Social wasp trapping in north west Italy: comparison of different bait-traps and first detection of *Vespa velutina*

Stefano Demichelis¹, Aulo Manino¹, Giovanni Minuto², Mauro Mariotti³, Marco Porporato¹

¹Dipartimento di Scienze Agrarie, Forestali e Alimentari, Università di Torino, Italy

²Centro di Sperimentazione e Assistenza Agricola, Albenga, Italy

³Centro Universitario di Servizi Giardini Botanici Hanbury, Ventimiglia, Italy

Abstract

Twelve bait-traps were tested and compared in order to find the best lure for studying social wasp populations in North West Italy. *Polistes associus* Kohl, *Polistes dominula* (Christ), *Polistes gallicus* (L.), *Polistes nimpha* (Christ), *Vespa crabro* L., *Vespa velutina* Lepeletier, *Vespula germanica* (F.), *Vespula vulgaris* (L.), and *Dolichovespula media* (Retzius) were trapped for a total of 5,077 specimens in the period 2007-2012. *V. velutina* was captured at Loano (Liguria) for the first time in Italy by means of a yellow cap trap filled with beer. *V. crabro*, *V. germanica* and *V. vulgaris* were the most abundant species in the social wasp communities studied. Beer in clear, colourless and transparent, 1.5 l polyethylene bottles with yellow and white coloured caps was a good bait-trap combinations for all social wasp species, while it trapped only some *Bombus terrestris* (L.) specimens. A white cap trap filled with commercial mint syrup solution was a good combination for trapping *Bombus argillaceus* (Scopoli) and a yellow cap trap filled with a solution of vinegar, sugar and honey was the best combination for trapping *Apis mellifera* L.

Key words: Apis, Bombus, Dolichovespula, Polistes, Vespa, Vespa velutina, Vespula, baited traps.

Introduction

The social wasp fauna in Europe comprises 4 genera and 22 species (de Jong, 2013), among which 21 species are recorded in Italy (Giordani Soika and Borsato, 1995). A new invasive species *Vespa velutina* Lepeletier arrived in France probably in 2004 (Haxaire *et al.*, 2006), and it is now quickly spreading across southwestern Europe (Rome *et al.*, 2013); Villemant *et al.* (2006) identified this social wasp as the subspecies *nigrithorax* du Buysson (Van Der Vecht, 1957).

Social wasps are generalist foragers that collect water, plant fibres and carbohydrates, hunt arthropod prevs and scavenge animal proteins (Raveret Richter, 2000). For these reasons some species are pests, interfering deeply with human activities and domestic animals (Akre et al., 1980; Edwards, 1980). The presence of some Dolichovespula, Polistes, Vespa and Vespula species in crop fields, orchards, urban and suburban areas, and recreational places, often results in a pest status that ranges from mild nuisance to severe hazard for workers and people, who can be stung too (Akre et al., 1980; Chang, 1988; Seath, 1999). Fatalities of humans due to hymenopteran stings is a well studied phenomenon in the United States since the past century sixties (Akre et al., 1980), and up to 40 deaths per year were reported by Pollyea et al. (2009). In Europe, circa 20 documented deaths per year were reckoned in Germany (Przybilla and Ruëff, 2012), 1.3 and 9.4 lethal stings per year during 1980-1990 and 1994-2003, respectively, were registered in Italy (Pio et al., 2012). In Australia 2.4 deaths per year caused by hymenopteran stings were mentioned, but the relative proportion of deaths from wasp and bee stings are different from and opposite to those observed in USA and Europe, with about 80% for bees (McGain et al., 2000).

Damage caused to fruits by hornets, yellowjackets and paper wasps are periodically reckoned (Edwards, 1980; Simmons, 1991). Losses were reported for apples, sweet cherries, grapes, peaches, pears, plums, raspberries, and strawberries in the United States (Akre, 1982; Cranshaw *et al.*, 2011), Iraq (Al-Mahdawi and Al-Kinani, 2011), and Italy (Longo, 1980).

Depredation of wasps on honey and honey bees, Apis mellifera L., was known at least since the sixteenth century (Edwards, 1980). The economic importance of social wasps for beekeepers has been well ascertained in some cases: an average of 8 workers of Vespa mandarinia Smith were enough to destroy a hive in few hours in Japan (De Jong, 1979; Matsuura, 1988); Vespa orientalis L., distributed in South Europe, North Africa, Near East and the Oriental Region (Carpenter and Kojima, 1997), showed a high rate of honey bee predation in Israel (Ishay et al., 1967) and India (Sihag, 1992); V. velutina is considered a pest because the European honey bee is more vulnerable to attacks than Asiatic bee species, as the capture rates of A. mellifera showed (Abrol, 2006; Tan et al., 2007; Perrard et al., 2009); Vespula germanica (F.) and Vespula vulgaris (L.) compete heavily with A. mellifera for sweet honeydew, reducing a lucrative export market in New Zealand (Clapperton et al., 1989; Stringer, 1989).

Nevertheless, social wasps are also beneficial to human life by pollinating flowers, becoming food for people in Eastern countries and killing many insects which we think of as pests (Edwards, 1980; Raveret Richter, 2000). *V. germanica* and *V. vulgaris* were proposed as pest control agents in New Zealand (Donovan, 2003). The management of colonies of different social wasp species was carried out in Brazilian plantations in order to control lepidopteran pests (Prezoto *et al.*, 2006; De Souza *et al.*, 2012).

The problem of social wasp invasions into sites of human activity was initially solved by the extermination of colonies with pesticides (Wagner, 1961). Studies to test the attractiveness of different chemical products, baits and lures to social wasp species started casually during field investigations for *Fannia canicularis* (L.) (Diptera Fanniidae) in Oregon (Davis *et al.*, 1967); on that occasion the attraction of different species of *Vespula* to several butyrate and propionate esters was discovered. Since then, new chemical attractants (Davis *et al.*, 1968; Landolt, 1998; Day and Jeanne, 2001; Landolt *et al.*, 2007), and both meat-based (Ross *et al.*, 1984; Spurr, 1995; Bacandritsos *et al.*, 2006) and sugarbased (Spurr, 1996; Day and Jeanne, 2001; Wegner and Jordan, 2005; Dvořák and Landolt, 2006; Dvořák, 2007) food and beverage materials were tested for trapping social wasp species.

Among different trapping methods, emerged the effectiveness of some bait-trap parameters and their combination for capturing social wasp species. Beer, in PET transparent bottle or plastic container, was a good lure for nine social wasp species in Europe (Dvořák, 2007; Sorvari, 2013) and it trapped also V. velutina in France (Dvořák, 2007). The colour preference of some Vespula species for yellow painted and translucent white traps, baited with meat-based food and chemical attractants, was demonstrated (Sharp and James, 1979; Chang, 1988). Acetic acid was a well known attractant for social wasp species when associated with other chemical products (Landolt et al., 2005; 2007). Meat and fishbased foods were good baits for trapping Vespula species in USA and New Zealand (Ross et al., 1984; Chang, 1988; Spurr, 1995), and V. orientalis in Greece (Bacandritsos et al., 2006). Longo (1980) experienced the use of a hydrolysed protein solution in yellow plastic bottle for trapping V. orientalis in an apiary in Sicily. Carbohydrates are important in the diet of adult social wasps (Raveret Richter, 2000). For this reason many sugar-based foods and beverages were tested over the years, demonstrating that 30% sucrose solution (Spurr, 1996) and carbonated beverages (Wagner and Jordan, 2005) trapped thousands individuals mainly of Vespula species, while commercial syrup added of fermented fruit was effective for trapping Vespa, Dolichovespula and Polistes species, in orchard in Central Europe (Dvořák and Landolt, 2006).

Since social wasps can became pests in urban areas, orchards and during beekeeping activities, the aims of this study were to compare different combinations of baits and traps for finding the best bait-trap combination for capturing social wasps, to characterize the social wasp fauna trapped, and to intercept *V. velutina* which is considered an alien invasive species in Europe (Beggs *et al.*, 2011) and could arrive in Italy as expansion modelling shows (Rome *et al.*, 2009).

Materials and methods

The attractiveness of different baits to social wasps (and non-target species) was investigated in some localities of northwest Italy from 2007 to 2012 (table 1). Areas of study were defined on the basis of the CORINE land cover technical guide and relative codes (Bossard *et al.*, 2000).

Figure 1. Bait-trap used during the period 2007-2012 in north west Italy. (In colour at www.bulletinofinsectology.org)

Wasps were trapped by means of a clear, colourless and transparent, 1.5 l polyethylene (PET) bottle with or without a proprietary coloured cap called Tap Trap® (www.taptrap.com), and filled with 0.33 l of bait (figure 1); traps were hung on a branch or a support approximately 1.7 m above the ground, and were checked weekly (table 1). The bait was changed at each trap check.

Analyses were made for each social wasp and bee species by using weekly data between the first and the last adult captures. On the basis of experimental design, data were analysed per week or totalled for the season.

Bait-trap combinations

PET bottles were baited and tested as follows: (BNC) beer with no cap: bottle without cap filled with beer 4.7% of alcohol; (BYC) beer with yellow cap: bottle with yellow cap filled with beer 4.7% of alcohol; (BWC) beer with white cap: bottle with white cap filled with beer 4.7% of alcohol; (MNC) mint with no cap; bottle without cap filled with a commercial mint syrup at 0.3% of mint essential oil diluted 1:10 in water; (MYC) mint with yellow cap: bottle with yellow cap filled with a commercial mint syrup at 0.3% of mint essential oil diluted 1:10 in water; (MWC) mint with white cap: bottle with white cap filled with a commercial mint syrup at 0.3% of mint essential oil diluted 1:10 in water; (PRNC) proprietary recipe with no cap: bottle without cap filled with a water solution of 7.1% vinegar (10%), sugar (4%) and honey (4%) according to a proprietary recipe made by Tap Trap®; (PRYC) proprietary

Piedmont Grugliasco (TO) Piedmont Montecomposto (TO) Piedmont Reaglie (TO)	45°03'58"N 45°07'41"N 45°07'41"N 44°24'30"N 44°57'52"N 43°47'04"N 43°47'04"N 44°08'09"N 43°49'33"N	7°35'33"E 7°35'35"E 7°44'46"E 8°01'17"E 7°30'11"E 7°33'11"E 7°33'11"E 8°14'39"E 8°14'39"E 8°28'04"E	Piedmont Grugliasco (TO) $45^{\circ}03'58"N$ $7^{\circ}35'33"E$ $286 m a.s.l.$ Piedmont Montecomposto (TO) $45^{\circ}07'41"N$ $7^{\circ}22'26"E$ $228 m a.s.l.$ Piedmont Montecomposto (TO) $45^{\circ}03'28"N$ $7^{\circ}44'46"E$ $355 m a.s.l.$ Piedmont Reaglie (TO) $45^{\circ}03'28"N$ $7^{\circ}44'46"E$ $355 m a.s.l.$ Piedmont Reascio Costabella (CN) $44^{\circ}57'52"N$ $7^{\circ}30'117"E$ $557 m a.s.l.$ Piedmont Volvera (TO) $44^{\circ}57'52"N$ $7^{\circ}30'11"E$ $115 m a.s.l.$ Diedmont Ulguria $43^{\circ}47'04"N$ $7^{\circ}33'11"E$ $115 m a.s.l.$ Liguria Liguria $43^{\circ}47'04"N$ $8^{\circ}14'39"E$ $63 m a.s.l.$ Liguria Loano (SV) $44^{\circ}08'09"N$ $8^{\circ}14'39"E$ $63 m a.s.l.$ Liguria LiguriaLiguria Savona (SV) $44^{\circ}18'40"N$ $8^{\circ}28'04"E$ $40 m a.s.l.$ Liguria Savona (SV)Liguria Savona (SV) $43^{\circ}49'33"N$ $7^{\circ}49'45"E$ $17 m a.s.l.$ Liguria DiguriaLiguria Savona (SV) $43^{\circ}49'33"N$ $7^{\circ}49'45"E$ $17 m a.s.l.$ Liguria DiguriaDig	edmont Grugliasco (TO)45°03'58"N7°35'33"E286 m a.s.l.Discontinuous urban fabric and Heterogeneous agricultural area achonotGrugliasco (TO)45°07'41"N7°22'26"E728 m a.s.l.Discontinuous urban fabric and Broad-leaf forestMontecomposto (TO)45°07'41"N7°22'26"E728 m a.s.l.Discontinuous urban fabric and Broad-leaf forestMontecomposto (TO)45°03'28"N7°44'46"E355 m a.s.l.Discontinuous urban fabric and Broad-leaf forestMontecomposto (TO)44°24'30"N8°01'17"E557 m a.s.l.Discontinuous urban fabric and Discontinuous urban fabric and Non-irrigated arable-land Broad-leaf forestMontecom44°57'52"N7°33'11"E115 m a.s.l.Discontinuous urban fabric and Broad-leaf forestVolvera (TO)44°57'52"N7°33'11"E115 m a.s.l.Discontinuous urban fabric and Broad-leaf forestVolvera (TO)44°57'52"N7°33'11"E115 m a.s.l.Discontinuous urban fabric and Broad-leaf forestUotrant (TO)44°57'52"N7°30'23"E63 m a.s.l.Discontinuous urban fabric and Broad-leaf forestUotrant (TO)44°57'52"N7°30'11"E115 m a.s.l.Discontinuous urban fabric and Broad-leaf forestUation (SV)44°68'09"N8°14'439"E63 m a.s.l.Discontinuous urban fabric and Broad-leaf forestUation (SV)44°18'40"N8°28'04"E40 m a.s.l.Discontinuous urban fabric and Broad-leaf forestBuriaLoano (SV)43°49'33"N7°49'45"E17 m a.s.l.Discontinuous arban fabric and <th>urban fabric and urban fabric and urban fabric and 112 leaf forest urban fabric and 112 urban fabric and 112 agricultural area urban fabric and 112 urban fabric and 112 urban fabric and 112 urban fabric and 112 agricultural area urban fabric and 112 urban fabric and 112 agricultural area urban fabric and 112 urban fabric and 112 urban fabric and 112 agricultural area urban fabric and 112 urban</th> <th>112 and 242 112 and 311 112 and 242 112 and 211 112 and 211 112 and 211 112 and 242 113 and 242 114 and 242 115 and 242 112 and 242 113 and 242 114 and 243 115 and 242 115 and 242 115 and 242 115 and 242 115 and 242</th> <th>42 Yes 111 No 42 Yes 42 No 111 Yes 111 Yes 111 Yes 42 No 42 No</th> <th>2007-2012 2009 2009-2012 2009 2009 2009 2009 2010-2012 2011-2012 2010 2010 2010 2010</th> <th>Discontinuous urban fabric and Heterogeneous agricultural area112 and 242Yes2007-2012BNC; BWC; BWC; MNC; MYC; MWC; MYC; WYC; PRWC; PRWC; WNC; WYC WYC; PRWC; WYC; WYC WYC; BYCDiscontinuous urban fabric and Broad-larf forest112 and 242Yes2009-2012BYC; BWCWYC; BWCDiscontinuous urban fabric and Heterogeneous agricultural area112 and 242Yes2009-2012BYC; BWCDiscontinuous urban fabric and Heterogeneous agricultural area112 and 242No2009BYC; BWCDiscontinuous urban fabric and Heterogeneous agricultural area112 and 242No2009BYC; BWCDiscontinuous urban fabric and Discontinuous urban fabric and Discontinuous urban fabric and Heterogeneous agricultural area112 and 242No2010-2012BYC; BWCDiscontinuous urban fabric and Heterogeneous agricultural area</th> <th>MNC; MYC; MWC; PRWC; WNC; WYC BWC BWC BWC BWC BWC BWC BWC BWC BWC BW</th>	urban fabric and urban fabric and urban fabric and 112 leaf forest urban fabric and 112 urban fabric and 112 agricultural area urban fabric and 112 urban fabric and 112 urban fabric and 112 urban fabric and 112 agricultural area urban fabric and 112 urban fabric and 112 agricultural area urban fabric and 112 urban fabric and 112 urban fabric and 112 agricultural area urban fabric and 112 urban	112 and 242 112 and 311 112 and 242 112 and 211 112 and 211 112 and 211 112 and 242 113 and 242 114 and 242 115 and 242 112 and 242 113 and 242 114 and 243 115 and 242 115 and 242 115 and 242 115 and 242 115 and 242	42 Yes 111 No 42 Yes 42 No 111 Yes 111 Yes 111 Yes 42 No 42 No	2007-2012 2009 2009-2012 2009 2009 2009 2009 2010-2012 2011-2012 2010 2010 2010 2010	Discontinuous urban fabric and Heterogeneous agricultural area112 and 242Yes2007-2012BNC; BWC; BWC; MNC; MYC; MWC; MYC; WYC; PRWC; PRWC; WNC; WYC WYC; PRWC; WYC; WYC WYC; BYCDiscontinuous urban fabric and Broad-larf forest112 and 242Yes2009-2012BYC; BWCWYC; BWCDiscontinuous urban fabric and Heterogeneous agricultural area112 and 242Yes2009-2012BYC; BWCDiscontinuous urban fabric and Heterogeneous agricultural area112 and 242No2009BYC; BWCDiscontinuous urban fabric and Heterogeneous agricultural area112 and 242No2009BYC; BWCDiscontinuous urban fabric and Discontinuous urban fabric and Discontinuous urban fabric and Heterogeneous agricultural area112 and 242No2010-2012BYC; BWCDiscontinuous urban fabric and Heterogeneous agricultural area	MNC; MYC; MWC; PRWC; WNC; WYC BWC BWC BWC BWC BWC BWC BWC BWC BWC BW
iedmont Montecomposto (TO) 'iedmont Reaglie (TO)	45°07'41"N 45°03'28"N 44°24'30"N 44°57'52"N 43°47'04"N 44°08'09"N 44°18'40"N 43°49'33"N	7°22'26"E 7°44'46"E 8°01'17"E 7°30'23"E 7°33'11"E 8°14'39"E 8°14'39"E 8°28'04"E	728 m a.s.l. 355 m a.s.l. 557 m a.s.l. 251 m a.s.l. 115 m a.s.l. 63 m a.s.l. 63 m a.s.l. 40 m a.s.l. 17 m a.s.l. 17 m a.s.l. ity and year. N	Discontinuous ur Broad-lea Discontinuous ur Heterogeneous at Discontinuous ur Non-irrigated Discontinuous ur Broad-lea Discontinuous ur Heterogeneous at Discontinuous ur Heterogeneous at Discontinuous ur Heterogeneous at Discontinuous ur Heterogeneous at Brad-lea Discontinuous ur Heterogeneous at Discontinuous ur Heterogeneous at Brad-lea Discontinuous ur Heterogeneous at Discontinuous ur Heterogeneous at Heterogeneous at Discontinuous ur Heterogeneous at	then fabric and af forest then fabric and gricultural area ben fabric and arable-land then fabric and forest then fabric and gricultural area then fabric and gricultural area	112 and 3 112 and 2 113 and 2 114 and 2 115 and 2 112 and 2 113 and 2 114 and 2 115 and 2 115 and 2 115 and 2 115 and 2	11 No 42 Yes 42 No 11 Yes 11 Yes 11 Yes 11 Yes 11 Yes 12 No 42 No 42 No 42 No 42 No 42 No 42 No 43 No 442 No	2009 2009-2012 2009 2009 2010-2012 2011-2012 2010-2012 2010 2010	BYC; J BYC; J BYC; J BYC; J BYC; J BYC; J BYC; J BYC; J SYC; Cuneo	3WC 3WC 3WC 3WC 3WC 3WC 3WC 3WC 3WC 3WC
iedmont Reaglie (TO)	45°03'28"N 44°24'30"N 44°57'52"N 43°47'04"N 44°08'09"N 44°18'40"N 43°49'33"N	7°44'46"E 8°01'17"E 7°30'23"E 7°33'11"E 8°14'39"E 8°14'39"E 8°28'04"E	355 m a.s.l. 557 m a.s.l. 251 m a.s.l. 115 m a.s.l. 63 m a.s.l. 40 m a.s.l. 17 m a.s.l. 17 m a.s.l. ity and year. N	Discontinuous ur Heterogeneous ag Discontinuous ur Heterogeneous ag Non-irrigated Discontinuous ur Heterogeneous ag Discontinuous ur Heterogeneous ag Discontinuous ur Heterogeneous ag Discontinuous ur Heterogeneous ag Discontinuous ur Heterogeneous ag Discontinuous ur Heterogeneous ag	then fabric and gricultural area dyncultural area then fabric and then fabric and af forest af forest and forest then fabric and gricultural area then fabric and gricultural area then fabric and gricultural area then fabric and gricultural area then fabric and gricultural area	112 and 2. 112 and 2. 112 and 2 ckets) for each	42 Yes 42 No 11 No 11 Yes 42 No 42 No 42 No 142 No	2009-2012 2009 2010-2012 2011-2012 2011-2012 2010-2012 2010 O: Turin prov	BYC; J BYC; J BYC; J BYC; J BYC; J BYC; J BYC; J BYC; J Cuneo J	3WC 3WC 3WC 3WC 3WC 3WC 3WC 3WC 3WC 3WC
	44°24'30"N 44°57'52"N 43°47'04"N 44°08'09"N 44°18'40"N 43°49'33"N	8°01'17"E 7°30'23"E 7°33'11"E 8°14'39"E 8°28'04"E	557 m a.s.l. 251 m a.s.l. 115 m a.s.l. 63 m a.s.l. 40 m a.s.l. 17 m a.s.l. 17 m a.s.l. ity and year. N	Discontinuous ur Heterogeneous ag Discontinuous ur Non-irrigated Discontinuous ur Heterogeneous ag Discontinuous ur Heterogeneous ag Discontinuous ur Heterogeneous ag Unscontinuous ur Heterogeneous ag	than fabric and gricultural area than fabric and arable-land af forest than fabric and gricultural area than fabric and gricultural area than fabric and gricultural area than fabric and gricultural area than fabric and gricultural area	112 and 2 112 and 2 112 and 3 112 and 2 112 and 2 112 and 2 112 and 2 ckets) for each	42 No 11 No 11 Yes 42 No 42 No 42 No 13 Species. To	2009 2009 2010-2012 2011-2012 2010-2012 2010 O: Turin prov	BYC; J BYC; J BYC; J BYC; J BYC; J BYC; J MC; J COLLEO D	3WC 3WC 3WC 3WC 3WC 3WC 3WC 3WC 3WC 3WC
Piedmont Roascio Costabella (CN)	44°57'52"N 43°47'04"N 44°08'09"N 44°18'40"N 43°49'33"N	7°30'23"E 7°33'11"E 8°14'39"E 8°28'04"E	251 m a.s.l. 115 m a.s.l. 63 m a.s.l. 40 m a.s.l. 17 m a.s.l. 17 m a.s.l. ity and year. N	Discontinuous ur Non-irrigated Discontinuous ur Broad-lea Discontinuous ur Heterogeneous ag Discontinuous ur Heterogeneous ag Uiscontinuous ur Heterogeneous ag Uiscontinuous ur Heterogeneous ag	than fabric and arable-land than fabric and af forest than fabric and gricultural area than fabric and gricultural area than fabric and gricultural area than fabric and gricultural area	112 and 2 112 and 3 112 and 2 112 and 2 112 and 2 ckets) for each	11No11Yes42No:42No:42No:42No:1 species. To	2009 2010-2012 2011-2012 2010-2012 2010 O: Turin prov	BYC; J BYC; J BYC; J BYC; J BYC; J ince; CN: Cuneo	3WC 3WC 3WC 3WC 3WC 3WC 3WC 3WC 3WC 3WC
Piedmont Volvera (TO)	43°47'04"N 44°08'09"N 44°18'40"N 43°49'33"N	7°33'11"E 8°14'39"E 8°28'04"E	115 m a.s.l. 63 m a.s.l. 40 m a.s.l. 17 m a.s.l. lity and year. N ; ORC: orchard	Discontinuous ur Broad-lea Discontinuous ur Heterogeneous a Discontinuous ur Heterogeneous a Heterogeneous a Uterpereous a Heterogeneous a Leterogeneous a	than fabric and af forest than fabric and gricultural area fan fabric and gricultural area gricultural area flitvated area.	112 and 3 112 and 2 112 and 2 112 and 2 112 and 2 ckets) for each	11 Yes 42 No 42 No 42 No 32 No	2010-2012 2011-2012 2010-2012 2010 O: Turin prov	BYC; J BYC; J BYC; J BYC; J BYC; J Ince; CN: Cuneo	3WC 3WC 3WC 3WC 3WC province; IM: <i>velutina</i> TC
Liguria Giardini Hanbury (IM)	44°08'09"N 44°18'40"N 43°49'33"N	8°14'39"E 8°28'04"E	63 m a.s.l. 40 m a.s.l. 17 m a.s.l. lity and year. N ; ORC: orchard	Discontinuous ur Heterogeneous ag Discontinuous ur Heterogeneous ag Discontinuous ur Heterogeneous ag Iumber and perce site; UCA: uncul	than fabric and gricultural area ban fabric and gricultural area gricultural area gricultural area itivated area.	112 and 2 112 and 2 112 and 2 112 and 2 ckets) for each	42 No 42 No .42 No .42 No	2011-2012 2010-2012 2010 O: Turin prov	BYC; J BYC; J BYC; J BYC; J Ince; CN: Cuneo	3WC 3WC 3WC province; IM: <i>velutina</i> TC
Liguria Loano (SV)	44°18'40"N 43°49'33"N	8°28'04"E	40 m a.s.l. 17 m a.s.l. lity and year. N ; ORC: orchard	Discontinuous ur Heterogeneous ag Discontinuous ur Heterogeneous ag lumber and perce site; UCA: uncul	rban fabric and gricultural area gricultural area gricultural area entage (in brac ltivated area.	112 and 2 112 and 2 ckets) for each	42 No .42 No 1 species. To	2010-2012 2010 O: Turin prov	BYC; J BYC; J ince; CN: Cuneo	3WC 3WC 5rovince; IM: <i>velutina</i> TC
Liguria Savona (SV)	43°49'33"N		17 m a.s.l. lity and year. N ; ORC: orchard	Discontinuous ur Heterogeneous ag Jumber and perce site; UCA: uncul	rban fabric and gricultural area entage (in brac ltivated area.	112 and 2 ckets) for each	42 No 1 species. To	2010 O: Turin prov	BYC; I ince; CN: Cuneo	3WC province; IM: velutina TC
Liguria Sanremo Valle Armea (IM)		7°49'45"E	lity and year. N ; ORC: orchard	lumber and perce site; UCA: uncul	intage (in brac ltivated area.	ckets) for each	1 species. To	O: Turin prov	ince; CN: Cuneo	province; IM: velutina To
Grugliasco (TO) - API Grugliasco (TO) - ORC		30 (55.56) 61 (89.71)	24 (44.44) 6 (8.82)	1 (0.61)						54 68
Grugliasco (TO) - ORC Grugliasco (TO) - UCA		61 (89.71) 34 (79.00)	6 (8.82) 9 (21.00)	1 (0.61)						68 43
Grugliasco (TO) - API	2008 13	136 (68,69)	33 (16.67)	11 (5.56)	1 (010)	16 (8.08)	2 (1.01) 1 (0.15)			198
Grugliasco (TO) - AFI Grugliasco (TO) - API		194 (30.12) 266 (86.08)	415 (04.44) 36 (11.65)			0 (0.97) 3 (0.97)	1 (0.10)			309
Grugliasco (TO) - API		173 (66.03)	58 (22.14)					1 (0.38)		262
Grugliasco (TO) - API		125 (30.86)	241 (59.51)			9 (2.22)	1 (0.25)		1 (0.25)	405
Montecomposto (IU) Reaglie (TO) - API	2009 60 2009 19	60 (42.55) 193 (48 49)	2 (1.42) 11 (2 76)	76 (53.90) 3 190 (47 74) 3	3 (2.13) 3 (0 75)	1 (0 25)				141 398
Reaglie (TO) - API		142 (56.80)	4 (1.60)							250
Reaglie (TO) - API		177 (65.07)	10 (3.68)		12 (4.41)	2 (0.74)				2
Reaglie (10) - API Docenio Costaballa (CN)	2012 23	238 (66.85) 102 (63 40)	13 (3.65) 14 (4.61)	104 (29.21) 1 80 (20 28) 2	1 (0.28) 2 (0.66)	(1 02)				356
Volvera (TO)		62 (55.86)	44 (39,64)			2 (1.80)				111
Giardini Hanbury (IM)		96 (82.76)	13 (11.21)			(0011)				116
Giardini Hanbury (IM)	2011 23	230 (95.04) 107 (01 52)	9 (3.72) 12 (5 05)	(0.41)	2 (0.83)	(24,0),1		(24.0) 1		242
Giardini Hanbury (livi) Loano (SV)		(50.16) /61 124 (97 64)	(c0.0) c1 3 (2 36)	(04.1) C		1 (0.47)		1 (0.47)		C12
Loano (SV)		23 (42.59)	28 (51.85) 26 (51.85)							1 (1.85) 54
Savona (SV)		123 (12.35)	36 (21.18) 20 (15 03)		(66.0) 1					0/.1
Savona (SV) Savona (SV)	2011 14 2012 70	148 (81.32) 70 (48.28)	29 (15.93) 61 (42.07)	(c/.2) c 11 (7.59) 3	3 (2.07)					182 145
Sanremo Valle Armea (IM)		11 (100.00)								
		3106 (61.18)	1112 (21.90)	752 (14 81) 53	53 (1.04) 4	46 (0.90)	4(0.08)	2 (0.04)	1(0.02)	1 (0 02) 5077

recipe with yellow cap: bottle with yellow cap filled with a water solution of 7.1% vinegar (10%), sugar (4%) and honey (4%) according to a proprietary recipe; (PRWC) proprietary recipe with white cap: bottle with white cap filled with a water solution of 7.1% vinegar (10%), sugar (4%) and honey (4%) according to a proprietary recipe; (PYC) protein with yellow cap: bottle with yellow cap filled with a 1% protein solution in water made with a commercial meat extract so as to meet the same protein content used by Longo (1980); (WNC) water with no cap: bottle with yellow cap: bottle with yellow cap filled with water as control; (WYC) water with yellow cap. bottle with yell

The traps PRYC and PRWC were tested for two reasons: a) the bait was proposed in combination with a coloured cap by a commercial site for trapping hornets, b) acetic acid is a well known attractant for social wasp. WNC and WYC were used as control.

2007 trapping test

Traps were placed on the campus of the Agricultural Faculty of the University of Turin at Grugliasco. Three sites 200 m apart each other were chosen: 1) front of the Apiary (API), about 15 m apart from the hives; 2) an orchard (ORC) and 3) an uncultivated area (UCA). In each site five bait-trap treatments were placed: BYC, PRYC, PYC, WNC, and WYC; traps were set along a line about 3 m apart from each other and their positions were interchanged weekly. The experiment started on 7th September and finished on 9th November for a total of seven week observations.

2008 trapping test

Traps were placed on the campus of the Agricultural Faculty of the University of Turin at Grugliasco in front of the Apiary (API), about 15 m apart from the hives. Nine trap treatments were tested: BNC, BYC, BWC, MNC, MYC, MWC, PRNC, PRYC, and PRWC; they were set in a square design at about 3 m apart from each other and their positions were randomly changed every week. The experiment started on 1st April and finished on 16th December for a total of 36 inspection occasions.

2009-2012 trapping test

Each year five localities were chosen on the basis of the following characteristics: two localities were heterogeneous agricultural areas in the immediate vicinity of apiaries, two localities were heterogeneous agricultural areas without nearby apiaries and one locality was a broad-leaf forest area (table 1). Traps were placed in nine localities altogether during the period 2009-2012 (table 2). Trap treatments were: BYC and BWC only; they were set about 3 m apart from each other and their position changed weekly. The experiment in each locality started on 18th March and finished at the end of December.

Data analysis

The social wasp species trapped were identified using descriptions and keys provided in Guiglia (1972), Starr and Luchetti (1993), Dvořák and Roberts (2006) and Buck *et al.* (2008); bumblebees were named using the monograph of Intoppa *et al.* (2009).

For each species, the means of individuals captured per trap per week were compared between trap-bait treatments. All analyses were performed using IBM SPSS 2.0 (SPSS, 1994), OpenStat (2013) and Jandel SigmaPlot 11.0 (Systat Software Inc, San Jose, CA, USA).

In 2007, the trapping test data were submitted to two way ANOVA with repetitions. In 2008, trapping test data were submitted to ANOVA for randomized block design with one observation per cell and weeks as blocks. In both years, the count data were transformed using log (count + 1).

In 2009-2012, the trapping test data were submitted to two way ANOVA with repetitions. Bait-trap combinations and year were considered fixed factors, with 2 and 4 levels, respectively. Each cell contained 5 repetitions, and each repetition represented the total number of individuals trapped per year per locality. Analyses was implemented for each social wasp species. In 2009-2012, the total annual number of individuals of *A. mellifera* trapped in each locality with BYC and BWC, was correlated with the number of hives present near the bait-trap position.

Differences in treatments were tested by pairwise multiple comparison procedures such as Tukey's HSD at α = 0.05 significant level. The blank treatments were removed from the analysis and one-side confidence intervals for treatment means were used to make this decision more quantitative in accord with Reeve and Strom (2004), but using the mean square of error from the analysis of variance table. After analysis, results were back-transformed into the original units of measurement following Olsson (2005).

Dominance and diversity

Dominance classes, as defined by Engelmann (1978), were used and the following six classes were established: eudominant > 32%, dominant 10-31.9%, sub-dominant 3.2-9.9%, recedent 1.0-3.1%, subrecedent 0.32-0.99% and sporadic < 0.32%.

Diversity values of the social wasp community from BYC and BWC bait-traps, and overlap between them, were calculated according to Jost (2007):

- Species richness = $(\Sigma_1^{s} p_i^{q})^{1/(1-q)}$ q = 0
- Overlap of q order $1 = (\ln 2 H_{\beta \text{ Shannon}})/\ln 2$

where p_i is the proportion of each species, w_i is the weight of each community, q is the order of diversity measure, D_{α} , D_{β} and D_{γ} are diversities expressed as "number equivalent species" and H_{β} is the β Shannon entropy.

Results

More than 6,000 adult Hymenoptera were trapped during the period from 2007 to 2012 in 9 localities of north-western Italy for a total of 22 annual inspections (table 2). Nine species of social wasps (table 2) and three species of social bees were identified (table 3).

Locality	Years	Hive number	Honey bees / Hives	A. mellifera	B. terrestris	Total specimens trapped
Grugliasco (TO)	2009	26	3.42	89		89
Grugliasco (TO)	2010	20	1.95	39		39
Grugliasco (TO)	2011	36	5.67	204		204
Grugliasco (TO)	2012	27	8.15	220		220
Montecomposto (TO)	2009	0		1		1
Reaglie (TO)	2009	10	0.70	7	1	8
Reaglie (TO)	2010	10	3.20	32		32
Reaglie (TO)	2011	16	0.31	5		5
Reaglie (TO)	2012	15	7.40	111		111
Roascio Costabella (CN)	2009	0		2		2
Volvera (TO)	2009	0		0		0
Giardini Hanbury (IM)	2010	0		0		0
Giardini Hanbury (IM)	2011	4	0.25	1	1	2
Giardini Hanbury (IM)	2012	4	2.75	11		11
Loano (SV)	2011	0		1	1	2
Loano (SV)	2012	0		2		2
Savona (SV)	2010	0		7		7
Savona (SV)	2011	0		1	1	2
Savona (SV)	2012	0		8		8
Sanremo Valle Armea (IM)	2010	0		0		0
				741	4	745

 Table 3. Specimens of A. mellifera and B. terrestris trapped during the period 2009-2012, number of hives near baittrap sites and ratio between honey bees and hive numbers are reported.

In the 2007 trapping test, a total of 125 V. crabro, 39 V. germanica, 1 V. vulgaris and 63 A. mellifera was caught exclusively in BYC and PRYC bait traps. The difference in the mean values between the captures in the three locations was not statistically significant for all species: V. crabro $F_{2; 36} = 0.877$, P = 0.425, V. germanica $F_{2; 30} = 2.280$, P = 0.120, A. mellifera $F_{2; 36} =$ 2.113, P = 0.136. Moreover, there was not interaction between locations and bait traps for all species analysed: *V. crabro* $F_{2;36} = 2.437$, P = 0.102, *V. germanica* $F_{2:30} =$ 1.195, P = 0.317, and A. mellifera $F_{2;36} = 0.0766$, P = 0.926. BYC and PRYC attractiveness was not statistically different for *V. crabro* ($F_{1; 36} = 0.276$; P = 0.266), while PRYC trapped more adults of V. germanica ($F_{1;30}$ = 5.713; P = 0.023) and A. mellifera ($F_{1; 36}$ = 7.902; P = 0.008) than BYC. Attractiveness of BYC bait traps was not different from blank traps for V. germanica and A. mellifera (table 4).

In the 2008 trapping test, 136 *V. crabro*, 33 *V. germanica*, 11 *V. vulgaris*, 21 *Polistes dominula* (Christ), 2 *Polistes associus* Kohl, 84 *A. mellifera* and 1 *Bombus argillaceus* (Scopoli) were trapped. *V. crabro* was caught in five bait traps and a significant difference between them was observed ($F_{4; 76} = 2.132$; P < 0.001). BYC and BWC trapped more hornets than BNC, PRWC and PRYC; moreover the three last ones showed lower confidence limits near or including the zero value as blank traps (table 4). *V. germanica*, *V. vulgaris* and *P. dominula* were found in six, seven and six bait traps, respectively, and there were no differences in attractiveness between the bait traps tested in each species: *V. germanica* $F_{6; 72} = 1.425$, P = 0.217, *V. vulgaris* $F_{5; 35} = 0.452$, P = 0.809, *P. dominula* $F_{5; 125} = 1.174$, P = 0.326. Moreover, lower confidence limits were near or

included the zero value as blank traps (table 4). *A. mellifera* was captured in nine bait traps and a significant difference between them was observed ($F_{8; 256} = 3.819$, P < 0.001). PRYC trapped more honeybees than all others bait traps, but it was statistically different from MWC, BNC, MNC and MYC only (table 4). *P. associus* was trapped with BWC and PRYC bait-traps. Only one *B. argillaceus* was found in a MWC bait-trap.

In the period 2009-2012, a total of 2845 *V. crabro*, 1 *V. velutina*, 1040 *V. germanica*, 74 *V. vulgaris*, 53 *Dolichovespula media* (Retzius), 30 *P. dominula*, 2 *P. associus*, 1 *P. gallicus* (L.), 1 *Polistes nimpha* (Christ), 741 *A. mellifera* and 4 *Bombus terrestris* (L.) was trapped. For all species tested there were not statistically significant differences between BYC and BWC bait-traps, years and interaction bait-trap x year (table 5). A male of *V. v. nigrithorax* (figure 2), a new invasive social wasp species for Italy, was trapped at Loano (SV) on 19th November 2012 by means of a BYC trap.

Other trapped insect specimens belonged to the following taxa in decreasing order: Diptera, Lepidoptera, Neuroptera, Coleoptera, Mecoptera, Hemiptera, Dermaptera, Thysanoptera, Orthoptera, and Blattodea.

Three social wasp species were abundant and occurred in nearly all inspections. Only *V. crabro* was nearly totally eudominant, while *V. germanica* and *V. vulgaris* mainly ranged from subdominant to eudominant categories. All other social wasp species were mainly categorized at subrecedent and sporadic levels (table 2). Among Apidae, *A. mellifera* was a nearly euconstant species and 741 adults were trapped during 20 inspections (table 3). Nevertheless, a positive correlation between the number of *A. mellifera* adults trapped in the period 2009-2012 and the number of hives present near

Species	BNC	ВҮС	BWC	MNC	MYC	MWC	PRNC	PRYC	PRWC	РҮС	WYC	WNC
Trapping test 2007	07											
Vespa crabro	ΤN	$\begin{array}{c} 1.90a;\\ 3.20;\ 1.00;\\ n=21 \end{array}$	ΓN	NT	ΤN	NT	NT	2.70a; 4.36; 1.55; n = 21	ΓN	0b	0p	0p
Vespula germanica	ΝΤ	0.40b; 0.83; 0.07; n = 18	ΓN	LN	NT	IN	ΝΤ	1.38a; 2.12; 0.82; n = 18	NT	0b	0b	0b
Apis mellifera	IN	0.44b; 0.94; 0.08; n =21	NT	NT	NT	NT	NT	1.80a; 2.76; 1.09; n = 21	IN	0b	0p	0b
Species	BNC	BYC	BWC	MNC	MYC	MWC	PRNC	PRYC	PRWC	PYC	WYC	WNC
Trapping test 2008	08											
Vespa crabro	0.66b; 1.05; 0.35; n = 20	2.71a; 3.56; 2.01; n =20	1.91a; 2.58; 1.37; n = 20	0c	00	0c	00	0.08c; 0.33; -0.12; n = 20	0.16bc; 0.43; $-0.06;$ n = 20	NT	NT	NT
0.15a; Vespula germanica 0.40; –0.06; n=13	0.15a; 0.40; -0.06; n = 13	$\begin{array}{c} 0.31a;\\ 0.61;\ 0.07;\\ n=13 \end{array}$	0.53a; 0.88; 0.25; n = 13	0a	0.15a; 0.40; -0.06; n = 13	0a	0.09a; 0.33; -0.11; n = 13	0.21a; 0.48; -0.01; n = 13	0.12a; 0.37; -0.08; n = 13	NT	NT	ΤN
Vespula vulgaris	0a	0.21a; 0.47; -0.01; n = 8	0.21a; 0.47; -0.01; n = 8	0a	$\begin{array}{c} 0.11a;\\ 0.35; -0.10;\\ n=8 \end{array}$	0a	0.11a; 0.35; -0.10; n = 8	0.32a; 0.61; 0.08; n = 8	$\begin{array}{c} 0.21a;\\ 0.47;-0.01;\\ n=8 \end{array}$	NT	NT	NT
Polistes dominula	0.04a; 0.12; -0.04; n = 26	0.06a; 0.15; -0.01; n = 26	$\begin{array}{l} 0.04a;\\ 0.12; -0.04;\\ n=26 \end{array}$	0a	0.05a; 0.14; -0.02; n = 26	0a	0.14a; 0.23; 0.06; n = 26	0.12a; 0.21; 0.04; n = 26	0a	LΝ	NT	ΤN
Apis mellifera	0.09b; 0.22; -0.03; n = 33	0.28ab; 0.43; 0.14; n = 33	0.19ab; 0.33; 0.06; n = 33	0.09b; 0.22; -0.03; n = 33	0.09b; 0.22; -0.03; n = 33	0.13b; 0.26; 0.01; n = 33	0.28ab; 0.44; 0.14; n = 33	0.51a; 0.70; 0.34; n = 33	0.35ab; 0.52; 0.20; n = 33	IN	NT	NT

Table 5. More abundant species trapped in the period 2009-2012 and two way ANOVA test results. In BYC and BWC columns are reported: Means (adults per year per site), SEM, (range); in BAIT-TRAP, YEAR and YEARx-BAIT-TRAP columns are reported results of tests. N=40.

Species	BYC	BWC	Bait-trap ANOVA test	Year ANOVA test	Year × bait-trap ANOVA test
V. crabro	62.35 ± 9.23 (3-148)	75.45 ± 9.23 (4-155)	$F_{1;32} = 1.01$ P = 0.323	$F_{3;32} = 0.88$ P = 0.462	$F_{3;32} = 0.32$ P = 0.810
V. germanica	28.00 ± 11.67 (0-247)	24 ± 11.67 (0-168)	$F_{1;32} = 0.06$ P = 0.810	$F_{3;32} = 1.38$ P = 0.268	$F_{3;32} = 0.06$ P = 0.982
V. vulgaris	17.20 ± 5.65 (0-97)	19.80 ± 5.65 (0-59)	$F_{1;32} = 0.11$ P = 0.747	$F_{3:32} = 2.84$ P = 0.053	$F_{3:32} = 0.10$ P = 0.960
D. media	$0.80 \pm 0.67 \ (0-7)$	$2.20 \pm 0.67 \ (0-16)$	$F_{1;32} = 2.15$ P = 0.153	$F_{3;32} = 3.11$ P = 0.04	$F_{3;32} = 0.63$ P = 0.602
P. dominula	0.80 ± 0.35 (0-7)	0.85 ± 0.35 (0-5)	$F_{1;32} = 0.01$ P = 0.921	$F_{3:32} = 0.93$ P = 0.439	$F_{3;32} = 1.30$ P = 0.290
A. mellifera	15.75 ± 7.95 (0-119)	21.30 ± 7.95 (0-119)	$F_{1;32} = 0.24$ P = 0.625	$F_{3;32} = 1.25$ P = 0.308	$F_{3;32} = 0.09$ P = 0.967

Figure 2. Male of *V. velutina* trapped at Loano (Liguria) on November 19th, 2012. Length of right forewing from tegula to apex is 20 mm. (In colour at www.bulletinofinsectology.org)

trap-bait points was showed: r = 0.86, $r^2 = 0.74$, n = 20, P < 0.01; however about 26% of variance was due to chance (figure 3).

Among the total of *V. crabro* trapped, 296 males were found in BNC, BYC, BWC, PRYC and PRWC bait-traps. More than 93% of *V. crabro* males were caught in beer bait-traps with coloured cap, almost with no difference between yellow and white cap. *V. crabro* males were trapped in the period from end July to mid November.

 β -diversity calculated for all samples over the period 2008-2012 ranged from 1.000 to 1.049, so communities trapped with BYC and BWC were actually the same. But overlap values and the difference between total sample richness and common species number were less than 100% and more than zero, respectively, in 18 out 21 samples (table 6).

Discussion

Social wasps are generalist foragers on sugar and animal proteins from natural and anthropogenetic sources (Raveret Richter, 2000). Since the first casual capture of

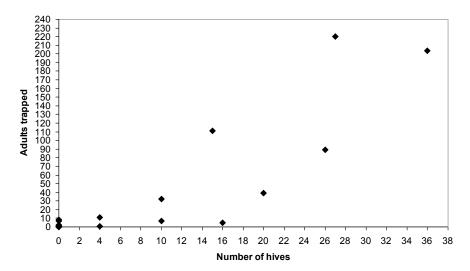


Figure 3. Scatter plot for the number of *A. mellifera* trapped and number of hives present near the bait-trap site. Data from 20 annual monitored localities in the period 2009-2012 where BYC and BWC were tested.

Table 6. Diversity values of social wasp communities trapped by means of BYC and BWC trap-baits in each locality in the period 2008-2012. Beta diversity (D_{β}) , overlap between BYC and BWC, total species richness (SR_{TOT}), common species (CS), species richness in BYC (SR_{BYC}) and species richness in BWC (SR_{BWC}).

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	(BICBWC):					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Grugliasco	2008	2009	2010	2011	2012
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	D_{β}	1.021	1.004	1.022	1.024	1.035
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		96.99	99.45	96.85	96.38	95.20
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	SRTOT	5	6	5	5	7
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	CS	4		3	4	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	SR _{BYC}	4	5	4	4	5
Reaglie20082009201020112012 D_{β} 1.0491.0051.0241Overlap (%)93.1699.6196.3799.75SRror5454CS3343SRøvc4454Montecomposto20082009201020112012D p 1.013	SR _{BWC}	5	5	4	5	5
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		2008	2009	2010	2011	2012
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			1.049	1.005	1.024	1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			93.16		96.37	99.75
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			5	4	5	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			3	3	4	3
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	SR _{BYC}		4	3	4	3
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			4	4	5	4
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Montecomposto	2008	2009	2010	2011	2012
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			1.013			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			97.27			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	CS		3			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	SR _{BYC}		3			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	SR _{BWC}		4			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		2008	2009	2010	2011	2012
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	D_{β}		1.008			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Overlap (%)		98.88			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			5			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			4			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	SR _{BYC}		4			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	SR _{BWC}		5			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Volvera	2008	2009	2010	2011	2012
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	D_{β}		1.030			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Overlap (%)					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			5			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $						
$\begin{array}{c cccccc} Overlap (\%) & 99.86 & 99.71 & 97.68 \\ SR_{TOT} & 3 & 4 & 5 \\ CS & 3 & 3 & 3 \\ SR_{BYC} & 3 & 3 & 5 \\ SR_{BWC} & 3 & 4 & 3 \\ Savona & 2008 & 2009 & 2010 & 2011 & 2012 \\ D_{\beta} & 1.029 & 1.000 & 1.046 \\ Overlap (\%) & 96.35 & 99.71 & 93.42 \\ SR_{TOT} & 4 & 3 & 4 \\ CS & 3 & 3 & 3 \\ SR_{BYC} & 4 & 3 & 3 \\ SR_{BWC} & 3 & 3 & 4 \\ Loano & 2008 & 2009 & 2010 & 2011 & 2012 \\ D_{\beta} & 1.009 & 1.045 \\ Overlap (\%) & 99.60 & 93.63 \\ SR_{TOT} & 2 & 4 \\ CS & 1 & 2 \\ SR_{BYC} & 1 & 3 \\ SR_{BWC} & 2 & 3 \\ SR_{BWC} & 2 & 3 \\ SR_{TOT} & 2 & 4 \\ CS & 1 & 2 \\ Oyerlap (\%) & 99.60 & 93.63 \\ SR_{TOT} & 2 & 4 \\ CS & 1 & 2 \\ SR_{BYC} & 1 & 3 \\ SR_{BWC} & 2 & 3 \\ Sanremo & 2008 & 2009 & 2010 & 2011 & 2012 \\ D_{\beta} & 1.000 \\ Overlap (\%) & 100 \\ SR_{TOT} & 1 \\ CS & 1 \\ SR_{BYC} & 1 \\ SR_{BYC} & 1 \\ SR_{BYC} & 1 \\ SR_{BYC} & 1 \\ \end{array}$	Giardini Hanbury	2008	2009			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	F					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	SR _{BYC}					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		2008	2009			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	D _β					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	SR _{TOT}					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $						
$\begin{array}{c ccccc} D_{\beta} & & 1.009 & 1.045 \\ Overlap (\%) & & 99.60 & 93.63 \\ SR_{TOT} & & 2 & 4 \\ CS & & 1 & 2 \\ SR_{BYC} & & 1 & 3 \\ SR_{BWC} & & 2 & 3 \\ Sanremo & 2008 & 2009 & 2010 & 2011 & 2012 \\ D_{\beta} & & 1.000 \\ Overlap (\%) & & 100 \\ SR_{TOT} & & 1 \\ CS & & 1 \\ SR_{BYC} & & 1 \\ \end{array}$	-				-	
$\begin{array}{cccc} Overlap (\%) & & 99.60 & 93.63 \\ SR_{TOT} & & 2 & 4 \\ CS & & 1 & 2 \\ SR_{BYC} & & 1 & 3 \\ SR_{BWC} & & 2 & 3 \\ \hline Sanremo & 2008 & 2009 & 2010 & 2011 & 2012 \\ \hline D_{\beta} & & 1.000 \\ Overlap (\%) & & 100 \\ SR_{TOT} & & 1 \\ CS & & 1 \\ SR_{BYC} & & 1 \\ \end{array}$		2008	2009	2010		
$\begin{array}{cccccccc} SR_{TOT} & & 2 & 4 \\ CS & & 1 & 2 \\ SR_{BYC} & & 1 & 3 \\ SR_{BWC} & & 2 & 3 \\ \hline Sanremo & 2008 & 2009 & 2010 & 2011 & 2012 \\ \hline D_{\beta} & & 1.000 \\ \hline Overlap (\%) & & 100 \\ SR_{TOT} & & 1 \\ CS & & 1 \\ SR_{BYC} & & 1 \\ \hline \end{array}$						
$\begin{array}{ccccccc} CS & & 1 & 2 \\ SR_{BYC} & & 1 & 3 \\ \hline SR_{BWC} & & 2 & 3 \\ \hline Sanremo & 2008 & 2009 & 2010 & 2011 & 2012 \\ \hline D_{\beta} & & 1.000 \\ \hline Overlap (\%) & & 100 \\ SR_{TOT} & & 1 \\ CS & & 1 \\ SR_{BYC} & & 1 \\ \hline \end{array}$	Overlap (%)					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $						
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$		2000	2000	2010		
Overlap (%) 100 SR _{TOT} 1 CS 1 SR _{BYC} 1		2008	2009		2011	2012
SR _{TOT} 1 CS 1 SR _{BYC} 1						
CS 1 SR _{BYC} 1						
SR _{BYC} 1						
SNBWC 1						
	SINBWC			1		

vellowjackets with synthetic chemicals (Davis et al., 1967), also meat and sugar based food and beverage material were tested across the world for trapping and controlling social wasp species in an effective, economic and selective manner, relatively to Apidae (Wegner and Jordan, 2005). Beer, indicated as anecdotal lure for yellowjackets (Wegner and Jordan, 2005), is well known as a total of 10 social wasp species were caught in Europe using it (Dvořák, 2007; Roberts and Dvořák, 2008; Sorvari, 2013). During this trapping investigation 9 species were caught with beer bait-traps and among them 3 sporadic species (P. associus, P. gallicus and P. nympha) which were absent in previous European studies; moreover, beer allowed also the catching of V. velutina, as it already happened in France (Dvořák, 2007). To date, 13 social wasp species have been trapped with beer in Europe over the period 2006-2012, while 8, 5 and 2 social wasp species were trapped with syrup (Dvořák and Landolt, 2006), chemical attractants (Landolt et al., 2007) and fish and meat proteins (Bacandritsos et al., 2006), respectively. When baittraps were compared one to another in experimental groups, beer bait-traps with coloured caps resulted the best lures for V. crabro, and to a lesser extent for Vespula and Polistes species which were trapped in the same statistical quantity also by MYC, PRNC, PRYC and PRWC bait-traps. The preference showed by each social wasp species or genus for different attractants is a well known phenomenon: synthetic organic compounds, such as esters of butyric, isobutyric and propionic acids, acetic acid, and isobutanol, trapped more Vespula species than Dolichovespula, Polistes and Vespa species (Landolt, 1998; Day and Jeanne, 2001; Wegner and Jordan, 2005; Landolt et al., 2007); animal proteins, such as meat- and fish-base food products trapped a great number of Vespula species (Ross et al., 1984; Spurr, 1995) and V. orientalis (Bacandritsos et al., 2006); sugar based food was an effective attractant for either Vespula species (Spurr, 1996; Wegner and Jordan, 2005; Dvořák and Landolt, 2006) or V. crabro (Dvořák and Landolt, 2006). But these associations could change because the same attractant works in different manners on the basis of the geographical location as demonstrated by Grothaus et al. (1973). In our study the same attractants set up in different sites, such as apiary, orchard and uncultivated area, showed the same attractiveness for each species analysed; indeed in the 2007 experimental design there was no interaction between the site and bait-trap tested.

The four most abundant and constant social wasp species trapped in north-western Italy seem to characterize the majority of European social wasp communities present in bait-traps, but the relative percentages change in each study (Dvořák and Landolt, 2006; Dvořák, 2007; Landolt *et al.*, 2007; Roberts and Dvořák, 2008; Sorvari, 2013). In our samples *V. crabro* was mainly eudominant and euconstant, while *V. vulgaris* was so in other countries (Dvořák, 2007), except in Greece where *V. orientalis* was the only eudominant species (Bacandritsos *et al.*, 2006). Instead, the subrecedent and sporadic species trapped in Italian localities were taxonomically different respect to the results obtained in other European countries. In our samples we found only *Polistes* species, while in other localities *Dolichovespula norwegica* (F.), *Dolichovespula saxonica* (F.), *Dolichovespula sylvestris* (Scopoli) and *Vespula rufa* (L.) were trapped too (Dvořák, 2007; Landolt *et al.*, 2007; Roberts and Dvořák, 2008; Sorvari, 2013). Differences in the relative abundance and species composition are probably due to factors, such as geography, habitat, altitude, and climatic conditions (Dvořák, 2007), but also the length of the monitoring period could play a role, characterising social wasp communities trapped: indeed, we monitored 20 times over a year and in 5 localities for more than 1 year consecutively.

One remarkable result was the first individual of V. v. *nigrithorax* trapped at Loano (SV) in the Liguria region. This species arrived in Italy 7 years after the first yellow-legged hornet was caught in France at Nérac, Lotet- Garonne (Haxaire et al., 2006). So, it is confirmed that V. velutina spreads at around 100 km per year in Europe (Rome et al., 2013), while it has spread at a rate of 10-20 km per year in South Korea (Choi et al., 2012). Following monitoring activities will show if this sample is an isolate incidental introduction away from the invasion front, as it happened in Belgium (Rome et al., 2012), or V. velutina is well established at Loano. The presence of the yellow-legged hornet in localities very far from the invasion front (Rome et al., 2013) seems to confirm that a good dispersal way of V. velutina is by human transport, probably on freight vehicles.

On the other hand, A. mellifera was trapped by all bait-traps tested except PYC, a protein bait, but the best attractant was PRYC containing about 0.8% of acetic acid, sugar and honey. Some B. argillaceus and B. terrestris were trapped with MWC and BYC bait-traps, respectively. In experimental designs across the world, the number of honey bees and bumble bees present in bait-traps ranged from zero, when synthetic organic compounds and food volatile products were used (Davis et al., 1968; Landolt, 1998; Day and Jeanne, 2001), to few specimens when sugar-based food (Spurr, 1996), fruity carbonated beverage (Wegner and Jeanne, 2005), syrup with fermented fruits (Dvořák and Landolt, 2006) and meat- and fish-based food (Bacandritsos et al., 2006) were used. In Europe no honey bees and bumble bees were caught with beer as bait (Dvořák, 2007; Roberts and Dvořák, 2008; Sorvari, 2013). Our results apparently demonstrate a high presence of honey bees, mainly in beer bait-traps with coloured cap, but the highest captures of A. mellifera were near the largest apiary and the number of honey bees trapped per hive and per year ranged from 0.25 to 8.15, so very few individuals relatively to the hive population were trapped; moreover, our experimental design lasted all the entire active season, while generally in other works the trapping period was of few days, weeks or months.

Odour and visual stimuli together are well known to stimulate the foraging activity of *V. germanica* mainly when bait and conspecific adults are present in the same container (D'Adamo *et al.*, 2000; 2003). For *V. vul*garis, *V. rufa*, and *D. sylvestris*, Mazokhin-Porshniakov (1960) demonstrated that they distinguish green, yellow and orange coloured paper sheets of various shades.

Also Polybia occidentalis (Olivier) was demonstrated to be able to recognise different colours after a training period with food reward (Shafir, 1996). Spectral sensitivity of single photoreceptors, measured in *P. gallicus*, *V.* germanica, V. vulgaris, V. crabro, and D. norwegica, showed three major peaks at UV, blue and green wavelengths (Peitsch et al., 1992). In our 2008 experimental design for the first time bait-traps with and without coloured cap were tested together and the results seem to demonstrate that V. crabro preferred bait-traps with coloured cap, while V. germanica, V. vulgaris, and P. dominula chose indifferently bait-traps with and without coloured cap although the absolute number of adults trapped was higher in coloured bait-traps than in others. Instead, there was no difference in the number of adults trapped between yellow and white bait-traps for all social wasp species tested in the 2009-2012 experimental design, while it has been demonstrated that the two baittraps used together trapped a social wasp community richer than a single coloured bait-trap.

In conclusion, among the bait-trap combinations tested, BYC and BWC were relatively good lures on the basis of requisites proposed by Wegner and Jordan (2005). The beer bait-trap was an effective and economic lure, trapping social wasp species independently from habitat and geographical position; moreover it caught social wasp species all along the year and the capture of honey bees and bumblebees was incidental. Nevertheless, BYC and BWC seemed to be more useful for monitoring activity than for mass trapping activity, as the rather modest number of individuals captured in each locality and year demonstrated. The trapping effectiveness of BYC and BWC was highest when they were used together. Finally, BWC trapped V. velutina at Loano (SV), exactly in an highly probabilistic area as defined by the provisional model elaborated by Rome et al. (2009).

Acknowledgements

We thank all people working at "Giardini Hanbury" and CERSAA who helped us to weekly change bait-traps during the 2010-1012 period. This article reports the results of research only. Mention of a commercial or proprietary product does not constitute an endorsement of the product by the University of Turin.

References

- ABROL D. P., 2006.- Defensive behavior of *Apis cerana* F. against predatory wasps.- *Journal of Apicultural Science*, 50 (2): 39-46.
- AKRE R. D., 1982.- Economics and control of yellowjackets (Vespula, Dolichovespula), pp. 109-112. In: Proceedings of 9th congress, international union for the study of social insects (BREED M. D., MICHENER C. D., EVANS H. E., Eds).-August 1982, Westview Press, Boulder, Colorado, USA.
- AKRE R. D., GREENE A., MACDONALD J. F., LANDOLT P. J., DAVIS H. G., 1980.- Yellowjackets of America North of Mexico.- Agriculture Handbook 552, U.S. Department of Agriculture, Washington, USA.

- AL-MAHDAWI Q. H. A., AL-KINANI M. A., 2011.- Economical damage of the red wasp *Vespa orientalis* and yellow wasp *Polistes olivaceus* on grapes.- *Diyala Agricultural Sciences Journal*, 3 (2): 216-222.
- BACANDRITSOS N., PAPANASTASIOU I., SAITANIS C., ROINIOTI E., 2006.- Three non-toxic insect traps useful in trapping wasps enemies of honey bees.- *Bulletin of Insectology*, 59 (2): 135-145.
- BEGGS J. R., BROCKERHOFF E. G., CORLEY J. C., KENIS M., MASCIOCCHI M., MULLER F., ROME Q., 2011.- Ecological effects and management of invasive alien Vespidae.- *BioControl*, 56: 505-526.
- BOSSARD M., FERANEC J., OTAHEL J., 2000.- CORINE land cover technical guide - Addendum 2000.- Technical report 40, European Environment Agency, Copenhagen, Denmark.
- BUCK M., MARSHALL S. A., CHEUNG D. K. B., 2008.- Identification atlas of the Vespidae (Hymenoptera, Aculeata) of the northeastern nearctic region.- *Canadian Journal of Arthropod Identification*, 5: 1-492.
- CARPENTER J. M., KOJIMA J., 1997.- Checklist of the species in the subfamily Vespinae (Insecta: Hymenoptera: Vespidae).-*Natural History Bulletin of Ibaraki University*, 1: 51-92.
- CHANG V., 1988.- Toxic baiting of the western yellowjacket (Hymenoptera: Vespidae) in Hawaii.- *Journal of Economic Entomology*, 81 (1): 228-235.
- CHOI M. B., MARTIN S. J., LEE J. W., 2012.- Distribution, spread, and impact of the invasive hornet *Vespa velutina* in South Korea.- *Journal of Asia Pacific Entomology*, 15: 473-477.
- CLAPPERTON B. K., ALSPACH P. A., MOLLER H., MATHESON A. G., 1989.- The impact of common and German wasps (Hymenoptera: Vespidae) on the New Zealand beekeeping industry.- New Zealand Journal of Zoology, 16 (3): 325-332.
- CRANSHAW W. S., LARSEN JR. H. J., ZIMMERMAN R. J., 2011.-Notes on fruit damage by the European paper wasp, *Polistes dominula* (Christ) (Hymenoptera: Vespidae).- *Southwestern Entomologist*, 36 (1): 103-105.
- D'ADAMO P., CORLEY J., SACKMANN P., LOZADA M., 2000.-Local enhancement in the wasp *Vespula germanica* are visual cues all that matter?- *Insectes Sociaux*, 47: 289-291.
- D'ADAMO P., LOZADA M., CORLEY J., 2003.- Conspecifics enhance attraction of *Vespula germanica* (Hymenoptera: Vespidae) foragers to food baits.- *Annals of Entomological Society of America*, 96 (5): 685-688.
- DAVIS H. G., EDDY G. W., MCGOVERN T. P., BEROZA M., 1967.- 2,4-hexadienyl butyrate and related compaunds highly attractive to yellow jackets (*Vespula* spp.).- *Journal of Medical Entomology*, 4 (3): 275-280.
- DAVIS H. G., MCGOVERN T. P., EDDY G. W., NELSON T. E., BERTUN K. M. R., BEROZA M., INGANGI J. C., 1968.- New chemicals attractants for yellow jackets (*Vespula* spp.).-*Journal of Economic Entomology*, 62 (2): 459-462.
- DAY S. E., JEANNE R. L., 2001.- Food volatiles as attractants for yellowjackets (Hymenoptera: Vespidae).- *Environmental Entomology*, 30 (2): 157-165.
- DE JONG D., 1979.- Social wasps, enemies of honey bees.-American Bee Journal, 119 (7): 505-507; 529.
- DE SOUZA A. R., VENÂNCIO D. DE F. A., PREZOTO F., ZANUNCIO J. C., 2012.- Social wasps (Hymenoptera: Vespidae) nesting in Eucalyptus plantations in Minas Gerais, Brazil.- *Florida Entomologist*, 95 (4):1000-1002.
- DONOVAN B. J., 2003.- Potential manageable exploitation of social wasps, *Vespula* spp. (Hymenoptera: Vespidae), as generalist predators of insect pests.- *International Journal of Pest Management*, 49 (4): 281-285.
- DVOŘÁK L., 2007.- Social wasps (Hymenoptera: Vespidae) trapped with beer in European forest ecosystems.- *Acta Musei Moraviae, Scientiae Biologicae*, 98: 181-204.

- DVOŘÁK L., LANDOLT P. J., 2006.- Social wasps trapped in Czech Republic with syrup and fermented fruit and comparison with similar studies (Hymenoptera Vespidae).- *Bulletin of Insectology*, 59 (2): 115-120.
- DVOŘÁK L., ROBERTS S. P. M., 2006.- Key to the paper and social wasps of Central Europe (Hymenoptera: Vespidae).-*Acta Entomologica Musei Nationalis Pragae*, 46: 221-224.
- EDWARDS R., 1980.- Social wasps, their biology and control.-The Rentokil Library, East Grinstead, UK.
- ENGELMANN H. D., 1978.- Zur Dominanzklassifizierung von Bodenarthropoden.- *Pedobiologia*, 18 (8): 378-380.
- DE JONG Y. S. D. M., 2013.- Fauna Europaea version 2.6.1 [on line] URL: http://www.faunaeur.org/.
- GIORDANI SOIKA A., BORSATO W., 1995.- Hymenoptera Vespoidea. In: *Checklist delle specie della fauna italiana*, 103 (MINELLI A., RUFFO S., LA POSTA S., Eds).- Calderini, Bologna, Italy.
- GROTHAUS R. H., DAVIS H. G., ROGOFF W. M., FLUNO J. A., HIRST J. M., 1973.- Baits and attractants for East Coast yellowjackets, *Vespula* spp.- *Enviromental Entomology*, 2 (4): 717-718.
- GUIGLIA D., 1972.- *Les Guèpes sociales d'Europe occidentale et septentrionale*.- Faune de l'Europe occidental et du Bassin Mediterranéen, 6. Masson, Paris, France.
- HAXAIRE J., BOUGUET J. P., TAMISIER J. P., 2006.- Vespa velutina Lepeletier, 1836, une redoubtable nouveauté pour la faune de France (Hym., Vespidae).- Bulletin de la Société Entomologique de France, 111 (2): 194.
- INTOPPA F., PIAZZA M. G., BOLCHI SERINI G., CORNALBA M., 2009.- *I bombi. Guida al riconoscimento delle specie italiane.*- CRA - Unità di ricerca di Apicoltura e Bachicoltura, Bologna, Italy.
- JOST L., 2007.- Partitioning diversity into independent alpha and beta components.- *Ecology*, 88 (10): 2427-2439.
- ISHAY J., BYTINSKI-SALTZ H., SHULOV A., 1967.- Contributions to the bionomics of the oriental hornet *Vespa orientalis.- Israel Journal of Entomology*, 2: 45-106.
- LANDOLT P. J., 1998.- Chemical attractants for trapping yellowjackets Vespula germanica and Vespula pensylvanica (Hymenoptera: Vespidae).- Environmental Entomology, 27 (5): 1229-1234.
- LANDOLT P. J., SMITHHISLER C. S., REED H. C., MCDONOUGH L. M., 2005.- Trapping social wasps (Hymenoptera: Vespidae) with acetic acid and saturated short chain alcohols.-*Journal of Economic Entomology*, 93 (6): 1616-1618.
- LANDOLT P. J., TÓTH M., JÓSVAI J., 2007.- First European report of social wasps trapped in response to acetic acid, isobutanol, 2-methyl-2-propanol and heptyl butyrate in tests conducted in Hungary.- *Bulletin of Insectology*, 60 (1): 7-11.
- LONGO S., 1980.- La difesa degli alveari dalle vespe.-L'apicoltore moderno, 71: 109-112.
- MATSUURA M., 1988.- Ecological study on vespine wasps (Hymenoptera: Vespidae) attacking honeybee colonies. I. Seasonal changes in the frequency of visits to apiaries by vespine wasps and damage inflicted, especially in the absence of artificial protection.- *Applied Entomology and Zoology*, 23 (4): 428-440.
- MAZOKHIN-PORSHNYAKOV G. A., 1960.- Evidence of existence of colour vision in wasps (Vespidae).- Zoologiceskij Zhurnal, 39: 553-557. (in Russian)
- MCGAIN F., HARRISON J., WINKEL K. D., 2000.- Wasp sting mortality in Australia.- *The Medical Journal of Australia*, 173: 198-200.
- OLSSON U., 2005.- Confidence intervals or the mean of a log-normal distribution.- *Journal of Statistics Education*, 13 (1) [online] URL: http://www.amstat.org/publications/jse/v13n1/olsson.html
- OPENSTAT, 2013.- *OpenStat statistical software.* [online] URL: http://www.statprograms4u.com

- PEITSCH D., FIETZ A., HERTEL H., SOUZA J. D., VENTURA D. F., MENZEL R., 1992.- The spectral input systems of hymenopteran insects and their receptor-based colour vision.- *Journal* of Comparative Physiology, 170: 23-40.
- PERRARD A., HAXAIRE J., RORTAIS A., VILLEMANT C., 2009.-Observations on the colony activity of the Asian hornet Vespa velutina Lepeletier 1836 (Hymenoptera: Vespidae: Vespinae) in France.- Annales de la Société Entomologique de France, 45 (1): 119-127.
- PIO A., LO SCHIAVO M., MONTERA C., GARGANO D., PIO R., 2012.- Manuale per la prevenzione diagnosi e terapia delle reazioni allergiche al veleno di imenotteri.- Tipografia Novigraf, San Piero a Sieve (Firenze), Italy.
- POLLYEA D. A., GEORGE T. I., CORLESS C., GOTLIB J., 2009.-When yellow jackets attack: recurrent and severe anaphylactic reactions to insect bites and stings.- *American Journal of Hematology*, 84: 843-846.
- PREZOTO F., SANTOS-PREZOTO H. H., MACHADO V. L. L., ZA-NUNCIO J. C., 2006.- Prey captured and used in *Polistes ver*sicolor (Olivier) (Hymenoptera: Vespidae) nourishment.-*Neotropical Entomology*, 35 (5): 707-709.
- PRZYBILLA B., RUEFF F., 2012.- Insect stings: clinical features and management.- *Deutsches Ärzteblatt International*, 109 (13): 238-248.
- RAVERET RICHTER M., 2000.- Social wasp (Hymenoptera: Vespidae) foraging behavior.- *Annual Review of Entomology*, 45: 121-150.
- REEVE J. D., STROM B. L., 2004.- Statistical problems encountered in trapping studies of scolytids and associated insects.-*Journal of Chemical Ecology*, 30 (8): 1575-1589.
- ROBERTS S. P. M., DVOŘÁK L., 2008.- Results of wasp beer trapping 2007 in the UK and a comparison between open and wooded habitats.- *BWARS Newsletter*, Spring 2008: 14-19.
- ROME Q., DAMBRINE L., ONATE C., MULLER F., VILLEMANT C., GARCÍA-PÉREZ A. L., CHARVALO ESTEVES P., BRUNEAU E., 2013.- Spread of invasive hornet *Vespa velutina* Lepeletier, 1836, in Europe in 2012 (Hym. Vespidae).- *Bulletin de la Société Entomologique de France*, 118 (1): 15-21.
- ROME Q., GARGOMINY O., JIGUET F., MULLER F. J., VILLEMANT C., 2009.- Using maximum entropy (MAXENT) models to predict the expansion of the invasive alien species *Vespa velutina* var. *nigrithorax* Du Buysson, 1905 (Hym.: Vespidae), the Asian hornet, in Europe. In: *Apimondia 2009*, 15-20 September 2009, Montpellier, France.
- ROME Q., MULLER F., VILLEMANT C., 2012.- Expansion en 2011 de Vespa velutina Lepeletier en Europe (Hym., Vespidae).- Bulletin de la Société Entomologique de France, 117 (1): 114.
- Ross D. R., SHUKLE R. H., MACDONALD J. F., 1984.- Meat extracts attractive to scavenger *Vespula* in Eastern North America (Hymenoptera: Vespidae).- *Journal of Economic Entomology*, 77 (3): 637-642.
- SEATH C. J., 1999.- Wasp (Hymenoptera: Vespidae) trapping with carbohydrates, pp. 275-280. In: *Proceedings of the 3rd international conference on urban pests* (ROBINSON W. H., RETTICH F., RAMBO G. W., Eds), 19-22 July 1999, Prague, Czech Republic.

- SHARP J. L., JAMES J., 1979.- Color preference of Vespula squamosa.- Environmental Entomology, 8: 708-710.
- SHAFIR S., 1996.- Color discrimination conditioning of a wasp, *Polybia occidentalis* (Hymenoptera: Vespidae).- *Biotropica*, 28 (2): 243-251.
- SIHAG R. C., 1992.- The yellow banded wasp Vespa orientalis L. 2. Population density, beecapture efficiency and predation rate on honey bee Apis mellifera L.- Korean Journal of Apiculture, 7 (1): 35-38.
- SIMMONS E. S., 1991.- Yellowjacket abatement in California parklands.- Report to California Department of Parks and Recreation 17, Pest Management Series, Sacramento, USA.
- SORVARI J., 2013.- Social wasp (Hymenoptera: Vespidae) beer trapping in Finland 2008-2012: a German surprise.- Entomologica Fennica, 24: 156-164.
- SPSS, 1995.- Sigma Stat. Version 2.0.- SPSS Inc., Chicago, USA.
- SPURR E. B., 1995.- Protein bait preferences of wasps (Vespula vulgaris and V. germanica) at Mt Thomas, Canterbury, New Zealand.- New Zealand Journal of Zoology, 22: 281-289.
- SPURR E. B., 1996.- Carbohydrate bait preferences of wasps (Vespula vulgaris and V. germanica) at Mt Thomas, Canterbury, New Zealand.- New Zealand Journal of Zoology, 23: 315-324.
- STARR C. K., LUCHETTI D., 1993.- Key to *Polistes* species of Europe.- *Sphecos*, 24: 14.
- STRINGER B. A., 1989.- Wasps, the honeydew thieves of New Zealand.- *American Bee Journal*, 129 (7): 465-467.
- TAN K., RADLOFF S. E., LI J. J., HEPBURN H. R., YANG M. X., ZHANG L. J., NEUMANN P., 2007.- Bee-hawking by the wasp, Vespa velutina, on the honey bees Apis cerana and Apis mellifera.- Naturwissenschaften, 94 (6): 469-472.
- VAN DER VECHT J., 1957.- The Vespinae of the Indo-Malaysian and Papuan areas (Hymenoptera, Vespidae).- Zoologische Verhandelingen, 34: 1-83.
- VILLEMANT C., HAXAIRE J., STREITO J.-C., 2006.- Premier bilan de l'invasion de Vespa velutina Lepeletier en France (Hymenoptera, Vespidae).- Bulletin de la Société Entomologique de France, 111 (4): 535-538.
- WAGNER R. E., 1961.- Control of yellowjacket, Vespula pennsylvanica, in public parks.- Journal of Economic Entomology, 54 (4): 628-630.
- WEGNER G. S., JORDAN K. K., 2005.- Comparison of three liquid lures for trapping social wasps (Hymenoptera: Vespidae).- Journal of Economic Entomology, 98 (3): 664-666.

Authors' addresses: Stefano DEMICHELIS (corresponding author: stefano.demichelis@unito.it), Aulo MANINO, Marco PORPORATO, Dipartimento di Scienze Agrarie, Forestali e Alimentari dell'Università di Torino, largo Paolo Braccini 2, 10095 Grugliasco (TO), Italy; Giovanni MINUTO, Centro di Sperimentazione e Assistenza Agricola, Regione Rollo 98, 17031 Albenga (SV), Italy; Mauro MARIOTTI, Centro Universitario di Servizi Giardini Botanici Hanbury, La Mortola corso Montecarlo 43, 18039 Ventimiglia (IM), Italy.

Received July 1, 2014. Accepted October 31, 2014.