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Smoothness and error bounds

of Martensen splines

V. Demichelis and M. Sciarra ∗

Abstract

Martensen splines M f of degree n interpolate f and its derivatives up

to the order n− 1 at a subset of the knots of the spline space, have local

support and exactly reproduce both polynomials and splines of degree ≤ n.

An approximation error estimate has been provided for f ∈ Cn+1.

This paper aims to clarify how well the Martensen splines M f approx-

imate smooth functions on compact intervals. Assuming that f ∈ Cn−1, ap-

proximation error estimates are provided for D j f , j = 0,1, . . . ,n− 1, where

D j is the jth derivative operator. Moreover, a set of sufficient conditions on

the sequence of meshes are derived for the uniform convergence of D jM f

to D j f , for j = 0,1, . . . ,n−1.

Keywords: Polynomial spline; Hermite interpolation

Subject classification AMS (MOS): 65D05, 65D07

1 Introduction

In the construction of spline approximation operators it is desiderable to obtain

the three properties of locality, interpolation and optimal polynomial reproduc-

tion. However, when the knots of the spline space are chosen to coincide with

interpolation points, the properties of locality and interpolation are incompatible

for quadratic or higher degree splines [2].

Using a procedure based on the introduction of additional knots, De Villiers

and Rohwer [2] constructed, for arbitrary order, an optimal nodal spline interpo-

lation operator possessing the three desired properties.
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This idea was introduced by de Villiers and Rohwer [2] as an alternative to

quasi-interpolations methods and generalized in the paper of Dahmen, Goodman

and Michelli [1], where the authors studied minimal Hermite spline interpolation

which was first investigated by Martensen [11].

Considering the two point Hermite spline interpolation scheme studied by

Martensen [11], Siewer [14, 15] constructed the Martensen splines M f of or-

der n+ 1 (degree ≤ n) obtaining the properties of locality, interpolation of f and

its derivatives up to the order n− 1 at a subset of the knots of the spline space

and optimal polynomials and splines reproduction. Approximation properties of

M f have been considered in [14], where an error estimate has been provided for

f ∈ Cn+1. Martensen splines in the case of equidistant knots and bivariate con-

structions using Boolean methods have been studied respectively in [4] and [5].

In the present paper, we will continue the investigation of Siewer on how well

the Martensen splines M f approximate smooth functions f on compact inter-

vals. Assuming that f ∈ Cn−1, we shall provide approximation error estimates for

D j f , j = 0,1, . . . ,n−1, where D j is the jth derivative operator. Moreover, we shall

give a set of sufficient conditions on the sequence of spline knots for the uniform

convergence of D jM f to D j f for j = 0,1, . . . ,n− 1. In virtue of their approxi-

mation properties, Martensen splines can be used for the numerical evaluation of

certain finite-part integrals [7, 8, 12].

2 Martensen splines approximation

In this section, we give the necessary background material on Martensen splines

based on the works in [14] and [15].

Let T = {t j} j∈Z be a strictly increasing sequence of points in R. We write Pn for

the set of polynomials of degree n and S n+1(T ) for the set of polynomial splines

of order n+1, with simple knots at the points t j, so that S n+1(T ) ⊂ Cn−1(R).

We denote by {B j,m(x)} j∈Z the set of normalized B-splines of order m on T ,

having support [t j, t j+m] and defined by [13]

B j,m(x) := (−1)m(t j+m− t j)[t j, . . . , t j+m](x− ·)m−1
+ ,

where the symbol [t j, . . . , t j+m] denotes the mth-order divided-difference functional

and

xr
+ =

{

xr, x ≥ 0,

0, x < 0.

The following theorem, stated and proved in [11], specifies the Martensen

interpolation scheme
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Theorem 1 [11] Let αk
0
, αk

n, with k = 0, . . . ,n− 1, be arbitrarily given real num-

bers. For n ∈ N and the set of knots Tn = {α = t0 < t1 < · · · < tn = β}, there is a

uniquely determined spline Hn(t), t ∈ [α,β], with Hn ∈ S n+1(Tn), satisfying

DkHn(t0) = αk
0, k = 0, . . . ,n−1,

DkHn(tn) = αk
n, k = 0, . . . ,n−1.

A generalization of this theorem has been obtained by considering nonsym-

metrical interpolation conditions [1].

For n ∈ N, j ∈ Z and 0 ≤ i < n, Siewer [14] provides a constructive proof for

Theorem 1 by defining recursively the fundamental Hermite splines Gi,n,t j,...,t j+n
(x) ∈

S n+1(T ) and Hi,n,t j,...,t j+n
(x) ∈ S n+1(T ) satisfying

DkGi,n,t j,...,t j+n
(t j) = 0, i,k = 0, . . . ,n−1,

DkGi,n,t j,...,t j+n
(t j+n) = δi,k, i,k = 0, . . . ,n−1,

and

DkHi,n,t j,...,t j+n
(t j) = δi,k, i,k = 0, . . . ,n−1,

DkHi,n,t j,...,t j+n
(t j+n) = 0, i,k = 0, . . . ,n−1.

Here, we are interested in the representation of Gi,n,t j,...,t j+n
and Hi,n,t j,...,t j+n

as a

linear combination of B-splines Bs,n+1. In order to obtain this expansion, we need

the Marsden identity

Theorem 2 [10] Given any increasing (not necessarily strictly) knot sequence

T = {t j} j∈Z and two indices l ≤ r with tl < tr+1, for all y ∈ R and all x ∈ [tl, tr+1) the

following identity holds

(y− x)n
=

r
∑

s=l−n

ϕs,n(y)Bs,n+1(x), (1)

where

ϕs,n(y) :=

n
∏

ν=1

(y− ts+ν) ∈ P
n (2)

is the dual polynomial for Bs,n+1.

Taking in account of the strict monotonicity of the considered knot sequence T ,

the following B-Spline expansion for fundamental Hermite splines is provided in

[14].
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Theorem 3 [14] Let n ∈N and i ∈ {1, . . . ,n}. For x ∈ [t j, t j+n], j ∈ Z, the fundamen-

tal Hermite splines for the Martensen interpolation allow the B-Spline expansion

Gn−i,n,t j,...,t j+n
(x) =

j+n−1
∑

s= j

(−1)n−i

n!

di

dyi
ϕs,n(t j+n)Bs,n+1(x) (3)

and

Hn−i,n,t j,...,t j+n
(x) =

j−1
∑

s= j−n

(−1)n−i

n!

di

dyi
ϕs,n(t j)Bs,n+1(x). (4)

Let r ∈ Z, n ∈ N and i ∈ {0, . . . ,n−1}. We denote by Hermite-Martensen spline

(HM-spline) the uniquely determined spline F
(rn)
i
∈ S n+1(T ) satisfying the follow-

ing conditions [15]

supp(F
(rn)
i

) ⊆ [trn−n, trn+n],

DkF
(rn)
i

(trn) = δi,k, k = 0, . . . ,n−1.

These requirements lead to the problem of finding the spline which satisfies

the interpolation conditions

DkF
(rn)
i

(trn−n) = 0, k = 0, . . . ,n−1,

DkF
(rn)
i

(trn) = δi,k, k = 0, . . . ,n−1,

DkF
(rn)
i

(trn+n) = 0, k = 0, . . . ,n−1.

By Theorem 1, we can define the HM-spline F
(rn)
i

in terms of the fundamental

Hermite splines [15]

F
(rn)
i

(x) = χ(−∞,trn](x)Gi,n,trn−n,...,trn
(x)+χ[trn,∞)(x)Hi,n,trn,...,trn+n

(x).

By using the B-spline expansions (3) and (4)

Hi,n,trn,...,trn+n
(x) =

rn−1
∑

s=rn−n

(−1)i

n!

dn−i

dyn−i
ϕs,n(trn)Bs,n+1(x), x ∈ [trn, trn+n]

and

Gi,n,trn−n,...,trn
(x) =

rn−1
∑

s=rn−n

(−1)i

n!

dn−i

dyn−i
ϕs,n(trn)Bs,n+1(x), x ∈ [trn−n, trn],

we can write the HM-splines in the form

F
(rn)
i

(x) =

rn−1
∑

s=rn−n

(−1)i

n!

dn−i

dyn−i
ϕs,n(trn)Bs,n+1(x), x ∈ [trn−n, trn+n].
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The Martensen operator M on the space Cn−1(R), introduced in [15], is defined by

M : Cn−1(R)→ S n+1(T ), f (x)→
∑

r∈Z

n−1
∑

i=0

Di f (trn)F
(rn)
i

(x). (5)

The following theorem [15] summarizes the main properties of M.

Theorem 4 [15] The Martensen operator M, defined by (5), satisfies the proper-

ties:

1. M f is uniquely determined by the interpolation conditions

DkM f (trn) = Dk f (trn), k = 0, . . . ,n−1, r ∈ Z;

2. M f = f for all f ∈ Pn;

3. M f = f for all f ∈ S n+1(T ).

The interpolation conditions at the knots {trn} suggest a subdivision of the

knots in primary and secondary ones. The set of primary knots Tp is defined by

Tp := {trn|r ∈ Z},

whereas the set of secondary knots Ts is given by

Ts := {t j| j . 0 mod n, j ∈ Z}.

Assuming that f ∈Cn−1([tkn, tkn+n]),k ∈ Z, and x ∈ [tkn, tkn+n], we have

M f (x) =

n−1
∑

i=0

(Di f (tkn)Hi,n,tkn,...,tkn+n
(x)+Di f (tkn+n)Gi,n,tkn,...,tkn+n

(x)). (6)

We denote by M f the approximation error

M f (x) := f (x)−M f (x).

The following local estimate of the approximation error M f holds

Theorem 5 [14] For f ∈Cn+1([tkn, tkn+n]) and x ∈ [tkn, tkn+n], it holds

∣

∣

∣M f (x)
∣

∣

∣ ≤
∥

∥

∥ f (n+1)
∥

∥

∥

∞
(tkn+n− tkn)n+1

















1

n!
+

n−1
∑

i=0

2i

(n− i)!

















,

where

‖g‖∞ = max
x∈[a,b]

|g(x)|, ∀g ∈C([a,b]).
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The Martensen operator M for f ∈ Cn−1([a,b]), with [a,b] = [t0, tRn], reduces

to a finite sum. For any x ∈ [a,b], we have [15]

MR f (x) =

R
∑

r=0

n−1
∑

i=0

Di f (trn)F
(rn)
i

(x). (7)

Remark. The representation (7) requires the auxiliary knots t−n < · · · < t−1 at the

left of t0 and tRn+1 < · · · < tRn+n at the right of tRn. These auxiliary knots can

be arbitrarily choosen because we don’t need values of f at x < [a,b]. We shall

choose the auxiliary knots simmetrically distributed with respect to t0 and tRn

t−i = 2t0− ti and tRn+i = 2tRn− tRn−i, i = 1, . . . ,n.

Let TR be a partition of [a,b], TR := {a= t0 < · · ·< tRn = b}, and MR f ∈ S n+1(TR)

the Martensen spline defined by (7) on [a,b]. We define

hk := tkn+n− tkn, with k = 0, . . . ,R−1, (8)

and we denote by HR the norm of the primary partition TR,p := {trn |0 ≤ r ≤ R}

HR := max
k=0,...,R−1

hk. (9)

We denote by MR f the approximation error MR f := f −MR f . From Theorem 5

we can easily derive a uniform convergence result on [a,b].

Corollary 1 For any f ∈Cn+1([a,b]) and x ∈ [a,b] it holds

|MR f (x)| ≤
∥

∥

∥ f (n+1)
∥

∥

∥

∞
Hn+1

R

















1

n!
+

n−1
∑

i=0

2i

(n− i)!

















, (10)

with HR defined by (9).

Moreover, if we assume that the sequence of primary partitions {TR,p}R∈N is

such that

HR→ 0, as R→∞, (11)

then
∥

∥

∥MR f
∥

∥

∥

∞
→ 0, as R→∞.

Proof. From Theorem 5 we obtain the uniform bound (10) since, by (8) and (9),

it holds

hk ≤ HR.

�
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3 Smoothness of the operator MR

In this section, we continue the study on how well the Martensen operator MR

approximates a smooth function f . Assuming that f ∈ Cn−1([a,b]), we derive

approximation error estimates for D j f , j= 0,1, . . . ,n−1, and we provide sufficient

conditions on the sequence of spline knots for the uniform convergence of D jMR f

to D j f for j = 0,1, . . . ,n−1.

We define

AR := max
0≤i, j≤Rn−1
|i− j|=1

ti+1− ti

t j+1− t j
, AR ≥ 1 (12)

and

ÃR := max
0≤i, j≤R−1
|i− j|=1

hi

h j
, ÃR ≥ 1, (13)

with hi and h j defined by (8). For ÃR, defined in (13), the following inequality

holds [6, Lemma 3.5],

ÃR ≤

n
∑

ν=1

AνR. (14)

We say that the sequence of partitions {TR}R∈N ({TR,p}) is locally uniform if there

exists a constant A ≥ 1 (Ã ≥ 1) such that AR ≤ A (ÃR ≤ Ã) for all R ∈ N, with AR

and ÃR defined by (12) and (13) respectively.

Given f ∈Cn−1([a,b]) and x ∈ [a,b], we define

e
(s)
R

(x) := DsMR f (x), with 0 ≤ s ≤ n−1.

By considering the Taylor expansion of order n−1, we can write

f (x) = Tn−1(x)+RT (x).

Using property 2. of Theorem 4 and linearity of MR, we have

e
(0)
R

(x) = f (x)−MR f (x) = Tn−1(x)+RT (x)−MR(Tn−1+RT )(x) (15)

= Tn−1(x)+RT (x)−MRTn−1(x)−MRRT (x)

= RT (x)−MRRT (x)

and

e
(s)
R

(x) = Ds(RT −MRRT )(x), with 1 ≤ s ≤ n−1. (16)

Assuming that x ∈ [tkn, tkn+n], with k = 0, . . . ,R− 1, from (3), (4), (6) and by

differentiating MR f (x) we get

DsMR f (x) =

n−1
∑

i=0

{

Di f (tkn)DsHi,n,tkn,...,tkn+n
(x)+Di f (tkn+n)DsGi,n,tkn,...,tkn+n

(x)
}

,

(17)
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where

DsHi,n,tkn,...,tkn+n
(x) =

kn−1
∑

j=kn−n

(−1)i

n!

dn−i

dyn−i
ϕ j,n(tkn)DsB j,n+1(x), (18)

DsGi,n,tkn,...,tkn+n
(x) =

kn+n−1
∑

j=kn

(−1)i

n!

dn−i

dyn−i
ϕ j,n(tkn+n)DsB j,n+1(x). (19)

The derivatives in (18) and (19) are expressed in terms of normalized B-splines

derivatives DsB j,n+1(x). A bound for these derivatives is provided by the following

lemma, which can be quoted as a special case of [9, Lemma 2.1].

Lemma 1 Let B j,n+1(x) be the normalized B-spline of degree n defined on the

knots t j < · · · < t j+n+1. Suppose x ∈ [tl, tl+1], with j ≤ l < j+ n+ 1. Fix 0 < s ≤ n,

then DsB j,n+1(x) exists and

∣

∣

∣DsB j,n+1(x)
∣

∣

∣ ≤
Γn+1,s

δ j,l,n . . . δ j,l,n−s+1
, (20)

where, for k = n− s+ 1, . . . ,n, we define δ j,l,k as the minimum of tr+k − tr, over r

such that t j ≤ tr ≤ tl < tl+1 ≤ tr+k ≤ t j+n+1, and where

Γn+1,s =
n!

(n− s)!

(

s

[s/2]

)

,

with [s/2] = greatest integer less than or equal to s/2.

3.1 Local estimates

The purpose of this section is to obtain local estimates of |e
(s)
R

(t)|, s= 0,1, . . . ,n−1,

for t ∈ [tl, tl+1] ⊂ [tkn, tkn+n], with 0 ≤ k ≤ R−1.

We consider the remainder RT (x) of the (n−1)-order Taylor expansion of f at

t ∈ [tl, tl+1] ⊂ [tkn, tkn+n]

RT (x) = f (x)−

n−1
∑

j=0

f ( j)(t)

j!
(x− t) j. (21)

By (15), (16) and considering that RT (x), defined in (21), and its derivatives

up to the order n−1 are zero at x = t, we can write

e
(s)
R

(t) = DsMRRT (t), 0 ≤ s ≤ n−1. (22)

From (22), in order to bound |e
(s)
R

(t)|, 0 ≤ s ≤ n − 1, we only have to estimate

|DsMRRT (t)|.
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From (6) and (17), we can write for x = t and 0 ≤ s ≤ n−1

DsMRRT (t) =

n−1
∑

i=0

(

DiRT (tkn)DsHi,n,tkn,...,tkn+n
(t)+DiRT (tkn+n)DsGi,n,tkn,...,tkn+n

(t)
)

,

(23)

and

∣

∣

∣DsMRRT (t)
∣

∣

∣≤

n−1
∑

i=0

(∣

∣

∣DiRT (tkn)
∣

∣

∣

∣

∣

∣DsHi,n,tkn,...,tkn+n
(t)

∣

∣

∣+

∣

∣

∣DiRT (tkn+n)
∣

∣

∣

∣

∣

∣DsGi,n,tkn,...,tkn+n
(t)

∣

∣

∣

)

.

We first estimate
∣

∣

∣DiRT (tkn)
∣

∣

∣ and
∣

∣

∣DiRT (tkn+n)
∣

∣

∣.

Lemma 2 Let f ∈Cn−1([tkn, tkn+n]). For i = 0, . . . ,n−1 it holds

∣

∣

∣DiRT (tkn)
∣

∣

∣ ≤
hn−i−1

k

(n− i−1)!
ω(Dn−1 f ;hk; [tkn, tkn+n]), (24)

where, for all continuous function g ∈C(J), ω(g;∆; J) is the modulus of continuity

of g on J [16]:

ω(g;∆; J) = max
x,x+h∈J
0<h≤∆

|g(x+h)−g(x)| .

The estimate (24) is also true for
∣

∣

∣DiRT (tkn+n)
∣

∣

∣.

Proof. By (n−2)−order Taylor expansion of RT (x), defined in (21), at t ∈ [tl, tl+1]⊂

[tkn, tkn+n], we can express RT (x) in the form

RT (x) =
Dn−1RT (η)

(n−1)!
(x− t)n−1 , (25)

with η between x and t. By differentiating i-times (25), with 0 ≤ i ≤ n−1, we have

at x = tkn

DiRT (tkn) =
Dn−1RT (η̃)

(n− i−1)!
(tkn− t)n−i−1, with η̃ ∈ (tkn, t). (26)

Since t ∈ [tl, tl+1] ⊂ [tkn, tkn+n], we can write

|tkn− t| ≤ tkn+n− tkn = hk. (27)

By differentiating (n−1)-times (21), we have at x = η̃
∣

∣

∣Dn−1RT (η̃)
∣

∣

∣ =

∣

∣

∣Dn−1 f (η̃)−Dn−1 f (t)
∣

∣

∣ ≤

≤ max
η̃,t∈[tkn,tkn+n]

0<|t−η̃|≤hk

∣

∣

∣Dn−1 f (η̃)−Dn−1 f (t)
∣

∣

∣

= ω(Dn−1 f ;hk; [tkn, tkn+n]). (28)

9



From (26), (27) and (28) we obtain inequality (24). Similarly, we can prove that

the estimate (24) holds for
∣

∣

∣DiRT (tkn+n)
∣

∣

∣.

�

The following lemma provides local estimates for the derivatives of funda-

mental Hermite splines.

Lemma 3 Suppose t ∈ [tl, tl+1] ⊂ [tkn, tkn+n]. Then

∣

∣

∣DsGi,n,tkn,...,tkn+n
(t)

∣

∣

∣ ≤































nÃi
R
hi

k

i!
, for s = 0,

n!

i!

Γn+1,s

(n−1)!

Ãi
R
hi

k

(tl+1− tl)s
, for 1 ≤ s ≤ n.

(29)

The estimate (29) is also true for
∣

∣

∣DsHi,n,tkn,...,tkn+n
(t)

∣

∣

∣.

Proof. By evaluating (3) at t ∈ [tl, tl+1] and considering that Bs,n+1(t) ≤ 1, we

obtain
∣

∣

∣Gi,n,tkn,...,tkn+n
(t)

∣

∣

∣ ≤

kn+n−1
∑

j=kn

1

n!

∣

∣

∣

∣

∣

∣

dn−i

dyn−i
ϕ j,n(tkn+n)

∣

∣

∣

∣

∣

∣

. (30)

We first estimate the derivatives of ϕ j,n, defined in (2). The ith derivative of ϕ j,n(y)

is
di

dyi
ϕ j,n(y) =

n
∑

k1=1

n
∑

k2=1

k2,k1

· · ·

n
∑

ki=1

ki,k1,...,ki−1

n
∏

ν=1
ν,k1,...,ki

(y− t j+ν).

By evaluating the derivative at y = tkn+n, we obtain

∣

∣

∣

∣

∣

∣

di

dyi
ϕ j,n(tkn+n)

∣

∣

∣

∣

∣

∣

≤

n
∑

k1=1

n
∑

k2=1

k2,k1

· · ·

n
∑

ki=1

ki,k1,...,ki−1

n
∏

ν=1
ν,k1,...,ki

∣

∣

∣tkn+n− t j+ν

∣

∣

∣ .

For all j = kn, . . . ,kn+ n− 1 and ν = 1, . . . ,n, it holds t j+ν ∈ [tkn, t(k+1)n] or t j+ν ∈

(t(k+1)n, t(k+2)n] as the case may be. By (13) it holds

∣

∣

∣tkn+n− t j+ν

∣

∣

∣ ≤ ÃRhk

and we can write
∣

∣

∣

∣

∣

∣

di

dyi
ϕ j,n(tkn+n)

∣

∣

∣

∣

∣

∣

≤
n!

(n− i)!
Ãn−i

R hn−i
k . (31)

By inserting (31) into (30) we obtain

∣

∣

∣Gi,n,tkn,...,tkn+n
(t)

∣

∣

∣ ≤

kn+n−1
∑

j=kn

1

n!

n!

i!
Ãi

Rhi
k =

nÃi
R
hi

k

i!
.

10



From (19), we can write for x = t ∈ [tl, tl+1] and 1 ≤ s ≤ n

∣

∣

∣DsGi,n,tkn,...,tkn+n
(t)

∣

∣

∣ ≤
1

n!

kn+n−1
∑

j=kn

∣

∣

∣

∣

∣

∣

dn−i

dyn−i
ϕ j,n(tkn+n)

∣

∣

∣

∣

∣

∣

∣

∣

∣DsB j,n+1(t)
∣

∣

∣ . (32)

By inserting inequalities (31) and (20) into (32), we obtain

∣

∣

∣DsGi,n,tkn,...,tkn+n
(t)

∣

∣

∣ ≤
n!Γn+1,s

(n−1)!i!δ j,l,n . . . δ j,l,n−s+1
Ãi

Rhi
k.

The thesis (29) follows from inequalities

δ j,l,k ≥ tl+1− tl for all k = n− s+1, . . . ,n.

Since the inequality (31) holds for
∣

∣

∣

∣

di

dyiϕ j,n(tkn)
∣

∣

∣

∣

, j = kn−n, . . . ,kn−1, the esti-

mate (29) is true for
∣

∣

∣DsHi,n,tkn,...,tkn+n
(t)

∣

∣

∣.

�

The following theorem provides a local estimate for e
(s)
R

(t) defined by (22).

Theorem 6 Suppose t ∈ [tl, tl+1] ⊂ [tkn, tkn+n] and let f ∈Cn−1([tkn, tkn+n]). Then

∣

∣

∣

∣

e
(s)
R

(t)
∣

∣

∣

∣

≤



















K0hn−1
k
ω(Dn−1 f ;hk; [tkn, tkn+n]), for s = 0,

Kl,sh
n−1−s
k

ω(Dn−1 f ;hk; [tkn, tkn+n]), for 1 ≤ s ≤ n−1,

(33)

where

K0 :=
2

(n−1)!

n−1
∑

i=0

(n− i)

(

n

i

)

Ãi
R (34)

and

Kl,s :=
2Γn+1,s

(n−1)!

hs
k

(tl+1− tl)s

n−1
∑

i=0

(n− i)

(

n

i

)

Ãi
R. (35)

Proof. The first inequality in (33) follows from Lemma 2 and from (22), (23) and

(29) with s = 0,

|MRRT (t)| ≤ 2

n−1
∑

i=0















hn−i−1
k

(n− i−1)!
ω(Dn−1 f ;hk; [tkn, tkn+n])

nhi
k

i!
Ãi

R















=
2hn−1

k
ω(Dn−1 f ;hk; [tkn, tkn+n])

(n−1)!

n−1
∑

i=0

(n− i)

(

n

i

)

Ãi
R

11



The second inequality in (33) follows from (22), (23), Lemma 2 and (29) with

1 ≤ s ≤ n−1,

∣

∣

∣DsMRRT (t)
∣

∣

∣ ≤ 2

n−1
∑

i=0















hn−i−1
k

(n− i−1)!
ω(Dn−1 f ;hk; [tkn, tkn+n])

n!Γn+1,s

(n−1)!i!

hi
k

(tl+1− tl)s
Ãi

R















=
2hn−1

k
Γn+1,sω(Dn−1 f ;hk; [tkn, tkn+n])

(n−1)!(tl+1− tl)s

n−1
∑

i=0

(n− i)

(

n

i

)

Ãi
R.

�

3.2 Uniform bounds

The following uniform bounds can be derived from the local estimates of Theorem

6

Theorem 7 Let f ∈Cn−1([a,b]), then

∥

∥

∥

∥

e
(s)
R

∥

∥

∥

∥

∞
≤



















K0Hn−1
R
ω(Dn−1 f ; HR; [a,b]), for s = 0,

K sH
n−1−s
R

ω(Dn−1 f ; HR; [a,b]), for 1 ≤ s ≤ n−1,

(36)

where K0 is defined in (34) and

K s :=
2Γn+1,s

(n−1)!



















l
∑

j=kn

A
l− j

R
+

kn+n−1
∑

j=l+1

A
j−l

R



















s
n−1
∑

i=0

(n− i)

(

n

i

)

















n
∑

ν=1

AνR

















i

.

Proof.

For s = 0, the constant K0, defined in (34), does not depend on [tkn, tkn+n].

Moreover, since hk ≤ HR, from monotonicity of modulus of continuity

ω(Dn−1 f ;hk; [tkn, tkn+n]) ≤ ω(Dn−1 f ;hk; [a,b]) ≤ ω(Dn−1 f ; HR; [a,b]). (37)

The first inequality in (36) follows immediately from (37).

For 1 ≤ s ≤ n−1, by (8) we can write for [tl, tl+1] ⊂ [tkn, tkn+n]

hk =

l−1
∑

j=kn

(t j+1− t j)+ (tl+1− tl)+

kn+n−1
∑

j=l+1

(t j+1− t j).

For j < l we have

t j+1− t j ≤ AR(t j+2− t j+1) ≤ · · · ≤ A
l− j

R
(tl+1− tl). (38)

12



Similarly, for j > l,

t j+1− t j ≤ AR(t j− t j−1) ≤ · · · ≤ A
j−l

R
(tl+1− tl). (39)

From (38) and (39) we can write

hk ≤ (tl+1− tl)



















l−1
∑

j=kn

A
l− j

R
+1+

kn+n−1
∑

j=l+1

A
j−l

R



















= (tl+1− tl)



















l
∑

j=kn

A
l− j

R
+

kn+n−1
∑

j=l+1

A
j−l

R



















.

(40)

By (40), it holds for 1 ≤ s ≤ n−1

(tkn+n− tkn)s

(tl+1− tl)s
≤



















l
∑

j=kn

A
l− j

R
+

kn+n−1
∑

j=l+1

A
j−l

R



















s

, (41)

by (14) and inserting (41) into (35), we obtain

Kl,s ≤
2Γn+1,s

(n−1)!



















l
∑

j=kn

A
l− j

R
+

kn+n−1
∑

j=l+1

A
j−l

R



















s
n−1
∑

i=0

(n− i)

(

n

i

)

















n
∑

ν=1

AνR

















i

=: K s.

The second inequality in (36) follows from (37)

�

3.3 Uniform convergence

The following uniform convergence results follow immediately from Theorem 7

Corollary 2 Assume that f ∈Cn−1([a,b]) and (11) holds.

If the sequence of primary partitions {TR,p}R∈N is locally uniform, then

∥

∥

∥

∥

e
(0)
R

∥

∥

∥

∥

∞
→ 0 as R→∞. (42)

If the sequence of partitions {TR}R∈N is locally uniform, then for 1 ≤ s ≤ n−1

∥

∥

∥

∥

e
(s)
R

∥

∥

∥

∥

∞
→ 0 as R→∞. (43)

Proof. The theses (42) and (43) follows immediately from Theorem 7.

�
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4 Numerical examples

In this section, we present some numerical examples to illustrate the results given

in the above sections.

For increasing values of R, we construct the cubic Martensen splines MR f on

uniform partitions TR of [a,b] = [−5,5]. We denote by ER( f ) the maximum norm

of the error e
(0)
R
= f −MR f

ER( f ) := max
0≤ j≤3R−1

∣

∣

∣

∣

∣

e
(0)
R

( t j+ t j+1

2

)

∣

∣

∣

∣

∣

.

We consider the C2 function f = f1 and the smooth functions f = f j, j = 2,3,

where

f1(x) = x4
+ |x|

5
2 ,

f2(x) = tanh(x)+1,

f3(x) =
1

1+ x2
.

The results in Table 1 confirm the error bound (36) with s = 0.

R |ER( f1)| |ER( f2)| |ER( f3)|

3 8.49e-001 9.08e-003 3.82e-001

7 2.88e-002 1.03e-003 3.02e-002

15 3.53e-003 1.41e-004 2.65e-004

31 7.23e-004 1.04e-005 5.42e-005

63 1.31e-004 7.20e-007 4.08e-006

127 2.32e-005 4.49e-008 2.62e-007

Table 1: Maximum norm of error

Finally, to illustrate the behaviour of MR f , the functions f j and the corre-

sponding Martensen splines MR f j, j = 1,2,3, are represented in Figures 1, 2 and

3 for R = 3 and R = 127.

5 Conclusions

The paper studies how well the Martensen spline operator MR approximates a

smooth function f ∈ Cn−1([t0, tRn]). Approximation error estimates for f and

its derivatives and a set of sufficient conditions for the uniform convergence of

D jMR f to D j f , j = 0,1, . . . ,n−1, are provided.
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Figure 1: Graphical representation of f1 and MR f1, with R = 3 (a) and R = 127

(b).
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Figure 2: Graphical representation of f2 and MR f2, with R = 3 (a) and R = 127

(b).
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Figure 3: Graphical representation of f3 and MR f3, with R = 3 (a) and R = 127

(b).

The approximation error estimate (36) generalizes the classical result for piece-

wise linear interpolation to the smoother situation of piecewise Hermite Martensen

interpolation. A natural application is the approximation of spline functions of the

same order but with different interpolation conditions such as nodal splines.

The obtained uniform convergence results (42) and (43), together with inter-

polation conditions 1. of Theorem 4 at t0 and tRn, allow the use of Martensen

splines MR f for the numerical evaluation of certain finite-part integrals [7, 8, 12].
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