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Martensen splines and finite-part integrals

V. Demichelis and M. Sciarra ∗

Abstract

We state a uniform convergence theorem for finite-part integrals which

are derivatives of weighted Cauchy principal value integrals. We prove that

a sequence of Martensen splines, based on locally uniform meshes, satisfies

the sufficient conditions required by the theorem. We construct the quadra-

ture rules based on such splines and illustrate their behaviour by presenting

some numerical results and comparisons with composite midpoint, Simpson

and Newton-Cotes rules.
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1 Introduction

We consider the Hadamard finite-part integral

∫ b

a

=
f (x)

(x − λ)p+1
dx, λ ∈ (a, b), p ∈ N, (1)

which is well defined for f ∈ Hp,µ(B), with

Hp,µ(B) := {g| g ∈ Cp([a, b]), ω(Dpg,∆, [a, b]) ≤ B∆µ, 0 < µ ≤ 1, B > 0} ,

where Dp denotes the pth derivative operator and

ω(g,∆, J) := max
x,x+h∈J, 0≤h≤∆

|g(x + h) − g(x)| , g ∈ C(J).

For this type of integral the following properties hold [10].

∗Department of Mathematics ”G. Peano”, University of Torino, Via Carlo Alberto 10, I-10123

Torino, Italy (vittoria.demichelis@unito.it, matteosciarra@gmail.com)

1



Property 1 When a < λ < b and p ∈ N we have

∫ b

a

=
f (x)

(x − λ)p+1
dx =

1

p

d

dλ

∫ b

a

=
f (x)

(x − λ)p
dx = . . . =

1

p!

dp

dλp

∫ b

a

−
f (x)

x − λ
dx,

where
∫ b

a

−
f (x)

x − λ
dx = lim

ǫ→0

{∫ λ−ǫ

a

f (x)

x − λ
dx +

∫ b

λ+ǫ

f (x)

x − λ
dx

}

is the Cauchy principal value integral.

Property 2 For c ≥ 0 and p ≥ 1 we have

∫ λ+h

λ−ch

=
f (x)

(x − λ)p+1
dx =

{

O(h−p+1), if c = 1 and p is even,

O(h−p), otherwise.
(2)

Hence, the above integral, which is well defined for h fixed, tends to infinity as

h → 0. These integrals are often encountered in several physical and engineering

problems [11, 21].

In this paper, we are interested in the numerical evaluation of (1), obtained by

replacing f by an approximation fN from a sequence { fN} such that

∫ b

a

=
fN(x)

(x − λ)p+1
dx

can be evaluated analytically or easily approximated numerically for all N. In

[13], Rabinowitz proved the following uniform convergence result for weighted

finite-part integrals, which is an extension of the uniform convergence result for

weighted Cauchy principal value integrals [12].

Theorem 1 Let

I( f ; λ; p) :=

∫ 1

−1

= ωαβ(x)
f (x)

(x − λ)p+1
dx, λ ∈ (−1, 1), p ∈ N, (3)

be the weighted finite-part integral, where

ωαβ(x) = (1 − x)α(1 + x)β, α, β > −1,

and f ∈ Hp,µ(B) on J := [−1, 1]. Let { fN} be a sequence of approximations of f

such that fN ∈ Cp(J) and, setting eN := f − fN ,

‖D jeN‖∞ = o(1) for N → ∞, j = 0, . . . , p, (4)

D jeN(−1) = 0, 0 ≤ j ≤ p − β, D jeN(1) = 0, 0 ≤ j ≤ p − α, (5)

eN ∈ Hp,σ(B1), 0 < σ ≤ µ, for some B1 > 0 and all N. (6)

Then I( fN; λ; p) exists and, if σ + min(α, β) > 0, the sequence {I( fN; λ; p)} con-

verges uniformly to I( f ; λ; p) for all λ ∈ (−1, 1).
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In [4] two examples of sequences { fN} based on locally uniform partitions and

satisfying (4)-(6) are provided for any positive integer p. These are the modified

approximating splines and the modified optimal nodal splines, which are obtained

by modifying the approximating splines [8] as well as the optimal nodal splines

[1, 2, 3] in such a way that condition (5) is true for any positive integer p. In

this paper, we consider sequences of approximating splines for which we can

prove (4)-(6) without modifying their definition on [a, b]. In particular, we shall

consider the Martensen spline operator, introduced in [9] and recently studied in

[15, 16]. For the numerical evaluation of finite-part integral (1) we propose a

sequence of Martensen splines of degree n based on locally uniform partitions.

We prove that (4)-(6) are true with 1 ≤ p < n. For finite-part integrals (3),

with p ≤ n − 1, we construct the quadrature rules based on Martensen splines of

degree n. The majority of numerical methods for finite-part integrals (1) are based

on suitable composite rules, as, for example, midpoint [20], Simpson [21] and

Newton-Cotes [19]. Numerical results show that the proposed spline quadratures

perform better than composite quadrature rules [19, 20, 21]. Indeed, the proposed

method requires a less number of integrand function’s evaluations compared to the

other ones and allows a considerable flexibility in the choice of quadrature nodes.

2 Martensen splines

In this section, we give the necessary background material on Martensen splines

as presented in [15, 16, 17] and [5].

Let TR := {a = t0 < . . . < tRn = b} be a partition of the interval [a, b], we

denote by Πn(TR) the linear space of piecewise polynomial functions of degree at

most n with breakpoints at t j. Let

S n+1(TR) := Πn(TR) ∩Cn−1([a, b])

be the linear space of polynomial splines of degree at most n with simple knots at

the points of TR. Let

Bs,n+1(x) := (−1)n+1(ts+n+1 − ts)[ts, . . . , ts+n+1](x − ·)n
+
,

be the (n + 1)th order normalized B-spline [14], where [ts, . . . , ts+n+1] f is the (n +

1)th divided difference and

xr
+
=

{

xr, x ≥ 0,

0, x < 0.

Let

ϕs,n(y) :=

n
∏

ν=1

(y − ts+ν) ∈ Πn
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be the dual polynomial for Bs,n+1. For i = 0, . . . , n − 1 and r = 0, . . . ,R we denote

by F
(rn)

i
the Hermite-Martensen splines or HM-splines defined by [5]

F
(rn)

i
(x) :=

rn−1
∑

s=rn−n

(−1)i

n!

dn−i

dyn−i
ϕs,n(trn)Bs,n+1(x) ∈ S n+1(TR), x ∈ [trn−n, trn+n], (7)

where dn−i

dyn−iϕs,n(trn) is the (n − i)th derivative of ϕs,n(y) evaluated at y = trn.

Assuming that f ∈ Cn−1([a, b]), the defining formula for the Martensen spline

MR( f ) of degree n on [a, b] is given by [17],

MR( f )(x) :=

R
∑

r=0

n−1
∑

i=0

Di f (trn)F
(rn)

i
(x) ∈ S n+1(TR). (8)

In order to define F
(0)

i
and F

(Rn)

i
we need the 2n auxiliary B-spline knots t−n <

. . . < t−1 < t0 and tRn < tRn+1 < . . . < tRn+n.

We introduce the fundamental Hermite splines [16]

Gi,n,trn−n,...,trn
(x) =

rn−1
∑

s=rn−n

(−1)i

n!

dn−i

dyn−i
ϕs,n(trn)Bs,n+1(x), x ∈ [trn−n, trn],

Hi,n,trn,...,trn+n
(x) =

rn−1
∑

s=rn−n

(−1)i

n!

dn−i

dyn−i
ϕs,n(trn)Bs,n+1(x), x ∈ [trn, trn+n].

The HM-splines F
(rn)

i
can be expressed in terms of Gi,n,trn−n,...,trn

(x) and Hi,n,trn,...,trn+n
(x)

[16],

F
(rn)

i
(x) = χ(−∞,trn](x)Gi,n,trn−n,...,trn

(x) + χ[trn,∞)(x)Hi,n,trn,...,trn+n
(x). (9)

Using (9), for x ∈ [tkn, tkn+n] MR( f )(x) can be written in the form [15]

MR( f )(x) =

n−1
∑

i=0

(Di f (tkn)Hi,n,tkn,...,tkn+n
(x) + Di f (tkn+n)Gi,n,tkn,...,tkn+n

(x)).

The Martensen spline MR( f ) satisfies the interpolation conditions

DkMR( f )(trn) = Dk f (trn), k = 0, . . . , n − 1, r = 0, . . . ,R, (10)

i.e. MR( f ) interpolates certain values of f and its derivatives [16]. So, we can

subdivide the knots in primary and secondary ones. In particular,

TR,p := {trn|r = 0, . . . ,R}
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is the set of primary knots, whereas

TR,s := {t j| j , 0 mod n, j = 0, . . . ,Rn}

is the set of secondary ones.

We denote with

hk := tkn+n − tkn, with k = 0, . . . ,R − 1,

and

HR := max
k=0,...,R−1

hk.

The following further properties hold [16]

MR( f ) = f for any f ∈ S n+1(TR), (11)

MR( f ) = f for any f ∈ Pn. (12)

Let

AR := max
0≤i, j≤Rn−1
|i− j|=1

ti+1 − ti

t j+1 − t j

, AR ≥ 1, (13)

and

ÃR := max
0≤i, j≤R−1
|i− j|=1

hi

h j

, ÃR ≥ 1. (14)

We say that the sequence of partitions {TR}R∈N ({TR,p}R∈N) is locally uniform if

there exists a constant A ≥ 1 (Ã ≥ 1) such that AR ≤ A (ÃR ≤ Ã) for all R.

Let

e
(s)

R
= Ds( f − MR( f )), 0 ≤ s ≤ n − 1.

The following uniform convergence result is provided in [5] for Martensen

splines and its derivatives.

Theorem 2 Let f ∈ Cn−1([a, b]), suppose that {TR,p}R∈N is such that

HR → 0 as R→ ∞.

If {TR,p}R∈N is locally uniform, then

∥

∥

∥e
(0)

R

∥

∥

∥

∞
→ 0 as R→ ∞.

If {TR}R∈N is locally uniform, then, for 1 ≤ s ≤ n − 1,

∥

∥

∥e
(s)

R

∥

∥

∥

∞
→ 0 as R→ ∞.
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3 Martensen splines for numerical evaluation of finite-

part integrals

In order to evaluate (3) numerically with n-order singularity at λ and f ∈

Hn−1,µ(B) on [−1, 1], we consider the sequence {MR( f )} of Martensen splines of

degree n, based on a sequence of locally uniform partitions {TR}, as approximants

for f .

The condition (4) of Theorem 1 is true in virtue of Theorem 2. Whereas,

condition (5) follows from (10), with r = 0,R. In order to verify (6), we need

the following lemmas. Lemma 1 gives a local estimate for |DnMR( f )(t)|, with

t ∈ [tl, tl+1]. Lemma 2, proved in [5], provides a local estimate for |e
(s)

R
(t)|, with

t ∈ [tl, tl+1] and s = 0, 1, . . . , n − 1.

Lemma 1 Let f ∈ Cn−1([tkn, tkn+n]), let t ∈ [tl, tl+1] ⊂ [tkn, tkn+n], then

|DnMR( f )(t)| ≤ Kl,nh−1
k ω( f (n−1), hk, [tkn, tkn+n]),

where

Kl,n :=
2Γn+1,n

(n − 1)!

hn
k

(tl+1 − tl)n

n−1
∑

i=0

(n − i)

(

n

i

)

Ãi
R, (15)

with ÃR defined in (14) and

Γn+1,n := n!

(

n

[n/2]

)

.

Proof. Let Tn−2(x) be the Taylor expansion of f at t and RT (x) = f (x) − Tn−2(x).

By using (12), we can write

DnMR( f )(x) = DnMR(Tn−2 + RT )(x) = DnMR(Tn−2)(x) + DnMR(RT )(x)

= DnTn−2(x) + DnMR(RT )(x) = DnMR(RT )(x),

which yields

|DnMR( f )(t)| ≤

n−1
∑

i=0

(∣

∣

∣DiRT (tkn)
∣

∣

∣

∣

∣

∣DnHi,n,tkn,...,tkn+n
(t)

∣

∣

∣ +

∣

∣

∣DiRT (tkn+n)
∣

∣

∣

∣

∣

∣DnGi,n,tkn,...,tkn+n
(t)

∣

∣

∣

)

.

In [5], for i = 0, . . . , n − 1, the following estimates are proved:

∣

∣

∣DiRT (tkn)
∣

∣

∣ ≤
hn−i−1

k

(n − i − 1)!
ω( f (n−1), hk, [tkn, tkn+n]), (16)

∣

∣

∣DnGi,n,tkn,...,tkn+n
(t)

∣

∣

∣ ≤
n!

i!

Γn+1,n

(n − 1)!

Ãi
R
hi

k

(tl+1 − tl)n
. (17)
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The estimates (16) and (17) are also true respectively for |DiRT (tkn+n)| and |DnHi,n,tkn,...,tkn+n
(t)|.

Using (16) and (17), we are allowed to conclude that

|DnMR( f )(t)| ≤ 2

n−1
∑

i=0

hn−i−1
k

(n − i − 1)!
ω( f (n−1), hk, [tkn, tkn+n])

n!

i!

Γn+1,n

(n − 1)!

Ãi
R
hi

k

(tl+1 − tl)n

= 2ω( f (n−1), hk, [tkn, tkn+n])
hn−1

k

(tl+1 − tl)n

Γn+1,n

(n − 1)!

n−1
∑

i=0

Ãi
R
n!

(n − i − 1)!i!

= Kl,nh−1
k ω( f (n−1), hk, [tkn, tkn+n]),

with Kl,n defined in (15). �

Lemma 2 Let t ∈ [tl, tl+1] ⊂ [tkn, tkn+n] and let f ∈ Cn−1([tkn, tkn+n]), then, for

0 ≤ s ≤ n − 1, we have

∣

∣

∣e
(s)

R
(t)

∣

∣

∣ ≤



















K0hn−1
k
ω( f (n−1), hk, [tkn, tkn+n]), for s = 0,

Kl,sh
n−1−s
k
ω( f (n−1), hk, [tkn, tkn+n]), for 1 ≤ s ≤ n − 1,

where

K0 :=
2

(n − 1)!

n−1
∑

i=0

(n − i)

(

n

i

)

Ãi
R,

Kl,s :=
2Γn+1,s

(n − 1)!

hs
k

(tl+1 − tl)s

n−1
∑

i=0

(n − i)

(

n

i

)

Ãi
R,

with

Γn+1,s :=
n!

(n − s)!

(

s

[s/2]

)

.

Now, we can prove the following theorem, which provides a bound for the

modulus of continuity of Dn−1MR( f ).

Theorem 3 Let f ∈ Cn−1(J), if MR( f ) ∈ S n+1(TR) satisfies

|e
(n−1)

R
(t)| ≤ C1ω( f (n−1), hk, [tkn, tkn+n]), t ∈ [tl, tl+1], (18)

|DnMR( f )(t)| ≤ C2h−1
k ω( f (n−1), hk, [tkn, tkn+n]), t ∈ (tl, tl+1), (19)

with [tl, tl+1] ⊂ [tkn, tkn+n]. Then

ω(Dn−1MR( f ),∆, J) ≤ C3ω( f (n−1),∆, J). (20)
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Proof. We have to show that, for −1 ≤ u < v ≤ 1,

∣

∣

∣Dn−1MR( f )(v) − Dn−1MR( f )(u)
∣

∣

∣ ≤ C3ω( f (n−1), v − u, J).

Assume first that u, v ∈ [tl, tl+1]. Since MR( f ) ∈ Cn−1([tl, tl+1]) and MR( f ) ∈

Cn((tl, tl+1)), it follows that

Dn−1MR( f )(v) − Dn−1MR( f )(u) = (v − u)DnMR( f )(ξ), u < ξ < v.

By condition (19) we get

∣

∣

∣Dn−1MR( f )(v) − Dn−1MR( f )(u)
∣

∣

∣ ≤ C2|v − u|h−1
k ω( f (n−1), hk, [tkn, tkn+n])

≤ C2|v − u|h−1
k ω( f (n−1), hk, J).

Using the following property of the modulus of continuity [18]:

cω(g, d, I) ≤ 2dω(g, c, I), for 0 < c ≤ d,

since v − u ≤ hk, we have that

∣

∣

∣Dn−1MR( f )(v) − Dn−1MR( f )(u)
∣

∣

∣ ≤ 2C2ω( f (n−1), |v − u|, J). (21)

If tl ≤ u ≤ tl+1 < v ≤ tl+2, using (21) we obtain

∣

∣

∣Dn−1MR( f )(v) − Dn−1MR( f )(u)
∣

∣

∣ ≤
∣

∣

∣Dn−1MR( f )(v) − Dn−1MR( f )(tl+1)
∣

∣

∣

+

∣

∣

∣Dn−1MR( f )(tl+1) − Dn−1MR( f )(u)
∣

∣

∣

≤ 4C2|v − u|ω( f (n−1), |v − u|, J).

Finally, we consider tk1n ≤ ti ≤ u ≤ ti+1 ≤ tk1n+n and tk2n ≤ t j ≤ v ≤ t j+1 ≤ tk2n+n,

with j > i + 1 and k1 ≤ k2. It can be easily proved that

tkn+n − tkn ≤ (tl+1 − tl)

















l
∑

j=kn

A
l− j

R
+

kn+n−1
∑

j=l+1

A
j−l

R

















, (22)

where AR is given in (13). From (22) and the fact that

(ti+2 − ti+1), (t j − t j−1) ≤ v − u

(since [ti+1, ti+2], [t j−1, t j] ⊆ [u, v]), we get

tk1n+n − tk1n ≤ (v − u)

















i+1
∑

m=k1n

Ai+1−m
R +

k1n+n−1
∑

m=i+2

Am−i−1
R

















, (23)
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tk2n+n − tk2n ≤ (v − u)

















j−1
∑

m=k2n

A
j−1−m

R
+

k2n+n−1
∑

m= j

A
m− j+1

R

















. (24)

We can notice that

∣

∣

∣Dn−1MR( f )(v) − Dn−1MR( f )(u)
∣

∣

∣ ≤
∣

∣

∣ f (n−1)(v) − Dn−1MR( f )(v)
∣

∣

∣

+

∣

∣

∣ f (n−1)(u) − Dn−1MR( f )(u)
∣

∣

∣

+

∣

∣

∣ f (n−1)(v) − f (n−1)(u)
∣

∣

∣ .

Obviously,
∣

∣

∣ f (n−1)(v) − f (n−1)(u)
∣

∣

∣ ≤ ω( f (n−1), v − u, J).

From (18), (23), (24) and the fact that

ω(g, δ1 + δ2, I) ≤ ω(g, δ1, I) + ω(g, δ2, I),

we get

∣

∣

∣ f (n−1)(u) − Dn−1MR( f )(u)
∣

∣

∣ ≤ C1ω( f (n−1), hk1
, [tk1n, tk1n+n])

≤ C1

















i+1
∑

m=k1n

Ai−m+1
R +

k1n+n−1
∑

m=i+2

Am−i−1
R

















ω( f (n−1), v − u, J)

= C4ω( f (n−1), v − u, J),

with

C4 = C1

















i+1
∑

m=k1n

Ai−m+1
R +

k1n+n−1
∑

m=i+2

Am−i−1
R

















,

and, similarly,

∣

∣

∣ f (n−1)(v) − Dn−1MR( f )(v)
∣

∣

∣ ≤ C1ω( f (n−1), hk2
, [tk2n, tk2n+n])

≤ C1

















j−1
∑

m=k2n

A
j−m−1

R
+

k2n+n−1
∑

m= j

A
m− j+1

R

















ω( f (n−1), v − u, J)

= C5ω( f (n−1), v − u, J),

with

C5 = C1

















j−1
∑

m=k2n

A
j−m−1

R
+

k2n+n−1
∑

m= j

A
m− j+1

R

















.

Then, we get

∣

∣

∣Dn−1MR( f )(v) − Dn−1MR( f )(u)
∣

∣

∣ ≤ (1 +C4 +C5)ω( f (n−1), v − u, J).
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This proves our theorem with C3 = max(4C2, 1 +C4 +C5). �

Hence, by using (20), we have

ω(e
(n−1)

R
,∆, J) ≤ ω( f (n−1),∆, J) + ω(Dn−1MR( f ),∆, J)

≤ (1 +C3)ω( f (n−1),∆, J) ≤ (1 +C3)B∆µ, (25)

then e
(0)

R
∈ Hn−1,µ((1 +C3)B) and condition (6) is satisfied.

By Theorem 2, (10) and (25), the sequence {MR( f )}, constructed on a locally

uniform sequence of partitions {TR}, satisfies conditions (4), (5) and (6), then it is

a viable candidate for { fN} in Theorem 1.

4 Quadrature rules based on MR

4.1 General case

We are interested in evaluating numerically I( f ; λ; n − 1), defined in (3), by

replacing f ∈ Cn−1([−1, 1]) with its spline approximation MR( f ) of degree n,

defined in (8). We approximate I( f ; λ; n − 1) by the quadrature sum

I( f ; λ; n − 1) �

R
∑

r=0

n−1
∑

i=0

Di f (trn)wr,i(λ),

where

wr,i(λ) =
1

(n − 1)!

dn−1

dλn−1

∫ 1

−1

−
ωαβ (x)

x − λ
F

(rn)

i
(x)dx, r = 0, . . . ,R, i = 0, . . . , n − 1.

Using (7), we can write

wr,i(λ) =

rn−1
∑

s=rn−n

(−1)i

n!

dn−i

dyn−i
ϕs,n(trn)

1

(n − 1)!

dn−1

dλn−1

∫ 1

−1

− ωαβ (x)
Bs,n+1(x)

x − λ
dx.

Hence, in order to evaluate wr,i, we have to compute

I(Bs,n+1; λ; n−1) =











































































1

(n − 1)!

dn−1

dλn−1

∫ ts+n+1

−1

− ωαβ (x)
Bs,n+1(x)

x − λ
dx, s = −n, . . . ,−1,

1

(n − 1)!

dn−1

dλn−1

∫ ts+n+1

ts

− ωαβ (x)
Bs,n+1(x)

x − λ
dx, s = 0, . . . ,Rn − n − 1,

1

(n − 1)!

dn−1

dλn−1

∫ 1

ts

− ωαβ (x)
Bs,n+1(x)

x − λ
dx, s = Rn − n, . . . ,Rn − 1.
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In order to do this, we can consider all n-degree polynomials ps
j
(x), j =

s, . . . , s + n, such that

ps
j(x) = Bs,n+1(x), x ∈ [t j, t j+1].

Setting

ps
j(x) =

n+1
∑

k=1

ākxn+1−k,

we evaluate ps
j
(x)/(x − λ) by using

ps
j(x) = (x − λ)

n
∑

k=1















k
∑

ν=1

āνλ
k−ν















xn−k
+

n+1
∑

k=1

ākλ
n+1−k. (26)

Using (26), the evaluation of I(Bs,n+1; λ; n − 1) is reduced to the computation of

the following integrals:

dn−1

dλn−1

∫ t j+1

t j

− ωαβ (x)
ps

j
(x)

x − λ
dx =

dn−1

dλn−1















n
∑

k=1















k
∑

ν=1

āνλ
k−ν















∫ t j+1

t j

ωαβ(x)xn−kdx

+

n+1
∑

k=1

ākλ
n+1−k

∫ t j+1

t j

− ωαβ(x)
1

x − λ
dx















. (27)

In particular, we consider α = β = −0.5, 0, 0.5, for which the integrals in (27)

can be evaluated exactly, otherwise we have to use a numerical method [6].

4.2 Singularity of order 2

We evaluate numerically I( f ; λ; 1) with a 2-order singularity at x = λ. Replac-

ing f by

MR( f )(x) =

R
∑

r=0

2
∑

i=0

Di f (t3r)F
(3r)

i
(x) ∈ S 4(TR), (28)

we get

I( f ; λ; 1) �

R
∑

r=0

2
∑

i=0

Di f (t3r)wr,i(λ), (29)

with

wr,i(λ) =
d

dλ

∫ 1

−1

−
ωαβ (x)

x − λ
F

(3r)

i
(x)dx, r = 0, . . . ,R, i = 0, 1, 2.

Using (7) we have

wr,i(λ) =

3r−1
∑

s=3r−3

(−1)i

3!

d3−i

dy3−i
ϕs,n(t3r)

d

dλ

∫ 1

−1

− ωαβ (x)
Bs,4(x)

x − λ
dx,

11



then, to compute wr,i, we have to evaluate the following integrals:

I(Bs,4; λ; 1) =











































































d

dλ

∫ ts+4

−1

− ωαβ (x)
Bs,4(x)

x − λ
dx, s = −3,−2,−1,

d

dλ

∫ ts+4

ts

− ωαβ (x)
Bs,4(x)

x − λ
dx, s = 0, . . . , 3R − 4,

d

dλ

∫ 1

ts

− ωαβ (x)
Bs,4(x)

x − λ
dx, s = 3R − 3, 3R − 2, 3R − 1.

Let

ps
j(x) = ā1x3

+ ā2x2
+ ā3x + ā4 = Bs,4(x), x ∈ [t j, t j+1],

with j = s, s+1, s+2, s+3, be the polynomial representation of Bs,4(x) in [t j, t j+1].

In order to evaluate the quantities ps
j
(x)/(x − λ), we write ps

j
(x) in the form

ps
j(x) =

[

ā1x2
+ (ā2 + ā1λ)x + (ā3 + ā2λ + ā1λ

2)
]

(x − λ) + ā4 + ā3λ + ā2λ
2
+ ā1λ

3.

Then, the evaluation of I(Bs,4; λ; 1) is reduced to the computation of the following

integrals, for j = s, s + 1, s + 2, s + 3,

d

dλ

∫ t j+1

t j

− ωαβ (x)
ps

j
(x)

x − λ
dx = b̄1

∫ t j+1

t j

ωαβ(x)xdx + b̄2

∫ t j+1

t j

ωαβ(x)dx

+b̄3

∫ t j+1

t j

− ωαβ(x)
1

x − λ
dx + b̄4

d

dλ

∫ t j+1

t j

− ωαβ(x)
1

x − λ
dx,

where

b̄1 = ā1,

b̄2 = ā2 + 2ā1λ,

b̄3 = ā3 + 2ā2λ + 3ā1λ
2,

b̄4 = ā4 + ā3λ + ā2λ
2
+ ā1λ

3.

4.3 Singularity of order 3

Similarly to the previous case, in order to evaluate numerically I( f ; λ; 2), with

a 3-order singularity at x = λ, we replace f by (28). Hence, we get

I( f ; λ; 2) �

R
∑

r=0

2
∑

i=0

Di f (t3r)wr,i(λ), (30)
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with

wr,i(λ) =
1

2

d2

dλ2

∫ 1

−1

−
ωαβ (x)

x − λ
F

(3r)

i
(x)dx, r = 0, . . . ,R, i = 0, 1, 2.

Using (7), wr,i(x) can be written in the form

wr,i(λ) =

3r−1
∑

s=3r−3

(−1)i

3!

d3−i

dy3−i
ϕs,n(t3r)

1

2

d2

dλ2

∫ 1

−1

− ωαβ (x)
Bs,4(x)

x − λ
dx,

then, in order to evaluate wr,i, we have to compute

I(Bs,4; λ; 2) =











































































1

2

d2

dλ2

∫ ts+4

−1

− ωαβ (x)
Bs,4(x)

x − λ
dx, s = −3,−2,−1,

1

2

d2

dλ2

∫ ts+4

ts

− ωαβ (x)
Bs,4(x)

x − λ
dx, s = 0, . . . , 3R − 4,

1

2

d2

dλ2

∫ 1

ts

− ωαβ (x)
Bs,4(x)

x − λ
dx, s = 3R − 3, 3R − 2, 3R − 1.

Let ps
j
(x) be the polynomial representation of Bs,4(x) in [t j, t j+1], as shown in

Section 4.2 the evaluation of Bs,4(x) is reduced to the computation of the following

integrals, for j = s, s + 1, s + 2, s + 3,

1

2

d2

dλ2

∫ t j+1

t j

− ωαβ (x)
ps

j
(x)

x − λ
dx = c̄1

∫ t j+1

t j

ωαβ(x)dx + c̄2

∫ t j+1

t j

− ωαβ(x)
1

x − λ
dx

+c̄3

d

dλ

∫ t j+1

t j

− ωαβ(x)
1

x − λ
dx

+c̄4

d2

dλ2

∫ t j+1

t j

− ωαβ(x)
1

x − λ
dx,

where

c̄1 = ā1,

c̄2 = ā2 + 3ā1λ,

c̄3 = ā3 + 2ā2λ + 3ā1λ
2,

c̄4 =
1

2

(

ā4 + ā3λ + ā2λ
2
+ ā1λ

3
)

.
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5 Comparisons and numerical examples

In this section we compare our quadratures (29) and (30) with composite mid-

point [20], Simpson [21] and Newton-Cotes [19].

We denote by ER the errors obtained with our quadrature rules,

ER = I(e
(0)

R
; λ; p) = I( f ; λ; p) − I(MR( f ); λ; p), p = 1, 2.

For both values of p we approximate f by the cubic Martensen spline MR( f ).

5.1 Comparison with midpoint

We evaluate numerically the finite-part integral (3), with α = β = 0, p = 1,

λ = 0 and

f (x) = x2
+ x +

[

2 +
x

|x|

]

|x|γ+1/2, γ = 2, 3,

by using the quadrature sum (29) and the composite midpoint rule [20]. Obvi-

ously, f (x) ∈ Cγ+1/2([−1, 1]). The exact value of the finite-part integral is [20]

I( f ; 0; 1) = 2 +
4

1/2 + γ − 1
, γ = 2, 3.

We adopt a uniform mesh for both methods. Let EM
R be the quadrature error

obtained by the composite midpoint rule, where R is the number of integration’s

subintervals.

In Tables 1 and 2 we compare the numerical results presented in [20] with the

results obtained by our method, respectively in the case γ = 2 and γ = 3.

With γ = 2 our method performs better than the one presented in [20], whereas

with γ = 3 our method is more accurate up to R = 1023, while for higher values

of R, the errors grow.

In Fig. 1 the absolute errors, reported in Tables 1 and 2, are represented for the

different values of R, so we can compare graphically the behaviour of quadrature

errors. In both cases γ = 2 and γ = 3 we can see that our method get the same

accuracy of midpoint for considerably less values of R.

5.2 Comparison with Simpson

We evaluate numerically the finite-part integral (3) with α = β = 0, p = 2 and

f (x) = x4,

14



Table 1: Errors in the case γ = 2.

R |EM
R | |ER|

7 —– 8.19e-02

15 —– 2.61e-02

31 —– 8.79e-03

63 —– 3.03e-03

127 —– 1.06e-03

255 1.33e-03 3.73e-04

511 4.86e-04 1.31e-04

1023 1.76e-04 4.65e-05

2047 6.31e-05 1.46e-05

4095 2.26e-05 8.00e-06

Table 2: Errors in the case γ = 3.

R |EM
R | |ER|

7 —– 6.31e-03

15 —– 9.40e-04

31 —– 1.53e-04

63 —– 2.60e-05

127 —– 4.51e-06

255 7.07e-05 7.89e-07

511 1.81e-05 1.23e-07

1023 4.58e-06 1.37e-07

2047 1.16e-06 1.65e-06

4095 2.92e-07 2.02e-06
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Figure 1: Graphical representation of absolute errors. Axis y is in logarithmic

scale.

by using the quadrature sum (30) and the composite Simpson’s rule [21].

For both methods we adopt a uniform mesh. We consider two different singu-

larities of order 3, λ = t[R/4]+h/2+τh and λ = t0+h/2+τh, with τ = 0, 1/4, where

h is the width of every subinterval. The exact value of the finite-part integral is

[21]

I( f ; λ; 2) = 6λ −
8λ3 − 6λ5

(1 − λ2)2
+ 6λ2 ln

∣

∣

∣

∣

∣

1 − λ

1 + λ

∣

∣

∣

∣

∣

.

In order to construct the composite Simpson’s rule, we have to introduce a quadra-

ture node at each subinterval then, to compare our method with Simpson, we have

to assume R = 2n, where n is the number of subintervals used for the construction

of the composite rule.

Let ES
R

be the quadrature error obtained using the composite Simpson’s rule,

with R + 1 quadrature nodes.

In Table 3 we compare the results presented in [21] with the results obtained

by our method, in the case λ = t[R/4]+h/2+τh, with τ = 0, 1/4, whereas in Table 4

we compare the results obtained by the two methods in the case λ = t0 + h/2+ τh,

with τ = 0, 1/4.

We represented in Fig. 2 and Fig. 3 the errors in Tables 3 and 4, obtained for

different values of τ.

We can observe that, with smaller values of R, our method performs better

than the composite Simpson’s rule, presented in [21], but for higher values of R

errors grow.
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Table 3: Errors in the case λ = t[R/4] + h/2 + τh, with τ = 0, 1/4.

R τ = 0 τ = 1/4

|ES
R
| |ER| |ES

R
| |ER|

8 —– 1.43e-05 —– 2.73e-02

16 —– 1.20e-06 —– 6.83e-03

32 —– 8.73e-08 —– 1.71e-03

64 —– 3.66e-09 —– 4.27e-04

128 —– 1.55e-06 —– 1.04e-04

256 6.40e-02 2.79e-05 3.16e-02 9.47e-05

512 3.22e-02 2.49e-04 1.60e-02 3.05e-03

1024 1.62e-02 2.63e-02 8.07e-03 2.22e-02

2048 8.11e-03 2.50e-01 4.05e-03 3.06e+00

Table 4: Errors in the case λ = t0 + h/2 + τh, with τ = 0, 1/4.

R τ = 0 τ = 1/4

|ES
R
| |ER| |ES

R
| |ER|

8 —– 3.29e-04 —– 2.75e-02

16 —– 8.26e-05 —– 6.88e-03

32 —– 2.07e-05 —– 1.72e-03

64 —– 5.53e-06 —– 3.93e-04

128 —– 6.31e-05 —– 1.31e-03

256 1.26e-01 1.31e-04 6.32e-02 3.91e-02

512 6.35e-02 1.59e-01 3.18e-02 1.64e+00

1024 3.18e-02 2.16e+00 1.60e-02 5.30e+01

2048 1.59e-02 4.70e+00 7.99e-03 2.30e+02
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Figure 2: Graphical representation of absolute errors, in the case λ = t[R/4]+h/2+

τh. Axis y is in logarithmic scale.
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Figure 3: Graphical representation of absolute errors, in the case λ = t0+h/2+τh.

Axis y is in logarithmic scale.
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Table 5: Errors in the case δ = 4.

R γ = 1/3 γ = 1/2

|EN
R
| |ER| |EN

R
| |ER|

15 2.52e-02 2.33e-04 2.35e-02 2.13e-04

33 2.17e-03 1.89e-05 1.98e-03 1.65e-05

69 2.21e-04 1.85e-06 2.00e-04 1.58e-06

141 2.44e-05 1.97e-07 2.20e-05 1.68e-07

285 2.81e-06 2.35e-08 2.54e-06 2.02e-08

5.3 Comparison with Newton-Cotes

We evaluate numerically the finite-part integral (3) with α = β = 0, p = 1,

λ = 0 and

f (x) = x4
+ |x|δ+γ, δ = 3, 4, γ =

1

2
,

1

3
.

Obviously, f (x) ∈ Cδ+γ([−1, 1]). In particular, we compare our quadrature (29)

with Newton-Cotes rule of degree 3 [19]. The exact values of the integrals are

[19]

I( f ; 0; 1) =
12 + 2γ

9 + 3γ
, for δ = 4,

I( f ; 0; 1) =
10 + 2γ

6 + 3γ
, for δ = 3,

with γ = 1/2, 1/3. For both methods we adopt a uniform mesh.

To construct the piecewise Lagrange interpolation polynomial of degree k, we

have to introduce k − 1 quadrature nodes at each subinterval, then, in order to

compare our method with Newton-Cotes, we have to assume R = kn, where n is

the number of subintervals used for the construction of the composite rule.

Let EN
R

be the quadrature error obtained using the composite Newton-Cotes

rule of degree 3, with R + 1 quadrature nodes.

In Tables 5 and 6 we compare the results presented in [19] with the results

obtained by our spline quadrature (29) for both values of δ, then we represent

the absolute errors in Fig. 4 and Fig. 5, so that we can compare graphically the

behaviour of quadrature errors.

In both cases, we can see that our method perform better than the rule pro-

posed in [19]. In particular, we observe that the accuracy of our spline quadrature

with R = 69 is comparable or sometimes better than the accuracy achieved by

composite Newton-Cotes with R = 285.
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Table 6: Errors in the case δ = 3.

R γ = 1/3 γ = 1/2

|EN
R
| |ER| |EN

R
| |ER|

15 5.11e-02 9.60e-04 4.43e-02 3.60e-04

33 7.15e-03 1.60e-04 5.49e-03 5.53e-05

69 1.18e-03 2.93e-05 7.99e-04 9.25e-06

141 2.11e-04 5.61e-06 1.26e-04 1.61e-06

285 3.96e-05 1.09e-06 2.07e-05 2.82e-07
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Figure 4: Graphical representation of absolute errors in the case δ = 4. Axis y is

in logarithmic scale.
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Figure 5: Graphical representation of absolute errors in the case δ = 3. Axis y is

in logarithmic scale.
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5.4 Final remarks

Evaluation of Hadamard finite-part integrals of the form (1) is reduced to the

computation of Cauchy principal value integrals in virtue of Property 1 in Section

1.

Property 2 in Section 1 says that when we subdivide the integration’s interval

[a, b] in R subintervals and when the singularity lies in one of these subintervals,

the finite-part integral in Property 2 tends to infinity as R → ∞. Moreover, the

best case is when the singularity is located in the middle point of a subinterval

[10].

From numerical results in Tables 2, 3 and 4 we can observe that our method

presents the numerical instability phenomenon derived from Property 2 for values

of R smaller with respect to the considered composite rules. This behaviour is

due to the fact that both quadratures (29) and (30) require integral evaluations on

intervals [t j, t j+1], j = 0, 1, . . . , 3R − 1. Consequently, for equally spaced knots

and for fixed R, the integration interval containing the singularity is the third part

of the integration interval required by other methods.

When the singularity is located in the middle point between two spline knots,

as for example λ = 0 in Section 5.1 and τ = 0 in Section 5.2, our quadrature

performs slightly better for higher number of knots.

Nevertheless, by using a considerably less number of quadrature nodes, our

spline quadrature achieves the same or better accuracy with respect to the con-

sidered composite rules. Moreover, we have a great flexibility in the choice of

quadrature nodes and we can use spline spaces S n+1(TR) of different orders.

The proposed quadrature cannot be extended to the case of finite-part integrals

with endpoint singularities. Since Martensen interpolation is a natural extension

of piecewise linear interpolation, the method should also be investigated for end-

point singularities as considered by C.W. Groetsch [7].
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