estimates for the coupling and Debye mass, whereas the lower dashed curve is

obtained from two-loop estimates of these quantities [145, 146]. The figure shows that the

renormalized loop takes a value close to 1/2 for T → T+
c , and increases with the tempera-

ture, overshooting 1 at T ≃ 3.4Tc. Extrapolating our parameterizations for the scale and

for Z to a range of small coupling values (in which we have not performed non-perturbative

computations of the T = 0 interquark potential), we find that the renormalized fundamen-

tal loop in the SU(4) theory reaches a maximum (about 1.07) at temperatures around 30Tc,

then starts decreasing and approaching the next-to-next-to-leading order perturbative pre-

diction, which, for the SU(N) Yang-Mills theory, reads [55, 56]:

Lren = 1 +
g2mE〈C2〉f

8πT
+
g4N〈C2〉f
(4π)2

(

ln
mE

T
+

1

4

)

+O(g5), (3.8)

where g denotes the physical coupling, and mE is the Debye mass. The behavior we

observe in our SU(4) data is consistent with the results obtained for SU(3) in previous

studies [57–59].

Similarly, our results for the SU(5) gauge group are based on the following parameter-

ization of Z(g20):

Z(g20) = exp[0.4115(26)g20], (3.9)

for g20 ≤ 0.8, and are displayed in the bottom panel of figure 5. Similarly to the case of four

colors, also in the SU(5) theory the renormalized loop has a value close to 1/2 for T → T+
c ,

and increases up to values larger than 1.

Finally, in figure 6, we show (minus twice) the logarithm of the renormalized fundamen-

tal loops for the SU(4) and SU(5) gauge groups, as a function of the inverse of the square of

the temperature. As it was already observed in the case of the SU(3) theory [107, 108], at

temperatures between Tc and a few times Tc, the logarithm of the renormalized Polyakov

loop appears to be of the form:

− 2 lnLren = m

(

Tc
T

)2

+ q. (3.10)

In figure 6, the straight lines are fits (in the temperature ranges shown in the plot legends)

to eq. (3.10), which yieldm = 1.1166(55), q = −0.0959(11), with χ2
red

= 0.004 for SU(4) and

m = 1.4283(62), q = −0.3056(15), with χ2
red

= 0.003 for SU(5). The small χ2
red

values are

due to the fact that the errorbars affecting our numerical results are dominated by the sys-

tematic uncertainties, for which we could only provide a crude, but conservative, estimate.

Note, however, that the statement, that the logarithm of the renormalized Polyakov

loop is of the form appearing on the right-hand side of eq. (3.10), is a scheme-dependent one.
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Figure 5. Top panel: Renormalized SU(4) Polyakov loop in the fundamental representation, as

a function of the temperature (in units of Tc), in comparison with one- and two-loop perturba-

tive predictions. Bottom panel: Renormalized fundamental loop, as a function of T/Tc, in the

SU(5) theory.

For example, redefining the renormalized Polyakov loop free energy with the addition

of a constant, would introduce an additive contribution O(T−1) to the logarithm of the

renormalized loop. We find that the statement holds for the renormalization scheme that

we discussed here (see also ref. [57]).
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In view of this observation, one may wonder, whether there are arguments supporting

our scheme choice, rather than others. As discussed above, our renormalization scheme for

the Polyakov loop is based on the subtraction of the constant term appearing in the T = 0

potential between two static sources. This reduces the form of the renormalized confining

potential to:

V (r) = σr +
γ

r
+O(r−2). (3.11)

The functional form appearing on the right-hand side of eq. (3.11) can be derived (at the

leading order in an expansion around the large-distance limit) from an effective bosonic

string model for confinement [138–140]. Various recent works (see, e.g., refs. [147–149] and

references therein) show that Lorentz-Poincaré symmetries constrain the first few terms

in the expansion of the effective string action to equal those that are obtained expanding

the Nambu-Goto action [150, 151], while corrections only appear at high orders in 1/r.

The fact that the Nambu-Goto string provides a good effective model for the confining

potential is also confirmed by extensive numerical evidence from lattice simulations, both

for SU(N) Yang-Mills theories [152] and for theories based on smaller gauge groups [153–

158]. Following ref. [159], it is then natural to define a renormalization scheme yielding a

T = 0 interquark potential with a vanishing constant term, eq. (3.11), and to apply it to

the renormalization of the Polyakov loop.

In ref. [104], a holographic prediction for the renormalized Polyakov loop was com-

puted, using a model with one deformation parameter [106]. The result reads:

Lren(T ) = b1 exp

{

−b2
[

√
π
Tc
T
Erfi

(

Tc
T

)

− exp

(

Tc
T

)2
]}

, (3.12)

where b1 and b2 are two coefficients that can be fitted, and Erfi denotes the imaginary error

function. At the leading order in a high-temperature expansion, eq. (3.12) predicts that

the logarithm of the Polyakov loop would be given by the sum of a constant plus a (Tc/T )
2

term, as observed in the numerical data.

More recently, a holographic computation of the Polyakov loop was also performed in

ref. [105], finding good agreement with the SU(3) lattice data from ref. [59], and a numerical

value of Lren(T ) very close to 1/2 for T → T+
c .

In the literature, it was suggested that the dependence of lnLren on T−2 could be due

to a non-perturbative contribution from a gluon condensate [107–109]. Similar arguments

have been invoked to explain the behavior of the interaction measure ∆ at temperatures

of the order of a few times Tc [106, 107, 115, 160–162]: in all SU(N) gauge theories, both

in D = 3 + 1 [80–96] and in D = 2 + 1 [97–102] spacetime dimensions, ∆ appears to be

proportional to T 2.

3.4 Systematic uncertainties

Apart from the precision limits related to the finiteness of our statistical samples, the main

systematic uncertainties affecting our study include: ambiguities in the scale determination,

renormalization prescription dependence, effects due to the volume finiteness, and finite-

cutoff effects. Let us discuss each of them in turn.

– 16 –



J
H
E
P
0
5
(
2
0
1
2
)
0
6
9

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

(Tc / T )
2

-0.25

0

0.25

0.5

0.75

1

1.25

- 
2 

ln
 L

re
n

simulation results

linear fit in the 0.1 < (Tc / T )
2
 < 0.6 range

T
 -2

-dependence in the renormalized SU(4) Polyakov loop

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

(Tc / T )
2

-0.5

-0.25

0

0.25

0.5

0.75

1

1.25

- 
2 

ln
 L

re
n

simulation results

linear fit in the 0.1 < (Tc / T )
2
 < 0.6 range

T
 -2

-dependence in the renormalized SU(5) Polyakov loop

Figure 6. Similarly to what was observed for the SU(3) theory [107, 108], also the logarithm of

the SU(4) (left-hand side panel) and SU(5) (right-hand side panel) renormalized Polyakov loops

exhibits a characteristic T−2-dependence in the deconfined phase, up to temperatures of a few

times Tc. Note that the errorbars include conservative estimates of the systematic uncertainties

(see subsection 3.4).

In the temperature range of interest in this study, a reliable definition of the tempera-

ture scale is necessarily non-perturbative, and — as discussed above — requires the choice

of a dimensionful physical observable of reference. As different observables are generally

affected by different lattice artifacts, this leads to slight ambiguities in the definition of

the scale; however, this systematic effect becomes negligible at small lattice spacings. A

potentially more severe ambiguity is related to the functional form that one can choose

to parameterize the data to be fitted. Rather than interpolating our simulation results

with arbitrary, arbitrarily complicated functions, in the present study we tried to use phys-

ically motivated functional forms, with a minimal number of parameters, and estimated

the systematic uncertainty related to scale setting by comparing the results with different

parameterizations, at various values of the lattice gauge coupling.

A potentially large systematic ambiguity in our computation is related to the choice of

the Polyakov loop renormalization method. In the present work, we followed the approach

already used in a similar study for the SU(2) gauge theory [61]. Other related studies

discuss different renormalization methods, which lead to roughly compatible results. In

particular, the authors of ref. [59] discussed a comparison of a renormalization method

based on the QQ̄ potential (similar to our prescription) with an iterative renormalization

(based on simulations on lattices of different spacing and at the same temperatures): these

two methods appear to be compatible with each other, although the latter has the drawback

of leading to an accumulation of statistical errors, particularly at temperatures close to

Tc. A different renormalization method was suggested in ref. [58]: there, the idea is to

extract the free energy of the renormalized Polyakov loop at a given temperature T , by

identifying the Nt-independent contributions to the free energy F of bare loops extracted

from simulations on lattices of different spacing:

F = NtF
div + F ren + F lat/Nt + . . . , (3.13)
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where F div and F lat respectively denote the coefficient of the contribution to the bare

free energy that diverges in the continuum limit, and the coefficient of the leading term

due to lattice artifacts. A problem with this method, however, is that, in order to keep

the temperature T = 1/(aNt) fixed, the lattice spacing a is obviously different for each

simulation at a different Nt. Since a is tuned by varying the bare coupling g0, this implies

that F div, F ren and F lat, which generically depend on g0, are not held fixed when T is fixed.

Yet another renormalization method was proposed in ref. [62], following the fixed-scale

approach [163]: the idea is to fix Z at only one value of the bare coupling g0, and then to

vary the temperature in the lattice simulations by varyingNt at fixed spacing a (i.e., at fixed

bare coupling). A potential drawback of this method, however, is that it does not allow one

to vary the temperature continuously. Aspects related to the renormalization of Wilson

lines have also been discussed in ref. [159]. To get a rough estimate of the systematic

uncertainty associated with the choice of a renormalization method, we compared the

difference between various methods, at different temperatures, both in our data and in the

results available in the literature.

Finally, finite-volume and finite-cutoff effects appear to be under control in our study.

In particular, the results of our simulations show that, for N ≥ 4, deviations from the ther-

modynamic limit in the deconfined phase are clearly visible only for high representations,

whereas they appear to be negligible for the fundamental representation (see figure 3). In

fact, the lattices used in the present study are characterized by an aspect ratio Ns/Nt ≥ 4,

which is known to provide a good approximation of the thermodynamic limit in the tem-

perature range of interest [127, 128]. As for finite-cutoff effects, unfortunately we could

not repeat all of our calculations on finer lattices, hence we are unable to perform a con-

tinuum extrapolation of our results. The systematic error due to cutoff effects on lattices

with Nt = 5, however, is expected to be rather small for simulations with the improved

action that we used: previous studies for the SU(3) gauge group [59] showed no significant

discrepancies between Nt = 4 and Nt = 8.

Adding up the various sources of systematic uncertainties in quadrature, the total

relative errors on our renormalized Polyakov loops are in the range between 1% and 5%

for SU(4), and between 1.5% and 8% for SU(5).

4 Discussion and conclusions

Our main findings can be summarized as follows.

1. For all gauge groups, and for all the representations considered in this work, the

bare Polyakov loops show excellent Casimir scaling, for all values of the coupling

(or, equivalently, of the temperature), down to the deconfining transition. The only

deviations, that our data reveal, can be explained in terms of finite-volume artifacts:

they especially affect the high representations, particularly close to Tc (while they

become negligible at sufficiently high temperatures), and can be reduced by increasing

the spatial volume of the system. As we mentioned, in the literature, several works

have reported evidence for Casimir scaling in SU(N) Yang-Mills theories, including,
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in particular, for the T = 0 string tension associated to the potential between two

static sources in a given representation [41–51]. This observation has an interesting

implication related to the large-N limit. As it is well-known, for pure SU(N) Yang-

Mills theories, the expansion around the N → ∞ limit can be organized in a series

of powers of 1/N2, i.e. it does not contain odd powers of 1/N . As discussed in

ref. [164, 165], this expectation seems to be at odds with the numerical evidence of

Casimir scaling of k-string tension from lattice simulations [41–51], since, in general,

if Casimir scaling holds, then the leading finite-N corrections are O(1/N). The

resolution of this apparent paradox, however, was recently pointed out in ref. [166],

and is based on a cancellation of terms involving odd 1/N powers in the spectrum of

open string states. Similar arguments were also discussed in ref. [167].

2. In the thermodynamic limit the renormalized fundamental Polyakov loop is vanishing

in the confined phase, and jumps to a finite value at the critical temperature, com-

patibly with the first-order nature of the deconfining transition. The limit of Lren for

T → T+
c is a number close to 1/2, which, interestingly, is the value that is obtained

analytically for N → ∞ in 1 + 1 spacetime dimensions [119, 120]. For T > Tc, the

renormalized Polyakov loop is at first growing with the temperature (in the regime in

which the plasma is most strongly coupled), it overshoots the value 1 at temperatures

around 3Tc, reaches a maximum, and then eventually starts decreasing, in agreement

with the perturbative predictions [55, 56].

3. In the deconfined phase, for temperatures up to approximately 3Tc or 4Tc, the log-

arithm of the renormalized Polyakov loop (in the renormalization scheme that we

considered here) is described well by the sum of a term inversely proportional to the

square of the temperature, plus a constant.

4. The finite-temperature behavior of gauge theories based on different SU(N) gauge

groups appears to be qualitatively and quantitatively very similar (confirming previ-

ous studies both in 3 + 1 [80–96] and in 2 + 1 dimensions [97–102]). The precision

and accuracy limits in this study do not allow us to extract a reliable estimate of the

(small) differences between the various groups.

In conclusion, our study shows that, in the deconfined phase, the Polyakov loop satisfies

Casimir scaling, and is only mildly dependent on the number of colorsN . The independence

on the rank of the gauge group (which has also been observed for the equation of state per

gluon d.o.f. [80–96]) supports analytical approaches based on the large-N limit, including,

in particular, holographic computations. Our results for the renormalized Polyakov loop

show that this quantity interpolates between a regime (possibly dominated by contributions

of non-perturbative nature) in which it is increasing with T , and one in which it tends to

the perturbative prediction, and decreases with the temperature, approaching 1 from above

in the weak-coupling limit for T → ∞.

For the future, we plan to extend the present study of large-N gauge theories at finite

temperature, by looking at other observables, which could potentially reveal a stronger
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dependence on the rank of the gauge group. Of particular phenomenological interest are

transport and diffusion coefficients — see, e.g., ref. [168] for a review.
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A Irreducible representations of the algebra of generators of SU(N)

In the following, we discuss the classification of irreducible representations of the algebra

of generators of a generic special unitary group of degree N . Further details can be found,

e.g., in ref. [169].

A generic irreducible representation of the algebra of generators of SU(N) can be

labelled by N − 1 non-negative integers λ1, λ2, λ3, . . . , λN−1, with:

λ1 ≥ λ2 ≥ λ3 ≥ · · · ≥ λN−1 ≥ 0. (A.1)

The [λ1, λ2, λ3, . . . , λN−1] sequence can be uniquely associated to a Young diagram with

rows of lengths λ1, . . . , λN−1. An alternative way to identify an irreducible representation is

in terms of its canonical label (m1,m2, . . . ,mN−1), where the mi’s represent the differences

in lengths of subsequent rows in the corresponding Young diagram: mi = λi+1 − λi for

i < N − 1, and mN−1 = λN−1.

Particularly interesting irreducible representations of SU(N) include the fundamental

one [1, 0, 0, . . . , 0], of dimension N , the trivial one [0, 0, 0, . . . , 0] of dimension 1, and the

adjoint one [2, 1, 1, . . . , 1], of dimension N2 − 1.

More in general, the dimension of an irreducible representation is given by the formula:

N−1
∏

i=1

N
∏

j=i+1

li − lj
l0i − l0j

, li = λi +N − i, l0i = N − i, (A.2)

with λN = 0 or, equivalently:

1

NN

N−1
∏

l=1

N−l
∏

i=1

i+l−1
∑

k=i

(mk + 1), with: NN =
N−1
∏

t=1

(t!). (A.3)

A common way to denote irreducible representations is via their dimension; note, however,

that this may be ambiguous (except for SU(2)), since in general there can be inequivalent
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irreducible representations of the same dimension. For example, SU(4) has three inequiva-

lent irreducible representations of dimension 20, which can be denoted as 20, 20′ and 20′′.

In such cases, our convention is to use the notation with the least primes for the repre-

sentation with the smallest λi for the minimum value of i (namely, for the representation

described by a Young diagram with the smallest number of boxes in the top row, or in the

highest row which is different from the other representations of the same dimension). So,

for instance, for SU(3) the [3, 1] irreducible representation is denoted as 15, while the [4, 0]

will be denoted as 15′; for SU(4), the [2, 1, 0] is denoted as 20, the [2, 2, 0] is denoted as

20′, and the [3, 0] is denoted as 20′′.

The N -ality of an SU(N) representation defines its transformation properties under

the center of the group, ZN , and is given by the total number of boxes appearing in

the Young diagram, modulo N . Representations of vanishing N -ality (such as the trivial

representation and the adjoint one) are blind to the action of the transformations in the

group center.

Given an irreducible representation r = [λ1, λ2, . . . , λN−1], its conjugate representation

is: r̄ = [λ1, λ1 − λN−1, λ1 − λN−2, . . . , λ1 − λ2], so that its Young diagram is obtained by

fitting the diagram of the representation r in a rectangle of N rows and λ1 columns,

removing all the boxes belonging to the Young diagram of r, and turning the diagram with

the remaining boxes by an angle π.

Obviously, two mutually conjugated representations have the same dimension, and,

given that their respective characters are obtained from each other by complex conjugation,

we only include one of them in our lists of irreducible representations. It is most natural to

use the “barred” notation for the representation with the Young diagram with more boxes,

so that, for example the [1, 0] representation of SU(3) is denoted as 3, while its conjugate

representation [1, 1] is denoted as 3̄.

Representations which are self-conjugate have real characters; in particular, this is

always the case for the trivial and for the adjoint representations. Also, note that, for a

self-conjugate irreducible representation, the canonical label is a palindrome.

In order to discuss the large-N scaling of the size and quadratic Casimir of an irre-

ducible representation r, it is convenient to introduce the non-negative integers l and m,

which represent the minimum number of fundamental and anti-fundamental factors from

which the representation r can be constructed (by tensor products). l and m can be easily

obtained from the Young diagram of r: l is given by the sum of the number of boxes in

all columns of length not larger than N/2, while m is given by the sum of the number of

missing boxes in all columns of length larger than N/2. The N -ality of a representation

is given by (l −m) modulo N . In the large-N limit, it is possible to show [121–123] that

characters of different representations only depend on l and m, and that, although the

dimension of the representation r grows like N l+m, the eigenvalue of the quadratic Casimir

is linear in N :

〈C2〉r =
N

2
[l +m+O(1/N)] . (A.4)

For SU(2), all irreducible representations are self-conjugate. The Young diagram of

a generic irreducible representation of spin j = n/2 consists of one horizontal row of n
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Young diagram N -ality canonical label dimension notes 〈C2〉 d

1 (1, 0) 3 fundamental 4/3 1

2 (2, 0) 6 10/3 5/2

0 (1, 1) 8 adjoint 3 9/4

0 (3, 0) 10 6 9/2

1 (2, 1) 15 16/3 4

1 (4, 0) 15′ 28/3 7

2 (5, 0) 21 40/3 10

2 (3, 1) 24 25/3 25/4

0 (2, 2) 27 self-conjugate 8 6

0 (6, 0) 28 18 27/2

0 (4, 1) 35 12 9

1 (7, 0) 36 70/3 35/2

Table 2. The irreducible representations of the SU(3) gauge group studied in this work. For this

group, the integers l and m of each representation are respectively equal to the first and second

index in the canonical label.

boxes; bosonic representations correspond to even values of n, and have vanishing N -ality,

while fermionic representations correspond to odd values of n, and their N -ality is 1. The

associated canonical label is (n) (with l = n, m = 0), the dimension is n+1, the eigenvalue

of the quadratic Casimir (defined according to our conventions) is 〈C2〉 = n(n+ 2)/4, and

its ratio with respect to the fundamental representation is d = n(n+ 2)/3.

For larger SU(N) groups (up to N = 8), the lowest irreducible representations are

listed in tables 2–7.

Generically, the eigenvalues of a group element g in the fundamental representation of

SU(N) lie on the unit circle in the complex plane, and their product is 1:

gf = U · diag(eiα1 , eiα2 , eiα3 , . . . , eiαN ) · U †, with:
N
∑

i=1

αi = 0 mod 2π. (A.5)

Knowing the eigenvalues of gf , it is possible to calculate explicitly the character of g in any

irreducible representation r = [λ1, λ2, . . . , λN−1] by means of the Weyl formula [142, 143]:

Tr gr =
detF (~λ)

detF (~0)
, (A.6)

where F (~λ) is an N × N matrix with entries defined as: Fkl(~λ) = exp [i (N + λl − l)αk],

with λN = 0, and eiα1 , eiα2 , . . . eiαN are the eigenvalues of g in the

fundamental representation.

In many cases, however, the characters in high-dimensional irreducible representations

can be more expediently calculated, using the laws of representation composition encoded

in Young calculus, and using the well-known fact that the character in a representation

which can be expressed as the tensor sum (product) of two representations is equal to the

sum (product) of the characters in the summand (factor) representations.

– 22 –



J
H
E
P
0
5
(
2
0
1
2
)
0
6
9

Young diagram N -ality canonical label dimension l m notes 〈C2〉 d

1 (1, 0, 0) 4 1 0 fundamental 15/8 1

2 (0, 1, 0) 6 2 0 self-conjugate 5/2 4/3

2 (2, 0, 0) 10 2 0 9/2 12/5

0 (1, 0, 1) 15 1 1 adjoint 4 32/15

3 (1, 1, 0) 20 3 0 39/8 13/5

0 (0, 2, 0) 20′ 4 0 self-conjugate 6 16/5

3 (3, 0, 0) 20′′ 3 0 63/8 21/5

0 (4, 0, 0) 35 4 0 12 32/5

1 (2, 0, 1) 36 2 1 55/8 11/3

0 (2, 1, 0) 45 4 0 8 64/15

2 (0, 3, 0) 50 6 0 self-conjugate 21/2 28/5

1 (5, 0, 0) 56 5 0 135/8 9

Table 3. Same as in table 2 (with the addition of the l and m indices), but for the SU(4)

gauge group.

Young diagram N -ality canonical label dimension l m notes 〈C2〉 d

1 (1, 0, 0, 0) 5 1 0 fundamental 12/5 1

2 (0, 1, 0, 0) 10 2 0 18/5 3/2

2 (2, 0, 0, 0) 15 2 0 28/5 7/3

0 (1, 0, 0, 1) 24 1 1 adjoint 5 25/12

3 (3, 0, 0, 0) 35 3 0 48/5 4

3 (1, 1, 0, 0) 40 3 0 33/5 11/4

4 (1, 0, 1, 0) 45 1 2 32/5 8/3

4 (0, 2, 0, 0) 50 4 0 42/5 7/2

1 (2, 0, 0, 1) 70 2 1 42/5 7/2

4 (4, 0, 0, 0) 70′ 4 0 72/5 6

0 (0, 1, 1, 0) 75 2 2 self-conjugate 8 10/3

4 (2, 1, 0, 0) 105 4 0 52/5 13/3

Table 4. Same as in table 3, but for the SU(5) gauge group.

A.1 Casimir operators

A Casimir operator of a Lie algebra g is a homogeneous polynomial of order p, lying in

the enveloping algebra of g, T (g), and commuting with all elements of g. Given a Casimir
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Young diagram N -ality canonical label dimension l m notes 〈C2〉 d

1 (1, 0, 0, 0, 0) 6 1 0 fundamental 35/12 1

2 (0, 1, 0, 0, 0) 15 2 0 14/3 8/5

3 (0, 0, 1, 0, 0) 20 3 0 self-conjugate 21/4 9/5

2 (2, 0, 0, 0, 0) 21 2 0 20/3 16/7

0 (1, 0, 0, 0, 1) 35 1 1 adjoint 6 72/35

3 (3, 0, 0, 0, 0) 56 3 0 45/4 27/7

3 (1, 1, 0, 0, 0) 70 3 0 33/4 99/35

5 (1, 0, 0, 1, 0) 84 1 2 95/12 19/7

4 (1, 0, 1, 0, 0) 105 4 0 26/3 104/35

4 (0, 2, 0, 0, 0) 105′ 4 0 32/3 128/35

1 (2, 0, 0, 0, 1) 120 2 1 119/12 17/5

4 (4, 0, 0, 0, 0) 126 4 0 50/3 40/7

Table 5. Same as in table 3, but for the SU(6) gauge group.

operator Cp, any product of it by an arbitrary scalar factor aCp, as well as any integer

power of it Cq
p , are also Casimir operators; however, the number of independent Casimir

operators of a given algebra g is equal to the rank l of the algebra. In particular, the

algebra of generators of the special unitary group SU(N) has N − 1 independent Casimir

operators C2, C3, . . .CN , whose eigenvalues 〈Cp〉 can be used to classify the irreducible

representations of the algebra.

Explicit expressions for the Cp’s can be obtained as follows. Starting from a basis

{Ei,j}i,j=1...N of generators of U(N):

[Ea,b, Ec,d] = δb,cEa,d − δa,dEc,b, (A.7)

introduce a basis for the algebra of generators, denoted as
{

Ẽi,j

}

(where both i and j run

from 1 to N , but the element ẼN,N element is not defined), through:

Ẽi,j =

{

Ei,j if i 6= j,

Ei,i − 1
N

∑N
k=1Ek,k if i = j.

(A.8)

For the generators of SU(N), the Casimir operator of order p can then be defined as:

Cp =
1

p

N
∑

i1,i2,...ip=1

Ẽi1i2Ẽi2i3 . . . Ẽip−1ipẼipi1 . (A.9)

Note that, by construction, the linear Casimir operator C1 is identically vanishing on the

algebra of generators of SU(N), as they are all traceless.
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Young diagram N -ality canonical label dimension l m notes 〈C2〉 d

1 (1, 0, 0, 0, 0, 0) 7 1 0 fundamental 24/7 1

2 (0, 1, 0, 0, 0, 0) 21 2 0 40/7 5/3

2 (2, 0, 0, 0, 0, 0) 28 2 0 54/7 9/4

3 (0, 0, 1, 0, 0, 0) 35 3 0 48/7 2

0 (1, 0, 0, 0, 0, 1) 48 1 1 adjoint 7 49/24

3 (3, 0, 0, 0, 0, 0) 84 3 0 90/7 15/4

3 (1, 1, 0, 0, 0, 0) 112 3 0 69/7 23/8

6 (1, 0, 0, 0, 1, 0) 140 1 2 66/7 11/4

1 (2, 0, 0, 0, 0, 1) 189 2 1 80/7 10/3

4 (0, 2, 0, 0, 0, 0) 196 4 0 90/7 15/4

4 (1, 0, 1, 0, 0, 0) 210 4 0 76/7 19/6

4 (4, 0, 0, 0, 0, 0) 210′ 4 0 132/7 11/2

Table 6. Same as in table 3, but for the SU(7) gauge group.

The eigenvalue of Cp in the generic irreducible representation labelled by

[λ1, λ2, . . . λN−1] can be obtained in the following way (taking λN = 0) [170]:

1. define λ =
∑N

i=1 λi;

2. define mi = λi − λ/N for all i = 1, 2, . . .N ;

3. define ρi = N − i and li = mi + ρi for all i = 1, 2, . . .N ;

4. for all k ≥ 2, construct the quantities: Sk =
∑N

i=1

(

lki − ρki
)

;

5. for all k ≥ 2, define the coefficients: ak =
∑k−1

j=1
(k−1)!
j!(k−j)!Sj ;

6. construct the function: ϕ(z) =
∑∞

k=2 akz
k;

7. calculate the Bp coefficients from the following Taylor expansion around z = 0:

1− exp [−ϕ(z)]
z

=
∞
∑

p=0

Bpz
p (A.10)

(note that B0 = 0);
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Young diagram N -ality canonical label dimension l m notes 〈C2〉 d

1 (1, 0, 0, 0, 0, 0, 0) 8 1 0 fundamental 63/16 1

2 (0, 1, 0, 0, 0, 0, 0) 28 2 0 27/4 12/7

2 (2, 0, 0, 0, 0, 0, 0) 36 2 0 35/4 20/9

3 (0, 0, 1, 0, 0, 0, 0) 56 3 0 135/16 15/7

0 (1, 0, 0, 0, 0, 0, 1) 63 1 1 adjoint 8 128/63

4 (0, 0, 0, 1, 0, 0, 0) 70 4 0 self-conjugate 9 16/7

3 (3, 0, 0, 0, 0, 0, 0) 120 3 0 231/16 11/3

3 (1, 1, 0, 0, 0, 0, 0) 168 3 0 183/16 61/21

7 (1, 0, 0, 0, 0, 1, 0) 216 1 2 175/16 25/9

1 (2, 0, 0, 0, 0, 0, 1) 280 2 1 207/16 23/7

4 (4, 0, 0, 0, 0, 0, 0) 330 4 0 21 16/3

4 (0, 2, 0, 0, 0, 0, 0) 336 4 0 15 80/21

Table 7. Same as in table 3, but for the SU(8) gauge group.

8. compute the eigenvalue of Cp from the formula:

〈Cp〉 =
Bp −NBp−1

p
. (A.11)

This gives, in particular, the following relations:

〈C2〉 =
S2
2
, (A.12)

〈C3〉 =
1

3

[

S3 +

(

3

2
−N

)

S2

]

, (A.13)

〈C4〉 =
1

4

[

S4 + (2−N)S3 +

(

2− 3

2
N

)

S2

]

, (A.14)

〈C5〉 =
1

5

[

S5 +

(

5

2
−N

)

S4 +

(

10

3
− 2N

)

S3 +

(

5

2
− 2N

)

S2 −
1

2
S2
2

]

, (A.15)

〈C6〉 =
1

6

[

S6 + (3−N)S5 +

(

5− 5

2
N

)

S4 +

(

5− 10

3
N

)

S3 +

(

3− 5

2
N

)

S2

−S2S3 +
(

N

2
− 3

2

)

S2
2

]

, (A.16)
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〈C7〉 =
1

7

[

S7 +

(

7

2
−N

)

S6 + (7− 3N)S5 +

(

35

4
− 5N

)

S4 + (7− 5N)S3 (A.17)

+

(

7

2
− 3N

)

S2 − S4S2 −
1

2
S2
3 +

(

−7

2
+N

)

S3S2 +

(

−25

8
+

3

2
N

)

S2
2

]

,

〈C8〉 =
1

8

[

S8 + (4−N)S7 +

(

28

3
− 7

2
N

)

S6 + (14− 7N)S5 +

(

14− 35

4
N

)

S4

+

(

28

3
− 7N

)

S3 +

(

4− 7

2
N

)

S2 − S5S2 − S4S3 + (−4 +N)S4S2 (A.18)

+

(

−2 +
N

2

)

S2
3 +

(

−25

3
+

7

2
N

)

S3S2 +

(

−11

2
+

25

8
N

)

S2
2 +

1

6
S3
2

]

.

In turn, the equations above lead to the following expressions for the quadratic Casimir

eigenvalues 〈C2〉:

〈C2〉 =
1

4
λ1 (λ1 + 2) for SU(2), (A.19)

〈C2〉 =
1

3

(

λ21 + 3λ1 − λ1λ2 + λ22
)

for SU(3), (A.20)

〈C2〉 =
1

8

[

3λ21+λ2 (4 + 3λ2)−2λ3 (λ2+2)+3λ23−2λ1 (λ2+λ3−6)
]

for SU(4), (A.21)

〈C2〉 =
1

5

[

2
(

λ21 + λ22 + λ23 + λ24
)

− (5 + λ3)λ4 + λ2 (5− λ3 − λ4)

+λ1 (10− λ2 − λ3 − λ4)] for SU(5), (A.22)

〈C2〉 =
1

12

[

5
(

λ21 + λ22 + λ23 + λ24 + λ25
)

+ 6 (λ3 − λ4)− 2λ3λ4 − 2 (9 + λ3 + λ4)λ5

+2λ2 (9− λ3 − λ4 − λ5) + 2λ1 (15− λ2 − λ3 − λ4 − λ5)] for SU(6), (A.23)

〈C2〉 =
1

7

[

3
(

λ21 + λ22 + λ23 + λ24 + λ25 + λ26
)

+ 7 (3λ1 + 2λ2 + λ3 − λ5 − 2λ6)− λ4λ5

−λ3 (λ4 + λ5)− (λ3 + λ4 + λ5)λ6 − (λ3 + λ4 + λ5 + λ6)λ2

−λ1 (λ2 + λ3 + λ4 + λ5 + λ6)] for SU(7), (A.24)

〈C2〉 =
1

16

[

7
(

λ21 + λ22 + λ23 + λ24 + λ25 + λ26 + λ27
)

+ 24λ3 + 8λ4 − 2λ3λ4 − 8λ5 − 2λ3λ5

−2λ4λ5 − 24λ6 − 2λ3λ6 − 2λ4λ6 − 2λ5λ6 − 2 (20 + λ3 + λ4 + λ5 + λ6)λ7

−2λ2 (−20 + λ3 + λ4 + λ5 + λ6 + λ7)

−2λ1 (−28 + λ2 + λ3 + λ4 + λ5 + λ6 + λ7)] for SU(8). (A.25)

Note that the Casimir operators are defined up to a multiplicative constant; with

the conventions fixed by the construction above, the eigenvalue of the SU(N) quadratic

Casimir operator in the fundamental representation is (N2− 1)/(2N), while in the adjoint

representation it is N .
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dominance in QCD string formation, Phys. Rev. D 53 (1996) 5891 [hep-lat/9510028]

[INSPIRE].
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