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Abstract

In this paper, we deal with the problem of maximizing the profit of Network
Operators (NOs) of green cellular networks in situations where Quality-of-
Service (QoS) guarantees must be ensured to users, and Base Stations (BSs)
can be shared among different operators.

We show that if NOs cooperate among them, by mutually sharing their
users and BSs, then each one of them can improve its net profit.

By using a game-theoretic framework, we study the problem of forming
stable coalitions among NOs. Furthermore, we propose a mathematical op-
timization model to allocate users to a set of BSs, in order to reduce costs
and, at the same time, to meet user QoS for NOs inside the same coalition.
Based on this, we propose an algorithm, based on cooperative game theory,
that enables each operator to decide with whom to cooperate in order to
maximize its profit.

This algorithms adopts a distributed approach in which each NO au-
tonomously makes its own decisions, and where the best solution arises with-
out the need to synchronize them or to resort to a trusted third party.

The effectiveness of the proposed algorithm is demonstrated through a
thorough experimental evaluation considering real-world traffic traces, and a
set of realistic scenarios. The results we obtain indicate that our algorithm
allows a population of NOs to significantly improve their profits thanks to
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the combination of energy reduction and satisfaction of QoS requirements.
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1. Introduction

The increasing consumption of electrical energy is one of the most im-
portant issues characterizing modern society because of its effects on climate
changes and on the depletion of non-renewable sources. In this scenario, the
ICT sector plays a key role, being responsible for about 10% of the world
carbon footprint and electrical energy consumption [1, 2].

Reportedly [3, 4], within the ICT sector, the mobile telecommunication
industry (and, in particular, cellular networks) is one of the major contribu-
tors to energy consumption. This has stimulated the interest towards a new
research area called green cellular networks [5], that aims at reducing the
energy consumption of these communication infrastructures.

From the perspective of a cellular Network Operator (NO), the reduction
of electrical energy consumption is not only a matter of being “green” and
responsible, but also an economically important opportunity. As a matter of
fact, it has been argued that nearly half of the total operating expenses of
a NO is due to energy costs [3, 4]. Furthermore, a significant part of these
costs are due to Base Stations (BSs) [6]: indeed, even in the case of little or
no activity, a BS can consume more than 90% of its peak energy [4, 7]. Thus,
by reducing energy consumption, a NO may sensibly increases its profit.

Consequently, a lot of research effort has been concentrated lately on the
reduction of the energy consumed by BSs. Techniques like the design of
more energy-efficient hardware equipment, or the use of new energy saving
techniques (e.g., sleep modes [8] and cell zooming [9]) to switch off under-
utilized BSs during low traffic periods and to transfer the corresponding load
to neighboring cells, have been proposed as possible solutions.

Such techniques, however, must be applied with care so as to maintain
Quality-of-Service (QoS) guarantees agreed by a NO with its customers,
whose violations imply monetary losses for that NO. Specifically, since fewer
transmission resources are available at a cell when such energy-efficient tech-
niques are used, bottlenecks may form for those users connected to that cell,
who may thus experience QoS levels lower than agreed, and in some cases
may be even unable to receive service at all. Finally, the use of techniques
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like cell zooming may cause other problems, such as inter-cell interference
and coverage holes [9].

In this paper, we argue that if NOs cooperate among them by mutually
sharing their users and BSs, then each one of them can improve its net profit
by either (a) reducing energy costs by switching off its BSs and offloading
its users to switched on BSs of other NOs, or (b) increasing its earnings by
attracting users from other NOs, or by relying on BSs of other NOs to accept
more users than what could do by working alone.

Obviously, it is unreasonable to expect that each NO is willing to uncon-
ditionally cooperate with the other ones regardless the benefits it receives.
Such a cooperation arises indeed only if suitable benefits result from it, and
if the risks of monetary losses are kept within acceptable limits.

In this paper, we devise a decision algorithm that provides a set of NOs
with suitable means to decide whether to cooperate with other NOs, and
if so with whom to cooperate. Our algorithm is based on game-theoretic
techniques, where the process of establishing cooperation among the NOs
is modeled as a cooperative game with transferable utility [10] (in particu-
lar, as a hedonic game [11], whereby each NO bases its decision on its own
preferences).

More specifically, we propose a game-theoretic framework to study the
problem of forming stable coalitions among NOs, and a mathematical opti-
mization model to allocate users to a set of BSs, in order to reduce costs and,
at the same time, to meet user QoS for NOs inside the same coalition. We
achieve our goal by devising a hedonic shift algorithm to form stable coali-
tions that allows each NO to autonomously and selfishly decide whether to
leave the current coalition to join a different one or not on the basis of the
net profit it receives for doing so.

In our approach, each NO pays for the energy consumed to serve each user,
whether it belongs to it or to another NO, but receives a payoff (computed as
discussed later) for doing so. We prove that the proposed algorithm converges
to a Nash-stable set of disjoint coalitions [12], whereby no NO can benefit to
leave the current coalition to join a different one.

Our solution adopts an asynchronous approach in which each NO au-
tonomously makes its own decisions, and where the best solution arises with-
out the need to synchronize them or to resort to a trusted third party. As
a consequence, the solution we propose can be readily implemented in a
distributed fashion.

To demonstrate the effectiveness of the algorithm we propose, we carry
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out a thorough experimental evaluation considering real-world traffic traces,
and a set of realistic scenarios. The results we obtain indicate that our
algorithm allows indeed a population of NOs to significantly improve their
profits thanks to the combination of energy reduction and satisfaction of QoS
requirements.

The contributions of this paper can be summarized as follows:

• we consider the problem of maximizing operators’ profit in green cel-
lular networks;

• we model the problem as a cooperative game with transferable utility;

• we devise a distributed algorithm enabling operators to find the coali-
tion maximizing their profits under stability concerns;

• we show its effectiveness through experimental analysis in realistic sce-
narios;

• we assess the impact of energy price and user population on the profits
attained by operators.

The rest of this paper is organized as follows. In Section 2, we provide an
overview of related works. In Section 3, we describe the system under study
and we present the problem addressed in this paper. In Section 4, we present
the cooperative game-theoretic framework we use to study the problem of
coalition formation and the hedonic shift algorithm we design to form stable
coalitions. In Section 5, we show results from an experimental evaluation to
show the effectiveness of the proposed approach. Finally, in Section 6, we
conclude the paper and present an outlook on possible future extensions.

2. Related Works

The problem of increasing the profit of NOs in cellular wireless networks
has been already studied in the literature, where several papers on this topic
have been published.

However, to the best of our knowledge, the problem of forming multiple
stable coalitions of BSs, in order to reduce energy consumption and to in-
crease the profit of different and selfish NOs, has never been tackled before.
In our work, we pursue this problem by proposing a novel approach based
on mathematical optimization and on the coalition formation game theory.
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Much of current research focuses indeed on energy saving techniques as
a way to reduce NO costs [5]. For instance, works like [13, 14, 15, 16] use
optimization techniques and traffic profile patterns to determine when and
where to switch off BSs, while those like [9] use cell-zooming techniques to
adaptively adjust the cell size according to traffic load and to possibly switch
off inactive cells. Other works, like [17], focus on techniques to improve
spectrum efficiency in order to enhance the utilization of data subcarriers
and thus to better amortize the license costs of frequency bands. These
techniques, however, do not consider the cooperation among different NOs,
and therefore are unable, unlike our approach, to exploit the advantages
brought by such a cooperation. Furthermore, they do not jointly tackle the
problems of ensuring QoS to users and of reducing energy consumption.

Approaches attempting to jointly achieve QoS and energy savings have
been recently proposed [18, 19, 20, 21].

In [18], a static joint planning and management optimization approach
to limit energy consumption (by switching BSs on and off according to the
traffic load) while guaranteeing QoS and minimizing NO costs is proposed.
This approach, however, is inherently static (it operates at network design
time) so, unlike ours, is unable to operate in a dynamic environment.

In [19], the authors present a cooperative game-theoretic approach, in
which individual access networks with insufficient resources join to form the
grand-coalition in order to satisfy service demands. This proposal is un-
able to support non trivial scenarios featuring multiple NOs, a time-varying
number of connected users, the energy consumption and the costs due to
coalition formation and operation, that may prevent the formation of the
grand coalition in favor of smaller and more stable coalitions. Conversely,
these scenarios are properly dealt with by our work.

In [20], a game-theoretic approach for the energy-efficient operation of
heterogeneous LTE cellular networks, belonging to a single NO, is proposed.
This approach, however, does not guarantee the stability of the coalitions that
are formed, while stability is a core property of our solution. Furthermore,
it is unable to deal with complex scenarios featuring multiple NOs possibly
exhibiting different energy prices, and a time-varying population of users. In
contrast, our algorithm is able to deal with the above scenarios, and always
yield stable coalitions.

In [21], the authors propose a hierarchical dynamic game framework to
increase the capacity of two-tier cellular networks by offloading traffic from
macro cells to small cells. This work does not take into account the oppor-
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tunity to selectively switch off underutilized BSs thus offloading the related
users to the remaining switched-on BSs. Therefore, our approach can be con-
sidered complementary to this one, as it is able to provide a profitable way to
select what macro cells to consider before applying the proposed hierarchical
game.

3. System Model and Problem Definition

3.1. System Model

We consider an area served by a set N = {1, . . . , N} of NOs, whose BSs
fully cover that area and whose coverage overlaps (as typically happens in
urban areas [9, 22, 23]). To keep the notation simple, we assume that in the
area of interest there is only one BS per NO, so in the rest of this paper, we
will use the terms BS and NO interchangeably (the extension of the model
to support multiple BSs per NO is straightforward).

Each BS i is characterized by its bandwidthBi and its maximum downlink
transmission capacity Ci (as in [24], we set Ci = Bi log2(q), where q is the
number of quantization levels determined by the modulation scheme), as
well as by its power consumption (expressed in Watts) Wi(ni). As argued
in [7, 25, 26], Wi(ni) is linearly dependent on the number of users it is serving,
that is:

Wi(ni) = αi + βini (1)

where αi (the static term) is the load-independent power consumption (which
is usually known from the specifications of the BS, and typically accounts
for about 90% of the total consumption [4, 7]), and βini (the dynamic term)
is the load-dependent power consumption (that can be determined by linear
regression from real power measurements [26]).

We assume that the radio spectrum access is based on the Orthogonal
Frequency-Division Multiple Access (OFDMA) scheme [27], in which the total
channel bandwidth Bi of BS i is divided in sub-channels of Bi

sub Hz each, and
radio resources are allocated in the time/frequency domain, whereby each
sub-channel is allocated to a given user terminal in slots lasting 1 ms each
(as, for instance, in LTE networks [27]).

Each NO i provides network connectivity to a set Ui of customers (here-
after also referred to as users). Each user j ∈ Ui is characterized by its
required QoS, quantified by the minimum downlink data rate Dj it requests,
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and the actual downlink data rate di,j it gets from BS i to which it is con-
nected, that is computed as:

di,j = mi,j · ri,j(k) (2)

where mi,j is the number of sub-channels allocated by BS i to user j, and
ri,j(k) is the maximum data rate that can be be decoded by user j on each
sub-channel k. As in [27, 28, 29], we compute ri,j(k) by using the Shannon
capacity limit formula, that is:

ri,j(k) = Bi
sub · log2(1 +

Si,j(k)

N0 +
∑

y ̸=i Sy,j(k)
) (3)

where Si,j(k) is the signal received by user j from BS i on sub-channel k,
N0 is the noise power, and

∑
y ̸=i Sy,j(k) is the power of interference from the

other BSs.
To compute Si,j(k), we assume that attenuation is due to path loss only,

and we neglect shadowing and fading, as commonly done in network mod-
eling [30, 31, 18]. Furthermore, as in [18, 32], we compute the path loss (in

dB) P
[dB]
i,j from BS i to user j by means of the COST-231 Hata model [33],

namely:

P
[dB]
i,j = 46.3 + 33.9 log10(Fi)− 13.82 log10(H

b
i )+

+ (44.9− 6.55 log10(H
b
i )) log10(δij)+

− a(Hu
j ) + cm.

(4)

where Fi and Hb
i are the transmission frequency (in MHz) and the height

of BS i (in m), respectively, Hu
j is the height of user j (in m), δi,j is the

euclidean distance between BS i and user j (in km), cm is equal to 3 in urban
areas, and a(Hu

j ) is defined as:

a(Hu
j ) = (1.1 log10(Fi)− 0.7)Hu

j − (1.56 log10(Fi)− 0.8). (5)

Each user j ∈ U (where U =
∪N

i=1 Ui) can connect to any BS in the
system regardless of the NO who owns the BS (i.e., it can connect to a BS
that belongs to the NO to which it is subscribed or it can roam on the BS of
another one). This can be accomplished by using techniques like cell wilting
and blossoming [34]. However, the aggregate allocated data rate to users
connected to BS i cannot exceed its capacity Ci, that is:∑

j∈Ui

di,j ≤ Ci. (6)
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Figure 1: A typical daily load profile ℓi(·) of a single BS i.

We assume that the number of users receiving service from a BS i varies
over time, and is described by the load profile curve ℓi(t) of that BS express-
ing, as function of time, the percentage of the maximum number of users Mi

that can receive service by BS i when each user j is allocated its entire desired
data rate Dj. It then follows that, if all the users have the same data rate
requirement (i.e., Dj = D for all j ∈ Ui), then Mi = Ci/D. Conversely, if
users are heterogeneous, then Mj is estimated as Mj = Ci/D̄, where D̄ is the
weighted average of the data rates requested by users, i.e., D̄ =

∑
j∈Ui

pjDj,
where pj is the probability that user j arrives at BS i.

An example of a typical daily load profile is depicted in Figure 1, where
the x-axis represents the time (in hours) and the y-axis is the normalized load
of the BS [35]. For instance, if at a given time t, Mi = 10 and ℓi(t) = 0.8,
the number ni(t) of users of BS i at time t is ni(t) = 0.8 · 10 = 8.

We assume that each NO knows its load profile curve (this is a common
assumption in network resource management [22, 15]). Furthermore, we
assume that NOs are willing to cooperate with each other, so each one of
them is willing to share its load profile curve with all the other NOs.

3.2. Problem Definition

Given the system characterized as above and a particular area of interest,
each NO seeks to maximize its net profit (i.e., the difference between its
revenues and costs) in the presence of a time-varying population of users in
this area.

The net profit rate Pi of NO i (i.e., the profit it makes per unit of time)
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can be expressed as

Pi =
∑
j∈Ui

Ri,j −
[
Wi(ni)Ei +

∑
j∈Ui

Li,j(di,j)

]
(7)

where Ri,j is the revenue rate generated by user j on BS i, Ei is the electricity
cost rate of BS i, and Li,j(di,j) is the penalty rate incurred by NO i if user j
receives a downlink rate di,j lower than its QoS value Dj, which is given by
the following loss function:

Li,j(di,j) =

(
1−min

(di,j
Dj

, 1
))

Ri,j (8)

Thus, Li,j(di,j) is zero if the QoS of the user is completely satisfied (i.e.,
di,j ≥ Dj), and linearly increases until Ri,j as the assigned data rate di,j
decreases (so that an NO gets no revenue from those customers that receive
no service).

If the NOs in the area of interest cooperate among them (i.e., they share
their users and BSs) then each NO i can maximize the corresponding value
of Pi by acting on the various terms of Eq. (7) as follows:

• it can attempt to reduce Wi(ni) by offloading (some of) its users to
the BSs of other operators so that its BS can be switched off entirely
(by exploiting sleep modes [8]) or only in part (by relying on cell zoom-
ing [9]);

• it can attempt to increase Ri,j either by attracting users from other
NOs, so that it can better amortize its energy cost Wi(ni), or by relying
on BSs of other NOs to accept users that, if working alone, it could not
serve without violating Eq. (6), thus incurring into a (possibly high)
penalty rate Li,j.

The approach proposed in this paper assumes that NOs are willing to
cooperate among them since, as shown in this paper, doing so results in
possibly significant energy savings and, consequently, profit increases for each
one of them. Although at a first glance it might seems strange that an NO
is willing to cooperate with competing NOs even in face of these advantages,
given that cooperation brings benefits also to its competitors, we stress that
the cooperation among competing NOs not only arises in practice, but is
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also a well known problem studied in the field of network economics (see for
instance [36] and the references therein).

As discussed in [36], to foster the cooperation among competing NOs it
is necessary to take into account various issues, that are determined by the
specific market structure. However, as discussed in the literature [37, 38, 39],
these issues can be solved in various ways, so we can safely assume that the
technique proposed in this paper can be applied in practice.

In the following section, we will characterize the conditions under which
such a cooperation is not only possible, but also sought by these NOs.

4. The Coalition Formation Game

As discussed before, cooperation is the key to increase profit. However, it
is unreasonable to assume that a NO is willing to unconditionally cooperate
with the other ones regardless of the benefits it receives. As a matter of
fact, the acceptance of users roaming from other NOs is beneficial only if the
additional revenue they bring outweighs the costs and the possible penalties
they induce. Furthermore, the offloading of users to other NOs makes sense
only if a suitable revenue results from this operation for the off-loader.

To cooperate, a set of NOs must first form a coalition, i.e., they all must
agree to share their own BSs and users among them. Given a set of NOs,
however, there can be many different coalitions that can be formed, each one
differing from the other ones in terms of the structure (i.e., the identity of
each member) and/or of the profit it brings to their members.

In order to join a coalition, a NO must indeed find it profitable, i.e., it
must be sure that the profit it earns by joining the coalition is no worse of
the one it obtains by working alone. Furthermore, in order to be sure that
this profit is not ephemeral, a NO must seek other properties that guarantee
the suitability of a coalition, namely:

• Stability : a coalition is stable if none of its participants finds that it
is more profitable to leave it (e.g., to stay alone or to join another
coalition) rather than cooperating with the other ones. Lack of stability
causes possible monetary losses for the following reasons:

– a NO that has joined a coalition with the expectation of receiving
users roaming from other NOs is penalized if, after switching on
a BS on which to accommodate these users, these NOs leave the
coalition;
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– a NO that has accepted more users than those it can serve without
incurring into a penalty, expecting to use the BSs of other NOs to
accommodate them, is penalized if these NOs leave the coalition.

• Fairness : when joining a coalition, a NO expects that the resulting
profits are fairly divided among participants. As an unfair division
leads to instability, a fair profit allocation strategy is mandatory.

From these considerations, it clearly follows that a way must be provided to
each NO to decide whether to participate to a coalition or not and, if so,
which one among all the possible coalitions is worth joining.

In this paper, we address this issue by modeling the problem of coali-
tion formation as a coalition formation cooperative game with transferable
utility [10, 40], where each NO cooperates with the other ones in order to
maximize its net profit rate, and by devising an algorithm to solve it. By
using our algorithm, the various NOs can make their decisions concerning
coalition membership. For each coalition to evaluate, this algorithm solves
an optimization model (presented in Section 4.3) to allocate the users of the
NOs, that are members of that coalition, to the smallest set of BSs so that
the costs are minimized while the QoSs are met.

In the rest of this section, we first set the coalition formation problem in
the game-theoretic framework (Section 4.1), then we present an algorithm
to form stable coalitions among NOs (Section 4.2), and finally we present an
optimization model to allocate users to a set of BSs, in order to reduce costs
and, at the same time, to meet user QoS for NOs inside the same coalition
(Section 4.3).

4.1. Characterization

Our coalition formation algorithm is based on a hedonic game [11], a
class of coalition formation cooperative games [10, 40] where each NO acts
as a selfish agent and where its preferences over coalitions depend only on
the composition of that coalition. That is, NOs prefer being in one coalition
rather than in another one solely based on who else is in the coalitions they
belong.

Formally, given the setN = {1, 2, . . . , N} of NOs (henceforth also referred
to as the players), a coalition S ⊆ N represents an agreement among the
NOs in S to act as a single entity.

At any given time, the set of players is partitioned into a coalition partition
Π, that we define as the set Π = {S1,S2, . . . ,Sl}, where Sk ⊆ N (k = 1, . . . , l)
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is a disjoint coalition such that
∪l

k=1 Sk = N and Sj ∩ Sk = ∅ for j ̸= k.
Given a coalition partition Π, for any NO i ∈ N , we denote as SΠ(i) the
coalition to which i is participating.

Each coalition S is associated with its coalition value v(S), that we define
as the net profit rate of that coalition, that is:

v
(
S
)
= R

(
US

)
−Q

(
US

)
−K

(
S
)

(9)

where:

• R
(
US

)
is the coalition revenue rate, corresponding to the sum of revenue

rates of individual users j ∈ US (where US =
∪

i∈S Ui is the joint user
population of the NOs belonging to S);

• Q
(
US

)
is the coalition load cost rate, and is computed by minimizing

the costs resulting from serving the users in US using all the resources
provided by the NOs belonging to S (we discuss this in Section 4.3);

• K(S) is the coalition formation cost rate, that takes into account the
cost incurred by players to establish and maintain the coalition (e.g.,
the costs for system reconfiguration to enable user migration and han-
dover across NOs). In this paper, we assume K(S) to be proportional
to the coalition size, and we define it as:

K(S) =

{∑
i∈S Ki, |S| > 1,

0, otherwise.
(10)

where Ki is the coalition formation cost rate for NO i.

Obviously, each NO i ∈ S must receive a fraction xi(S) of the coalition
value, that we call the payoff of i in S. Our game is conceived in such a
way to form coalitions in which NOs get payoffs as high as possible, without
violating the fairness requirement, so that stability is achieved. Thus, a
payoff allocation rule must be specified in order to compute the payoffs of
each coalition member in such a way to ensure fairness in the division of
payoffs.

To this end, we use the Shapley value [41], a payoff allocation rule that
is based on the concept of marginal contribution of players (i.e., the change
in the worth of a coalition when a player joins to that coalition), such that
the larger is the contribution provided by a player to a coalition, the higher
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is the payoff allocated to it. 1 This means that, in a given coalition, some
“more-contributing” NOs will be rewarded by other “less-contributing” NOs
to encourage them to join the coalition. More specifically, the Shapley value
xi(S) of player i ∈ S ⊆ N is defined as:

xi

(
S
)
=

∑
T ⊆S\{i}

|T |!
(
|S| − |T | − 1

)
!

|S|!

(
v
(
T ∪ {i}

)
− v

(
T
))

(11)

where the sum is over all subsets T not containing i (the symbol “\” denotes
the set difference operator), and the symbol “!” denotes the factorial function.

It is worth noting that we rely on the Shapley value for its interesting
properties. Nevertheless, other payoff allocation rules can be used and our
work is general enough to support them.

To set up the coalition formation process, we need to define, for each
NO i, a preference relation ≽i that NO i can use to order and compare
all the possible coalitions it may join. Formally, this corresponds to define a
complete, reflexive, and transitive binary relation over the set of all coalitions
that NO i can form (see [12]).

Specifically, for any NO i ∈ N and given S1,S2 ⊆ N , the notation
S1 ≽i S2 means that NO i prefers being a member of S1 over S2 or at least i
prefers both coalitions equally. In our coalition formation game, for any NO
i ∈ N , we use the following preference relation:

S1 ≽i S2 ⇔ ui(S1) ≥ ui(S2), (12)

where S1,S2 ⊆ N are any two coalitions that contain NO i (i.e., i ∈ S1 and
i ∈ S2), and ui is a preference function defined for any NO i as follows:

ui(S) =

{
xi(S), S /∈ h(i),

−∞, otherwise.
(13)

where h(i) is a history set where NO i stores the identity of the coalitions
that have been already evaluated so that we avoid generating twice the same
candidate coalition (a similar idea for pruning already considered coalitions
has also been used in previously published work, such as in [43]).

1More specifically, we use the Aumann-Dréze value [42], which is an extension of the
Shapley value for games with coalition structures.
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Thus, according to Eq. (13), each NO prefers to join the coalition that
provides the larger payoff.

Eq. (12) and, hence, Eq. (13) are used by Algorithm 1 (see below) to rank
all the possible coalitions NO i may join at any point in time.

The strict counterpart of ≽i, denoted by ≻i, is defined by replacing ≥
with > in Eq. (12), and implies that i strictly prefers being a member of S1
over S2.

4.2. The Algorithm for Coalition Formation

In this section, we present an algorithm for coalition formation that allows
the NOs to take distributed decisions for selecting which coalitions to join
at any point in time. This algorithm is based on the following hedonic shift
rule (see [43]):

Definition 1. Given a coalition partition Π = {S1, . . . ,Sh} on the set N and
a preference relation ≻i, any NO i ∈ N decides to leave its current coalition
SΠ(i) = Sl, for 1 ≤ l ≤ h, to join another one Sk ∈ Π ∪ ∅, with Sk ̸= Sl, if
and only if Sk∪{i} ≻i Sl, that is if its payoff in the new coalition exceeds the
one it is getting in its current coalition. Hence, {Sl,Sk} → {Sl\{i},Sk∪{i}}.

This shift rule (that we denote as “→”) provides a mechanism through
which any NO can leave its current coalition SΠ(i) and join another coalition
Sk, given that the new coalition Sk ∪ {i} is strictly preferred over SΠ(i)
through any preference relation that the NOs are using. This rule can be
seen as a selfish decision made by a NO to move from its current coalition to
a new one, regardless of the effects of this move on the other NOs.

Using the hedonic shift rule, we design a distributed hedonic coalition
formation algorithm for NOs as presented in Algorithm 1.

The basic idea of the algorithm is to have each NO i search, asyn-
chronously with respect to the other NOs, the state space of possible coali-
tions it may join, and for each one of them, evaluate whether it is preferable
(according to the corresponding ≻i relation) to remain in its current coali-
tion, or to join it. Whenever a NO decides to move from a coalition to
another one, it updates its history set h(i) by appending the coalition it is
leaving, so that the same coalition is not visited twice during the coalition
space search. A NO iterates the actions listed in Algorithm 1 until no more
hedonic shift rules are possible. It is worth noting that the asynchronicity of
our algorithm makes it suitable to be executed, for instance, when new users
arrive to NOs, thus making it able to adapt to environmental changes.
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Algorithm 1 The Coalition Formation Algorithm for NOs

1: procedure CoalitionFormation(state, i)
2: h← ∅
3: Sbest ← ∅
4: repeat
5: Lock(state)
6: Πc ← GetCurrentPartition(state)
7: Scur ← SΠc(i)
8: Sbest ← Scur
9: for all S ∈

(
Πc \ {Scur}

)
∪ ∅ and S /∈ h do

10: Snew ← S ∪ {i}
11: xSbest

← ComputePayoff(Sbest, i) ◃ See Eq. (9) and
Eq. (11)

12: xSnew ← ComputePayoff(Snew, i) ◃ See Eq. (9) and
Eq. (11)

13: if xSnew > xSbest
then ◃ See Eq. (12) and Eq. (13)

14: Sbest ← Snew
15: end if
16: end for
17: if Sbest ̸= Scur then
18: S ← Scur \ {i}
19: T ← Sbest \ {i}
20: UpdateHistory(h,S)
21: Πbest ←

(
Πc \ {Scur, T }

)
∪
{
S,Sbest

}
22: SetCurrentPartition(state,Πbest)
23: end if
24: Unlock(state)
25: until Sbest = Scur
26: end procedure
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Let us explain in detail how Algorithm 1 works. The algorithm takes
as parameters the global state state, storing the current shared coalition
partition Πc, and the identity i of the calling NO (initially there are no
coalitions, i.e., Πc = Π0 =

{
{1}, {2}, . . . , {N}

}
).

At each execution of the algorithm, NO i initializes its history set h and
other auxiliary variables (lines 2–3), and then enters a loop that is executed
until no more hedonic shift rules can be performed from the last coalition
partition considered by i.

In each loop iteration, NO i retrieves the current coalition partition, and
generates all the possible hedonic shifts until no more of them are possible.
Given the distributed nature of the algorithm, we postulate the use of suitable
distributed space management algorithms (e.g. [44, 45]).

Then, after acquiring a lock to gain exclusive access to the shared state
(line 5) in order to ensure its atomic update (by means of a suitable dis-
tributed mutual exclusion algorithm [44]), NO i iteratively evaluates all the
possible coalitions it can form from its current coalition partition, to look for
the one with the higher payoff.

To do so, given its current coalition partition Πc, for each coalition Sk ∈
Πc∪∅ (not present in its history set and different from its current one SΠc(i)),
NO i applies the hedonic shift rule and evaluates its preference against the
current coalition SΠc(i) (lines 9–16).

If a coalition Sk with the higher payoff is found (lines 17–23), NO i adds
to its history set h the coalition SΠc(i) \ {i} it is leaving, and updates the
partition set by updating both Sk (that now contains also i) and SΠc(i) (that
now does not contain i anymore).

Then, after releasing the exclusive lock to the shared state (line 24), NO
i repeats the above steps (lines 5–24) to look for a better coalition, in case
some other NO has meanwhile modified the shared state by changing the
coalition partition.

Eventually, if no other better coalition is found, NO i terminates the
execution of the algorithm (line 25), until a new instance is run again.

The convergence of the proposed algorithm during the hedonic coalition
formation phase is guaranteed as follows:

Proposition 1 (Convergence). Starting from any initial coalition structure
Π0, the proposed algorithm always converges to a final partition Πf .

Proof. The coalition formation phase can be mapped to a sequence of shift
operations. That is, according to the hedonic shift rule, every shift operation
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transforms the current partition Πc into another partition Πc+1. Thus, start-
ing from the initial step, the algorithm yields the following transformations:

Π0 → Π1 → · · · → Πc → Πc+1 (14)

where the symbol “→” denotes the application of a shift operation. Every
application of the shift rule generates two possible cases: (a) Sk ̸= ∅, so it
leads to a new coalition partition, or (b) Sk = ∅, so it yields a previously
visited coalition partition with a non-cooperatively NO (i.e., with a coalition
of size 1). In the first case, the number of transformations performed by the
shift rule is finite (at most, it is equal to the number of partitions, that is
the Bell number) and hence the sequence in Eq. (14) will always terminate
and converge to a final partition Πf . In the second case, starting from the
previously visited partition, at certain point in time, the non-cooperative
NO must either join a new coalition and yield a new partition, or decide to
remain non-cooperative. From this, it follows that the number of re-visited
partitions will be limited, and thus, in all the cases the coalition formation
stage of the algorithm will converge to a final partition Πf .

The stability of the final partition Πf resulting from the convergence of
the proposed algorithm can be addressed by using the following stability
definition (see [12] for details).

Definition 2. A coalition partition Π = {S1, . . . ,Sl} is Nash-stable if ∀i ∈
N , SΠ(i) ≽i Sk ∪ {i} for all Sk ∈ Π ∪ ∅.

It is worth noting that Nash-stability captures the notion of stability
with respect to movements of single NOs (i.e., no NO has an incentive to
unilaterally deviate).

For the hedonic coalition formation phase of the proposed algorithm, we
can prove the following result:

Proposition 2 (Nash-stability). Any final partition Πf resulting from Algo-
rithm 1 is Nash-stable.

Proof. We prove it by contradiction. Assume that the final partition Πf is
not Nash-stable. Consequently, there exists a NO i ∈ N and a coalition
Sk ∈ Πf ∪∅ such that Sk ∪{i} ≻i SΠf

(i). Then, NO i will perform a hedonic
shift operation and hence Πf → Π′

f , where Π′
f is the new coalition partition

resulting after the hedonic shift operation. This contradicts the assumption
that Πf is the final outcome of our algorithm.
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It is worth to point out that Nash-stability also implies the so called
individual-stability [12]. A partition Π = {S1, . . . ,Sl} is individually-stable
if it does not exist a NO i ∈ N and a coalition Sk ∈ Π ∪ ∅ such that
Sk ∪ {i} ≻i SΠ(i) and Sk ∪ {i} ≽j Sk for all j ∈ Sk, i.e., if no NO can
benefit by moving from its coalition to another existing (possibly empty)
coalition while not making the members of that coalition worse of. Thus, we
can conclude that our algorithm always converges to a partition Πf which is
both Nash-stable and individually stable.

Given the NP-completeness of the problem of finding a Nash-stable par-
tition [46], the computational cost of our algorithm can become quite large
when the number of NOs increases (indeed, in the worst case, it is bounded
by the N th Bell number, where N is the number of NOs). In these cases,
we can reduce the computational cost by having each NO check for the
Nash-stability of its current coalition partition (this check takes polynomial
time [46]), and execute the algorithm only if Nash-stability no longer holds
true, so that the number of executions of the algorithm may significantly
reduce.

4.3. Computation of the Optimal Coalition Load Cost

The algorithm presented in the previous section requires the computation
of the value v(S) of any coalition S that each NO i may possibly join, that in
turn requires the computations of coalition load cost rate Q(US) (see Eq. (9)).
To compute Q(US), we need in turn to determine, for the coalition S, the
optimal data rate allocation (i.e., the allocation of users that minimizes the
costs of NOs).

To this end, we define an Integer Linear Program (ILP) modeling the
problem of allocating a set US of users onto a set S of BSs so that the overall
cost rates of NOs in S are minimized. The resulting optimization model is
shown in Figure 2, where we use the same notation introduced in Section 3
(however, to ease readability, we denote with U the user set, i.e., we drop the
dependence from S).

In the optimization model we use the following decision variables:

• ui,j, which is a binary variable that is equal to 1 if user j is allocated
to BS i;

• mi,j, which is an integer variable representing the number of subchan-
nels allocated to user j by BS i;
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minimize Q(U) =
∑
i∈S

[
biWi

(∑
j∈U

ui,j

)
Ei +

∑
j∈U

Li,j

(
di,j

)]
(15a)

subject to∑
i∈S

ui,j = 1, j ∈ U , (15b)∑
j∈U

ui,j ≤ bi|U|, i ∈ S, (15c)

∑
j∈U

di,j ≤ biCi, i ∈ S, (15d)

∑
j∈U

mi,j ≤
⌊ Bi

Bi
sub

⌋
, i ∈ S, (15e)

mi,j ≤ ui,j

⌊ Bi

Bi
sub

⌋
, i ∈ S, j ∈ U , (15f)

mi,j ∈ N, i ∈ S, j ∈ U , (15g)

ui,j ∈ {0, 1}, i ∈ S, j ∈ U , (15h)

bi ∈ {0, 1}, i ∈ S. (15i)

Figure 2: The user-to-BS allocation optimization model
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• bi, which is a binary variable that is equal to 1 if BS i is switched on.

The objective functionQ
(
U
)
(see Eq. (15a)) represents the cost rates incurred

by the coalition of NOs for serving users in U , and is defined as the sum of
the costs due to the power absorbed by the BSs that are switched-on, and of
those due to QoS violations (if any).

The resulting optimal user allocation is bound to the following con-
straints:

• Eq. (15b) imposes that each user is served by exactly one BS;

• Eq. (15c) states that only BSs that are switched on can serve users;
the purpose of this constraint is to avoid that a user is served by a BS
that will be switched off;

• Eq. (15d) ensures that the capacity of a switched-on BS is not exceeded;

• Eq. (15e) imposes that the total number of available subchannels of a
switched-on BS is not exceeded;

• Eq. (15f) ensures that subchannels of a switched-on BS are allocated
only to users served by the same BS;

• Eq. (15g), Eq. (15h), and Eq. (15i) define the domain of decision vari-
ables mi,j, ui,j, and bi, respectively.

The above ILP problem is a variant of the well-known bin packing prob-
lem and thus, in general, solving it is NP-Hard [47]. Several approximation
algorithms, which do not guarantee an optimal solution for every instance,
but attempt to find a near-optimal solution within polynomial time exists in
literature [48]. In this paper, however, we focus on exact algorithms as the
size of the problem instances we consider is small enough (but still realistic)
to obtain an optimal solution in the order of tens of seconds (we provide
more details in Section 5, where we discuss our experiments), making it com-
putationally feasible in practice.

As can be noted from the definition of Q
(
U
)
, the solution of the optimiza-

tion problem at a specif instant of time requires the knowledge of the number
of users present in each BS i at that time. In general, however, such number
is not constant, but it varies over time according to the corresponding load
profile ℓi(t).
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Figure 3: Discretization of the load profile of Figure 1 with a time-horizon of 1 day and
∆t = 1 hour (vertical segments represent subintervals bounds and horizontal segments are
peaks inside subintervals)

In order to compute the number of users of BS i at time t from ℓi, we pro-
ceed as follows: first, as typically done in the literature [32, 18], we discretize
ℓi(t) by splitting the time axis into uniform disjoint sub-intervals [τ, τ+∆t) of
length ∆t time units (where ∆t is the discretization step). Then, we approx-
imate the (normalized) load of each subinterval as a constant value set to the
peak load of that subinterval. For instance, the result of the discretization
of the load profile of Figure 1 with ∆t of 1 hour is depicted in Figure 3. In
this figure, the time-horizon of one day (i.e., 24 hours) is split into several
subintervals [τ, τ +∆t) of length ∆t = 1 hour, where τ = 0, 1, . . . , 23. Each
subinterval is delimited by vertical dotted segments, while every horizontal
solid red segment is the peak inside each subinterval, that we will use as an
approximation of the (normalized) load inside the subinterval.

5. Experimental Evaluation

In order to assess the ability of our algorithm of increasing the net profits
for a population of NOs, we perform a set of experiments, using a C++ ad-
hoc simulator we develop for this purpose, in which we consider a variety of
realistic scenarios and real-world traffic data.

In these experiments we vary, in a controlled way, various input param-
eters of the algorithm, namely the cost of energy, the QoS requirements of
users, and the discretization step of the traffic profile curve, so that we are
able to assess the impact of each one of them on the performance of the
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Table 1: Experimental settings

Parameter Value

Channel bandwidth of BS i (Bi) 20 MHz
Channel capacity (Ci) 120 Mbps (considering QAM-64)
Sub-channel bandwidth (Bi

sub) 180 kHz (as in LTE [27])
Transmission power (Ti) 20 W
Noise power (N0) −104.5 dBm (see [49])
Transmission frequency (Fi) 2600 MHz
Height of BS i (Hb

i ) 15 m (see [32, 18]
Height of user terminal j (Hu

j ) 1.5 m (see [32, 18])
Power consumption model αi = 0.551 kW, βi = 0.00146 kW (see [26])
Coalition cost (Ki) 0.01 $/hour

algorithm. In all these scenarios, the algorithm is executed by all NOs at the
beginning of each discretization interval.

The results we collect, discussed in this section, demonstrate the ability
of our algorithm of yielding significant increases of the net profit achieved by
a set of NOs in all the scenarios we consider.

5.1. Experimental Setup

We consider a system configuration comprising five NOs, each one owning
a single BS, placed on a 1km × 1km square area in a pentagonal layout,
with each BS placed at 250 meters from the center of the area. Without
loss of generality, we assume that all the BSs are identical, and that are
characterized by the values of their parameters that are reported in Table 1.

We assume that each BS has its own load profile, that differs from those
of the other ones. The load profiles we consider in our experiments, reported
in Figs. 4a–4e, have been obtained from real-world data [50] consisting of
normalized cellular traffic collected, with a resolution of 30 minutes, in a
metropolitan urban area during one week, and been already used in similar
studies [22, 51]. Specifically, each load profile curve ℓi(·) of Figure 4 has been
obtained by fitting a periodic cubic spline to the traffic data related to BS i.
We characterize each load profile by computing the overall load during the
entire week (corresponding to 168 hours) as Γi =

∫ 168

0
ℓi(t) dt, ∀i ∈ {1, . . . , 5},

as well as the average hourly load as ℓ̄i = Γi/168, that are reported in Table 2
(the upper integration limit corresponds to the number of hours in a week).
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(a) Traffic load curve for BS 1
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(b) Traffic load curve for BS 2
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(c) Traffic load curve for BS 3
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(d) Traffic load curve for BS 4
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(e) Traffic load curve for BS 5

Figure 4: Traffic load curves for the BSs of the experimental scenarios.

Table 2: Load characteristics of each BS i ∈ N .

BS Γi ℓ̄i

1 53.07 0.316
2 37.17 0.221
3 23.95 0.143
4 40.26 0.240
5 36.59 0.218
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In our experiments, the optimization problem used to allocate users to
BSs is solved by means of the IBM ILOG CPLEX Optimizer [52] which, to
solve ILPs, employs a tuned and parallelized variant of the branch and cut
algorithm [53] together with some specifically designed (IBM proprietary and
trade-secret) heuristics, that contribute to lower the convergence time. In the
worst case, corresponding to scenarios featuring 150 users per BS (that is, an
overall number of 750 users), the solution of the above problem took about
36 sec. on an Intel i7 3GHz processor with 8 GB RAM.

5.2. Experimental Results

To evaluate the performance of our algorithm, we compute the relative
net profit increment RP i attained by each NO i, that is defined as:

RP i =
A∑

k=1

x̂i(S(k))

P
(k)
i

− 1

where A = ⌈168/∆t⌉ is the number of executions of the algorithm, while

x̂i(S(k)) and P
(k)
i correspond to the payoff received by NO i at the k-th algo-

rithm execution and the profit it would attain if it worked alone, respectively.
The quantity x̂i(S(k)) is the profit estimated by taking into account the ac-
tual and time-varying number of users of NO i (which, in general, may differ
from xi(S(k)) – see Eq. (11) – which is instead computed by assuming that
in each interval there will always be the maximum number of users indicated
by the traffic profile).

To compute these profits, we proceed by splitting the traffic load curve
of each BS in 1-minute intervals (micro-interval), by computing the profit in
each interval, and by summing these values to obtain the weekly profit. In
this way, we can follow more closely the actual evolution of traffic with re-
spect to using wider intervals (macro-intervals) corresponding to the various
executions of the coalition formation algorithm.

More specifically, denoting as nmax
i,s the maximum number of users of NO

i in micro-interval s, in each micro-interval we proceed differently for the
computation of P

(k)
i and of x̂i(S(k)), that is we first place these users on the

plane, and then:

• to compute P
(k)
i , we use Eq. (7) by setting ni to nmax

i,s ;

• to compute x̂i(S(k)), we allocate the sub-channels of BS i (proportion-
ally to the desired data rate of each user) until either all the nmax

i,s
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users have been accommodated, or its capacity has been saturated. In
the latter case, exceeding users are proportionally distributed to the
other BSs of the same coalition according to the allocation computed
for the corresponding macro-interval. Finally, we compute the val-
ues of the various coalitions according to Eq. (9). At the end of each
macro-interval, we sum up these values and we divide the resulting total
according to the Shapley values xi(S(k)) computed for that interval.

Note that, in general, several Nash-stable coalitions may result at each
algorithm execution; in these cases, xi(S(k)) (and, hence, x̂i(S(k))) is com-
puted as the average of the payoffs yielded by all the Nash-stable coalitions
that may form.

To explain the results, we also compute, for each NO i, two additional
quantities, namely:

• ON i, the ratio of the number of times that BS i is switched on af-
ter an execution of the algorithm over the total number of algorithm
executions;

• XLi, the difference between the ratio of the total number of users served
by BS i when working in a coalition over the total number of users it
would serve if it was working alone, and 1; this quantity corresponds
to the relative deviation of load experienced by BS i with respect to
the case it works alone, where a positive (negative) value represents
an increment (decrement) of load with respect to the case of working
alone.

As defined by Eq. (3), the data rate achieved by user j depends on the
value of the path loss PLi,j it experiences when connected to BS i, as well
as from the power of interference generated by the other BSs in the system.
Both factors depend on the distance of j from these BSs, that in turn depend
on the position taken by j on the area covered by them when it joins the
system.

To take into account the effects of these positions, we run each experiment
several times. In each run, we randomly and uniformly place users in the
area, so that the path loss values (and, consequently, the achieved data rate)
can be computed accordingly, and we collect the performance measures of
interests. For each of these measures, we compute the average value, as well
as its 95% confidence interval at a relative precision of 2% or better, by
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Table 3: Electricity cost in the selected experimental scenarios.

Scenario Electricity Cost ($/kWh)

NO 1 NO 2 NO 3 NO 4 NO 5

1 0.12 0.12 0.12 0.12 0.12
2 0.24 0.24 0.24 0.24 0.24
3 0.12 0.24 0.24 0.12 0.12
4 0.12 0.12 0.12 0.24 0.24

continuing to carry out different runs until the desired interval precision is
achieved.

In the rest of this section, we discuss the impact of the electricity price
first (Section 5.2.1), then we consider the effects of the heterogeneity of user
requirements (Section 5.2.2), we evaluate the impact of the discretization step
width (Section 5.2.3), we present the formed stable partitions of a specific
experiment (Section 5.2.4), and finally we conclude with a discussion of our
findings (Section 5.2.5).

5.2.1. Impact of Energy Costs

The energy cost Ei obviously impacts on the net profit achieved by an
NO i. Intuitively, if energy is expensive, NO i may find it profitable to offload
its users to other NOs, so that it can switch off its BS. Conversely, if energy
is inexpensive, it may try to attract users from other NOs.

To quantify the effects of energy price on the net profits achieved by NOs,
we carry out experiments on a set of scenarios obtained by setting Ei to either
Elo = 0.12 $/kWh (which is a typical value of electricity cost in the US [54])
or Ehi = 2 · Elo = 0.24 $/kWh. Because of space constraints, we discuss
only the results corresponding to four of the 32 (i.e., 25) distinct scenarios
resulting from the assignment of each cost value to each one of the NOs, as
indicated in Table 3.

These four scenarios have been selected since they can be considered
representative of two opposite situations that may occur in practice: the
first two scenarios (1 and 2) correspond indeed to standard situations where
all BSs, being located in the same urban area, pay the same energy price,
while the last two scenarios (3 and 4) correspond to possible near-future
scenarios where different BSs can draw energy produced by either fossil fuel or
renewable sources [5] and, as such, pay different prices. In these scenarios, all
users require the same minimum downlink bandwidth (i.e.,Dj = 2Mbps) and
generate the same revenue rate Rj = 0.07 $/hour (this value is based on the 1
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Table 4: Impact of energy price: net profit increments of the various NOs.

Scenario Net Profit Increment (%)

NO 1 NO 2 NO 3 NO 4 NO 5

1 151.90 173.30 264.60 176.28 178.50
2 200.37 248.07 497.97 251.07 260.57
3 149.95 252.50 502.12 174.07 175.23
4 150.37 170.52 263.06 254.91 265.21

Table 5: Impact of energy price: ON and XL values (in %) for the various NO.

Scenario NO 1 NO 2 NO 3 NO 4 NO 5
ON 1 XL1 ON 2 XL2 ON 3 XL3 ON 4 XL4 ON 5 XL5

1 85.49 −30.12 86.31 −4.99 83.78 40.17 85.49 27.82 83.63 −9.03
2 81.62 −28.81 80.06 −3.13 80.58 41.88 80.65 20.59 79.61 −6.01
3 89.51 −22.28 77.98 −16.32 76.41 29.88 88.76 30.00 84.38 −4.30
4 89.21 −22.48 86.01 36.60 87.95 48.15 77.38 −19.18 75.67 −16.02

GB/month Share-Everything plan from Verizon Wireless [55]). Furthermore,
we assume that each NO executes an instance of Algorithm 1 at every hour
(i.e., ∆t = 1 hour).

Table 4 shows the net profit increment RP i for each NO i, while Table 5
shows the corresponding ON i and XLi values. As can be observed from Ta-
ble 4, despite RP may take different values according to the specific scenario,
each NO is always able to achieve in every scenario a significant net profit
increment, with a minimum of at least 150% and a maximum greater than
260%.

Let us start with scenarios 1 and 2. As can be seen from the corresponding
rows in Table 4, NO 1 and NO 3 achieve the lowest and the highest net profit
increase, respectively, in both scenarios. The corresponding ON i and XLi

values, together with the load profile characteristics of each BS, provide an
explanation of these facts. Indeed, while the BS of NO 3 is able to serve
a significant number of users of other NOs (XL3 is 40% or greater), thus
increasing its revenues at the expense of a small increment of the energy
costs, NO 1 has to offload some of its users (XL1 is −28% or smaller) in
order to pay fewer penalties for QoS violations. This, in turn, is due to the
characteristics of the respective load profiles: while the load of BS of NO 3 is
low most of the times (the average peak load is nearly 35% and the maximum
one does not exceed 50%), the BS of NO 1 is always near to saturation (the
average peak load is approximately 82%).
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Table 6: Minimum downlink data rates and revenue rates for the different user classes.
User Class Dj (Mbps) Traffic Type Rj ($/hour)

Base 0.0122 Voice 0.0175
Standard 0.384 3GPP 0.035
Premium 2 HSPA 0.07

This phenomenon occurs also in scenarios 3 and 4, where we observe that
the largest net profit increases are achieved by the NOs that are associated
with the highest energy costs (NOs 2 and 3 in scenario 3, and NO 4 and 5 in
scenario 4). As indicated by Table 5, these NOs, on the one hand, are indeed
able to offload some of their users to other BSs (such a frequency depends on
the respective load profiles) so that they can switch off their BSs (both ON 2

and ON 3 in scenario 3 and ON 4 and ON 5 in scenario 4 are less than 78%),
and the cost savings they achieve are significant given their higher energy
costs. On the other hand, these NOs are also capable to serve more users
of other NOs (again, this depends on traffic load characteristics), and thus
to limit, as much as possible, the number of times these other NOs incur in
QoS violations. Again, as in scenarios 1 and 2, NO 1 gets the lower profit
increase, since it has to offload some of its users to avoid to pay too many QoS
penalties. A special note is for NO 3 in scenario 4 for which, despite being
associated to a lower energy cost, the net profit increases too as, similarly to
scenarios 1 and 2, it is able to serve users of other NOs.

5.2.2. Impact of User Heterogeneity

In the previous set of experiments, all the users were assumed to request
the same minimum downlink data rate. However, in realistic settings, it
is reasonable to expect that users with different requirements and revenues
co-exist in the same area.

In order to study the impact of the composition of the user population on
the ability of our algorithm to yield satisfactory results, we carry out a set of
experiments in which, for each one of the scenarios listed in Table 3, users are
partitioned in equal proportions into three classes, each one characterized by
a different values of the minimum downlink data rate and revenue rate (as
reported in Table 6). As in Section 5.2.1, we assume that each NO executes
an instance of Algorithm 1 at every hour (i.e., ∆t = 1 hour).

Table 7 shows the net profit increment RPi for each NO i. While the
composition of user population has no appreciable effects on the choices taken
by individual NOs, it has an evident effect on the net profit increase attained
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Table 7: Impact of user heterogeneity: net profit increments of the varios NOs.

Scenario Net Profit Increment (%)

NO 1 NO 2 NO 3 NO 4 NO 5

1 90.55 96.21 148.36 97.56 101.06
2 106.75 116.48 199.90 118.46 124.25
3 88.53 117.95 199.47 94.69 98.00
4 88.13 92.99 145.48 119.22 125.28

by each NO. As can be indeed seen from Table 7, the RP values are lower than
those achieved by each NO in the same scenario when users are homogeneous
(reported in Table 4). This is not unexpected, given the lower average revenue
rate brought by each user (0.035 $/hour versus 0.07 $/hour). However, we
also note that these increases remain significant.

Furthermore, as for the case of homogeneous users, we observe that in
scenarios 1 and 2, the lowest and the highest net profit increases are achieved
by NO 1 (i.e., the NO with the heaviest loaded BS) and NO 3 (i.e., the NO
with the lightest loaded BS), respectively, while, in scenarios 3 and 4, the
largest net profit increments are reached by the NOs that are associated
with the highest energy costs (i.e., NOs 2 and 3 in scenario 3, and NOs 4
and 5 in scenario 4), and by the NO with the lightest loaded BS (i.e., NO
3 in both scenarios). The explanation of this fact is the same given for the
homogeneous users case, so we do not repeat it here.

5.2.3. Impact of ∆t

As discussed in the previous sections, changes in the number and the
position of users, as well as in their QoS requirements, may make an existing
coalition partition less profitable. For instance, this may happen when a BS
that is switched off (because of lack of users to serve) experiences an increase
in the number of users so that its switching on would result in a profit increase
(the opposite may be true for a switched on BS that experiences a reduction
in its number of users). Therefore, to make NOs able to track opportunities
for profit increases, the coalition partition must be recomputed frequently
enough.

A question that naturally arises is how frequently this re-computation
must take place, that is determined by the width ∆t of the discretization
interval (the larger ∆t, the smaller the frequency of the re-computation of
the coalition partition). Choosing a too large value of ∆t, however, may
make each BS unable to promptly react to changes in its traffic load. In
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each discretization interval, the optimization problem of Section 4.3 is solved
by assuming that the number of users served by each BS i is constant and
set to the maximum number nmax

i of users present in that interval. This
approximation, however, could lead a BS i to remain switched on even if only
a small part of that interval features nmax

i users. If, conversely, a smaller ∆t
value is chosen, then variations in traffic pattern may be captured with more
precision.

To study the impact of the value of ∆t on the profit earned by each
BS, as well as on the error induced by the discretization (that, as already
said, affects the decision of NOs), we carry out experiments in which we
progressively increase its value, and we measure the difference between the
estimated profit of each BS (i.e., the profit that would be earned in each
interval the BS i served nmax

i users for the whole interval), and the actual
profit, that is computed by taking into account only the actual number of
users as it varies within that interval.

More precisely, for each NO i, we compute the relative net profit estima-
tion error PE i, that is defined as:

PE i =
A∑

k=1

xi(S(k))

x̂i(S(k))
− 1

where A = ⌈168/∆t⌉ is the number of executions of the algorithm, while
xi(S(k)) and x̂i(S(k)) are the estimated and actual profit received by NO i
at the k-th algorithm execution, respectively (the computation of x̂i(S(k)) is
discussed at the beginning of Section 5.2).

Because of space constraints, here we discuss only the results obtained for
∆t = 2, 4, 8, 12 hours for the same scenarios and user population considered
in Section 5.2.1, that are reported in Figure 5. The figure shows for each
value of ∆t (in the x-axis) the corresponding PE values of the various NOs
(denoted as PE (∆t), in the y-axis). Also, for the sake of comparability, in
the same figure, we report the PE values obtained for ∆t = 1 hour.

As can be seen from Figure 5, the larger ∆t, the higher the net profit es-
timation error attained by each NO for a given scenario with respect to when
∆t = 1. Therefore, in order to reduce the error caused by the discretization
step, the coalition formation algorithm should be executed with a frequency
suitable to track the variations of the traffic load curve. For the traffic load
curves considered in this paper, that are characterized by relatively high vari-
ations, ∆t = 1 can be considered a suitable value (the PE values range in the
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Figure 5: Impact of ∆t: PE values for the various NOs and for ∆t = 1, 2, 4, 8, 12.
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Table 8: The coalitions formed in a run of the experiments of Section 5.2.1 for Scenario 1.

Day 1 Day 2 Day 3 Day 4
Hour Partitions Hour Partitions Hour Partitions Hour Partitions

0− 3 {{1, 2, 3, 4, 5}} 0− 3 {{1, 2, 3, 4, 5}} 0 {{1, 2, 3, 4, 5}} 0− 2 {{1, 2, 3, 4, 5}}
4 {{1, 4}, {2, 3, 5}} 4 {{1, 2, 4}, {3, 5}} 1 {{1, 3, 4}, {2, 5}} 3 {{1, 2, 3}, {4, 5}}

5− 23 {{1, 2, 3, 4, 5}} 5− 23 {{1, 2, 3, 4, 5}} 2− 7 {{1, 2, 3, 4, 5}} 4 {{3, 4}, {1, 2, 5}}
8 {{1, 2, 4}, {3, 5}} 5 {{1, 2, 4}, {3, 5}}

9− 23 {{1, 2, 3, 4, 5}} 6− 22 {{1, 2, 3, 4, 5}}
23 {{1, 4}, {2, 3, 5}}

Day 5 Day 6 Day 7
Hour Partitions Hour Partitions Hour Partitions

0− 2 {{1, 2, 3, 4, 5}} 0− 1 {{1, 2, 3, 4, 5}} 0 {{1, 2, 3, 4, 5}}
3 {{1, 2, 3}, {4, 5}} 2 {{1, 3, 4}, {2, 5}} 1 {{2, 4}, {1, 3, 5}}

4− 5 {{1, 2, 3, 4, 5}} 3− 4 {{1, 2, 3, 4, 5}} 2− 4 {{1, 2, 3, 4, 5}}
6 {{1, 2}, {3, 4, 5}} 5 {{1, 4}, {2, 3, 5}} 5 {{2}, {1, 3, 4, 5}}

7− 23 {{1, 2, 3, 4, 5}} 6− 23 {{1, 2, 3, 4, 5}} 6− 23 {{1, 2, 3, 4, 5}}

10% − 20% range), while for higher ∆t values, we observed steep increases
and much larger values.

5.2.4. Example of Coalition Formation

To illustrate how our proposed solution works and what coalition struc-
tures may form with it, we present in Table 8 the evolution of the stable
partitions that formed in a single run of the experiment of Section 5.2.1
for scenario 1, where Algorithm 1 is run at the beginning of every hour for
the whole considered week. Each column of Table 8 contains the partitions
formed in a specific day of the week under examination, while each row shows
the stable partition that formed at the beginning of a ∆t = 1 hour length
interval at a specific time of the day (to improve readability, we group in
a single row contiguous hours of a day with the same coalition structure).
As can be observed from Table 8, there are situations where coalitions with
very different structure form. For instance, at Day 1 the grand coalition
{{1, 2, 3, 4, 5}} always forms, but in the time interval [4, 5) where NOs find
more profitable to join in two separate coalitions such that NO 1 and NO 2
are members of the first coalition {1, 4}, and the remaining NOs are members
of the second coalition {2, 3, 5}.

5.2.5. Discussion

From the results obtained in the experimental evaluation we can conclude
that:
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• energy costs greatly influence the coalition formation and the net profit
increments achieved by NOs;

• NOs with higher energy costs are more motivated to join a coalition
since they can offload their users to NOs with lower energy costs, thus
allowing to switch off their BSs and hence to achieve a higher net profit
increment;

• NOs with heavier load are motivated to join a coalition as well, since
they can offload their users to other NOs, thus limiting their QoS penal-
ties;

• NOs with lighter load are motivated to join a coalition too, since they
can host users of other NOs, thus amortizing their energy costs;

• the composition of user population has no effect on the choices made
by the various NOs, while – if the revenue associated with each user
is directly proportional to its minimum downlink data rate – it has a
strong impact on the net profit increment;

• the discretization step ∆t has a significant impact on the coalition
formation process, as the larger its value, the higher the error induced
by the discretization step for estimating the net profit.

6. Conclusion and Future Works

This paper presents a novel dynamic cooperation scheme among a group
of cellular NOs to achieve profit maximization. We propose a cooperative
game-theoretic framework to study the problem of forming stable coalitions
among NOs, and a mathematical optimization model to allocate users to a
set of BSs, in order to reduce NO costs and, at the same time, to meet user
QoS.

Our solution adopts a distributed approach in which the best solution
arises without the need to synchronize the various NOs or to resort to a
trusted third party, and such that no NO can benefit by moving from its
coalition to another (possibly empty) one.

In the proposed scheme, we model the cooperation among the NOs as a
coalition game with transferable utility and we devise a hedonic shift algo-
rithm to form stable coalitions. With our algorithm, each NO autonomously
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and selfishly decides whether to leave the current coalition to join a differ-
ent one according to his preference, meanwhile improving its perceived net
profit. We prove that the proposed algorithm converges to a Nash-stable
partition which determines the resulting coalition structure. Our algorithm
can be readily implemented in a distributed fashion, given that each NO can
act independently and asynchronously from any other NO in the system.
Furthermore, the asynchronicity of our algorithm makes it able to adapt to
environmental changes (like new user arrivals).

To prove the effectiveness of our approach, we perform a thorough numer-
ical evaluation by means of trace-based simulation, using realistic scenarios
and real-world traffic data. To evaluate the performance of our algorithm,
we vary, in a controlled way, the values of its input parameters, like the en-
ergy cost and the user heterogeneity. The results we obtain show that our
algorithm allows a population of NOs to significantly improve their profits.

The future developments of this research is following several directions.
Firstly, we want to extend our work to include cellular networks sparsely
deployed in wider geographical areas. To do so, we will have to take into
account several issues, like the network coverage problem, whereby a BS can
be switched off only if a group of neighboring BSs can cover the area it serves.

As as second research direction, we want to explore different variants of
our algorithm, especially suited for large cellular networks. Specifically, when
the number of BSs increases, the time to convergence of our algorithm may
be too long for practical uses, especially for small values of the discretization
step. In these cases, it would be better to renounce to the quality of the
obtained solution in favor of a more readily available solution. Our current
algorithm always provides the best solution (i.e., a Nash-stable partition),
but at the cost of visiting, in the worst case, all possible coalitions. To this
end, we want to design an anytime version of our algorithm (i.e., an algorithm
which can return a – possibly suboptimal – solution any time) and we want
to compare its performance with the current one.

Finally, we would like to extend our work to include the cooperation
between BSs and their users, in order to improve the energy reduction of
BSs and the quality of experience of connected users.
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[11] J. Drèze, J. Greenberg, Hedonic coalitions: Optimality and stability,
Econometrica 48 (1980) 987–1003.

35



[12] A. Bogomolnaia, M. Jackson, The Stability of Hedonic Coalition Struc-
tures, Game Econ Behav 38 (2002) 201–230.

[13] M. Ajmone Marsan, L. Chiaraviglio, D. Ciullo, M. Meo, Optimal energy
savings in cellular access networks, in: Proc. of the IEEE Int. Conference
on Communications Workshops (ICC), 2009, pp. 1–5.

[14] H. Ghazzai, E. Yaacoub, M. Alouini, A. Abu-Dayya, Optimized
green operation of LTE networks in the presence of multiple electricity
providers, in: Proc. of the IEEE Globecom Workshops (GC Wkshps),
2012, pp. 664–669.

[15] F. Han, Z. S. Z., K. Ray Liu, Energy-efficient base-station cooperative
operation with guaranteed QoS, IEEE Trans Comm 61 (2013) 3505–
3517.

[16] C. Hasan, E. Altman, J.-M. Gorce, The coalitional switch-off game of
service providers, in: Proc. of the 9th IEEE Int. Conference on Wire-
less and Mobile Computing, Networking and Communications (WiMob),
2013.

[17] C.-C. Hsu, J. M. Chang, Z.-T. Chou, Z. Abichar, Optimizing spectrum-
energy efficiency in downlink cellular networks, IEEE Trans Mobile
Comput (2013). In press.
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