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A note on a superlinear indefinite Neumann problem

with multiple positive solutions

Alberto Boscaggin1

SISSA - ISAS, International School for Advanced Studies,
Via Bonomea 265, 34136 Trieste, Italy

Abstract

We prove the existence of three positive solutions for the Neumann problem
associated to u′′ + a(t)uγ+1 = 0, assuming that a(t) has two positive humps

and
∫ T

0
a−(t) dt is large enough. Actually, the result holds true for a more

general class of superlinear nonlinearities.
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1. Introduction

In the last two decades, a great interest has been devoted to the study of the
existence of positive solutions to the nonlinear Neumann problem

{
u′′ + a(t)g(u) = 0
u′(0) = u′(T ) = 0

(1.1)

and to the PDE’s analogous

{
∆u+ a(x)g(u) = 0 x ∈ Ω
∂u
∂ν

= 0 x ∈ ∂Ω,
(1.2)

being g : R+ := [0,+∞[→ R a continuous function such that g(0) = g′(0) =
0, g(s) > 0 for s > 0 and superlinear at infinity, in the sense that

lim
s→+∞

g(s)

s
= +∞.
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(Of course, in the PDE’s case a subcritical growth, with respect to Sobolev
embedding theorems, is usually assumed.)

Such a problem is quite particular and interesting, essentially for two
reasons. On one hand, the global condition g(s) > 0 for s > 0 implies that
no positive solutions can exist if a(·) is of constant sign. In fact, by the
divergence theorem,

0 = −
∫

∂Ω

∂u

∂ν
dσ = −

∫

Ω

∆u dx =

∫

Ω

a(x)g(u) dx.

Hence, problem (1.1)-(1.2) is indefinite in nature. On the other hand, the
local assumption g′(0) = 0 makes the problem resonant (near 0) with respect
to the principal eigenvalue λ0 = 0 of −∆ with Neumann boundary condition
and the interaction of the nonlinearity with such an eigenvalue plays typically
a crucial role for the existence of positive solutions.

In the model case g(s) = sγ+1 with γ > 0, problem (1.2) has been ex-
tensively studied, with variational methods strongly depending on the homo-
geneity of the nonlinear term, by Berestycki, Capuzzo Dolcetta and Nirenberg
[4], who proved the existence of at least one positive solution under the mean
value condition ∫

Ω

a(x) dx < 0. (1.3)

The same conclusion is achieved in [1, 3], for a more general superlinear
nonlinearity satisfying suitable extra assumptions at zero and at infinity. The
first paper is based on variational techniques again, while the second relies
on some a priori estimates, degree theory and bifurcation arguments. It is
worth noticing that condition (1.3) cannot in general be avoided, since it is
a necessary one for increasing nonlinearities (see [2] and Remark 4.1). These
results have been subsequently extended to more general equations involving
the p-Laplacian operator in [17]. However, to the best of our knowledge, no
multiplicity results in the general setting are available in literature.

The aim of this brief note is to show that, in the ODE’s case (1.1) (or, for
problem (1.2), when Ω is an annulus and the weight function is radial, see
Corollary 4.2), shooting-type arguments, combining the oscillatory properties
of the solutions in the intervals of positivity of the weight function with blow-
up phenomena in the intervals of negativity, can be applied in order to prove
the existence of multiple positive solutions, depending on the shape of the
graph of the weight a(t).
For example, as a corollary of our main result we can prove the following.
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Corollary 1.1. Let γ > 0 and let a+, a− : [0, T ] → R be continuous functions
such that, for some σ, τ with 0 < σ < τ < T ,

a−(t) = 0, a+(t) ≥ 0, 6≡ 0 ∀t ∈ [0, σ],

a+(t) = 0, a−(t) ≥ 0, 6≡ 0 ∀t ∈ [σ, τ ],

a−(t) = 0, a+(t) ≥ 0, 6≡ 0 ∀t ∈ [τ, T ].

Then there exists µ∗ > 0 such that, for every µ > µ∗, the Neumann problem
{
u′′ + (a+(t)− µa−(t))uγ+1 = 0
u′(0) = u′(T ) = 0

has at least three positive solutions.

The use of shooting-type arguments in order to obtain multiplicity re-
sults for boundary value problems associated to indefinite nonlinear ODE’s
(especially in the superlinear case) is classical, starting with the pioneering
work of Butler [8]; on the line of this research, we recall the very sharp result
of Papini and Zanolin, [16]. However, it is usually proved the existence of
solutions with many zeros in the intervals of positivity of the weight a(t);
about the existence of positive solutions, fewer results are available.
In particular, a result analogous to Corollary 1.1 has been proved by Gau-
denzi, Habets and Zanolin [10] for the Dirichlet problem; it has to be pointed
out, however, that, from a functional analytical point of view, the Dirichlet
and the Neumann problem are very different (see Remark 4.2).

In this paper, we follow closely the arguments of [10], suitably adapting
them to the case of Neumann boundary conditions; actually, we are also
able to deal with more general nonlinearities g(s), without either convexity
or monotonicity assumption. This gives rise to our main multiplicity result,
Theorem 2.1. It is worth noticing that, from such a result, we can also deduce
the existence of multiple positive solutions for some periodic problems (see
Corollary 4.1).

Finally, we point out that, even if, for the sake of simplicity, we consider
only a “three-step weight”, it is reasonable to expect (on the line of [6, 11, 13])
that some further multiplicity results can be proved also for weights a(t) with
k positive humps separated by k − 1 negative humps, yielding the existence
of 2k − 1 positive solutions.

2. Statement of the main result

The main result of the paper is the following.
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Theorem 2.1. Let g : R+ → R be a locally Lipschitz continuous function
such that g(0) = 0 and g(s) > 0 for s > 0. Setting G(s) :=

∫ s

0
g(ξ) dξ, let us

assume that:

(g0) lim
s→0+

g(s)

s
= 0;

(g∞) lim
s→+∞

g(s)

s
= +∞ and

∫ +∞ dξ√
G(ξ)

< +∞;

(g∗∞) lim sup
s→+∞

∫ +∞

s

dξ√
G(ξ)−G(s)

< +∞.

Moreover, let a+, a− : [0, T ] → R be continuous functions such that, for some
σ, τ with 0 < σ < τ < T ,

a−(t) = 0, a+(t) ≥ 0, 6≡ 0 ∀t ∈ [0, σ],

a+(t) = 0, a−(t) ≥ 0, 6≡ 0 ∀t ∈ [σ, τ ],

a−(t) = 0, a+(t) ≥ 0, 6≡ 0 ∀t ∈ [τ, T ].

Then there exists µ∗ > 0 such that, for every µ > µ∗, the Neumann problem
{
u′′ + (a+(t)− µa−(t))g(u) = 0
u′(0) = u′(T ) = 0

(2.1)

has at least three positive solutions.

From now on, by a positive solution of (2.1) (or of some related prob-
lems), we mean that u(t) > 0 for every t ∈ [0, T ].
A few comments about the assumptions are in order. Hypothesis (g0) and
the first condition in (g∞) are structural assumptions of the problem.
The second requirement of hypothesis (g∞) is the well-known Keller-Osserman
condition and, according to [7, Theorem 2], it is a necessary condition for the
existence of a blowing-up solution of equation u′′+(a+(t)−µa−(t))g(u) = 0.
Finally, hypothesis (g∗∞) is a time-mapping assumption about the autonomous
equation

u′′ − g(u+) = 0. (2.2)

In fact, it is immediate to check that (g∗∞) holds true if and only if

lim sup
c→−∞

√
2

∫ +∞

G−1(−c)

dξ√
G(ξ) + c

< +∞ (2.3)
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and the integral in (2.3) is just the time for the orbit of (2.2) passing through
the point (G−1(−c), 0). As proved in [16, Appendix], hypothesis (g∗∞) is
fulfilled whenever (g∞) holds true and it is satisfied one of the following
conditions:

� for every s large,
g(s) ≥ h(s),

for some continuous and monotone function h : R+ → R satisfying
(g∞);

� there exists a constant k > 1 such that

lim inf
s→+∞

G(ks)

G(s)
> 1.

It is worth noticing that this last condition is related to the Karamata’s
theory of slowly varying functions, [5]. Clearly, the model nonlinearity g(s) =
sγ+1 (with γ > 0) satisfies all such assumptions, (g0), (g∞), (g∗∞).

3. Proof of the main result

We set aµ(t) := a+(t) − µa−(t); moreover, let us fix ρ ∈ ]σ, τ [ and ε, δ > 0
such that, for every t ∈ [ρ− ε, ρ],

a−(t) ≥ δ. (3.4)

Finally, we define the null extension of g(s),

g0(s) := g(s+) =

{
g(s) s ≥ 0
0 s < 0.

We split our proof into three steps.

Step 1: Forward shooting

For every x ≥ 0 and µ ≥ 0, let uµ(·; x) be the solution of the Cauchy
problem {

u′′ + aµ(t)g0(u) = 0
u(0) = x, u′(0) = 0

(3.5)

and denote by [0, t+µ (x)[ its maximal interval of (forward) continuability in
[0, T ]. It is a well known fact in the theory of initial value problems for ODE’s
that the function x 7→ t+µ (x) is lower semicontinuous. Set

D+
µ := {x ≥ 0 | t+µ (x) > ρ}
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and define the translation operator

D+
µ 3 x 7→ ϕµ(x) := (uµ(ρ;x), u′µ(ρ;x)).

We recall that, for every S ⊂ D+
µ , S and ϕµ(S) are homeomorphic. The

final goal of this first step of the proof is to construct two disjoint intervals
contained in D+

µ , whose images under ϕµ are contained in the right half-
plane and connect the y-axis with (+∞,+∞). Precisely, we will prove the
following.

Lemma 3.1. There exists µ∗1 > 0 such that, for every µ > µ∗1, there exist
ξ1, ξ2, ξ3 with 0 < ξ1 ≤ ξ2 < ξ3 such that:

� [0, ξ1[∪ ]ξ2, ξ3] ⊂ D+
µ ,

� for every x ∈ ]0, ξ1[∪ ]ξ2, ξ3[, uµ(t;x) > 0 for every t ∈ [0, ρ],

� ϕµ(0) = (0, 0) and ϕµ(ξ3) = (0, R) with R < 0,

� limx→ξ−1
ϕµ(x) = limx→ξ+

2
ϕµ(x) = (+∞,+∞).

The proof of such a lemma is based on a careful study of the behavior
of the solutions to (3.5) in the time interval [0, ρ]. In particular, a special
care has to be paid to the blow-up properties of such solutions. Hence, before
passing to the proof of Lemma 3.1, we establish the following auxiliary results.

Lemma 3.2. There exist x∗, µ∗1 > 0 such that:

i) t+0 (x) = T for every x ≥ 0 and u0(t; x) > 0 for every t ∈ [0, ρ] and
x ∈ ]0, x∗],

ii) for every µ ≥ 0, it holds that t+µ (x) > σ for every x ≥ 0 and uµ(t; x) > 0
for every t ∈ [0, ρ] ∩ [0, t+µ (x)[ and x ∈ ]0, x∗],

iii) for every µ > µ∗1, it holds that t+µ (x∗) ≤ ρ.

Proof. We prove separately the different claims.
i) The fact that t+0 (x) = T for every x ≥ 0 follows from the observation
that g0(s) = 0 for every s ≤ 0 and, by concavity, u0(t; x) ≤ x for every
t ∈ [0, t0(x)[. Next, define x∗ small enough such that, for every s ∈ ]0, x∗],

‖a+‖L∞([0,σ])
g(s)

s
<

(
π

2ρ

)2

.

Let us suppose by contradiction that, for some x ∈ ]0, x∗], there exists t∗ ∈
[0, ρ] such that u0(t

∗; x) = 0. Without loss of generality, we can suppose that
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u0(t; x) > 0 for every t ∈ [0, t∗[; moreover, as observed above, we have that
u0(t; x) ≤ x for every t ∈ [0, t∗]. Setting ω = π

2t∗ (and supposing t∗ ∈ [σ, ρ],
the other case being even simpler), we get

0 =

[
ωu0(t;x) sin(ωt) + u′0(t;x) cos(ωt)

]t∗

t=0

=

∫ t∗

0

[
ω2 − a0(s)

g(u0(s;x))

u0(s;x)

]
u0(s; x) cos(ωs) ds

=

∫ σ

0

[
ω2 − a+(s)

g(u0(s;x))

u0(s; x)

]
u0(s; x) cos(ωs) ds+

+

∫ t∗

σ

ω2u0(s;x) cos(ωs) ds

≥
∫ σ

0

[(
π

2ρ

)2

− a+(t)
g(u0(s; x))

u0(s;x)

]
u0(s; x) cos(ωs) ds > 0,

which is a contradiction.
ii) Fix µ ≥ 0 and x ≥ 0. Similarly as above, since uµ(t;x) ≤ x for every
t ∈ [0, σ] ∩ [0, t+µ (x)[ and g0(s) = 0 for s ≤ 0, we deduce that t+µ (x) > σ.
Moreover, it is clear that uµ(t;x) = u0(t;x), u

′
µ(t;x) = u′0(t;x) for every

t ∈ [0, σ]. Hence, since u′′µ(·;x) ≥ 0 on [σ, ρ] ∩ [σ, t+µ (x)[ , we have that
uµ(t; x) ≥ u0(t; x) for every t ∈ [0, ρ]∩ [0, t+µ (x)[. The conclusion now follows
from point i).
iii) Let x∗ be as in point i) and suppose by contradiction that there exists
µk → +∞ such that t+µk

(x∗) > ρ. As observed in the proof of point ii), and
using the fact that u0(·;x∗) is non increasing and concave, we get that, for
every k,

uµk
(t;x∗) ≥ u0(t;x∗) ≥ u0(σ;x∗), ∀ t ∈ [σ, ρ].

and
u′µk

(t;x∗) ≥ u′0(t;x∗) = u′0(σ;x∗), ∀ t ∈ [σ, ρ].

Set
m = inf

x≥u0(σ;x∗)
g(x) > 0;

then we have, for every k and for every t ∈ [σ, ρ− ε],

u′µk
(t;x∗) = u′µk

(σ;x∗) +

∫ t

σ

u′′µk
(s;x∗) ds

≥ u′0(σ;x∗) + µk

∫ t

σ

a−(s)g(uµk
(s;x∗)) ds

≥ u′0(σ;x∗) + µkm

∫ t

σ

a−(s) ds.
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Setting A−(t) :=
∫ t

σ
a−(s) ds and integrating on [σ, ρ− ε], we have moreover,

for every k,

uµk
(ρ− ε;x∗) ≥ uµk

(σ; x∗) + u′0(σ;x∗)(ρ− ε− σ) + µkm

∫ ρ−ε

σ

A−(s) ds

≥ u0(σ;x∗) + u′0(σ; x∗)(ρ− ε− σ) + µkm

∫ ρ−ε

σ

A−(s) ds.

Being, in view of (3.4), a−(ρ − ε) ≥ δ, we have that
∫ ρ−ε

σ
A−(s) ds > 0 and∫ ρ−ε

σ
a−(s) ds > 0; then we can conclude that

lim
k→+∞

uµk
(ρ− ε;x∗) = +∞, (3.6)

lim
k→+∞

u′µk
(ρ− ε;x∗) = +∞.

In particular, for k large enough and for every t ∈ [ρ− ε, ρ],

u′µk
(t;x∗) ≥ u′µk

(ρ− ε; x∗) ≥ 0.

Hence, we get, for every t ∈ [ρ− ε, ρ],

d

dt

(
1

2
u′µk

(t;x∗)2 − µkδG(uµk
(t; x∗)

)
=

u′µk
(t;x∗)(u′′µk

(t;x∗)− µkδg(uµk
(t;x∗))) ≥

u′µk
(t; x∗)(u′′µk

(t;x∗)− µka
−(t)g(uµk

(t;x∗))) = 0;

integrating between ρ− ε and t ∈ [ρ− ε, ρ], we obtain

1

2
u′µk

(t;x∗)2 − µkδG(uµk
(t; x∗)) ≥ −µkδG(uµk

(ρ− ε;x∗)).

Then we have

ε =

∫ ρ

ρ−ε

dt ≤
∫ ρ

ρ−ε

u′µk
(t;x∗)√

2µkδ(G(uµk
(t; x∗))−G(uµk

(ρ− ε; x∗))
dt

=

√
1

2µkδ

∫ uµk
(ρ;x∗)

uµk
(ρ−ε;x∗)

dξ√
G(ξ)−G(uµk

(ρ− ε;x∗))
dξ

≤
√

1

2µkδ

∫ +∞

uµk
(ρ−ε;x∗)

dξ√
G(ξ)−G(uµk

(ρ− ε;x∗))
dξ.

Taking into account assumption (g∗∞) and (3.6), we get, for k large enough,
√

1

2µkδ

∫ +∞

uµk
(ρ−ε;x∗)

dξ√
G(ξ)−G(uµk

(ρ− ε; x∗))
dξ < ε,

a contradiction. ¤
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Lemma 3.3. There exists a positive solution (i.e, u(t) > 0 for every t ∈
[0, σ[) of the boundary value problem

{
u′′ + a+(t)g(u) = 0
u′(0) = 0, u(σ) = 0.

(3.7)

Proof. Being a+(t) continuous, with a+ ≥ 0 and a+ 6≡ 0 on [0, σ], [14,
Corollary 3.6] implies that there exists a nontrivial solution of (3.7) such
that u(t) > 0 for every t ∈ ]0, σ[. The uniqueness for the solutions of the
Cauchy problem implies that u(0) > 0, too. ¤

Remark 3.1. Corollary 3.6 of [14] follows from a fixed point theorem for
operators acting on the cone of positive functions. Of course, in the model
case g(s) = sγ+1, more classical arguments, like constrained minimization or
the Mountain Pass Lemma, can be used to prove the existence of a positive
solution of (3.7). For details, we refer the reader to [3].

Proof of Lemma 3.1. Fix µ > µ∗1. By point ii) of Lemma 3.2, t+µ (x) > σ
for every x ≥ 0 and hence the set

Eµ := {x > 0 | uµ(t; y) > 0, ∀ t ∈ [0, σ],∀ y ∈ ]0, x]}

is well defined. Moreover, Eµ is nonempty, since x∗ ∈ Eµ, as a consequence
of point ii) of Lemma 3.2 again. Set ξ := sup Eµ; in view of Lemma 3.3,
x∗ < ξ < +∞. Next define the set

Fµ := {x ∈ [0, ξ] | t+µ (x) ≤ ρ};

again this set is nonempty since x∗ ∈ Fµ, as consequence of point iii) of
Lemma 3.2. Set ξ1 := inf Fµ and ξ2 := supFµ. Since t+µ (x) is lower semicon-
tinuous, Fµ is a closed set; being 0, ξ /∈ Fµ, we deduce that 0 < ξ1 ≤ x∗ ≤
ξ2 < ξ. Moreover, by construction it holds that [0, ξ1[∪ ]ξ2, ξ] ⊂ D+

µ and, in
view of point ii) of Lemma 3.2, we know that

uµ(t; x) > 0, ∀ t ∈ [0, ρ], ∀x ∈ ]0, ξ1[.

We claim that

lim
x→ξ−1

ϕµ(x) = lim
x→ξ+

2

ϕµ(x) = (+∞,+∞). (3.8)

Just to fix the ideas, we prove the relation for x → ξ+
2 . We first verify

that limx→ξ+
2
uµ(ρ;x) = +∞. Let us suppose by contradiction that, for a
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subsequence xk → ξ+
2 , uµ(ρ;xk) ≤ M and fix η > 0 small. Since uµ(·;xk) →

uµ(·; ξ2) in C1([0, σ]), we have that, for k large enough,

|uµ(σ;xk)− uµ(σ; ξ2)| ≤ η, |u′µ(σ; xk)− u′µ(σ; ξ2)| ≤ η.

By convexity arguments, it is easy to see that, for k large enough and for
every t ∈ [0, ρ],

(u′µ(σ; ξ2)− η)(ρ− σ) + uµ(σ; ξ2)− η ≤ uµ(t;xk) ≤ max(ξ2 + η,M); (3.9)

hence, the sequence uµ(·;xk) is uniformly bounded on [0, ρ]. Moreover, since

u′′µ(t; xk) = aµ(t)g(uµ(t;xk)) and u′µ(t;xk) =
∫ t

0
u′′µ(s;xk) ds, we conclude

that uµ(·; xk) is bounded in C2([0, ρ]). Hence, up to subsequences, uµ(·;xk)
converges (weakly in H2([0, ρ]) and in C1([0, ρ])) to a function uµ(·) with
uµ(0) = ξ2, u

′
µ(0) = 0 and such that

u′′µ(t) + aµ(t)g(uµ(t)) = 0, ∀ t ∈ [0, ρ].

Since ξ2 ∈ Fµ (recall that Fµ is a closed set), this is a contradiction. To
conclude the proof of (3.8), it is sufficient to observe that, by convexity of
uµ(·;x) on [σ, ρ],

u′µ(ρ;x) ≥ uµ(ρ; x)− uµ(σ;x)

ρ− σ

and that the right-hand side goes to infinity as x→ ξ+
2 , since 0 < uµ(σ;x) ≤

x. Notice that for x → ξ−1 the proof is even simpler because, in (3.9), we
know that uµ(t;xk) > 0 for every t ∈ [0, ρ] and every xk < ξ1.
Observe now that relation (3.8) implies that uµ(t;x) > 0 for every t ∈ [0, ρ]
and for x in a right neighborhood of ξ2. Indeed, if uµ(t̃; x) ≤ 0 for some
t̃ ∈ [0, ρ], then uµ(ρ;x) ≤ 0 too. Thus, the set

Gµ := {x ∈ ]ξ2, ξ] | uµ(t; y) > 0, ∀ t ∈ [0, ρ], ∀ y ∈ ]ξ2, x]}
is nonempty and we set ξ3 := supGµ. It is easily seen that ξ2 < ξ3 < ξ
and that ϕµ(ξ3) = (0, R) with R < 0. Moreover, by definition, uµ(t;x) > 0
for every t ∈ [0, ρ] and for every x ∈ ]ξ2, ξ3[. Recalling (3.8), the proof is
concluded. ¤

Step 2: Backward shooting

This second step is completely symmetric to the previous one. Define, for
x ≥ 0 and µ ≥ 0, vµ(·;x) as the unique backward solution of the Cauchy
problem {

v′′ + aµ(t)g0(v) = 0
v(T ) = x, v′(T ) = 0

10



and denote by ]t−µ (x), T ] its maximal interval of (backward) continuability in
[0, T ]. Then x 7→ t−µ (x) is upper semicontinuous and we can define the set

D−
µ := {x ≥ 0 | t−µ (x) < ρ}

and the translation operator

D−
µ 3 x 7→ ψµ(x) := (vµ(ρ;x), v′µ(ρ;x)).

We can prove the following analogous of Lemma 3.1.

Lemma 3.4. There exists µ∗2 > 0 such that, for every µ > µ∗2, there exist
η1, η2, η3 with 0 < η1 ≤ η2 < η3 such that:

� [0, η1[∪ ]η2, η3] ⊂ D−
µ ,

� for every x ∈ ]0, η1[∪ ]η2, η3[, vµ(t; x) > 0 for every t ∈ [ρ, T ],

� ψµ(0) = (0, 0) and ψµ(η3) = (0, S) with S > 0,

� limx→η−1
ψµ(x) = limx→η+

2
ψµ(x) = (+∞,−∞).

Step 3: Conclusion

Define µ∗ := max{µ∗1, µ∗2} and fix µ > µ∗; we now can conclude as in [10].
By standard connectivity arguments, the following facts hold true:

� ϕµ(]0, ξ1[) intersects ψµ(]η2, η3[);

� ψµ(]0, η1[) intersects ϕµ(]ξ2, ξ3[);

� ϕµ(]ξ2, ξ3[) intersects ψµ(]η2, η3[).

These intersection points are pairwise distinct because of the uniqueness
for the solutions to the Cauchy problems and it is clear that each of them
corresponds to a value (u(ρ), u′(ρ)) of a positive solution of problem (2.1).

Remark 3.2. It is worth noticing that the proof of Theorem 2.1 is quite
constructive and, as a consequence, one can imagine the behavior in the phase
plane of the three Neumann solutions produced. A very naive numerical
experiment is plotted (with MAPLEr software) in Figure 1, with T = 3,
µ = 15, g(x) = x2 and

a+(t) =





0.9 sin(πt) 0 ≤ t < 1
0 1 ≤ t < 2
sin(πt) 2 ≤ t < 3

, a−(t) =





0 0 ≤ t < 1
− sin(πt) 1 ≤ t < 2
0 2 ≤ t < 3

.

11



Figure 1: The three Neumann solutions in the phase plane {(u, u′)}.

4. Corollaries and final remarks

For the sake of completeness, we state two further multiplicity results (for
positive solutions), which follow in a standard way from Theorem 2.1. The
first one deals with a periodic problem with even-symmetric (indefinite)
weight. We point out that, in spite of a large number of results in litera-
ture about positive periodic solutions, only very few references concerning
multiple positive periodic solutions can be quoted.

Corollary 4.1. Let g(s) be as in Theorem 2.1 and let a+, a− : R → R be
continuous, even-symmetric and T -periodic functions such that, for some σ, τ
with 0 < σ < τ < T

2
,

a−(t) = 0, a+(t) ≥ 0, 6≡ 0 ∀t ∈ [0, σ],

a+(t) = 0, a−(t) ≥ 0, 6≡ 0 ∀t ∈ [σ, τ ],

a−(t) = 0, a+(t) ≥ 0, 6≡ 0 ∀t ∈ [τ, T
2
].

Then there exists µ∗ > 0 such that, for every µ > µ∗, the equation

u′′ + (a+(t)− µa−(t))g(u) = 0 (4.1)
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has at least three positive, even-symmetric, T -periodic solutions.

Proof. It is enough to observe that, if v(t) is a positive solution to the
Neumann problem

{
v′′ + (a+(t)− µa−(t))g(v) = 0
v′(0) = v′(T

2
) = 0,

then the function defined by u(t) := v(|t|) for t ∈ [−T
2
, T

2
] and extended by

T -periodicity is a positive and even-symmetric T -periodic solution of (4.1).
The conclusion follows from Theorem 2.1. ¤

The second corollary deals with the PDE’s problem (1.2) when Ω is an
annulus and the weight a(x) is radially symmetric. Precisely, we have the
following result; notice that no growth restrictions on g(s) are imposed.

Corollary 4.2. Let g(s) be as in Theorem 2.1. Moreover, let 0 < r1 < r2
and let a+, a− : [r1, r2] → R be continuous functions such that, for some σ, τ
with r1 < σ < τ < r2,

a−(r) = 0, a+(r) ≥ 0, 6≡ 0 ∀r ∈ [r1, σ],

a+(r) = 0, a−(r) ≥ 0, 6≡ 0 ∀r ∈ [σ, τ ],

a−(r) = 0, a+(r) ≥ 0, 6≡ 0 ∀r ∈ [τ, r2].

Finally, define Ω := {x ∈ RN | r1 < |x| < r2}. Then there exists µ∗ > 0 such
that, for every µ > µ∗, the Neumann problem

{
∆u+ (a+(|x|)− µa−(|x|))g(u) = 0 x ∈ Ω
∂u
∂ν

= 0 x ∈ ∂Ω
(4.2)

has at least three positive, radially symmetric, (classical) solutions.

Proof. It is well known that u(x) is a radially symmetric classical solution
of (4.2) if and only if u(r) = u(|x|) satisfies

{
u′′ + N−1

r
u′(r) + (a+(r)− µa−(r))g(u) = 0

u′(r1) = u′(r2) = 0.
(4.3)

Setting

[r1, r2] 3 r 7→ h(r) :=

∫ r

r1
ξ1−N dξ∫ r2

r1
ξ1−N dξ

∈ [0, 1],
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standard calculations show that u(r) is a solution of (4.3) if and only if
v(t) := u(h−1(t)) solves

{
v′′ +

(∫ r2

r1
ξ1−N dξ

)2

h−1(t)2(N−1)
(
a+(h−1(t))− µa−(h−1(t))

)
g(v) = 0

v′(0) = v′(1) = 0.

Since h−1(t) is bounded away from zero on [0, 1], the conclusion follows from
Theorem 2.1. ¤

We conclude the paper with some further remarks about problem (1.1)
and our result.

Remark 4.1. On the line of [2, 3], if g : [0,+∞[→ R is of class C1 with
g′(s) > 0 for every s > 0, we can give a necessary condition for the existence
of a positive solution to (1.1). In fact, writing the equation in the equivalent
form

u′′(t)
g(u(t))

= −a(t),

and since

∫ T

0

u′′(t)
g(u(t))

dt =

[
u′(t)
g(u(t))

]T

0

+

∫ T

0

g′(u(t))
(

u′(t)
g(u(t))

)2

dt,

we get, taking into account the boundary conditions u′(0) = u′(T ) = 0 as
well as the fact that u′ 6≡ 0,

∫ T

0

a(t) dt < 0.

In this situation, the lower bound

µ∗ >

∫ T

0
a+(t) dt∫ T

0
a−(t) dt

can be given in Theorem 2.1 (and in particular in Corollary 1.1).

Remark 4.2. As already observed in the Introduction, the Neumann prob-
lem {

u′′ + a(t)uγ+1 = 0
u′(0) = u′(T ) = 0

(4.4)

is really different from the analogous Dirichlet one. In fact, the nonlinearity
g(s) = sγ+1 is no more interacting (near 0) with the principal eigenvalue
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λ1(−u′′) =
(

π
T

)2
of −u′′ with Dirichlet boundary conditions. We also notice

that the indefiniteness of the weight is not an intrinsic feature of the problem;
to the contrary, it is well known that a positive solution always exists in the
definite-sign case a(t) ≥ 0 and never exists in the definite-sign case a(t) ≤ 0.
From both points of view, the natural Dirichlet analogous of problem (4.4)
is given by {

u′′ +
(

π
T

)2
u+ a(t)uγ+1 = 0

u(0) = u(T ) = 0.

A detailed bifurcation analysis of the nonlinear eigenvalue problem
{

∆u+ λu+ a(x)uγ+1 = 0 x ∈ Ω
u = 0 x ∈ ∂Ω

(4.5)

is contained in [15]. We stress, however, that all the results about multiple
positive solutions of (4.5) we know (see, for instance, [1, 6, 9, 11, 12]) are for
λ 6= λ1(−∆).

Remark 4.3. It can be interesting to compare the superlinear case with the
sublinear one, namely {

u′′ + a(t)uδ = 0
u′(0) = u′(T ) = 0

with 0 < δ < 1. This problem has been studied (in the PDE’s case) by Ban-
dle, Pozio and Tesei in [2]; again, it turns out that the mean value condition∫ T

0
a(t) dt < 0 is sufficient for the existence of a positive solution, which, in

this case, is unique. Only nonnegative multiple solutions can exist; of course,
this is strictly related to the lack of uniqueness at zero for the Cauchy prob-
lems. Our result, hence, shows that the situation in the superlinear case is
very different.
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[15] J. López-Gómez, Varying bifurcation diagrams of positive solutions
for a class of indefinite superlinear boundary value problems, Trans.
Amer. Math. Soc. 352 (2000), 1825–1858.

16



[16] D. Papini and F. Zanolin, A topological approach to superlinear
indefinite boundary value problems, Topol. Methods Nonlinear Anal. 15
(2000), 203–233.

[17] S.I. Pohozaev and A. Tesei, Existence and nonexistence of solutions
of nonlinear Neumann problems, SIAM J. Math. Anal. 31 (2000), 119–
133.

17


