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Abstract

Background: Standard chemotherapy in unresectable biliary tract carcinoma (BTC) patients is based on
gemcitabine combined with platinum derivatives. However, primary or acquired resistance is inevitable and no
second-line chemotherapy is demonstrated to be effective. Thus, there is an urgent need to identify new alternative
(chemo)therapy approaches.

Methods: We evaluated the mechanism of action of ET-743 in preclinical models of BTC. Six BTC cell lines (TFK-1, EGI-1,
TGBC1, WITT, KMCH, HuH28), two primary cell cultures derived from BTC patients, the EGI-1 and a new established BTC
patient-derived xenografts, were used as preclinical models to investigate the anti-tumor activity of ET-743 in vitro and
in vivo. Gene expression profiling was also analyzed upon ET-743 treatment in in vivo models.

Results: We found that ET-743 inhibited cell growth of BTC cell lines and primary cultures (IC50 ranging from 0.37 to
3.08 nM) preferentially inducing apoptosis and activation of the complex DNA damage-repair proteins (p-ATM, p-p53
and p-Histone H2A.x) in vitro. In EGI-1 and patient-derived xenografts, ET-743 induced tumor growth delay and reduction
of vasculogenesis. In vivo ET-743 induced a deregulation of genes involved in cell adhesion, stress-related response, and
in pathways involved in cholangiocarcinogenesis, such as the IL-6, Sonic Hedgehog and Wnt signaling pathways.

Conclusions: These results suggest that ET-743 could represent an alternative chemotherapy for BTC treatment and
encourage the development of clinical trials in BTC patients resistant to standard chemotherapy.
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Background
Biliary tract carcinoma (BTC) is a particularly lethal
malignancy arising from the ductal epithelium of the
biliary tree, either within the liver or from the extrahepatic
bile ducts [1]. Most patients with BTC are diagnosed at ad-
vanced stages, and have a life expectancy of <12 months [2].
Chemotherapy is commonly used to improve patients’

outcome and to control tumor progression. Different
chemotherapeutic agents have been employed [3]; few
randomized trials have established the combination of
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gemcitabine (GEM) and platinum compounds to be the
standard of therapy for unresectable BTC patients [4-6].
In these studies, overall survival (OS) in the GEM and
platinum combination arm was of about 11 months. These
studies, therefore, demonstrated that there are very limited
possibilities for prolonging survival of BTC patients, and
that it is crucial to find novel therapeutic strategies for the
treatment of BTC patients.
Ecteinascidin-743 (ET-743), a compound isolated from

the marine tunicate Ecteinascidia turbinata [7,8] with a
potent cytotoxic activity against a variety of tumors in vitro
and in vivo [9,10], has been approved for treatment of soft-
tissue sarcoma and ovarian cancer [11,12]. Its mechanism
of action is linked to binding to the minor groove of
DNA and to a variety of modulatory effects on the tumor
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microenvironment, including changes in the production
of several inflammatory mediators like the chemokines
CCL2 and CXCL8, the cytokine IL-6 and the angiogenic
factor VEGF [13]. Chronic inflammation contributes to
cancerogenesis and disease progression in different types
of solid tumors [14,15]. Tumor-associated macrophages
(TAMs) represent the major class of immune cells within
the tumor microenvironment [16] and have been shown
to promote tumor proliferation, increase invasiveness and
mitigate T cell-mediated cytotoxic antitumor responses
[17-19]. They are regarded as potential targets in antican-
cer therapies and, in this context, ET-743 may represent a
suitable tool to overcome myelomonocytic cell-mediated
exacerbation of the malignant phenotype and immune
suppression [20]. In BTC the presence of TAM has been
documented and correlated with a worse prognosis [21]
but there are no preclinical data of ET-743 activity in
BTC. Literature reports only the anecdotal case of a BTC
patient involved in a phase I study who experienced a
complete metabolic response with ET-743 [22].
Here, we investigated the potential anti-tumor activity

of ET-743 and its effect on gene expression profiling in
human preclinical models of BTC.

Methods
Cell lines and patients
The extrahepatic cholangiocarcinoma (ECC) cell lines
TFK-1 and EGI-1, the intrahepatic cholangiocarcinoma
(ICC) cell line HuH28 and the gallbladder carcinoma
(GBC) cell line TGBC1 (Cell Bank, RIKEN Bioresource
Center Riken Cell Bank, Japan) were cultured in
RPMI 1640 containing 10% fetal bovine serum (FBS)
(all from Sigma–Aldrich, St. Louis, MO, USA), 100 U/mL
penicillin and 100 μg/mL streptomycin (P/S) (Life
Technologies Gathersburg, MD). The ECC WITT cells
and the ICC mixed to hepatocarcinoma KMCH cells
(provided by Dr. Andersen, Laboratory of Experimental
Carcinogenesis, National Institutes of Health, Bethesda,
Maryland), were cultured in DMEM (Sigma–Aldrich)
plus 10% FBS. The authentication of all the cell lines was
performed by using Cell_ID system (Promega, Corporation,
Madison, WI, USA) comparing their profiles with those
published on the DMSZ database. Human endothelial
cells Huvec were cultured on gelatin-coated plastic, in
Medium 199 plus 20% FBS, added of P/S, 50 μg/ml
of heparin (Sigma–Aldrich,) and 100 μg/ml of bovine
brain extract (Sigma–Aldrich).
Primary cell cultures were isolated from peritoneal

liquid obtained by paracentesis procedure from two
patients with ICC. They received the combination of
gemcitabine and oxaliplatin and progressed after 5 and
2 months, respectively. Only CK7/19 positive cells
were cultured in KODMEM/F12 (Life Technologies)
plus 10% FBS.
Biological material for the set-up of primary cell cultures
and patient derived xenograft (PDX or xenopatient) proto-
col were obtained from ICC patients who have signed the
informed consent, following institutional review board-
approved protocols “PROFILING Protocol, n° 001-IRCC-00
IIS-10” approved by Comitato Etico Interaziendale of A.
O.U. San Luigi Gonzaga, Orbassano, Torino, Italy). This
institutional study provides molecular genetic analysis,
set up of primary cultures and the creation of PDX
from tumor biological samples (primary tumor, metastasis,
tumor cells taken under paracentesis or thoracentesis
procedures, and blood) from patients with colorectal
cancer, prostate cancer, head and neck cancer, primary
tumors of the stomach, primary tumors of the liver and
biliary tract, glioblastoma, ovarian or primary tumors with
metastases, primary tumors of the lung, primary tumors
of the breast, rare cancers defined by incidence ≤ 5×106,
sarcomas and metastatic melanomas.

Drugs
ET-743 from PharmaMar (Pharma Mar, S.A., Madrid,
Spain) was dissolved in PBS at 1.3 mM for in vivo
experiments, and at a concentration of 1 μM in dimethyl
sulfoxide (DMSO) (Sigma-Aldrich) for in vitro experiments,
and stored at −20°C. For in vitro experiments, 0.001%
DMSO was added to ET-743-untreated cells.

Cell growth assay
Cells (3000/well) were seeded onto 96-well tissue culture
plates; after 24 hours they were treated with escalating
doses of ET-743 (0.078-10 nM) in appropriate culture
medium added of 10% FBS for another 72 hours. Cell
growth was evaluated with the Cell Titer-Glo® cell
viability assay (Promega). All tests were performed in
quadruplicate and repeated in three independent experi-
ments. IC50 values, dose of drug that inhibits 50% of
the cell growth compared with control calculated for
each cell line after 72 hours of drug treatment, was
calculated using the CalcuSyn software, based on the
Chou-Talalay method.

DNA content and apoptosis analysis
To determine the cell cycle status, 1×106 cells/well were
seeded onto six-well tissue culture plates for 24 hours, and
then treated with 5 nM ET-743 for an additional 48 hours.
Cells were then fixed in 70% ethanol at −20°C for 16 hours
followed by washing in PBS, resuspended in staining solu-
tion (50 μg/ml Propidium Iodide, PI +100 μg/ml RNaseA in
PBS) (Sigma–Aldrich) and overnight incubated at 4°C. For
apoptosis analysis, 1 × 105 cells were washed in Binding
Buffer (0.01 M Hepes, 0.15 M NaCl, 5 mM CaCl2), stained
with allophycocyanin (APC) conjugated AnnexinV/PI
(Bender MedSystems Wein, Austria) and incubated for
15 minutes at room temperature. DNA content and
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apoptosis level were determined by flow cytometry using
Cyan and Summit Research Software (Dako, Glostrup,
Denmark). Three independent experiments were performed.

Western blot
Cells were lysed in boiling buffer (10% SDS, 0.5 M
Tris–HCl pH 6.8) and centrifuged at 20,000×g for
30 minutes; 20 μg of protein were separated on 7.5-15%
SDS-PAGE and transferred onto 0.45-μm nitrocellulose
membranes (GE Healthcare Europe, Milan, Italy). Blots
were stained using standard procedures and signals were
revealed by a chemiluminescence reagent (Euroclone,
Milan, Italy). Horseradish peroxidase (HRP)-linked
secondary antibodies, anti-phospho-Ataxia Telengectasia
(Ser 1981) (ATM), anti-ATM, anti-phospho-p53, anti-p53
and anti-vinculin were from Cell Signaling Technology
(Beverly, USA); anti-phospho-Histone H2A.x (Ser 139)
was from Millipore (Temecula, CA) and anti-Histone
H2A.x was from GeneTex (San Antonio, Texas). Three
independent experiments were performed.

Antitumor activity of ET-743 in in vivo models of BTC
We investigated the antitumor activity of ET-743 in
preclinical in vivo models of BTC. For in vivo studies,
NOD (Non-Obese Diabetic)/Shi-SCID (severe combined
immunodeficient) female mice (4–6 weeks old) (Charles
River Laboratory) were maintained under sterile conditions
in micro-isolator cages at the animal facilities of the
IRCCS-Candiolo. All animal procedures were approved
by the Institutional Ethical Committee for Animal
Experimentation (Fondazione Piemontese per la Ricerca
sul Cancro) and by the Italian Ministry of Health.
In three independent experiments, 14 mice, either in

EGI-1-xenograft (5×106 cells/mouse subcutaneously
injected), or an ICC patient derived xenograft model [23],
here named CHC001PDX, were randomized to receive
intra venous (i.v.) weekly 0.15 mg/Kg ET-743 [24-26] or
drug vehicle (PBS) for 3 weeks (7 mice for arm of
treatment). Tumor size was measured weekly. Volumes
were calculated using the formula V = AxB2/2 (V = tumor
volume, A = largest diameter; B = smallest diameter).
Mean volumes of treated and untreated xenografts were
compared by two-way Anova, considering a p-value <0.05
(C.I. 95%) as statistically significant. Tumors were formalin-
fixed, paraffin-embedded (FFPE) for immunohistochemical
evaluations.

Immunohistochemistry on BTC in vivo models
For the evaluation of ET-743 effects on tumor xenografts,
tissue sections were stained with anti-Ki67/MIB1 (Dako)
and anti-CD31 (BD) antibodies, followed by incubation
with secondary antibody (Invitrogen). Ki67 expression was
evaluated in 10 fields for each section at 40x by ImageJ;
CD31 quantification was performed on 10 z-stack images
for each slide at 20× magnification by calculating the
positively stained vessel area. Expression values of
treated and untreated xenografts were compared by
two tailed unpaired T-test, assuming a p-value <0.05
(C.I. 95%) as statistically significant.

Microarray analysis
For gene expression profiling (GEP), total RNA was ex-
tracted by using TissueLyser LT (Qiagen) and then purified
by Absolutely RNA miRNA kit (Agilent Technologies),
following manufacturers’ protocols. Quantitative and
qualitative evaluation of total RNA was performed by
Nanodrop and BioAnalyzer respectively. For GEP analysis,
100 ng of total RNA was amplified and labeled using Low
Input Quick Amp Labeling Kit, one-color kit (Agilent
Technologies). Six hundred ng of labeled RNA were
hybridized on SurePrint G3 Human Gene Expression
8×60K v2 glass arrays. The experiment was carried out by
two technical replicates. Arrays were scanned and images
analyzed by the Feature Extraction Software from Agilent
Technologies (version 10.7), and raw data were then
processed using the Bioconductor package Limma (Linear
models for microarray analysis). Background correction
was performed with the normexp method with an offset
of 50, and quantile was used for the between-array
normalization. The empirical Bayes method was used to
compute a moderated t-statistics [27]. The threshold
for |log FC| of 0.58 and a P value <0.05 was used to
identify modulated transcripts. Microarray data were
deposited in Gene Expression Omnibus (GSE63043).

Results
ET-743 induces cell cycle perturbation, apoptosis, and
activation of proteins involved in DNA damage-repair in
biliary tract carcinoma cells in vitro
To investigate the capability of ET-743 to interfere with
cell growth, BTC cell lines and primary cultures were
treated with escalating doses (0.078-10 nM) of ET-743
for 72 hours. As indicated in Figure 1A, all the BTC cells
proved to be sensitive to ET-743 treatment, with an
IC50 ranging from 0.37 nM for ICP-2 cells to 3.08 nM
for ICP-3 cells. Interestingly, the most responsive BTC
cells, HuH28 and ICP-2, resulted resistant to gemcitabine
(Additional file 1: Table S1) [28]. Cell cycle status changes
and induction of apoptosis by ET-743 were also examined
on BTC cells after 48 hours of treatment. As shown
in Figure 1B and in Additional file 2: Figure S1, ET-743
caused a different distribution in cell cycle phases. The
common evidence was an increment in the subG0 phase
cell fraction, particularly evident in the KMCH cells,
indicating that the growth inhibition by ET-743 could be
mainly due to the induction of apoptotic cell death. A
more specific assay, in fact, indicated that, after 48 hours of
treatment, ET-743 induced apoptosis in the tested cell lines,
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Figure 1 Effect of ET-743 on proliferation, cell cycle and apoptosis in vitro. (A) ET-743 inhibits growth in vitro. Cells were treated with escalating
doses of ET-743 (0.078-10 nM) for 72 hours and cell growth was evaluated by Cell Titer-Glo® cell viability assay. IC50 values were calculated using the
CalcuSyn software, based on the Chou-Talalay method. ICP-2/3: primary cells derived from two intrahepatic cholangiocarcinoma (ICC) patients. TFK-1,
WITT and EGI-1: extrahepatic cholangiocarcinoma cell lines; HuH28 ICC cell line; TGBC1: gallbladder carcinoma cell line; KMCH: ICC mixed with
hepatocarcinoma cell line. The histograms represent the mean of IC50 values (bars represent SEM) from three independent experiments. Effect of
ET-743 on cell cycle (B) and on apoptosis (C) in vitro. BTC cell lines were treated with 5 nM of ET-743 for 48 h and subjected to cell cycle analysis and
apoptosis detection by AnnexinV/PI staining by flow cytometry as described in methods. The bars represent the average with SEM of percentage of
cells in each phase (B) and apoptotic cells (C) of three independent experiments. NT: no treated cells.

Peraldo-Neia et al. BMC Cancer 2014, 14:918 Page 5 of 10
http://www.biomedcentral.com/1471-2407/14/918
as shown in Figure 1C and in Additional file 3: Figure S2.
We investigated whether ET-743 was capable of activating
the complex DNA damage-repair protein machine. For this
purpose, BTC cells were treated for 24 hours with 5 nM
ET-743 and analyzed for the expression level of p-ATM,
p-p53, and p-Histone H2A.x. We observed that phosphor-
ylation of ATM, Histone H2A.x, and p53 was increased
upon ET-743 treatment (Additional file 4: Figure S3).

ET-743 reduces tumor growth and angiogenesis in in vivo
models of BTC
The antitumor activity of ET-743 was investigated in BTC
preclinical in vivo models, both on EGI-1 xenograft and in
Figure 2 In vivo antitumor activity of ET-743 in human BTC preclinica
measured: 0 (start of treatment), 7, 14, and 21 days after treatment with ET
bars: SEM). Seven mice for each arm of treatment in three independent ex
significant slow of tumor growth was shown in treated mice in both CHC0
from CHC001PDX (C) and EGI-1 xenograft (D) tumors treated with PBS or E
Ki67 positive cells was revealed in the ET-743-treated CHC001PDX group.
CHC001PDX. Each cohort of xenografts was randomized
to receive ET-743 (0.15 mg/Kg) or drug vehicle (PBS) i.v.
weekly for 3 weeks following the schedule of treatment of
D’Incalci and coll. in other human xenograft models (23).
Tumor size was measured weekly until the sacrifice of the
animals. One week after the third administration (day
21), a significant delay in tumor growth was observed
in CHC001PDX mice treated with ET-743 (p = 0.04,
Figure 2A). Similar results were obtained in EGI-1 xeno-
grafts (p = 0.001) (Figure 2B). Tumors harvested from
CHC001PDX and EGI-1 xenografts treated with either PBS
or ET-743 were subjected to immunohistochemical analysis
for Ki67/MIB1 proliferation index detection. A reduction in
l models. The graphs indicate the mean tumor volume (cm3) weekly
-743 (weekly 0.15 mg/Kg ET-743 or PBS in mice control cohort) (error
periments were used. One week after the last drug administration, a
01PDX (A) and EGI-1-xenografts (B). Ki67 staining of section derived
T-743 and relative quantification. A statistical significant reduction of



Peraldo-Neia et al. BMC Cancer 2014, 14:918 Page 6 of 10
http://www.biomedcentral.com/1471-2407/14/918
the number of proliferating cells in treated compared
to untreated CHC001PDX mice was revealed (Figure 2C;
Ki67: p = 0.05). In EGI-1 xenografts, we found a moderate
inhibition of proliferation in treated compared to un-
treated mice (Figure 2D). By contrast, we found a weakly
but not significant increase of apoptotic cells in vivo
(data not shown).
We observed that ET-743 treated-tumors were macro-

scopically less vascularized compared with the control
cohorts of mice. Thus, we verified the status of tumor
vasculature at the microscopic level. Tumor sections
from control and ET-743 treated CHC001PDX/EGI-1
xenografts were stained for the endothelial marker
CD31. A significant reduction in the number of tumor
blood vessels was observed in ET-743-treated mice
(Figure 3) (p < 0.0001 and p = 0.003 for EGI-1-xenograft
Figure 3 Representative CD31 expression (A) and quantification (B) o
A. Sections derived from treated and untreated (PBS) EGI-1 xenografts and
with anti-mouse CD31. B. CD31 quantification was performed on 10 z-stack im
stained vessel area.
and CHC001PDX respectively). Further, we evaluated the
in vitro effect of drug on human endothelial Huvec cells
after 72 hours of treatment with ET-743. A potent inhibi-
tory effect on proliferation was revealed, with an IC50 of
0.16 nM, comparable to those found in the most sensitive
BTC cells (data not shown).

ET-743 modulates genes involved in cell adhesion
processes, in stress response, and pathways involved in
cholangiocarcinogenesis
The impact of ET-743 on gene expression was assessed in
in vivo models. Upon ET-743 treatment, 1346 differentially
expressed probes were identified in CHC001PDX, 628
down-regulated and 718 up-regulated. In EGI-1 xenograft,
1195 differentially expressed probes were identified,
584 down-regulated and 611 up-regulated. Gene Ontology
n EGI-1 xenografts and CHC001PDX upon ET-743 treatment.
CHC001PDX were subjected to immunohistochemistry and stained
ages for each slide at 20x magnification by calculating the positively



Peraldo-Neia et al. BMC Cancer 2014, 14:918 Page 7 of 10
http://www.biomedcentral.com/1471-2407/14/918
analysis was performed on the two datasets (significant
p-value <0.01), considering up and down-regulated
genes separately. We identified at least 20 deregulated
biological processes upon ET-743 treatment in
CHC001PDX and EGI-1 xenografts (Additional file 5:
Table S2). Comparing the two models, we found an
overlap of differentially expressed probes upon ET-743
treatment, whose expression is able to subdivide treated
from untreated samples by an unsupervised hierarchical
clustering analysis (Figure 4). In particular there are
46 common down-regulated genes, 12 out of them
(i.e., CADM1, WISP1, CDH2, COL14A1, THY1, CDH11,
PSTPIP1, PCDHGA8, THBS2, CLDN2, NCAM1, AEBP1)
are involved in cell adhesion processes; further, CDH2/
N-Cadherin, a member of the trefoil factor (TFF) gene
family, the TFF3 gene, transforming growth factor-β1
(TGF-β1) and N-CAM1, have been previously associated
Figure 4 Gene expression analysis of the in vivo models after treatme
expressed probes distribution in the two in vivo models. B. Hierarchical clu
concordant manner by the treatment in both CHC001PDX/EGI-1 models, u
linkage method. Genes were median center and divided by standard devia
to BTC [29-34]. We also found 16 common up-regulated
genes, 5 out of them (HSPA6, OBFC2A, DNAJB4, IL6R,
AOX1) are involved in response to stress (Additional file 6:
Table S3). Results obtained by microarray experiments were
validated by quantitative RT-PCR for some selected deregu-
lated genes (CDH11, TFF3, C FAM5C, IL6R, KCMNA1)
(data not shown). Further, pathway analysis of both
datasets was performed using PathwayMiner software
(www.biorag.org); using three different databases, we found
12 common pathways significantly deregulated by ET-743
(Additional file 7: Table S4): among them the IL-6,
the Sonic Hedgehog and the Wnt signaling pathways
are involved in cholangiocarcinogenesis [35-38].

Discussion
ET-743 has been approved for treatment of ovarian
cancer and soft-tissue sarcoma with significant activity
nt with ET-743. A. Venn Diagramm showed the differentially
stering applied to the expression matrix of genes modulated in a
sing Euclidean distance as similarity metrics and average linkage as
tion. NT: not treated mice; TREATED: treated with ET-743.

http://www.biorag.org
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in liposarcomas and leiomyosarcomas, both as a sin-
gle agent and in combination with other drugs. Here,
we demonstrated that ET-743 has an antitumor activity
both in vitro and in vivo in preclinical models of human
BTC. We reported that ET-743 inhibits BTC in vitro cell
growth. Interestingly, the most responsive models to
ET-743 were represented by the HuH28 cell line, previously
demonstrated to be resistant to GEM in vitro [28] and
the ICP-2 primary tumor cell cultures derived from
GEMOX-resistant patient. Cell cycle studies on ET-743-
treated BTC cells, demonstrated that the chemotherapy
acts by modifying the cell cycle status, mostly inducing an
increase of sub-G0 phase cell fraction and triggering
apoptosis as preferential mechanism. It has been demon-
strated that ET-743 causes double-strand DNA damage,
detectable by Ser139 phosphorylation of the histone H2A.
x. This event triggers a cascade leading to the activation of
ATM, and consequently of p53 [39,40]. Although BTC cell
lines display different p53 mutational status, and in
particular TFK-1 cells are p53-deleted, we did not find any
significant correlation between response to ET-743
and p53 mutational status in these cell lines. This is
in agreement with a previous report [7].
In recent years, clinical validation of anticancer therapies

has benefited from in vivo models derived from the direct
implantation of human tumors in immunocompromized
mice. These preclinical models present the advantage to
recapitulate the biological characteristics of the primary
tumor and represent a useful tool for the study the biology
of tumors and the clinical response to new therapeutic
approaches [13,41,42]. To investigate the in vivo antitumor
activity of ET-743, we created BTC mouse xenograft
models. By using one of such PDX models and a conven-
tional xenograft from a BTC cell line (EGI-1), we showed
that three administrations of ET-743 are sufficient to cause
a significant delay of tumor growth compared to the
respective untreated control groups. Tumor growth delay
by ET-743 could be ascribed to a decrease in the number
of tumor proliferating cells, and a net decrease of tumor
vessel formation. We were not be able to demonstrate
induction of apoptosis in vivo suggesting that in vitro the
activity could be more directed to BTC cells, but
in vivo ET-743 is also directed against the tumor microenvir-
onment, in particular by decreasing the tumor-associated
macrophages and down-regulation of cytokines, chemokines
and angiogenic factors [16].
The transcriptional signature upon ET-743 treatment re-

vealed a panel of common deregulated genes. Among them,
12 cell adhesion related genes were down-regulated, while
5 stress response genes were up-regulated. Interestingly,
ET-743 reduced the expression of WISP1, which has been
associated to a more aggressive phenotype of BTC [43];
another down-regulated gene, TFF3, a member of the
trefoil factor (TFF) gene family, was demonstrated to
be associated with tumor progression in colorectal cancer
[30] and in BTC [44]. ET-743 also induced the down-
modulation of TGF-β1, highly expressed in BTC and con-
tributing to the angiogenic switch in preclinical models [32].
Moreover, Shimizu and coll. [31] provided evidence that
TGF- β1 supports BTC cell growth, indicating its potential
role as a molecular target. Further, we found a deregulation
of genes involved in the IL-6, the Sonic Hedgehog and the
Wnt signaling pathways, all demonstrated to be involved in
cholangiocarcinogenesis [35-38].
As ET-743 inhibited the neoplastic compartment but

also affected the tumor micro-environment, it is likely to
be more effective for those malignancies as BTC in which
chronic inflammation is known to contribute in tumor
progression by causing myelomonocitic infiltration and
producing chemokines and cytokines. However, these
aspects are more difficult to be reproduced in preclinical
models and need to be explored in a clinical setting.

Conclusions
In conclusion, our data suggest that ET-743 could be a
promising alternative chemotherapy for BTC treatment,
providing a strong rationale in the design of a clinical
trial to evaluate the activity of ET-743 in BTC patients
resistant to GEM-based therapeutic regimens.

Additional files

Additional file 1: Table S1. Comparison of IC50 values after treatment
with GEM or ET-743 on BTC cells.

Additional file 2: Figure S1. Representative histograms of distributions
of TFK-1, WITT, and KMCH on cell cycle phases. NT: not treated cells.

Additional file 3: Figure S2 Representative Dot plots analysis of
apoptosis induction in TGBC1, TFK-1, WITT, and KMCH cell lines.NT, not
treated; ET-743, treated with drug.

Additional file 4: Figure S3. ET-743 induces the phosphorylation of
proteins involved in DNA damage-repair in BTC cell lines. Cells were treated
with 5 nM of ET-743 for 24 hours followed by Western blot analysis to
investigate the phosphorylation status of ATM, p53, and H2A.x.

Additional file 5: Table S2. Gene Ontology of ET-743 treated vs
untreated in vivo models. A. CHC001PDX treated vs CHC001PDX untreated:
BPall pv < 0.01 - BG Agilent HumanGenome. B. EGI-1 xenograft-treated vs
EGI1 xenograft-untreated: BPall pv < 0.01 - BG Agilent HumanGenome.

Additional file 6: Table S3. Common deregulated (46 down-regulated
and 12 up-regulated) elements between CHC001PDX and EGI-1 xenograft.

Additional file 7: Table S4. Common deregulated pathways obtained
by PathwayMiner software, using three different databases. A p value
<0.05 was considered as statistically significant.
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