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ABSTRACT 

Akt signaling regulates many cellular functions that 

are essential for the proper balance between self-

renewal and differentiation of tissue-specific and 

embryonic stem cells (SCs). However, the roles of 

Akt and its downstream signaling in SC regulation 

are rather complex, as Akt activation can either 

promote SC self-renewal or depletion in a context-

dependent manner. In this review we have evidenced 

three “modes” of Akt-dependent SC regulation, 

which can be exemplified by three different SC 

types. In particular, we will discuss: 1) the 

integration of Akt signaling within the “core” SC 

signaling circuitry in the maintenance of SC self-

renewal and pluripotency (embryonic SCs); 2) 

quantitative changes in Akt signaling in SC 

metabolic activity and exit from quiescence 

(hematopoietic SCs); 3) qualitative changes of Akt 

signaling in SC regulation: signaling compartment-

talization and isoform-specific functions of Akt 

proteins in SC self-renewal and differentiation 

(limbal-corneal keratinocyte SCs). These diverse 

modes of action are not to be intended as mutually 

exclusive. Rather, it is likely that Akt proteins 

participate with multiple parallel mechanisms to 

regulation of the same SC type. We propose that 

under specific circumstances dictated by distinct 

developmental stages, differentiation programs or 

tissue culture conditions, one mode of Akt action 

prevails over the others in determining SC fates. 
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Introduction 

A stem cell (SC) is defined as an undifferentiated, 

long-lived proliferating cell with the capacity to self-

renew and to generate progenies of cells primed to 

differentiate in one or more cell types (1). With this 

dual function (or “stemness”), SCs allow the 

generation of tissues during development by 

building their basic cellular blocks, and their 

maintenance throughout lifetime by counter-

balancing the continuous loss of differentiated or 

damaged cells. 

     The search of a common set of genes (the 

“stemness” genes) among embryonic, neural and 

hematopoietic SCs has failed to reveal a gene 

expression signature accounting for the SC status in 

all cell types analyzed (2, 3), and the emerging view 

is that in different contexts, stemness is maintained 

by largely independent cellular programs, each one 

suited to couple SC self-renewal and differentiation 

abilities with distinct developmental stages, tissue 

differentiation programs and cell turnover rates (4-

6). 

     In fact, besides playing their defining roles, SCs 

are first of all cells, and must regulate fundamental 

biological functions such as the ability to survive, to 

divide and migrate, to establish contacts with 

neighboring cells and the surrounding environment 

(niche), to regulate metabolism in response to 

nutrients availability, and to respond to a variety of 
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external cues and cellular stresses. In particular, cell-

protective mechanisms coincide with many of the 

conserved signaling pathways that regulate SC self-

renewal and differentiation (7). Therefore, mainte-

nance of functional SC pools during the organism 

lifespan requires integration of SC-specific signaling 

mechanisms (the “core” SC signaling circuitries) 

with other key cellular programs, fitted to maintain 

“stemness” and tissue homeostasis in the context in 

which SCs operate. 

     Consistent with a role of SCs in aging (8), it 

seems conceivable that stemness arose during 

evolution in parallel with the emergence of long-

lived multicellular organisms, as a strategy to 

prolong lifespan via elimination and replacement of 

differentiated or damaged cells in increasingly 

complex tissues. One conserved molecular 

machinery coupling the cell 

responses to stresses and 

nutrients availability with 

the regulation of organismal 

aging and SC biology is the 

PI3K/Akt/FOXO/mTOR 

signaling network (9, 10). 

The most evolutionary 

conserved function of Akt signaling is the control of 

energy metabolism, which in mammalian cells is 

coupled to the ability to inhibit apoptosis and 

promote cell cycle progression (for review see (11, 

12). Attenuation of the insulin/IGF-1-like (IIS) 

metabolic pathway as well as caloric restriction 

extends the lifespan of nematodes, fruit flies and 

mammals (8, 9, 13, 14). Effectors of lifespan 

extension induced by inhibition of IIS are the 

forkhead box O (FOXO) family of transcription 

factors, which are under the negative control of the 

IIS/PI3K/Akt pathway (15-18). Individual or 

combined ablation of FOXO genes in mice leads to 

SCs depletion in various lineages (19-21). Inhibition 

of mTORC1, a signaling complex activated by 

IIS/Akt signaling and nutrients (22), also extends the 

lifespan of model organisms (23-25), and mTORC1 

pharmacological inhibition by rapamycin enhances 

SC functions in several contexts (26-29). Moreover, 

a conserved role of FOXOs in limiting mTORC1 

signaling by inducing the expression of mTORC1-

inhibitory proteins has also been established (30-32). 

However, in spite of the conserved functions of 

these Akt effectors pathways in organism lifespan 

and SC maintenance, the consequences of Akt 

activation in different SC types range from enhanced 

SC self-renewal (33, 34) to premature SC exhaustion 

(35, 36). In the attempt to reconcile these apparent 

paradoxes, we will provide here a simplified view of 

three diverse modalities by which Akt signaling 

regulates SC self-renewal and differentiation, 

exemplified by three different SC types.   

 

Akt proteins and activation 
Akt/PKB signaling is carried out by three 

homologous serine/threonine protein kinases 

(Akt1/PKBα, Akt2/PKBβ and Akt3/PKBγ) encoded 

by separate genes (37, 38). In response to a plethora 

of extracellular signals Akt kinases regulate 

fundamental cellular functions such as growth, 

survival, differentiation and energy metabolism (39). 

Activation of Akt kinases normally occurs 

downstream of phosphoinositide-3 kinases (PI3K). 

Full enzymatic activation is 

achieved through a sequential 

process. Akt proteins are first 

recruited to the plasma 

membrane through their 

amino-terminal pleckstrin 

homology (PH) domains at 

sites enriched of PI3K lipid 

products (PI(3,4,5)P3 or PI(3,4)P2). At the plasma 

membrane, Akt proteins are phosphorylated at two 

conserved residues, the first one within the T-loop of 

the catalytic domain (Thr308 in Akt1) by the 

phosphoinositide-dependent kinase 1 (PDK1), and 

the second one within the carboxy-terminal 

hydrophobic motif (Ser473 in Akt1) by the 

mammalian target of rapamycin complex 2 

(mTORC2) (40-42), albeit other protein kinases 

have also been found capable of phosphorylating the 

same Ser residue (43).  Although phosphorylation of 

Akt at both regulatory residues is critical for full 

kinase activation, it has been shown that in the 

absence of Ser473 phosphorylation, Akt is still 

capable to phosphorylate some, but not all its 

substrates (41). 

     Akt proteins are localized to the plasma 

membrane following activation, and once activated, 

they distribute throughout different cell 

compartments including the nucleus, whereby they 

phosphorylate a multitude of substrates to regulate 

diverse cellular functions (39). Akt kinases are 

inactivated by protein phosphatases such as the 

protein phosphatase 2A (PP2A), which 

dephosphorylates the regulatory Thr residue within 

the kinase domain (44), and the family of plekstrin 

Akt and its downstream 
signaling effector molecules 

play key roles in SC self-
renewal and differentiation,  

in a context dependent manner  
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homology domain leucine-reach repeat protein 

phosphatases (PHLPP1 and PHLPP2) that 

dephosphorylate the Ser residue of the hydrophobic 

motif of Akt kinases in an isoform-specific manner 

(45). 

     The overall PI3K/Akt signaling activity is 

negatively regulated by the tumor suppressor PTEN 

that dephosphorylates the PI3K lipid products, and 

by activation of the Akt downstream effector 

mTORC1, which in turn induces  negative feedback 

mechanisms that limit PI3K activation (for review 

see (46, 47). Hyperactivated Akt is a common 

feature of many human cancers (39) since, at least in 

part, it both provides protection from apoptosis and 

promotes uncontrolled cell-cycle progression (48). 

     Studies of Akt isoform-specific knockout mice 

have recently suggested that besides playing 

redundant roles in cellular signaling, Akt 

isoenzymes have also specific biological functions 

(49). Akt1 knockout mice have growth retardation 

(50) and Akt1-null cells display higher rates of 

apoptosis, indicating a critical role for Akt1 in cell 

survival (50, 51). Akt2 knockout mice develop a 

type 2 diabetes-like phenotype, and cells derived 

from those mice show impaired glucose utilization 

(52, 53), suggesting a key role for Akt2 in the 

regulation of glucose homeostasis. Consistently, 

protein interaction studies have recently confirmed 

such a metabolic function for Akt2 (54). A role for 

Akt3 in brain development has also been proposed 

since Akt3 knockout mice display decreased brain 

size (55). Moreover, during tumor development, 

Akt1 and Akt2 often act in a complementary 

opposing manner (37, 38). Specific gain of function 

of Akt2 promotes migration and invasion in breast 

cancer epithelial cells, whereas Akt1 is mostly 

involved in cell proliferation and growth (56). In 

addition, Akt2 induces epithelial to mesenchymal 

transition (57, 58), a process involved in de novo 

formation of breast cancer SCs (59). Intriguingly, 

the differential roles of Akt isoforms in breast cancer 

SC have been found associated to a differential 

regulation of microRNA of the miR200 family by 

individual Akt isoforms (60). One outstanding issue 

is how such signaling specificity is achieved in spite 

of the high structural homology of Akt isoforms.  

 

Signals downstream of Akt protein kinases in SC 

regulation: life span, metabolism and stress 
Key effectors of Akt signaling in SC regulation are 

the mTORC1 signaling complex, positively 

regulated by Akt signaling (22), and the FOXO 

family of transcription factors, which are directly 

inhibited by Akt-dependent phosphorylation (15-18). 

A persistently elevated mTORC1 activity causes an 

initial expansion followed by a later decline of 

several adult SC types (26, 61), whereas individual 

or combined ablation of FOXO genes in mice leads 

to SC depletion in various lineages (19-21). In both 

fly and mammalian cells, FOXOs can restrain 

mTORC1 activity (30, 31, 62, 63), and this 

regulatory network has been recently implicated in 

stratified epithelial SC regulation (64). Members of 

the FOXO class of transcription factors (FOXO1, -3, 

-4 and -6) regulate diverse gene expression programs 

and affect many cellular processes, including cell 

cycle regulation, cell survival and metabolism (65, 

66). Two evolutionarily conserved pathways 

regulate FOXO activity: in the presence of growth 

factors, FOXOs are negatively regulated by the 

canonical IIS signaling pathway through PI3K and 

AKT (65); FOXOs are activated instead in the 

presence of oxidative stress through Jun N-terminal 

kinase (JNK) (67). Additionally, many other 

signaling pathways and multiple post-translational 

modifications modulate FOXO activity (65-69). All 

FOXO family members bind to the consensus 

sequence (5′-TTGTTTAC-3′), and therefore are 

thought to act redundantly, although selective 

functions of specific FOXO members have also been 

described. The FOXO homologue in Caenorhabditis 

elegans, daf-16, was genetically linked to daf-2, 

which encodes an insulin type receptor, and shown 

to mediate the lifespan extension resulting from daf-

2 loss, thus providing evidence of a crucial role of 

the PI3K/Akt/FOXO signaling axis in lifespan 

control (9). FOXOs integrate a multitude of signals 

from pathways that are sensitive to environmental 

changes, and the emerging view is that these 

transcription factors behave as key regulators of 

tissue homeostasis under stressful conditions (10).  

 

1) Integration of Akt signaling within the “core” 

pluripotency signaling network in the mainte-

nance of SC self-renewal and pluripotency 

(embryonic SCs) 
Murine embryonic SCs (mES cells) are cell lines 

derived from the inner cell mass of the mouse 

blastocyst (70, 71) and can be indefinitely expanded 

in an undifferentiated, pluripotent state by the 

addition of leukemia inhibitory factor (LIF) to the 

culture medium. ES cells need to tightly balance 



Akt-Foxo-mTOR signaling in stem cells  

www.discoveriesjournals.org 4 

their gene expression program to prevent 

differentiation while maintaining pluripotency, 

which is executed by a gene network that is centered 

around the transcription factors OCT4, SOX2 and 

NANOG (72). In addition to activating the Jack/Stat 

and the MEK/ERK pathways, LIF also engages the 

PI3K/Akt pathway in mES cells (73). In these cells, 

ectopic expression of a myristoylated, active form of 

Akt is sufficient to maintain the pluripotent, 

undifferentiated cell phenotype in the absence of LIF 

(74). Importantly, the effects of active Akt were 

found to be reversible, since deletion of the 

transgene restored both LIF dependence and 

pluripotent cell differentiation. It has been further 

demonstrated that LIF to Akt signaling is critical for 

maintaining elevated levels of ES cell-specific 

transcription factors such as Tbx3 and Nanog (75, 

76), the latter being an essential determinant of the 

“naïve” ES cell pluripotent state (77). Moreover, Akt 

has also been reported to phosphorylate and enhance 

the transcriptional activity of Sox2 (78), another key 

factor in both ES cell pluripotency and repro-

gramming of somatic cells to induced-pluripotent 

stem cells (iPS). 

     Differently from mES cells, human ES (hES) 

cells do not depend on LIF signaling for self-renewal 

but rely on different combinations of exogenous 

factors including Activin, an agonist of Smad/2/3 

signaling (for review see (79)). In hES cells, Activin 

favors pluripotency by promoting Nanog expression 

(30, 80) but also drives mesodermal differentiation 

when PI3K/Akt signaling is low (81). hES cells can 

be maintained in a pluripotent, undifferentiated state 

under defined culture conditions requiring only three 

exogenous factors (82), Activin, and two potent 

activators of PI3K/Akt signaling, heregulin and Igf-

1. It has been shown that omission of extracellular 

Akt agonists or inhibition of Akt intracellular 

signaling promotes mesodermal differentiation. 

Since Activin/Smad2/3 signaling is also essential for 

hES self-renewal, it has been demonstrated that 

inhibition of PI3K/Akt activity skews the functions 

of Smads from self-renewal to differentiation. In 

particular, Akt activity, by restraining ERK and 

Wnt-β catenin signaling, on one hand maintains 

Smad-dependent Nanog expression, and on the other 

hand prevents Smads from activating mesodermal 

genes (82).  

Interestingly, proliferating ES cells have a metabolic 

signature that is reminiscent of that of quiescent 

hematopoietic SCs (HSCs). ES cells have a low 

mitochondrial mass compared to their differentiating 

cell progenies and cell differentiation parallels with 

a switch from glycolysis to a robust increase in 

mitochondrial oxidative activity (83).  

 
 

 

 

Figure 1.  

Schematic representation of the 

three “modes” of Akt signaling 

described in the main text:  
a) in mouse embryonic stem cells 

(mES), Akt signaling favors self-

renewal and pluripotency at the 

expenses of cell differentiation (not 

shown); b) in hematopoietic stem 

cells (HSC), quantitative changes in 

Akt signaling outputs determine 

different SC fates: normal Akt 

signaling favors self-renewal (low 

Akt signaling), while an increase of 

activity (high Akt signaling) favors 

exit from quiescence and 

commitment to differentiation c) in 

human limbal keratinocyte stem 

cells (hLSC), a different ratio 

between Akt isoforms activity in 

discrete subcellular compartments 

shifts the balance between SC self-

renewal and  differentiation. 
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Since one of the most conserved effects of Akt 

activation is the increase in cellular glucose uptake 

and stimulation of oxidative metabolism, which are 

mediated in large part by inhibition of FOXOs and 

activation of mTORC1 signaling, how ES cells 

maintain high Akt activity to promote self-renewal, 

and at the same time maintain low oxidative rates is 

currently unclear. This would suggest that Akt 

proteins, in ES cells, are decoupled from some of 

their key signaling effectors in cell metabolism. 

Intriguingly, FOXO1 has been recently shown to be 

necessary for ES cell pluripotency, and to directly 

regulate OCT4 and SOX2 expression and functions 

in an Akt-independent manner (84). How FOXO1 

can be transcriptionally activated in these rapidly 

dividing cells, and how its activity is directed 

towards OCT4 and SOX2 deserve future 

investigation. 

     In summary, increasing experimental evidence 

indicate that in both mES and hES, Akt signaling 

participates to the “core” pluripotency network by 

impinging on Nanog expression, and that gains of 

Akt activity promote pluripotency and self-renewal 

at the expenses of differentiation, in a manner that is 

decoupled from activation of Akt metabolic 

effectors. However, the identities of the direct Akt 

effectors in this context are still unknown. 

 

Differential roles of Akt signaling in tissue-

specific SCs 
In tissue-specific SCs, the long-term consequences 

of sustained Akt activation, such as that induced by 

PTEN deletion, range from enhanced SC expansion 

and maintenance like in neuronal and mammary 

gland progenitor cells (33, 34), to SC depletion in 

the hematopoietic system (35, 85). The mechanisms 

underlying these opposite roles of Akt signaling in 

different SC types are still unclear, and may include 

differential ability of Akt protein kinases to 

phosphorylate a subset of substrates under specific 

conditions, the strength and duration of Akt activity, 

the onset of negative feedbacks mechanisms, as well 

as cross talks with other key SC regulatory signaling 

pathways (Notch, Wnts, BMP, Activin/TGF-β), 

ultimately determining the choice of a SCs towards a 

specific fate.  

 

2) Akt regulation of SC metabolism and 

quiescence (Hematopoietic Stem Cells) 
Hematopoietic SCs (HSCs) are cells that give rise to 

the cellular constituents of blood for life-long. 

Although SC quiescence is not a general prerequisite 

of all stem cell types (86, 87), multipotent HSCs are 

typically slow cycling, and become activated to 

generate committed progenitor cells that replenish 

all the differentiated blood cell lineages. HSCs 

reside normally in hypoxic niches in the bone 

barrow (88), and relatively low oxygen levels 

promote SC quiescence (89, 90) and glycolytic 

metabolism at the expenses of mitochondrial 

oxidative metabolism (reviewed by (83, 91), 

whereas physiological increases in reactive-oxygen 

species (ROS) are coupled with the differentiation 

switch (20, 36, 92, 93). Proper levels of ROS and 

maintenance of reversible quiescence play thus key 

roles in long-term HSC maintenance, since virtually 

every genetic or environmental manipulation 

permanently altering these parameters usually results 

in hematopoiesis abnormalities, including leukemia 

(reviewed by (94).   

     Molecules downstream of Akt signaling, 

including FOXO transcription factors and the 

mTORC1 signaling complexes are critical mediators 

of the cell metabolic responses to changes in 

nutrients, growth factors and oxygen levels. Akt 

activation, by favoring glucose uptake metabolism, 

is a potent activator of glucose uptake and 

mitochondrial oxidative metabolism. Moreover, 

mTORC1 signaling, which is negatively regulated 

by hypoxic conditions and positively by Akt, 

signaling, stimulates mitochondrial biogenesis 

(reviewed by (95). The transcriptional activity of 

FOXO family members is stimulated by oxidative 

stress, and inhibited by Akt activation in response to 

growth factors, and FOXO target genes are crucial 

mediators of HSC quiescence, and resistance to 

oxidative stress.   

     In the hematopoietic system, PI3K/Akt/FOXO 

signaling plays critical roles in both HSC 

maintenance and lineage development (96). Several 

hematopoietic growth factors and cytokines, such as 

erythropoietin, thrombopoietin, Stem Cell Factor 

(SCF, c-kit-ligand), Flt3 ligand, activate the 

PI3K/Akt pathway. FOXOs have a crucial role in 

several types of adult stem cells and as this role 

seems to be evolutionarily conserved, since they also 

regulates SC maintenance in Hydra vulgaris (97). In 

mHSCs they favor SC maintenance and self-renewal 

ability (19, 20, 98). In addition, FOXOs may protect 

HSCs from cell death by mediating resistance to 

physiological oxidative stress thorough catalase and 

superoxide dismutase. Indeed, whereas targeted 



Akt-Foxo-mTOR signaling in stem cells  

www.discoveriesjournals.org 6 

deletion of FOXO in HSCs results in HSC 

exhaustion with concomitant increase in cellular 

ROS, treatment with an antioxidative agent could 

partially rescue this phenotype (20, 98). This role of 

FOXOs in maintaining the SC population over time 

also occurs in neural SCs (21, 99). Consistent with 

the suppression of PI3K/Akt signaling observed in 

HSCs, mTORC1 is downregulated in these cells and 

studies on TSC-1 knockdown have shown that 

mTORC1 inhibition is essential for HSCs 

quiescence (98, 100, 101). Besides, HSCs functions 

decline with age and this is reportedly due to 

increased mTORC1 activity (26). 

Moreover, several developmental signaling 

pathways that also regulate adult hematopoiesis 

(Wnts, Notch and BMP) (102), can potentially cross 

talk with the PI3K/Akt pathway at multiple levels. 

Quantitative abnormalities in Akt signaling have a 

deep impact on HSC biology. For instance, in 

murine HSCs, both conditional deletion of PTEN 

(35, 85) and overexpression of a constitutively 

activated myrAkt (103) cause loss of quiescence, 

transient expansion of HSCs, followed by long-term 

SC decline. Importantly, in both experimental 

settings, the exhaustion of HSCs is paralleled by the 

development of leukemia-like hematological 

disorders. On the other hand, the combined deletion 

of Akt1 and Akt2, the two main Akt isoforms 

expressed by hematopoietic cells, results in 

exaggerated SC quiescence, reduced ROS 

production, and impaired cell differentiation, 

consistent with the notion that physiological levels 

of ROS are involved in the switch between HSC 

quiescence and differentiation (104). Serial HSC 

transplantation was impaired by Akt1/Akt2 

deficiency, albeit individual deletion of either Akt 

isoform had little or no effect. Overall, these studies 

indicate that HSCs are extremely sensitive to the 

overall levels of Akt signaling output, and whereas 

normal Akt signaling is required to balance SC self- 

renewal with normal ROS production and 

differentiation, either too much or too little Akt 

activity eventually result in SC failure.  

     Several transcription factors are necessary for 

HSC self-renewal, among which GATA2, GFI1, 

TEL, JUNB, SOX17 and PU.1 (102). Although 

phosphorylation of GATA2 by Akt has been 

reported to regulate adipose cell differentiation 

(105), it is currently unknown whether a similar 

mechanism is also involved in HSCs self-renewal 

and differentiation. Inhibition of PI3K/Akt/ 

mTORC1 signaling also inhibits T cell 

differentiation, and prevents downregulation of the 

GFI1 transcription factor (106). However, whether 

or not Akt signaling plays a direct role in the 

regulation of the core HSC transcriptional network 

remains to be established.  

     On the other hand, there is accumulating 

evidence that Akt directly participates to the 

epigenetic regulation of HSCs by phosphorylating 

Bmi1, one key component of the Polycomb 

Repressor Complex 1 (PRC1), at Ser 316, thereby 

favoring de-repression of the Ink4a-Arf locus, which 

encodes for p16/Ink4a and p19/Arf proteins that 

promote cell cycle arrest and cell senescence. 

Importantly, ablation of Bmi1 in mice also leads to 

failure of several SC types including HSCs (107), 

and more in general, defects in either PRC1 or PRC2 

functions hamper SC self-renewal in several cell 

types, including HSCs (108). Akt also phosphory-

lates the EZH2 catalytic component of PRC2, 

thereby counteracting its repressive activity on gene 

expression (109). Therefore, under conditions of 

persistently elevated Akt activation, such as PTEN 

loss, HSC exhaustion may depend in part on cell 

senescence favored by loss of Polycomb repressive 

activity at the Ink4a-Arf locus. 

     It has been shown that mTORC1 inhibition by 

rapamycin rescues the exhaustion of normal HSCs 

and prevents the onset of leukemia following PTEN 

loss in vivo (35). Consistently, conditional deletion 

of the mTORC1 negative regulator TSC1 in murine 

HSCs provokes loss of SC quiescence, increased 

mitochondrial biogenesis and ROS production, with 

subsequent failure of hematopoiesis and HSC self-

renewal (101). Importantly, the effects of TSC1 

deletion were rescued by treatment of cells with 

ROS antagonists. Since Akt phosphorylates TSC1/ 

TSC2 complexes to release their inhibitory activity 

on mTORC1, these data strongly suggest that the 

PTEN/Akt/mTORC1 axis normally plays important 

roles in the normal balance between HSC self-

renewal and differentiation and in PTEN/Akt-

induced HSC exhaustion and leukemogenesis (for 

review see (95). 

     Consistently, in murine HSCs, conditional 

deletion of Raptor, an essential component of 

mTORC1, severely hampers hematopoiesis leading 

to pancytopenia, splenomegaly, extramedullary 

hematopoiesis and abnormalities in differentiation 

(110). Raptor-deficient HSCs display abnormalities 

in transplantation assays and impaired regenerative 
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potential upon sub lethal irradiation. Notably, Raptor 

depletion also halts leukemic progression in PTEN-

deficient HSCs. 

     On the other hand, the conditional deletion of 

Rictor (an essential component of mTORC2) in 

adult mice has no effects on basal hematopoiesis, but 

prevents both SC exhaustion and leukemogenesis 

induced by PTEN loss (111). These data are 

consistent with a model in which mTORC1 plays 

key roles in both normal SC maintenance and Akt-

driven SC depletion, while mTORC2, by favoring 

Akt activation from upstream, becomes a limiting 

factor in cellular processes that rely on maximal Akt 

signaling outputs, such as those causing HSC 

depletion and leukemogenesis.  

     Altogether, these studies provide compelling 

evidence that mTORC1 signaling activity is 

essential for normal hematopoiesis and represents a 

driving force behind HSC depletion and leukemia 

progression downstream of the PTEN/Akt axis.  

Thus, mTORC2 and mTORC1 appear to represent 

respectively an essential regulator and a key effector 

of Akt activation in both HSC depletion and 

leukemogenesis induced by PTEN loss. Does this 

mean that FOXOs, established regulators of HSC 

maintenance and direct Akt targets, do not play a 

role in this process? Sustained Akt activation 

downstream of PTEN loss is expected to lead to 

FOXO inactivation, and since FOXO loss of 

function per se drives HSC depletion, it is 

conceivable that also in the context of PTEN loss, 

Akt-dependent FOXO inactivation may contribute to 

SC depletion. Intriguingly, several direct FOXO 

target genes including sestrin3, (32, 112) and the 

direct TORC1 inhibitor TSC1 have the potential to 

restrain mTORC1 signaling via different 

mechanisms. Notably, this FOXO-dependent 

mTORC1 inhibition has been shown to take place 

under different experimental conditions and is 

though to represent a conserved cellular response to 

cellular stress conditions between flies to mammals 

(113). Moreover, we have recently demonstrated that 

in cultured human limbal keratinocyte SCs, the 

Akt2/FOXO/mTORC1 signaling axis is a critical 

determinant of epithelial stem cell exhaustion, at 

least in culture (64), suggesting that this cross talk 

may be important also in the regulation of other SC  

types in which robust Akt signaling to FOXO plays 

a role in SC depletion. Since both FOXOs and TSC1 

deletion in HSCs result in SC depletion and 

exaggerated ROS accumulation, and in both cases 

SC depletion is counteracted by ROS scavengers, 

this further suggests a convergence of FOXO and 

mTORC1 signaling on similar cellular process in 

HSC regulation. Therefore, it would be interesting to 

test whether or not the HSC decline induced by loss 

of FOXOs can be rescued in part by rapamycin 

treatment, like in the case of PTEN loss. Should this 

not be the case, this would suggest that FOXOs 

might become desensitized to Akt inhibition due to 

activation of other cellular pathways. It has been 

reported that in certain cellular contexts, 

transcriptional activation of FOXOs by JNK upon 

stress including oxidative damage, dominates over 

the ability of Akt to inactivate FOXOs (67). 

Clarifying the role of FOXOs in Akt-induce SC 

depletion and leukemogenesis is of key therapeutic 

relevance, since it has been recently reported that in 

Acute Myeloid Leukemia (AML) cells, FOXOs 

favors the maintenance of cells with the properties of 

leukemia-initiating cells. Unexpectedly, either Akt 

activation or FOXO inhibition induce apoptosis and 

promote myeloid differentiation of AML cells, 

reverting the established paradigm of Akt behaving 

as an oncogene, and FOXOs as tumor suppressors. 

Interestingly, AML cells that escape from Akt-

induced FOXO inactivation or loss of FOXO 

expression, become sensitive to JNK inhibitors, 

suggesting that JNK activation probably favors the 

selection of AML cells capable to withstand the loss 

of FOXOs, providing a rationale for the employment 

of JNK inhibitors in antileukemic therapy.  

Importantly, quiescence is a property shared by 

normal multipotent HSCs and Leukemia–initiating 

cells. 

 

3) Akt signaling selectivity in SC regulation: 

subcellular compartmentalization and isoform-

specific functions of Akt proteins in human 

limbal keratinocyte stem cells (hLSCs) 

The cornea is the most important light refracting 

structure of the eye, and the integrity of its stratified 

epithelium is key for visual acuity. In adult humans, 

the self-renewal of the corneal epithelium relies on 

keratinocyte SC populations that reside in the basal 

epithelial layer of the limbus, the narrow transitional 

zone at the boundaries between the cornea and the 

bulbar conjunctiva (114-121). Pathological 

conditions leading to loss of limbus integrity result 

in severe visual impairment or blindness. The 

similarities between human limbal- and epidermal 

keratinocytes, which have been extensively 
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employed in cellular therapies for treating burn 

patients, have allowed the establishment of culture 

conditions apt to propagate hLSCs ex vivo for use in 

therapeutic transplants (117, 119, 121-123). Culture 

of human limbal keratinocytes (LKs) in the presence 

of a fibroblast feeder layer (124) plus additional 

factors, including fetal bovine serum, Insulin and 

Epidermal Growth Factor, originate three types of 

colonies, namely, holoclones, meroclones and 

paraclones (117, 122), of which holoclones possess 

all the defining features of cultured SCs such as 

long-term self-renewal and the capacity to 

regenerate tissue in vivo (125, 126). We have 

recently explored the role of Akt signaling in the 

biology of hLSCs (64).  

     We have found that in human corneal tissue, the 

distribution of active Akt proteins nearly overlaps 

with that of the putative LSCs marker p63, which, 

under homeostatic conditions, is confined to the 

basal layer of the limbal epithelium (127, 128). 

Moreover, few differentiating cells moving to the 

suprabasal differentiated cell layers, expressing low 

levels of p63, also display high levels of Akt 

activation.  

     The progenies of cultured human primary limbal 

keratinocyte holoclones have also higher Akt 

activity as compared to those generated SC-depleted 

clones. We found that a transient inhibition of PI3K 

or Akt activity impairs the clonogenic potential of 

the progenies of treated cells in spite of having little 

or no effects on the cell cycle, suggesting that PI3K 

to Akt signaling has important roles in LSC self-

renewal.  

     By investigating the roles of Akt1 and Akt2, the 

two Akt isoforms expressed in LKs, we found that 

whereas Akt1 silencing anticipated SC exhaustion, 

Akt2 depletion had an unexpected effect on cultured 

LSCs self-renewal ability, since it significantly 

enhanced both clonogenic potential and lifespan of 

cultured cells and interfered with differentiation and 

senescence cellular programs. Consistently, in Akt2-

deficient mice, the amounts of progenitor cells 

expressing the p63 limbal stem cell marker is 

increased, suggesting that Akt2 deficiency also 

affects LSC biology in vivo. 

     Our data indicated that signaling specificity 

rather than drops in global Akt activity underlies the 

SC phenotype of Akt2-deficient LKs, since their 

sustained self-renewal ability can be selectively 

reverted by ectopic re-expression of a normal Akt2 

protein, but not by comparable levels of either 

kinase-dead Akt2 or wild-type Akt1. Akt2 depletion 

selectively attenuates growth factors signaling to 

both FOXOs and mTORC1, albeit in a hierarchical 

manner, whereby an increase in FOXOs expression 

and transcriptional activity leads to mTORC1 

inhibition by promoting the expression of its 

negative regulator TSC1. Thus, our work provides 

direct evidence that the conserved FOXO/mTORC1 

axis participate to SC regulation, and that at least in 

this particular SC type, one single hit (Akt2 

depletion) is sufficient to enhance FOXO functions 

and to restrain mTORC1 activity. 

     Our work has indicated that the mechanistic bases 

of the differential effects of Akt1 and Akt2 reside 

mostly in their differential subcellular distribution; 

whereas Akt2 protein is both nuclear and cytosolic, 

Akt1 is found almost exclusively in the cytosol, but 

when its expression is enforced in the nuclear 

compartment via a nuclear localization signal 

peptide, Akt1 acquires the ability to revert the SC 

phenotype of Akt2-deficient cells and to 

phosphorylate FOXO molecules. These data suggest 

that is not Akt2 per se, but rather its nuclear 

distribution that drives LSC depletion. 

     Our study opens up many additional questions 

that need to be addressed to shed light on the 

complexity of Akt functions in SC regulation. Does 

the effect of Akt2 depletion reflect the well-

established role of Akt2 in metabolism control? 

Consistent with the notion that oxidative stress 

represents one major determinant of cultured cell 

senescence (29), our unpublished data indicate that 

Akt2-depleted LSCs display enhanced resistance to 

oxidative damage. It is worth remembering that the 

ocular surface is highly exposed to oxidative stress 

(7), and that corneal epithelial cells have large stores 

of glycogen that is used as a primary energy source. 

Akt signaling has been recently shown to couple 

hypoxic signaling with glycogen metabolism in the 

limbal-corneal tissue (129). It would be interesting 

to investigate how individual Akt isoforms regulate 

these functions in the context of LSC self-renewal 

and differentiation. 

     Another key issue is to better understand the 

molecular determinants of Akt proteins nuclear 

distribution. This aspect of research seems 

particularly relevant for SC biology since it would 

explain how Akt proteins are targeted to 

transcriptionally active FOXO proteins as well as to 

other nuclear targets potentially involved in SC 

regulation. However, the molecular determinants of 
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Akt isoforms nuclear distribution are still poorly 

understood, and the possible underlying mechanisms 

include phosphorylation, ubiquitylation and 

interaction with specific protein partners (38, 130). 

     How nuclear Akt signaling integrates in the core 

transcriptional programs and epigenetic regulation of 

LSCs and other SC types regulated by similar 

control mechanisms (such as for instance epidermal 

keratinocyte SCs)? Our work suggests a tight 

correlation between PI3K/Akt/FOXO signaling and 

p63 regulation, and Akt2-depleted cells express high 

levels of ∆Np63α the p63 isoform most involved in 

the regulation epithelial SC proliferative potential 

(131). Previous work has indicated that PI3K 

signaling positively regulates p63 expression at the 

transcriptional level (132). Moreover, the IIS/FOXO 

pathway has been recently shown to regulate p63- 

dependent gene expression in the establishment of 

epidermal stratification during mouse development 

(133). Our work suggests that p63 may be both 

positively and negatively regulated by Akt signaling, 

and these findings may have translational 

implications in regenerative medicine, since high 

levels of ∆Np63α expression correlate with the 

success of cultured LSC grafts in therapeutic settings 

(119, 126). 

     Notably, our studies indicating that Akt2 opposes 

normal epithelial SC functions are apparently at 

odds with the notion that in a human immortalized 

breast cell lines, Akt2 favors de novo formation of 

cancer SCs (57-60). Hence, we believe that caution 

should be taken when interpreting the biological 

function of Akt signaling in normal epithelial cells 

or in immortalized and/or transformed cell lines that 

already evaded fail-safe mechanisms of tumor 

suppression. 

 

Conclusions 
PI3K/Akt signaling has been shown to either 

promote or oppose SC maintenance. Although a 

large number of studies indicate a close link between 

metabolic pathways and SC regulation by Akt 

kinases, we still have a very limited understanding 

about the integration of these processes by Akt 

family members. In this review, we have provided 

three different examples of modalities (Figure 1) by 

which Akt signaling regulates SCs in three different 

biological contexts. These diverse “modes” of Akt 

action are not to be intended as mutually exclusive. 

On the contrary, it is likely that Akt proteins 

participate with multiple parallel mechanisms to 

regulation of the same SC type. We propose that 

under specific circumstances dictated by distinct 

developmental stages, differentiation programs or 

tissue culture conditions, one “mode” of Akt action 

prevails over the others in determining the SC fate. 
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