Multiagent Planning as an Emerging Behavior in Agent Societies

Roberto Micalizio

Cristina Baroglio Matteo Baldoni

Dipartimento di Informatica Università di Torino

NorMAS 2014

Outline

- MOTIVATIONS AND IDEA
 - Multiagent planning as Social Computing
- BACKGROUND
 - Classical Planning
 - Social Commitments & Goals
- Social Continual Planning by examples

Motivations

- Multiagent planning: synthesis of plans for a number of agents in a given team
 - each agent reaches its own goals
 - the agent plans are altogether consistent (i.e., no deadlock, no open preconditions, correct usage of resources)
- Multiagent planning as distributed problem solving:
 - agents are homogeneous
 - agents can trust each other
 - agents can inspect each other their beliefs
 - agents do not change over time (the team is fixed at the beginning)
 - \Rightarrow agents are not really autonomous

These assumptions are unpractical when agents constitute a *society* rather than a team

Motivations

- Multiagent planning: synthesis of plans for a number of agents in a given team
 - each agent reaches its own goals
 - the agent plans are altogether consistent (i.e., no deadlock, no open preconditions, correct usage of resources)
- Multiagent planning as distributed problem solving:
 - agents are homogeneous
 - · agents can trust each other
 - agents can inspect each other their beliefs
 - agents do not change over time (the team is fixed at the beginning)
 - ⇒ agents are not really autonomous

These assumptions are unpractical when agents constitute a *society* rather than a team

IDEA:

- Enrich the (classical) BDI planning agent with social capabilities
- The planning system is thought of as a normative system
 - social norms define the constraints within which agents can operate
 - an agent's plan must be "socially acceptable"

How to get there:

• use of *social commitments* for modeling agent interactions

- commitments have a normative power
 - an agent can create expectations on the behaviors of others just relying on the active commitments
- commitments are tightly related to goals [Telang et al. 2011]
 - ⇒ a planning agent can be driven by the commitments it is responsible for
- commitments enable practical reasoning, that can be seen as a form of planning

IDEA:

- Enrich the (classical) BDI planning agent with social capabilities
- The planning system is thought of as a *normative system*:
 - social norms define the constraints within which agents can operate
 - an agent's plan must be "socially acceptable"

How to get there:

• use of *social commitments* for modeling agent interactions

- commitments have a normative power
 - an agent can create expectations on the behaviors of others just relying on the active commitments
- commitments are tightly related to goals [Telang et al. 2011]
 - ⇒ a planning agent can be driven by the commitments it is responsible for
- commitments enable *practical reasoning*, that can be seen as a form of planning

IDEA:

- Enrich the (classical) BDI planning agent with social capabilities
- The planning system is thought of as a *normative system*:
 - social norms define the constraints within which agents can operate
 - an agent's plan must be "socially acceptable"

How to get there:

• use of *social commitments* for modeling agent interactions

- commitments have a normative power
 - an agent can create expectations on the behaviors of others just relying on the active commitments
- commitments are tightly related to goals [Telang et al. 2011]
 - ⇒ a planning agent can be driven by the commitments it is responsible for
- commitments enable practical reasoning, that can be seen as a form of planning

IDEA:

- Enrich the (classical) BDI planning agent with social capabilities
- The planning system is thought of as a *normative system*:
 - social norms define the constraints within which agents can operate
 - an agent's plan must be "socially acceptable"

How to get there:

• use of *social commitments* for modeling agent interactions

- commitments have a normative power
 - \Rightarrow an agent can create expectations on the behaviors of others just relying on the active commitments
- commitments are tightly related to goals [Telang et al. 2011]
 - ⇒ a planning agent can be driven by the commitments it is responsible for
- commitments enable practical reasoning, that can be seen as a form of planning

IDEA:

- Enrich the (classical) BDI planning agent with social capabilities
- The planning system is thought of as a *normative system*:
 - social norms define the constraints within which agents can operate
 - an agent's plan must be "socially acceptable"

How to get there:

• use of *social commitments* for modeling agent interactions

- commitments have a normative power
 - ⇒ an agent can create expectations on the behaviors of others just relying on the active commitments
- commitments are tightly related to goals [Telang et al. 2011]
 - ⇒ a planning agent can be driven by the commitments it is responsible for
- commitments enable practical reasoning, that can be seen as a form of planning

IDEA:

- Enrich the (classical) BDI planning agent with social capabilities
- The planning system is thought of as a *normative system*:
 - social norms define the constraints within which agents can operate
 - an agent's plan must be "socially acceptable"

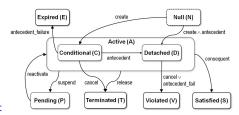
How to get there:

• use of *social commitments* for modeling agent interactions

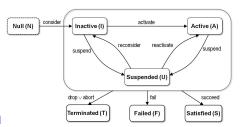
- commitments have a normative power
 - ⇒ an agent can create expectations on the behaviors of others just relying on the active commitments
- commitments are tightly related to goals [Telang et al. 2011]
 - ⇒ a planning agent can be driven by the commitments it is responsible for
- commitments enable practical reasoning, that can be seen as a form of planning

Background: Classical Planning

- a single-agent *planning domain* $D : \langle P, S, A, R \rangle$
 - P is the (finite) set of atomic propositions
 - $S \subseteq 2^P$ is the set of possible states
 - A is the (finite) set of actions
 - $R \subseteq S \times A \times S$ is a transition relation
- a single-agent *planning problem Pr* : $\langle D, I, G \rangle$
 - *D* is the a planning domain
 - $I \subseteq S$ initial state
 - $G \subseteq S$ goal state
- a solution π for Pr is a sequence of actions $\langle a_1, \ldots, a_n \rangle$ such that:
 - a₁ is applicable to the initial state I
 - a_i is applicable to the state resulting after the application of a_{i-1} (for i:2..n)
 - G holds after the application of a_n


Background: Classical Planning

- a single-agent *planning domain* $D : \langle P, S, A, R \rangle$
 - P is the (finite) set of atomic propositions
 - $S \subseteq 2^P$ is the set of possible states
 - A is the (finite) set of actions
 - $R \subseteq S \times A \times S$ is a transition relation
- a single-agent *planning problem Pr* : $\langle D, I, G \rangle$
 - D is the a planning domain
 - $I \subseteq S$ initial state
 - $G \subseteq S$ goal state
- a solution π for Pr is a sequence of actions $\langle a_1, \ldots, a_n \rangle$ such that:
 - a₁ is applicable to the initial state I
 - a_i is applicable to the state resulting after the application of a_{i-1} (for i:2..n)
 - G holds after the application of a_n


Background: Classical Planning

- a single-agent *planning domain* $D : \langle P, S, A, R \rangle$
 - P is the (finite) set of atomic propositions
 - $S \subseteq 2^P$ is the set of possible states
 - A is the (finite) set of actions
 - $R \subseteq S \times A \times S$ is a transition relation
- a single-agent *planning problem Pr* : $\langle D, I, G \rangle$
 - D is the a planning domain
 - $I \subseteq S$ initial state
 - $G \subseteq S$ goal state
- a solution π for Pr is a sequence of actions $\langle a_1, \ldots, a_n \rangle$ such that:
 - a₁ is applicable to the initial state I
 - a_i is applicable to the state resulting after the application of a_{i-1} (for i:2..n)
 - G holds after the application of a_n

Background: Commitments and Goals

Life cycle of a commitment

Life cycle of a goal

Background: Commitments and Goals

- the relation between commitments and goals has been captured by a set of rules [Telang et al. 2011]:
 - structural rules: complete and deterministic, describe how commitment and goal states evolve
 - pragmatical rules: describe patterns of practical reasoning over commitments and goals; these rules are neither complete nor deterministic

Background: Pragmatical Rules

$$\frac{guard}{S_1 \rightarrow S_2}$$

- guard is a condition over an agent beliefs and over the active commitments
- $S_1 \rightarrow S_2$ is a state transition defining how goals and commitments change

Background: Pragmatical Rules

$$\frac{guard}{S_1 \rightarrow S_2}$$

- guard is a condition over an agent beliefs and over the active commitments
- $S_1 \rightarrow S_2$ is a state transition defining how goals and commitments change
- Pragmatical Rules are divided into:
 - rules from goals to commitments

$$\frac{\langle G^A, C^N \rangle}{create(C)}$$
 ENTICE

rules from commitments to goals

- interleave planning phases with execution and negotiation phases
- the planning phase involves both:
 - "physical" actions: directly change the world
 pragmatical actions: (indirectly) change the social sta
- during the execution phase:
 - a physical action is directly performed by an agent
 - a pragmatical action triggers a negotiation with others
- negotiation involves operations on commitments and it is driven by pragmatical rules

- interleave planning phases with execution and negotiation phases
- the planning phase involves both:
 - "physical" actions: directly change the world
 - pragmatical actions: (indirectly) change the social state
- during the **execution phase**:
 - a physical action is directly performed by an agent
 - a pragmatical action triggers a negotiation with others
- negotiation involves operations on commitments and it is driven by pragmatical rules

- interleave planning phases with execution and negotiation phases
- the planning phase involves both:
 - "physical" actions: directly change the world
 - pragmatical actions: (indirectly) change the social state
- during the execution phase:
 - a physical action is directly performed by an agent
 - a pragmatical action triggers a negotiation with others
- negotiation involves operations on commitments and it is driven by pragmatical rules

- interleave *planning* phases with *execution* and *negotiation* phases
- the planning phase involves both:
 - "physical" actions: directly change the world
 - pragmatical actions: (indirectly) change the social state
- during the execution phase:
 - a physical action is directly performed by an agent
 - a pragmatical action triggers a negotiation with others
- negotiation involves operations on commitments and it is driven by pragmatical rules

Pragmatical Rules to Define Agent's Strategy

• pragmatical rules **from commitments to goals** define the *strategy* of an agent (i.e., *when to trigger a planning phase*)

Pragmatical Rules to Define Agent's Strategy

- pragmatical rules from commitments to goals define the strategy of an agent (i.e., when to trigger a planning phase)
- e.g.

$$\frac{\langle G^N, C^D \rangle}{consider(G), activate(G)} \text{ }^{DELIVERY}$$

"an honest agent activates a goal G when G appears as a consequent of a detached commitments it responsible for"

(but are all agents honest?)

- ISSUE
 - how to determine over which goals and commitments these actions are defined?

- ISSUE
 - how to determine over which goals and commitments these actions are defined?
- SOLUTION
 - blackboard of services

Example: World-Wide Delivery Service

Problem: sending a parcel from Oklahoma City (Oklahoma) to Bertinoro (Italy)

four shipping agencies:

- AmericanTrucks: operates only in north America
- EuropeanTrucks: operates only in Europe
- BlueVector (flight company): blue connections
- RedVector (flight company): red connection

Conclusions

Social Continual Planning:

- practical reasoning as a form of planning
- · agent's autonomy is preserved
 - an agent can adopt local optimization strategies
 - each agent can use the planner that suits it most
- commitments support flexible planning solutions
 - help agents take advantage of the opportunities available in a given time
 - help agents find alternative solutions when something wrong happens

multiagent planning = local agents' planning + social state

Thank you!

Example: World-Wide Delivery Service

Problem: sending a parcel from Oklahoma City (Oklahoma) to Bertinoro (Italy)

four shipping agencies:

- AmericanTrucks: operates only in north America
- EuropeanTrucks: operates only in Europe
- BlueVector (flight company): blue connections
- RedVector (flight company): red connection

Physical Actions

A subset of physical actions for the truck agencies

```
\begin{array}{l} \textbf{load}(?t - truck ?p - parcel ?l - location) \\ :precondition at(?t, ?l) \land at(?p, ?l) \\ :effect \neg at(?p, ?l) \land loaded(?p, ?t) \end{array}
```

drive(?t - truck ?l1, ?l2 - location)

:effect \neg at(?t, ?l1) \wedge at(?t, ?l2)

:precondition at(?t, ?l1)

```
deliver(?t - truck ?p - parcel ?l - location)

:precondition at(?t, ?l) \land loaded(?p, ?t) \land dest(?p, ?l)

:effect \negloaded(?p, ?t) \land at(?p, ?l) \land delivered(?p)
```

Blackboard of Services

agent	service	price
AmericanTrucks	at(?p, Oklahoma) ∧ delivered(?p)	\$?x
	$at(?p, New York) \land delivered(?p)$	\$?x
	at(?p, San Francisco) \land delivered(?p)	\$?x
	• • •	
EuropeanTrucks	$at(?p, Rome) \land delivered(?p)$	\$?x
	$at(?p,Paris)\wedgedelivered(?p)$	\$?x
	at(?p, Bertinoro) \land delivered(?p)	\$?x
BlueVector	at(?p, Rome)	\$?x
	at(?p, Paris)	\$?x
	at(?p, New York)	\$?x
RedVector	at(?p, Rome)	\$?x
	at(?p, San Fransisco)	\$?x

Pragmatical Actions

From the point of view of AmericanTrucks (AmT):

```
entice_delivery(?a - agent ?p - parcel ?l - location) 
 :precondition G^A(at(?p,?l) \wedge delivery(?p)), C^N(AmT,?a,at(?p,?l) \wedge delivery(?p),\$?x)  :effect create(C)
```

```
entice_at(?a - agent ?p - parcel ?l - location)

:precondition G^A(at(?p,?l), C^N(AmT,?a,at(?p,?l),\$?x)

:effect create(C)
```

These new actions are made available to an off-the-shelf planner

 AmericanTrucks has to deliver parcel p1, initially located in Oklahoma City, to Bertinoro

```
entice_delivery(AmT, EuT, {at(p1, Bertinoro), delivery(p1)}, $?x)
```

- The planner finds a trivial plan: "ask EuropeanTrucks to deliver p1"
- The execution of such a pragmatic action triggers a negotiation phase between AmericanTrucks and EuropeanTrucks

As an effect of the negotiation...

```
Social State

CC(AmT, EuT, {at(p1, Bertinoro), delivery(p1)}, $100)

CONDITIONAL

CC(EuT, AmT, at(p1, Rome),{at(p1, Bertinoro), delivery(p1)})

CONDITIONAL
```

- AmericanTrucks has now a new goal: at(p1, Rome)
- A new planning phase is activated

A new trivial plan is found:

entice_at(AmT, BlueV, at(p1, Rome), \$?x)

which triggers a new negotiation phase:

Social State

CC(AmT, EuT, {at(p1, Bertinoro), delivery(p1)}, \$100)

CONDITIONAL

CC(EuT, AmT, at(p1, Rome),{at(p1, Bertinoro), delivery(p1)})

CONDITIONAL

CC(AmT, BlueV, at(p1, Rome), \$500)

CONDITIONAL

CC(BlueV, AmT, at(p1, New York), at(p1, Rome))

AmericanTrucks

load(AmTruck27, p1, OC)

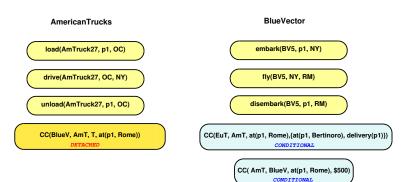
drive(AmTruck27, OC, NY)

unload(AmTruck27, p1, OC)

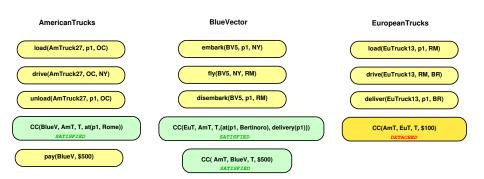
CC(BlueV, AmT, at(p1, New York), at(p1, Rome))

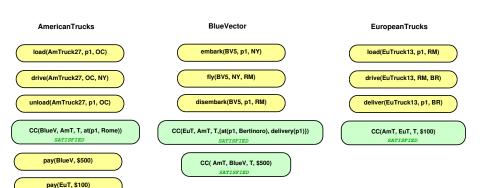
CONDITIONAL

AmericanTrucks


load(AmTruck27, p1, OC)


drive(AmTruck27, OC, NY)


unload(AmTruck27, p1, OC)


CC(BlueV, AmT, T, at(p1, Rome))

DETACHED

BACKUP

- Given an agent x, its configuration is S_x : $\langle B, C, G \rangle$ [Telang]:
 - B: set of beliefs about the world state (including beliefs about itself and others)
 - C: set of commitments of the form C(x, y, s, u) (public)
 - G: set of goals of the form G(x, p, r, q, s, f) (private)
- Extended agent configuration S_x : $\langle B, C, G, A_x, A_x^{gc}, R_x^{cg} \rangle$:
 - A_x : set of primitive actions for agent x (change a portion of the world)
 - A_x^{gc}: set of actions corresponding to pragmatical rules from goals to commitments (change the social state)
 - R_x^{cg} : set of reactive rules corresponding to pragmatical rules from commitments to goals (trigger planning phases)