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Abstract 

Because of increasing demand for rapid results, molecular techniques are now applied for the 

detection of microorganisms in foodstuffs. However, interpretation problems can arise for the results 

generated by molecular methods in relation to the associated public health risk. Discrepancies between 

results obtained by molecular and conventional culture methods stem from the difference in target, 

namely nucleic acids instead of actively growing microorganisms. Nucleic acids constitute 5 to 15% 

of the dry weight of all living cells and are relatively stable, even after cell death, so they may be 

present in a food matrix after the food-borne microorganisms have been inactivated. Therefore, 

interpretation of the public health significance of positive results generated by nucleic acid detection 

methods warrants some additional consideration. This review discusses the stability of nucleic acids in 

general and highlights the persistence of microbial nucleic acids after diverse food processing 

techniques based on data from the scientific literature. Considerable amounts of DNA and RNA (intact 

or fragmented) persist after inactivation of bacteria and viruses by most of the commonly applied 

treatments in the food industry. An overview of the existing adaptations for molecular assays to cope 

with these problems is provided, including large fragment amplification, flotation, (enzymatic) pre-

treatment, and various binding assays. Finally, the negligible risks of ingesting free microbial nucleic 

acids are discussed and this review ends with the future perspectives of molecular methods such as 

next generation sequencing (NGS) in diagnostic and source attribution food microbiology. 
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1. Introduction 

Contamination by microbial food-poisoning agents may occur at various stages in the food chain. 

Contaminants can be present in raw products (animal or vegetable) prior to harvesting or they may 

gain access during slaughter or processing, by the addition of contaminated food ingredients or 

processing aids, from the factory environment or by cross-contamination from other contaminated 

foods or from food handlers (Figure 1). The implementation of the hazard analysis and critical control 

point (HACCP) approach is pivotal to food safety management. The system includes defining control 

measure(s) to reduce the foodborne microbial hazard to an acceptable level. In many situations, heat-

inactivation may be defined as a critical control point (CCP) to ensure that foodborne pathogens are 

killed or substantially reduced.  

Over the past 25 years, there have been considerable advances in the development and use of 

molecular techniques for the detection of microorganisms in foodstuffs as a result of the increasing 

demand for rapid results. These are normally based on detecting specific DNA or RNA target 

sequences using amplification processes, in particular the polymerase chain reaction (PCR) (Cocolin 

and others 2011). Their adoption, in many instances, has replaced or supplemented traditional culture 

detection methods with culture methods still recognized as the gold standard for most bacterial 

foodborne pathogens. But in the case of some foodborne viruses, which are not culturable, nucleic 

acid-based assays remain the only choice for their detection. Microbial (bacterial or viral)-derived 

nucleic acids may enter the food chain from similar reservoirs as indicated for the pathogens 

themselves. Intact living cells will possess intact DNA/RNA, although dead cells may also 

house intact nucleic acids. Furthermore, the presence of fragmented extracellular nucleic acids 

emanating from microbial or viral sources cannot be excluded in foods. For example, 

adventitious viral nucleic acids have been detected in the porcine–derived trypsin enzyme 

(Victoria and others 2010). Because nucleic acids are relatively stable and may be present in a food 

matrix, even after processing steps routinely used in food preparation that can kill viable food 

pathogens, one must be careful in interpreting the public health significance of their presence in 

processed foods (Cenciarini-Borde and others 2009; Stals and others 2011). This review aims to 
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provide evidence of the persistence of microbial nucleic acids through food processes and how they 

act as the target molecule(s) of molecular methods for pathogen detection. It addresses the 

interpretation and implications of positive molecular assay findings from a diagnostic and public 

health perspective. The main aspects of the review are outlined in Figure 1. 

 

2. Use of molecular (nucleic acid-based) methods in food safety microbiology 

The gold standards in food microbiology have been conventional culture-based methods. However, 

there are some constraints which have driven microbiologists to look for alternative methods such as 

nucleic acid-based detection methods (BOX 1).  

(1) The use of molecular techniques are the only resort for the investigation of microorganisms which 

are impossible or very difficult to culture in vitro. For example, it is currently still impossible to 

cultivate the major food-borne viral pathogen human norovirus and it was only after the development 

of molecular detection methods that a reliable clinical diagnosis of norovirus infection could be 

achieved (Payne and others 2012).  

(2) Culture-independent methods are independent of the physiological state of the target 

microorganisms, so stressed, injured, and viable but nonculturable (VBNC) cells can also be detected 

(BOX 2). For example, conventional methods for Campylobacter spp. in stool and food samples 

require robust bacterial growth on selective agar plates, making these methods unreliable for the 

detection of stressed cells (Omar and Battie 2012). 

(3) The time required for analysis is generally much shorter than that for conventional culture based 

methods. This is of utmost importance when time is a crucial factor or when the target microorganisms 

are particularly slow-growing. For example, cultivation techniques for Mycobacterium avium subsp. 

paratuberculosis (MAP) are not standardized and results are only obtained after 4 to 16 weeks due to 

the slow growth of this microorganism (Slana and others 2008; Douarre and others 2010).  

(4) Molecular techniques offer a solution for atypical strains or strains for which a selective medium is 

unavailable or not performing well, such as lecithinase- and hemolysin-negative Bacillus cereus 

strains (Fricker and others 2008) and sorbitol-fermenting E. coli O157 (Posse and others 2008).  
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(5) DNA-based detection methods can be extremely specific and detect or differentiate at the level of 

species, for example, specific detection of Cronobacter sakazakii (formerly known as Enterobacter 

sakazakii) in infant formula without detection of closely related Enterobacter spp. (Soler and others 

2012). Also, highly strain-specific PCR tests exist for the differentiation of probiotic lactobacilli 

strains (Sisto and others 2009).  

(6) Nucleic acid-based detection methods can target specific serotypes, genotypes, or pathotypes based 

on identified virulence genes or other marker genes. For example, detection of genes encoding shiga 

toxins and other virulence factors to differentiate generic commensal Escherichia coli from pathogenic 

ones, such as human pathogenic verocytotoxin-producing E. coli (VTEC) (Figure 2). Detection of 

VTEC by culture-based methods is a very complex isolation procedure involving many specialized 

media (Posse and others 2008; Beutin and others 2009), after which the presence of toxin and 

virulence genes in the isolates need to be confirmed using other techniques, such as (q)PCR or latex 

agglutination. Moreover, screening of food and animal feed for the top five most important VTEC 

serotypes is recommended by qPCR (ISO/TS 13136 2012). Classical O- and H-serotyping of 

Escherichia coli can also be performed by PCR (Wang and others 2003; DebRoy and others 2011). 

(7) The presence of other (dominant) populations which may mask the presence of the target organism 

can be overcome by nucleic acid-based assays. For example, detection of low numbers of human 

pathogenic E. coli (VTEC) in the presence of 10,000-fold more generic E. coli in fecal and food 

samples is possible with real-time PCR (qPCR) (Beutin and others 2009).  

 

Due to the shortcomings of conventional culture-based methods, molecular techniques have become 

increasingly important in food microbiology over the last few decades, and the numbers of 

applications and assays continue to rise, mainly because of the increased speed of analysis in 

comparison with the conventional methods (Postollec and others 2011). A considerable commercial 

diagnostics market has developed for the detection and quantification of specific microorganisms by 

targeting sequences of their DNA and/or RNA. Alternative methods, including nucleic acid-based 

detection approaches, must be validated to ensure that their performance is equal or better in 

comparison with the conventional reference methods, and this should be carried out following the 
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specifications of international agreements and standards (FOOD-PCR 2003; ISO 22119 2011a; ISO 

22118 2011b). Specifically for food microbiology, the main applications are qPCR detection, 

identification, characterisation, or quantification of food-borne pathogens, but also of food spoilage or 

beneficial bacteria (fermentation cultures and probiotics). The current trend is to combine detection or 

quantification of several different pathogens in one (food) sample in the same reaction tube using 

multiplex (q)PCR. For example, multiplex qPCR for the simultaneous detection of human norovirus of 

genotypes GI and GII was developed (Stals and others 2009). Moreover, reverse transcriptase (real-

time) PCR (RT-(q)PCR) applications are now being developed to monitor the growth and metabolic 

activity of food bacteria, which can be used to control industrial processes such as fermentation, and 

also spoilage, and to perform risk analysis in the case of studying the responses and virulence of 

pathogens in food during processing and storage. For example, the gene expression response of food-

borne pathogens Salmonella and VTEC to heat and salt stress was monitored in meat (Kjeldgaard and 

others 2011). RT-qPCR has also revealed that the expression levels of virulence genes inlA and inlB 

were higher in clinical Listeria monocytogenes strains than in nonclinical strains and was accompanied 

by higher in vitro invasion of Caco-2 and HepG2 cells (Werbrouck and others 2006, 2007).  

However, nucleic acid detection techniques suffer from specific drawbacks: these have been elsewhere 

reviewed in more in detail (Cocolin and others 2011; Postollec and others 2011; Uyttendaele and 

others 2014). Moreover, microbiological specifications have historically been defined by bacterial 

numbers based on culture methodology. In brief, the shortcomings of nucleic acid-based methods are: 

 (1) The costs are generally higher than those for conventional microbiological methods, including 

laboratory infrastructure requirements in addition to the reagents and various equipment requirements. 

(2) Inhibition of the PCR reaction by food components is a frequently encountered problem, although 

it can be monitored by internal amplification controls and circumvented by optimization of the sample 

preparation.  

(3) The limit of quantification is often rather high, in the range of 10 to 1000 bacteria/viruses per g or 

mL. Thus for bacterial pathogens in food, presence/absence testing after enrichment is often more 

appropriate than direct quantification. For pathogens which cannot be cultured (such as human 

noroviruses), methods focus on concentration of the target pathogen from the sample into a smaller 
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volume prior to their detection or quantification. In these cases, it is essential that the food matrix 

components, which may have inhibiting or interfering effects, are removed by proper sample 

preparation.  

(4) Depending on the application, it may be a disadvantage that no isolates are obtained with 

molecular methods. Especially in the clinical and epidemiological setting, a bacterial isolate is 

required for further characterization (for example, determining antibiotic susceptibility), typing, and 

source tracking (as in outbreak investigations), as well as further research.  

(5) The most important drawback is probably the detection of naked DNA and DNA from dead 

microorganisms, which can lead to difficulties in interpretation, especially in a food quality control 

situation. This is most problematic in the study of nonculturable (viral) pathogens such as human 

noroviruses, since their infectious status cannot be evaluated by solely nucleic acid detection (Li and 

others 2011; Knight and others 2013). Several solutions exist in the form of sample pretreatments and 

modified PCR protocols to assist in the interpretation of results (Table 1, BOX 1, BOX 3). 

 

3. Stability of nucleic acids  

Nucleic acids are spontaneously degraded in solution by hydrolysis. RNA is particularly susceptible to 

such degradation because its phosphodiester bond is less stable than that of DNA (Lindahl 1993). 

However, the N-glycosyl bonds of DNA are less stable than those of RNA, so DNA is more 

susceptible to depurination (loss of the bases adenine and guanine) and to a lesser extent to 

depyrimidination (loss of the bases cytosine and thymine). Moreover, DNA can be damaged by 

hydrolytic deamination, oxidation, and alkylation, thus leading to aberrant base derivatives, mutations, 

lesions, and ultimately decomposition of DNA. DNA and RNA can also be degraded by extracellular 

(microbial) DNases and RNases, which are released from dead microorganisms and secreted by live 

ones to gain nutrients (Palchevskiy and Finkel 2006, 2009). Several studies have indicated that the 

metabolic activity of microorganisms is the major factor for free nucleic acid degradation in the 

environment (Romanowski and others 1992; Tsai and others 1995; Deere and others 1996; Wetz and 

others 2004).  
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Free DNA is more stable at low temperatures, under dry conditions (including (partial) dehydration), 

in the absence of oxygen, in the absence of living microorganisms, and when the DNA is absorbed to 

particles (Lindahl 1993; Lorenz and Wackernagel 1994). More specifically, the persistence of DNA 

from inactivated microorganisms in food depends not only on their initial concentration and the degree 

of protection offered by the dead structure (and thus the type of inactivation) but also on the 

temperature, the food matrix, and the presence of other microorganisms during storage after 

inactivation (Dupray and others 1997; Herman 1997). Similarly, the degradation of RNA in 

microorganisms after lethal treatments depends on the type of transcript, that is its specific stability 

and its relative abundance, the type and the severity of the inactivation treatment, the type of 

microorganism, the physiological condition of the population prior to inactivation, and the subsequent 

holding conditions (Sheridan and others 1998; Sung and others 2005; Cenciarini and others 2008). 

Ribosomal RNAs are among the most persistent transcripts, but the decay of different mRNAs after 

bacterial death is not generally predictable. 

 

4. Effect of food processing on nucleic acid stability 

Many food processing operations have an impact on the stability of microbial DNA and RNA and thus 

influence the detection of nucleic acids remaining after the treatment. The bacterial membrane 

potential and/or its structural integrity is one of the primary targets for inactivation and preservation 

treatments applied during food processing (Dock and Floros 2000). The secondary effect of such 

damage tends to be the loss of macromolecules, including nucleic acids, from the cell interior. In 

addition to the passive release from dead or injured microorganisms, nucleic acids are also actively 

secreted from living bacteria (Lorenz and Wackernagel 1994). As a result, substantial extracellular 

levels are present in foods, but these are susceptible to spontaneous and enzymatic degradation 

(Section 3). Additionally, processing may lead to inactivation without disintegration of the bacterial or 

viral structure, whereby nucleic acids remain within the inactivated microorganism. 

During the processing of foods, many processes are intended to substantially reduce or eliminate 

bacterial or viral pathogens. Verification of validated processing steps is generally performed by 

culturing. Frequently, molecular methods, in combination with (pre)enrichment, are also used. 
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However, without (pre)enrichment, nucleic acid-based methods may give positive signals despite the 

inactivation process. The persistence of naked and bacteria- and virus-bound nucleic acids after 

various lethal treatments is covered in Tables 2, 3, and 4. Only studies which assessed the presence of 

nucleic acids simultaneous with the determination of bacterial viability or the viral infectivity were 

included in the compilation of these Tables. In addition, only results of complete inactivation studies 

were considered in order to allow conclusions about the degradation of nucleic acids after bacterial 

death or viral inactivation, which is not possible when residual numbers of surviving bacteria or 

infectious viruses are still present. Since in vitro culturing of human noroviruses is currently not 

possible and the only marker for human norovirus persistence and survival is RT-qPCR data (Knight 

and others 2013), information on viral inactivation (and infectivity) studies versus stability of nucleic 

acids is restricted to cultivable surrogate viruses.  

 

Important factors influencing DNA and RNA persistence include: the initial concentration of 

microorganisms or nucleic acids, the type of inactivation treatment, and the matrix (either food, food 

suspensions or buffers), as detailed in the Tables. The size of the amplified DNA or RNA sequence is 

crucial for the interpretation of PCR-positive results, since long sequences disappear relatively quickly 

after microbial inactivation. In contrast, small fragments of microbial nucleic acids will remain present 

for a longer time throughout the degradation process of the genomic material. For example, 

inactivation of Streptococcus gordonii by penicillin could be monitored by RT-qPCR of a 427 bp 

fragment of the 16S rRNA gene, but not by a smaller 119 bp sub-fragment of this region, because only 

the presence of the large fragment was correlated with intact RNAs and bacterial viability (Aellen and 

others 2006). Since DNA damage is associated with reduced recovery and amplification of large 

fragments, simultaneous quantification of multiple fragments of different sizes can be performed to 

estimate the extent of DNA damage (Murray and others 2007). Especially for nonculturable viruses, it 

is an interesting strategy to amplify large or even genomic size fragments to detect only undamaged 

virus genomes (Rodriguez and others 2009; Knight and others 2013). In addition, the specific target 

sequence for amplification is also important, because the stability of nucleic acids is dependent on the 

sequence, namely, the stability is increased for sequences with a high G(C) content due to stronger 
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hydrogen bonds and the formation of stable quadruplex structures (Chen and others 2007; Joachimi 

and others 2009). Sequence stability can be exploited in specific applications, such as detection of the 

most unstable genomic region of the hepatitis A virus and the poliovirus, namely the 5’ NTR, 

correlated well with that of infectious viruses after inactivation with chlorine dioxide (Li and others 

2002; Simonet and Gantzer 2006). Under certain conditions, the food matrix may exert protective 

effects against degradation, for example, during boiling of soymilk the DNA remained stable 

(Kharazmi and others 2003a). Conversely, the food matrix is a source of nucleases and may also 

decrease the stability of nucleic acids, such as the stability of C. jejuni 16S rRNA gene was decreased 

on chicken skin (Uyttendaele and others 1997).  

 

4.1. Thermal treatments  

Heat treatments are among the most commonly used food processing operations, either alone or in 

combination with other processes. High temperatures cause degradation (depurination or deamination) 

and fragmentation of the (free) nucleic acid molecules, but not necessarily complete degradation 

(Lindahl 1993; Gryson 2010), even after extreme processing such as baking and autoclaving (Table 2). 

Dry heat causes less DNA damage (fragmentation) than steam treatment at the same temperature 

(Chiter and others 2000). Nicking and fragmentation of DNA is strongly increased under acid 

conditions (pH 4.0), because of the strongly increased depurination rate at low pH (Lindahl 1993; 

Bauer and others 2003). Generally, DNA degradation is thus expected to be most pronounced in acidic 

heat-treated food products. 

DNA degradation kinetics in heat-inactivated bacteria showed an exponential decrease of DNA 

amount (Nogva and others 2000). Frequently applied heat treatments in the food industry, such as 

pasteurization, yield dead microbial cells with relatively intact genomic DNA and even RNA, which 

can still be detected by (RT)-(q)PCR (Tables 3 and 4). Ribosomal RNA is not easily destroyed, 

because the secondary structure of rRNA and the associated ribosomal proteins protect it from 

degradation by endogenous or exogenous nucleases (McKillip and others 1998). Moreover, if high 

initial numbers of bacteria (6 to 7 log CFU/mL) were present, even the most unstable nucleic acids, 
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such as mRNAs, are rarely completely degraded by pasteurization (65 °C for 30 min) (Cenciarini and 

others 2008).  

In general, naked viruses are more stable to heat treatment than enveloped viruses (Carter and 

Saunders 2007). Since most of the food-borne viruses are small and non-enveloped particles 

(Koopmans and Duizer 2004), only naked viruses are discussed here. Heat-inactivation of viruses is 

reported as a continuous process during which damage to both capsid proteins and viral nucleic acids 

is inflicted, resulting in loss of infectivity, capsid dissociation, and RNA exposure (Knight and others 

2013). Heat-inactivation of viruses shows significant strain variation, but it occurs faster at high 

temperatures (≥ 50 °C) (Bertrand and others 2012). The temperature-sensitivity is lower in complex 

matrices than in simple matrices, suggesting a protective effect of molecules such as proteins, fats, and 

carbohydrates. However, loss of infectivity of heat-inactivated viruses is not correlated with nucleic 

acid degradation, possibly because ribonucleoprotein particles (RNPs) are formed by re-association of 

capsid proteins and RNA following heat treatment (Baert and others 2008; Li and others 2011; 

Bertrand and others 2012). It has been concluded that heating primarily damages viruses by capsid 

denaturation without complete destruction of the capsid and the nucleic acids (Pecson and others 

2009), leading to false positive results obtained by RT-qPCR (Table 4). For example, pasteurization 

(heating at 70 °C for 2 to 3 min) effectively inactivated murine norovirus 1 (MNV-1), but the genomic 

copy number estimations of murine and human noroviruses by RT-qPCR were unaffected (Baert and 

others 2008; Li and others 2011). On the other hand, for low(er) concentrations, (RT)-(q)PCR 

detection of nucleic acids may correlate well with the presence of infectious viruses, especially for the 

most unstable viruses, such as inactivation of 4 log plaque-forming unit (PFU)/mL feline calicivirus 

(FCV) by chlorine (Table 4). 

 

4.2. Nonthermal treatments 

Many forms of mechanical processing, including grinding, milling, blending, homogenization, mixing, 

punching, and extruding, are often applied during food processing. Depending on the type of 

mechanical processing, shear forces cause small to extensive damage of the nucleic acids both in the 

food matrix itself and in the food microbiota (Gryson 2010). Furthermore, grinding or chopping of 
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food results in the release of nucleic acids and nucleases from the food and from the microorganisms 

present. Subsequently, naked nucleic acids, from whatever source, become susceptible to degradation 

by the released nucleases (Klein and others 1998).  

Aside from thermal and mechanical processing, irradiation, high pressure, sonication, disinfectants, 

and lytic agents such as phages, are also applied during food processing to achieve substantial 

reduction of pathogens. Obivously, cleaning and sanitizing agents are applied to eliminate microbial 

contaminants. These nonthermal processes often cause inactivation of microorganisms and leave 

behind relatively large fragments of nucleic acids, detectable by (RT)-(q)PCR (Tables 3 and 4). For 

example, large 16S rRNA gene fragments (> 1400 bp) were still present after complete inactivation of 

6 log CFU/mL E. coli O157:H7 and Staphylococcus aureus by UV irradiation (McKillip and others 

1998). Similarly, the viral capsid appears to be the primary target for UV, leaving genomic RNA 

fragments still available for RT-qPCR detection (Nuanualsuwan and Cliver 2002). As illustrated in 

Tables 3 and 4, considerably more information is available for thermal inactivation of pathogens and 

its consequences for nucleic acid persistence in comparison with nonthermal processes. 

Virulent bacteriophages can be applied for food decontamination, to control susceptible pathogenic 

bacteria in foods or to control bacterial spoilage, because they can be very effective in the targeted 

elimination of specific pathogens under specific conditions (EFSA 2009). It should be  noted that in 

this type of inactivation treatment, bacteriophages need to be applied in relatively high doses, > 7 log 

PFU/cm² to eliminate Listeria monocytogenes on a cheese surface during ripening (Carlton and others 

2005). The moisture content of a food influences the mobility of the bacteriophage, and the 

physiological and nutritional status of the host bacterium determine the efficacy of bacteriophage 

action. Successful application of bacteriophages leads to high levels of phages and thus viral DNA in 

the food. It may also cause leakage of bacterial DNA into the food matrix. Although the microbial host 

DNA has been reported to be rapidly degraded and incorporated into progeny phages during the 

infection (Powell and others 1992; Wikner and others 1993), the extent of the breakdown or 

fragmentation has not been characterized. Moreover, care should be taken in regard to transduction 

(transfer of bacterial DNA from cell to cell inside viral capsids) and the transfer of viral genes into the 

host genome via lysogenic phages.  
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5. Interpretation of molecular analytical methods 

The notable stability of DNA in the environment is illustrated by the recovery of DNA and successful 

amplification by PCR from archaeological and paleontological samples which can be thousands of 

years old (Landweber 1999). Although this technology is very useful for the detection, identification 

and quantification of genetically modified (GM) ingredients in processed foods, in the field of food 

safety microbiology, the detection of DNA must be carefully interpreted. Amplification by PCR of 

DNA originating from pathogenic microorganism(s) does not infer the presence of live populations of 

the pathogen in the tested food and thus does not of itself constitute a food safety risk. 

The prerequisite for application of any method is its accurate design and thorough control, both 

beforehand and during the routine application, to safe-guard the quality of the obtained results. 

Controls on appropriate performance and implementation of PCR are necessary to exclude 

interpretation problems due to the technical nature and complexity of the PCR technique. Appropriate 

interpretation of results requires that the validation of the sensitivity and the specificity of the (q)PCR 

method are studied before its application and that controls to check the nucleic acid amplification 

process are routinely applied during each analysis (ISO 22174 2005; ISO 20837 2006; ISO 20838 

2006; ISO 22118 2011; ISO 22119 2011). In particular, for food and environmental samples, 

appropriate controls to monitor the efficacy of the critical steps in the sample preparation and nucleic 

acid amplification are required to exclude false negative and positive interpretations of results 

(D'Agostino and others 2011). Quantitative qPCR assays require good calibration curves, constructed 

by extraction of standard quantities of the target microorganisms in the relevant physiological state 

from the relevant (food) matrix (Ceuppens and others 2010). 

 

5.1 Variances between culture and molecular methods 

In the absence of technical problems yielding false positive and false negative results, all remaining 

interpretation problems of molecular results originate from the fact that conventional and molecular 

methods do not detect the same targets, namely, actively growing microorganisms and their nucleic 

acids, respectively. Obviously, negative results are obtained by both culture and molecular methods 
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when neither target microorganisms nor their nucleic acids are present in the sample (Figure 3). 

Similarly, unequivocal positive results arise where infectious viruses and viable bacteria are detected 

by culturing as well as by PCR based methods. However, difficulties in interpretation of results can 

arise when contradictory results are obtained by molecular and culture methods.  

Negative results can be obtained by molecular methods when the target microorganism(s) are present 

in forms or in microenvironments which pose difficulties for nucleic acid extraction. For example, 

bacteria present in biofilms, in the form of spores or internalized into plant materials, may impair 

nucleic acid extraction and result in negative results (or severely underestimated numbers of genomic 

copies), despite the inherent sensitivity of the qPCR reaction itself (Lear and others 2010; Ceuppens 

and others 2010; DiCaprio and others 2012). Moreover, the cell wall structure of some 

microorganisms can present difficulties for recovery of DNA and thus requires optimization of the 

DNA extraction, for example, Mycobacterium avium paratuberculosis (Donaghy and others 2008). 

Most of these issues can be overcome by optimization of the sample preparation, but can pose 

problems when standard extraction protocols – often optimized with widely used Gram-negative or 

Gram-positive bacteria as pure cultures of vegetative cells in suspensions or artificially inoculated 

foods – are applied without validation of their performance for a specific application. Many molecular 

(PCR-based) methods require a (pre)enrichment step (up to 24 h) to enhance levels of target 

microorganism(s) to detectable levels. To minimize negative results when detecting low numbers of 

potentially injured bacteria, it is important that the enrichment step is optimised in terms of medium 

composition and incubation time (Jasson and others 2009). Many food processing techniques result in 

injury, if not death, of bacterial or viral cells. Moreover, the food matrix itself is often a sub-optimal 

environment for microorganisms, containing stressed and injured cells. A sublethally injured 

bacterium is damaged by a stress, but given appropriate conditions can recover by repairing the 

damaged components. Consequently, injured cells often display a prolonged lag phase in 

growth/recovery under nonselective culture conditions and may not be able to grow at all under a 

selective environment. They may have additional or more stringent requirements for repair and growth 

than those encountered in standard enrichment broths. As a result, the enrichment procedure may fail 

to reach the required minimal numbers for detection in the case of sublethally injured cells. For 
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example, low levels of sublethally injured Salmonella enterica in chocolate could not be recovered 

after enrichment in buffered peptone water (BPW), unless BPW was supplemented with milk powder, 

independent of the detection method, such as plating, PCR or enzyme-linked fluorescent assay 

(ELFA) (Jasson and others 2011).  

One of the most common issues encountered in food pathogen diagnostics is the detection of positive 

PCR results in parallel with negative culture results or, for example, if concurrent in vitro culture 

confirmation is technically not possible with the molecular detection method. The detection of 

microbial nucleic acids poses difficulties in terms of interpretation, since the presence of genomic 

fragments is not necessarily correlated with viable bacteria and infectious viruses (Tables 3 and 4). For 

example, RT-qPCR is most commonly used to detect human noroviruses, because these viruses cannot 

be cultured in vitro, but no discrimination can be made with standard RT-qPCR between infectious 

viruses, defective viruses, and free RNA (Knight and others 2013). Inconsistent results can arise for a 

number of reasons. Molecular methods are able to detect nongrowing target microorganisms, namely 

nonculturable microorganisms (Amann and others 1995) and stressed, sublethally injured, and VBNC 

forms of culturable bacteria (BOX 2). For example, fecal coliforms have been shown to enter into and 

emerge from the VBNC state during wastewater treatment, which presents a potentially dangerous 

underestimation of public health risks when culture-based tests are used to assess suitability of 

biosolids, such as as soil amendments (Taskin and others 2011). Furthermore, some pathogens are 

difficult to isolate by culturing regardless of their physiological status, for example, isolation rates are 

usually low for VTEC (Joris and others 2011). Additionally, nucleic acid-positive results are obtained 

by the detection of free nucleic acids and those from inactivated bacteria and noninfectious viruses. 

Naked DNA from inactivated microorganisms may be present in food, water, the processing 

environment, and even as an adventitious contaminant in enzymes or processing aids (for example, if 

derived as products from industrial bacterial fermentations). Free nucleic acids are degraded in the 

environment and in food matrices, but short fragments can persist for considerable times outside their 

microbial host cell (Table 2). Moreover, nucleic acids are additionally protected inside inactivated 

microorganisms, which increases their persistence even further (Tables 3 and 4). For example, 

bacterial infections can be detected and identified in a fast and sensitive way by PCR amplification of 
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bacterial 16S rDNA followed by sequencing, but residual DNA of inactivated pathogens may still be 

detected in the patient’s body long after successful treatment and recovery. For example, 

Streptococcus pneumoniae DNA was detected during replacement of a bioprosthetic heart valve in a 

patient who had suffered from pneumococcal endocarditis 7 years earlier without any evidence of 

recurrent infection (Branger and others 2003). Viral nucleic acids are also frequently detected after 

viral particles have lost infectivity, such as DNA from noninfectious adenoviruses that was detected in 

approximately 16% of water samples from 2 southern California urban rivers (Choi and Jiang 2005). 

Naked viral nucleic acids can be transmitted by cell lines, animal sera, and tissues and then 

contaminate the derived products, for example, porcine pancreas-derived trypsin (Victoria and others 

2010). Moreover, the application of virulent bacteriophages as processing aids, to reduce surface 

contamination of food with specific pathogens or to prevent bacterial food spoilage, introduces large 

quantities of viral DNA into the food product (EFSA 2009).  

Detection of a specific genotype characterized by multiple virulence genes or other genetic markers 

pose interpretation problems if the target genes also occur separately in the microbial population. 

Since nucleic acids from all microorganisms are pooled during sample preparation and extraction, it 

cannot be ascertained whether the detected genes originated from one microorganism of the targeted 

genotype or from multiple strains which contain one of those genetic signature sequences. For 

example, detection of VTEC causing severe disease in humans targets VTEC which possess at least 

one verocytotoxin gene (stx1 and/or stx2) in combination with the intimin adhesion gene (eae) and 

belonging to the top 5 of clinical serogroups O157, O26, O111, O103 and O145 (EFSA 2013); 

although exceptions exist, such as the O104:H4 strain responsible for the outbreak in Germany in 

2011. PCR-positive results for both verocytotoxin and intimin genes in the sample suggest the 

presence of pathogenic VTEC, but it is also possible that a mixture of nonpathogenic E. coli strains 

(one with only verocytotoxin genes and another with only the adhesion gene) has generated the 

positive signals. Culture confirmation of PCR-positive results to demonstrate the presence of all genes 

in one isolate are hampered by the fact that VTEC strains easily lose their toxin genes during sub-

cultivation and long-term storage (Joris and others 2011) and also in the human body during infection 

(Mellmann and others 2005), since the stx genes are encoded on prophages in the E. coli chromosome.  
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Detection of genomic presence of virulence genes only indicates the potential for pathogenicity, 

because it is the expression level of those genes, possibly in combination with others, that make a 

strain hazardous. For example, the majority of Bacillus cereus strains harbor at least one toxin gene in 

its genome, while not all strains are pathogenic (Ceuppens and others 2011). However, conventional 

culturing methods offer no possibility to distinguish between pathogenic and benign strains of a 

species, while molecular methods do, that is, detecting gene expression (mRNA) with RT-(q)PCR 

rather than genes (DNA) with (q)PCR.  

 

5.2 Strategies to facilitate interpretation of nucleic acid-based methods  

The detection of a target microorganism by a nucleic acid-based assay may be confirmed by culturing 

for most bacteria. However, it  is not possible for all microorganisms, particularly nonculturable 

viruses. This difficulty in interpretation is exemplified by the high prevalence of human norovirus 

which has been obtained by RT-qPCR in different matrices: 3.9 to 59.1% in shellfish (Woods and 

Burkhardt 2010; Lowther and others 2010), 4.2 to 45% in water (Lodder and others 2010; Borchardt 

and others 2012; Allmann and others 2013), 23.3% in cherry tomatoes (Stals and others 2011), 6.6 to 

40.0% in soft red fruits (Baert and others 2011; Stals and others 2011), and 28.2 to 50.0% in leafy 

greens (Baert and others 2011). Improper interpretation of such data can lead to misconceptions of 

public health risk. Fortunately, various adaptations to the conventional (RT)-(q)PCR protocols have 

been developed to avoid or alleviate the detection of free nucleic acids, noninfectious viruses, and 

dead bacteria (Table 1). Since free nucleic acids and those in inactivated microorganisms are prone to 

fragmentation, detection of intact DNA or RNA from viable bacteria or infectious viruses can be 

attempted by amplification of larger fragments and/or multiple fragments from different genomic 

regions, although the latter results in lower amplification efficiencies and thus lower sensitivity (Baert 

and others 2008; Schnetzinger and others 2013). In order to avoid the detection of viral DNA/RNA 

fragments, the whole genome could be amplified and/or positive results could be confirmed by 

transfection assays (Baert and others 2008).  

Viable/dead stains such as ethidium or propidium monoazide (EMA or PMA) can be applied prior to 

PCR to exclude free nucleic acids and those present in damaged bacterial cells or viral capsids from 
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PCR detection, since cell membrane integrity is essential for bacterial viability and an intact virus 

capsid for virus infectivity (Figure 4, BOX 1, BOX 3). EMA- and PMA-PCR have been widely and 

successfully applied to detect or quantify viable microorganisms, including bacteria in the vegetative 

and spore form, yeasts, and fungi (Vesper and others 2008; Rawsthorne and others 2009; Rawsthorne 

and Phister 2009; Taskin and others 2011; Shi and others 2012; Zhu and others 2012; Elizaquivel and 

others 2012; Radulovic and others 2012; Crespo-Sempere and others 2013; Gensberger and others 

2013; Singh and others 2013; Dinu and Bach 2013; Blooi and others 2013; Schnetzinger and others 

2013). However, EMA and PMA can also diffuse into living bacterial cells with intact membranes 

under certain conditions, albeit at lower efficiency (Nocker and others 2006). Some studies have 

suggested that in some cases dead bacteria may possess intact cell membranes, since not all 

inactivation methods target the cell membrane (Joux and Lebaron 2000; Jofre and Blanch 2010). 

Moreover, PMA-PCR could no longer be applied to determine living Staphylococcus aureus cells in 

swab samples resulting from the increased PMA diffusion in viable cells due to the drying and wiping 

processes (Schmidlin and others 2010). Since EMA and PMA require double-stranded DNA/RNA or 

single strands with extensive secondary structures, EMA/PMA pre-treatment has been applied with 

variable success to detect infectious virus particles (Fittipaldi and others 2010; Parshionikar and others 

2010). PMA-RT-qPCR was successfully applied to differentiate between infectious and noninfectious 

coxsackievirus, poliovirus, and echovirus after inactivation with hypochlorite and heat (37 °C and 72 

°C), but not after inactivation at 19 °C (Parshionikar and others 2010). Similarly, PMA-qPCR was 

able to distinguish infectious bacteriophage T4 particles from noninfectious ones after heat-

inactivation at 110 °C but not at 85 °C (Fittipaldi and others 2010). Therefore, PMA pre-treatment is 

suitable for detecting infectious viruses after defined inactivation treatments and can contribute as a 

research tool studying the efficacy of virus inactivation, but monitoring of infectious viruses in the 

environment and subsequent public health implications requires caution because of the variable 

performance of this method.  

Enzymatic pre-treatment (with DNases and/or RNases) has been applied to degrade free nucleic acids, 

as well as those present in damaged viruses, thus excluding them from subsequent molecular detection 

(Figure 5). To overcome the RNase resistance of RNA present in ribonucleoproteins (RNPs), 
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simultaneous treatment with RNase and proteinase K has been performed, but the combined use of 

these enzymes is difficult to control since proteinase K can also degrade RNase and intact capsids. 

Moreover, application of enzymatic treatment with proteinase K and RNase prior to nucleic acid 

extraction and detection decreased but did not eliminate the false positive detection of noninfectious 

viruses (Baert and others 2008; Pecson and others 2009).  

Specific binding of the viruses by receptors or other binding ligands prior to (RT)-(q)PCR has been 

performed to exclude free nucleic acids and damaged virus particles from detection. For example, 

binding to Caco-2 cells, pig gastric mucin, and BSA prior to RT-qPCR reduced the signal 100- to 

1,000-fold for human noroviruses (Li and others 2011). To discriminate clinically significant viral 

contamination, definition of critical acceptance limits for the number of viral genomic copies detected 

in food products was also proposed based on epidemiological and contamination data (Woods and 

Burkhardt 2010; Dore and others 2010; Neuhaus and others 2013; Stals and others 2013). Immuno-

capture (RT)-(q)PCR entails specific binding of bacteria or viruses by antibody-bound magnetic 

beads, (immuno-magnetic separation or IMS), prior to PCR, which is useful to eliminate free nucleic 

acids from PCR detection. However, antibody-based binding cannot distinguish between infectious 

and noninfectious viruses and such methods would not exclude capture of dead cells, where the 

immune separation target is membrane-based. An exception to this constraint has been reported by 

Solve and others (2000). Peptide-mediated magnetic separation (PMS) can also be applied prior to 

PCR detection. Detection of ≥ 2.7 log CFU/mL Mycobacterium avium subsp. paratuberculosis (MAP) 

in bulk milk samples by PMS-PCR was achieved by PMS using a conserved surface protein followed 

by PCR detection with MAP specific primers (Stratmann and others 2006). Performing IMS or PMS 

prior to PCR as a sample preparation step is useful to eliminate the detection of free nucleic acids, 

although in most cases intact target cells are captured. 

Specific qualitative detection of viable bacteria can be achieved by implementing an enrichment or 

pre-enrichment step prior to molecular detection where, given the sample dilution factor and the 

detection limit of the PCR-based method, a positive signal is indicative of the presence of viable 

organisms. Moreover, specific detection of mRNA or rRNA can be attempted to target viable bacteria, 

but these molecules remain available for detection after bacterial death for some time (Table 3, BOX 
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1). Flotation prior to qPCR has also been applied to distinguish viable bacteria from free DNA and 

dead bacteria, for example, for viable Campylobacter in chicken rinse samples (Wolffs and others 

2005a). Until now, flotation has not been applied to viruses, although discrimination of intact virus 

particles of large species with multiple capsid layers seems theoretically possible. Exclusive detection 

of viable bacteria can also be achieved by bacteriophage amplification assays (BOX 1) (Favrin and 

others 2001; Foddai and others 2010). Although many of the methods mentioned above have shown 

great potential to diminish positive results arising from free nucleic acids, noninfectious virus 

particles, and/or dead bacteria, strict differentiations have not generally been achieved, especially in 

food matrices. Case-specific solutions should be tailored to the application’s context to ensure optimal 

performance of molecular methods and correct interpretation of the generated positive results.  

 

6. Implications of microbial DNA ingestion 

Nucleic acids make up a considerable proportion of dry cell weight. Humans ingest large quantities of 

animal and vegetable DNA and RNA daily through food. Animal tissues contain 10 to 20 g DNA per 

kg dry weight, plant tissues 0.6 to 3 g DNA/kg, and bacteria approximately 30 g/kg (Rizzi and others 

2012; Delgado and others 2013). Through the consumption of fermented foods considerable amounts 

of microbial nucleic acids are consumed on a daily basis. Most foods consumed by humans are not 

sterile but are compliant with microbiological criteria, with respect to foodborne pathogens and/or 

process hygiene criteria. Food manufactured through process steps, validated to eliminate or 

substantially reduce the microbial/pathogen load, may contain nucleic acids derived from pathogenic 

microbial/viral sources, be detectable by nucleic acid-based methods, and be ingested as part of the 

food matrix. A possible consequence of ingestion of nucleic acid, as a risk factor, is linked to their 

transfer into a microbial cellular environment that allows expression of information encoded in the 

nucleic acids. 

 During ingestion, DNA from most cells present in food is degraded/cleaved to nucleotides or small 

fragments and taken up as metabolites by intestinal cells in the small intestine, while the majority of 

the remaining fraction (0 to 3.7%) is completely degraded in the large intestine (Netherwood and 

others 2004; Mazza and others 2005). For example, extensive digestion of RNA (89%) and DNA 
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(80%) occurred in the bovine small intestine and was accompanied by the transient appearance of 

nucleic acid building blocks (Mc Allan 1980). However, a fraction of the ingested DNA can avoid 

complete degradation in the gastrointestinal tract, including free plasmid DNA (Wilcks and others 

2004). Despite the majority of studies showing degradation of foreign DNA in the gastrointestinal 

tract, foreign DNA uptake in the gastrointestinal tract may be a natural process, similar to the 

absorption of metabolites (Palka-Santini and others 2003) Studies have reported the presence of 

microbial and dietary plant DNA in the blood and tissues of animals (Beever and Phipps 2001). For 

example, microbial DNA from the gastrointestinal lumen was taken up in the white blood cells of 

mice, the uptake of soybean DNA into the white blood cells and milk of cows, and chloroplast DNA 

transmitted to muscle, liver, spleen, and kidney of chickens (Schubbert and others 1994; Klotz and 

Einspainer 2000). Recently, large DNA fragments (> 10,000 bp) of edible plants were also shown to 

persist in human blood (Spisak and others 2013).  

Although free DNA may be temporarily available in the digestive tract, naked DNA is unable to 

express its function in the intestinal tract unless it has been taken up and integrated into a host or 

bacterial cell by transformation. Despite application of the worst-case conditions, no successful natural 

transformation events of bacteria or host cells in the gastrointestinal tract with recombinant DNA from 

genetically modified (GM) feed have been observed in all in vivo studies performed so far, although 

the possibility of such events has been demonstrated under optimized conditions in vitro and in food 

(Jonas and others 2001; Chambers and others 2002; Kharazmi and others 2003b; Rizzi and others 

2012). For example, Bacillus subtilis acquired a plasmid conferring erythromycin resistance by 

transformation in chocolate milk (Zenz and others 1998). In contrast, the probability of transformation 

in the gastrointestinal tract is strongly reduced, possibly due to degradation of the donor DNA and/or 

failure of the recipient strain to develop competence in vivo (Kharazmi and others 2003b). No direct 

evidence for natural transformation events of bacteria with non-GM DNA in the gastrointestinal tract 

has been demonstrated, except for the transformation of S. pneumonia cells (nonpathogenic R forms to 

pathogenic S forms by heat-killed S donors) in the intestines of mice (Griffith 1928). Although there is 

evidence that many bacterial species develop specific states allowing for DNA acquisition, there are 

factors limiting the extent of such acquisition for transfer and expression in the environment (Lorenz 
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and Wackernagel 1994; Brigulla and Wackernagel 2010). First, the quality of DNA may not be 

sufficient to ensure its functionality for transformation, as suggested by the lack of detectable DNA 

uptake by isolated gut bacteria grown in vitro, and by Acinetobacter baylyi in the rat model (Nordgård 

and others 2007). Second, transformation is dependent on particular environmental conditions. This 

limitation is believed to be the reason for the failure of transfer of recombinant DNA to Streptococcus 

gordonii in a model system in foods and in gnotobiotic rats (Kharazmi and others 2003). Another 

investigation also led to the conclusion that gut microbiota were not prone to acquire markers added in 

the diet, even when selective pressure was added. This restriction was influenced by DNA homologies 

between donor DNA and potential docking sites in recipient DNA, thus allowing integration in the 

genome and expression (Nordgard and others 2012). In conclusion, the likelihood of gene transfer in 

the gut from naked DNA to intestinal microbiota is very small, so it is assumed that the risks for 

transferring antibiotic resistance genes, virulence genes, genetically modified genes, or other 

functional coding nucleic acid fragments to intestinal bacteria are negligible in case of free DNA 

present in food products. It must be stressed that this conclusion is drawn only for transformation with 

free DNA in the gastrointestinal tract. Horizontal gene transfer between living bacteria, for example, 

conjugation, and mediated by phages, for example, transduction, is considerably more probable and 

may occur in the gastrointestinal tract (Marchesi, 2011). Conjugation presents the highest risk for the 

horizontal distribution of genes, in particular those encoding antibiotic resistance and virulence, since 

these genes are often present on mobile elements such as plasmids and transposons (Mathur and Singh 

2005; Verraes and others 2013). Furthermore, the probability of antimicrobial resistance transfer by 

means of conjugation may be higher for stressed donor and recipient bacteria under food preservation 

stress conditions (Mc Mahon and others 2007). Finally, bacteriophages are environmental reservoirs 

for the horizontal transfer of antimicrobial resistance genes and may spread such genes among 

susceptible bacteria (Nakaminami and others 2007; Muniesa and others 2013).  

 

7. Metagenomics: from microbial ecology to food microbial diagnostics? 

Currently, PCR is the method of choice for detection of nucleic acids in food, although, due to its high 

specificity, this technique can only detect well-defined targets, the specificities of which can be 
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predicted on the basis of the sequences that are used for primers and reporter probes. The advances in 

high-throughput sequencing (HTS) methodologies and their concomitant use in metagenomic studies 

and culture-independent diagnostics offer considerable potential (Ercolini 2013). These HTS 

technologies include the 454 Roche pyrosequencer (producing about a million sequences of 400–500 

base length), Illumina, or solid sequencing technologies (producing over a billion sequences of 50–100 

base length), and other platforms such as Ion Torrent and PacBio (Thomas and others 2012). The 

outputs could be a mixture of bacterial 16S rRNA genes, of which tens to hundreds of thousands of 

copies are sequenced, or random DNA fragments corresponding to microbial DNA, or retro-transcripts 

of RNA molecules of which millions of short sequences are determined. The sequences generated can 

be analyzed using bioinformatics to permit taxonomic assignment of the bacterial content of the 

original sample. The power of these methods is that they can easily sequence the entire DNA content 

of an ecosystem, for example a food sample, and are already extensively applied in microbial ecology 

and gene expression analysis studies (BOX 4).  

From the generated sequences, based on 16S rRNA gene amplification from the metagenome, 

information on the microbial taxonomy of culturable and nonculturable organisms in the test 

matrix/sample can be obtained. While currently applied primarily for the study of the microbiota 

composition from an ecology perspective, theoretically such information could provide information on 

the presence of undesirable microorganisms in a food sample. However, for use in a diagnostic setting, 

standardization and adoption of best practices would be required in terms of sample preparation, 

optimized qualitative and quantitative nucleic acid extraction, sequence data handling, storage, and 

sharing. Furthermore, similar interpretation issues will arise, as described for traditional nucleic acid 

amplification tests, for example, differentiation of viable and nonviable microorganisms in the food 

sample (Josephson and others 1993). Also, depending on the nature of the food (raw or processed), the 

level of target pathogen(s) will be low or absent relative to other microbiota, therefore sequence 

coverage and resolution could limit detection of minor genera or species. Increasing the number of 

sequences will increase the cost per sample and increase the volume of data for bioinformatics 

analysis (Segerman and others 2011) – both being considerable hurdles for routine application of HTS 

in the diagnostic analysis of food. From a food safety microbiology perspective, these sequencing 
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strategies are likely to remain more expensive than PCR against a small number of targets, and will 

therefore more likely provide molecular data needed to facilitate source tracking and outbreak 

detection, and improve discovery of emerging subtypes, for example, the public database Food 

Microbe Tracker (Vangay and others 2013), particularly where implicated isolates are available.  

 

8. Conclusion 

Introduction of culture-independent nucleic acid-based methodologies in food microbiology has 

solved existing problems associated with conventional culturing techniques and has led to interesting 

new applications. However, interpretation of the results from nucleic acid detection in the context of 

food safety is not always straightforward, since nucleic acids have been shown to persist after 

inactivation of microorganisms. Food may contain free microbial nucleic acids of detectable fragment 

size and inactivated microorganisms with intact nucleic acids, which are detected by molecular 

methods. Several strategies and modified molecular techniques have been developed to cope with the 

differential detection of viable and nonviable bacteria and infectious and noninfectious viruses. 

Although much progress has been made, no perfect solution is currently available for each situation. 

Nevertheless, molecular techniques, including the more recent advances in high-throughput 

sequencing and metagenomics have opened up a new world of applications and possibilities and will 

undoubtedly continue to contribute to the future development of food diagnostic and ecology 

technology and scientific knowledge.  

Several aspects which are important for the interpretation of microbial nucleic acid detection are not 

currently fully understood or studied in depth. The effect of new or alternative processes to enhance 

food shelf-life and improve safety such as high-pressure treatments, enzymatic treatments, pH 

alterations, irradiation, and so on, on the integrity of microbial cell structure and nucleic acids after 

inactivation of microorganisms remains to be elucidated. The influence of food matrices, that is, their 

intrinsic properties and the role of food-derived nucleases, on the stability and fragmentation of (free) 

nucleic acids during food processing and post-processing also needs further investigation. The 

influence of stress factors encountered in the food chain on the induction of the VBNC state in 

bacteria and their subsequent stress resistance and virulence should be determined to further 
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characterize the health threat posed by pathogens in the VBNC state. More knowledge on the 

occurrence of RNPs, a type of noninfectious virus particles, in the environment, and in food is 

required to aid interpretation of positive (RT)-(q)PCR results.  

 

BOX 1: Molecular methods and modifications  

Conventional Polymerase Chain Reaction (PCR) is a culture-independent alternative technique to 

detect microorganisms by in vitro amplification of a fragment of its DNA and visualization of these 

DNA end products on agarose gels using ethidium bromide (Mullis and others 1986). As an alternative 

for conventional PCR, loop-mediated isothermal amplification (LAMP) was developed (Notomi and 

others 2000). The advantages are increased specificity due to the use of 4 different primers binding to 

6 different regions of the target DNA sequence, decreased reaction time (< 1 h) and lower costs 

because no thermal cyclers are required for this isothermal reaction. Quantitative real-time PCR 

(qPCR) is an improvement of the conventional PCR, during which detection and amplification of 

DNA production occurs simultaneously by adding nonspecific fluorescent dyes such as SybrGreen to 

the mastermix or by fluorescent dyes coupled to specific DNA sequences (for example probes) 

(Higuchi and others 1993). As a result, qPCR is faster and more sensitive than conventional PCR and 

has the potential to yield quantitative results when combined with appropriate calibration curves. 

qPCR is more efficient when small fragments (100 to 300 bp) are amplified, but this also makes the 

technique more susceptible to detect free DNA fragments instead of only DNA extracted from an 

intact microorganism. DNA may still be present after bacterial death, such as in bacteria which were 

inactivated by boiling, autoclaving, drying, disinfectants, and starvation (Table 3). When it is 

important to detect only viable bacteria, or when the target microorganisms are RNA viruses, RNA 

becomes the target molecule instead of DNA (Figure BOX 1). The most suitable target for exclusive 

detection of viable bacteria is messenger RNA (mRNA), because it is only present in living cells and it 

has a very low half-life of several seconds to minutes (Sheridan and others 1998; Rauhut and Klug 

1999; Keer and Birch 2003). However, mRNA fragments persist for several hours after heat-

inactivation of bacteria, so they can still be detected by RT-(q)PCR for some time after bacterial death 

(Table 3). mRNA detection is more complex than that of DNA, because it is more unstable, it is 
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difficult to extract in sufficient quantities from (small numbers of) bacteria in food matrices and 

contamination with its corresponding homologous DNA must be avoided. Ribosomal RNA (rRNA) 

can be detected instead of mRNA to detect cells which display general metabolic activity, since it 

reflects the rate of protein synthesis, is present in much larger quantities than mRNA and is much 

more stable (Deutscher 2006). However, due to its higher stability, rRNA is not suitable to indicate 

bacterial viability after mild inactivation processes. rRNA accurately reflected viability after severe 

heat treatments such as autoclaving, but it persisted in dead cells after moderate heat treatment and UV 

irradiation (McKillip and others 1998). For RNA amplification, Reverse Transcriptase (real-time) 

PCR (RT-(q)PCR) can be performed by starting with an additional step during which the RNA is 

converted into complementary DNA (cDNA) using the enzyme Reverse Transcriptase (RT) (Verma 

and others 1973). Next, the amplification and detection of this cDNA may occur with conventional 

PCR, but most frequently by real-time PCR (qPCR), since this assay is more sensitive and allows 

quantification of the initial RNA, which is often required, such as for assessing microbial gene 

expression levels. Alternatively, RNA can be detected by Nucleic Acid Sequence-Based Amplification 

(NASBA) at a constant temperature by 3 enzymes, namely RT, RNaseH, and T7 RNA polymerase 

(Compton 1991). An alternative method to only amplify DNA from viable cells consists of application 

of intercalating stains such as ethidium monoazide (EMA) and propidium monoazide (PMA) prior to 

(q)PCR (Nogva and others 2003; Rudi and others 2005). Since EMA and PMA do not penetrate viable 

cells with intact membranes, only the amplification of free double-stranded DNA and DNA from 

damaged and dead cells is prevented by irreversible binding of photo-activated EMA/PMA to DNA 

and subsequent precipitation of the EMA/PMA-DNA complex. Performing magnetic separation of the 

target microorganism prior to PCR as a sample preparation step can eliminate detection of free nucleic 

acids, but nonviable bacteria and noninfectious viruses may still be detected, since antibodies also bind 

to inactivated microorganisms. Magnetic separation of the target microorganism from others and from 

inhibitory sample components not only isolates but also concentrates the target organisms, thereby 

improving selectivity and sensitivity simultaneously. Binding of the target microorganisms to 

paramagnetic beads is achieved by coating the beads with polyclonal antibodies towards the target 

microorganism, that is, immuno-magnetic separation (IMS), or with ligands to specific proteins 
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present on the target microorganism, that is, peptide-mediated magnetic separation (PMS). Flotation 

prior to qPCR has also been applied to distinguish viable bacteria from free DNA and dead bacteria, 

for example, for viable Campylobacter in chicken rinse samples (Wolffs and others 2005a). Flotation 

is a one-step centrifugation with a discontinuous buoyant density gradient method, based on the 

known buoyant densities of living cells, to exclude dead cells and free DNA together with as much of 

the sample components and the background microbiota as possible. Exclusive detection of viable 

bacteria can also be achieved by bacteriophage amplification assays. Specific lytic bacteriophages 

infect only viable target bacteria, while unbound phages are removed by subsequent washing and/or 

disinfection steps. The phages replicate in the target bacteria, after which the progeny phages are 

recovered and detected or even enumerated by suitable assays using susceptible host cells, such as 

plaque assays, changes in optical density, and so on. For example, the phage detection system 

FASTPlaqueTBTM assay (Biotec Laboratories Limited, UK) has been commercialized for the detection 

of viable Mycobacterium avium subsp. paratuberculosis (MAP). Specificity and performance can be 

enhanced by combining bacteriophage amplification assays with prior IMS or PMS (Foddai and others 

2010). Another type of sample preparation to avoid detection of free DNA and RNA is performing a 

prior enrichment step. However, this is only feasible in the framework of rapid detection, meaning 

applicable for detection (not for quantification) of microorganisms which are easily cultured (and not 

for slow-growing, injured, VBNC, or noncompetitive microorganisms, since these will be overgrown). 

In conclusion, different strategies exist to assess bacterial viability by molecular methods, which are 

differently affected by the mode of bacterial inactivation and the prevailing environmental conditions 

thereafter. Therefore, no single method is universally appropriate, and simultaneous determination of 

multiple parameters by different methods provides the most reliable detection and/or quantification of 

viable bacteria.  

 

BOX 2: Viable but nonculturable (VBNC): Bacteria between life and death  

Bacteria can be present in various physiological states, ranging from viable to dead over some 

intermediate stressed states including (sublethal) injury and VBNC (Wesche and others 2009). 

Adverse conditions such as spray-drying, acidification, oxidation, irradiation, salting, heating, cooling, 
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and freezing, are frequently encountered stresses by bacteria during food processing. When subjected 

to minor stress, bacteria can adapt completely to the changed conditions and resume growth at the 

normal rate (Wesche and others 2009). Adaptation to sublethal stress (stress response) often induces 

resistance to subsequent exposure to other types of stress and/or higher levels of the same stress. Some 

pathogenic bacteria are also known to express virulence factors and attain higher virulence after stress 

exposure. For example, Salmonella Typhimurium was more virulent and invasive after heat challenge 

(Sirsat and others 2011; Nielsen and others 2013) and Listeria monocytogenes after acid stress 

(Neuhaus and others 2013). When more severe but not lethal, then stress causes sublethal injury, and 

bacteria can only recover if suitable resuscitation conditions are provided. Sublethally injured cells are 

often defined as cells that are able to grow on nonselective media but not on selective media due to 

increased sensitivity towards the conditions and/or compounds in the selective medium (Besse and 

others 2000; Jasson and others 2007). As a result, injured bacteria may present problems for detection 

and enumeration with conventional culturing due to growth inhibition or retardation on selective 

media or in enrichment broths prior to detection, leading to false-negative results. Universal recovery 

conditions probably do not exist, since optimal conditions for resuscitation vary among different 

species and the stress type encountered (Besse and others 2000; Wesche and others 2009). The VBNC 

state is the reversible physiological state in which bacterial cells are no longer culturable under their 

standard conditions but remain alive, that is, they exhibit intact cell membranes and maintain low 

levels of gene transcription and metabolic activity (Oliver 2010). So in contrast to sublethally injured 

bacteria, growth is never possible, not even on nonselective media. Transformation to the VBNC state 

is a survival strategy induced by stressful adverse environmental conditions such as starvation, 

temperatures outside the normal growth range, decreased and elevated osmotic and oxygen 

concentrations, hydrogen peroxide, heavy metals, and light. For example, low water temperatures (< 

13 °C) induce the VBNC state in Vibrio parahaemolyticus (Nowakowska and Oliver 2013) and 

starvation induces a similar response in Campylobacter jejuni (Klancnik and others 2009). The VBNC 

state is a well-known survival and dissemination mechanism for water-borne bacteria (Deere and 

others 1996). Concerns exist for food-borne bacteria as well, since many food preservation techniques 

have been found to induce the VBNC state, for example, potassium sorbate in Listeria monocytogenes 
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(Cunningham and others 2009), sodium bisulfite in cider fermenting Lactobacillus hilgardii (Quiros 

and others 2009), and gamma irradiation in E. coli O157:H7 (Lacroix and others 2009). Many animal 

and plant pathogens exhibit the VBNC state, including Campylobacter spp., E. coli (including EHEC 

strains), Francisella tularensis, Helicobacter pylori, Legionella pneumophila, Listeria monocytogenes, 

Mycobacterium tuberculosis, Pseudomonas aeruginosa, Salmonella spp., Shigella spp. and Vibrio spp. 

(Oliver 2010). Interestingly, VBNC cells of several pathogens still showed expression of virulence 

genes and remained pathogenic, for example, Campylobacter jejuni (Moorhead and Griffiths 2011; 

Chaisowwong and others 2012), enteropathogenic E. coli (Pommepuy and others 1996; Liu and others 

2010; Lothigius and others 2010), and Shigella dysenteriae (Rahman and others 1994), while other 

pathogens were shown to become avirulent in the VBNC state, for example, Listeria monocytogenes 

(Cappelier and others 2005), Aeromonas hydrophila (Maalej and others 2004), Vibrio 

parahaemolyticus (Coutard and others 2005; Coutard and others 2007), and Salmonella (Clausen 

2001). Despite the controversy of the ability of pathogens in the VBNC state to cause disease, it has 

been shown for some that after resuscitation they will recover as fully infectious pathogens, for 

example, Vibrio cholera, (Colwell and others 1996), V. parahaemolyticus (Baffone and others 2003), 

C. jejuni (Cappelier and others 1999), enteropathogenic E. coli (Aurass and others 2011), and 

Aeromonas hydrophila (Maalej and others 2004). Resuscitation from the VBNC state may occur after 

simple reversal of the inducing stress factor, for example, increased temperature for Salmonella 

enterica (Gupte and others 2003), undefined bacterial–host interactions (Colwell and others 1996; 

Cappelier and others 1999), extracellular bacterial proteins, resuscitation-promoting factors (Rpfs) in 

Mycobacterium smegmatis (Shleeva and others 2004), and possibly even quorum-sensing molecules, 

such as enterobacterial autoinducer AI in Salmonella enterica, pathogenic E. coli, Citrobacter 

freundii, and Enterobacter agglomerans (Reissbrodt and others 2002). It has been hypothesized that 

the VBNC state is the dormant state of nonsporulating bacteria, from which they awake randomly due 

to stochastical variations in master regulator gene expression (Epstein 2009). Depending on the 

environmental conditions these awakened “scout” cells die, if adverse conditions still prevail, or they 

live, if conditions have changed to growth-permissible ones. At periodic random moments they will 

thus attempt to resume growth and start a new population. This hypothesis was supported for both 
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vegetative cells and spores in the absence of germination factors (Buerger and others 2012). The 

resistance of VBNC cells to environmental and food processing stresses is not well known and appears 

to be variable, ranging from more sensitive to more resistant, depending on the microorganism and the 

nature of stress applied (Oliver 2010). However, Vibrio parahaemolyticus in its VBNC state was more 

resistant to heat treatment (50 °C for 60 min), ethanol (13% for 60 min), high salinity (5 M NaCl for 

120 min), acidic (pH 3 for 25 min) and alkaline challenge (pH 10 for 60 min), oxidative stress (0.2 

mM H2O2 for 60 min), antibiotics (100 µg/mL ampicillin and 5 µg/mL chloramphenicol for 240 min), 

and heavy metals (3.4 mM ZnSO4.7H2O for 60 min) (Nowakowska and Oliver 2013). Moreover, 

VBNC pathogens are resistant to antibiotics targeting growing and metabolically active cells and 

present a means for pathogens to cause recurrent infections after antibiotic treatment (Rivers and Steck 

2001; Lleo and others 2003). For food-borne pathogens, more research is thus warranted to investigate 

the influence of stress factors encountered in the food chain on the induction of the VBNC state, stress 

resistance, and virulence. In conclusion, the VBNC state represents a source of living bacteria which 

are not detected by conventional culture methods. The growing demand of consumers to implement 

milder food processing may increase the presence of bacteria in VBNC states in processed food, 

including pathogens (Leistner and Gorris 1995). Although it is currently unclear whether pathogens in 

the VBNC state remain virulent, and thus whether they are a significant health threat, they should be 

regarded as potentially hazardous until proven otherwise.  

 

BOX 3: Infectivity of viruses and their detection with nucleic acid-based methods  

Virus suspensions are always a mix of infectious viruses with defective virus particles and free viral 

nucleic acids, even those obtained from natural infections (Knight and others 2013). Non- infectious 

viruses range from intact defective virus particles, partially degraded capsids containing nucleic acids 

called ribonucleoprotein particles (RNPs) and intact particles with damaged genomes to free capsid 

proteins and free viral nucleic acids (Figure BOX 3). As a result, considerably higher concentration 

estimates of virus suspensions are generated by nucleic acid quantification (genomic copies) than by 

infectivity assays, for example, murine norovirus 1 (MNV-1) suspensions demonstrated at least 100-

fold more RNA copies by RT-qPCR than the plaque forming units (PFUs) in the plaque assay (Baert 
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and others 2008; Li and others 2011). The particle-to-PFU ratio is the total number of virus particles 

divided by the number of infectious viruses and presents a measure of the infectious particles in a 

suspension, but it must be noted that the PFU may present an underestimation of the infectious viruses 

due to aggregation of virus particles. Many factors influence virus aggregation and the relative 

abundance of the infectious and other particles in the virus suspension, including the host cell, the 

virus strain, the virus structure, the suspension matrix, the pH, the ionic strength and the time of 

harvest in the infection cycle (Persson and Gekas 1994; Langlet and others 2007; Teunis and others 

2008; Pinto and others 2010). Interestingly, virus stability is increased in complex matrices such as 

feces and food (Topping and others 2009; Bertrand and others 2012). 

The majority of standard virus extraction methods co-extract free viral nucleic acids and subsequently 

subject these to the (RT)-(q)PCR assays. As a result, both (small) genomic sequences and nearly intact 

genomes, for example with only one or a few strand breaks, will be detected with RT-qPCR, which 

typically amplifies only small fragments (50 to 200 bp). Although intact viral genomes are likely to be 

degraded in the environment, small viral sequences and ribonucleoprotein particles (RNPs) can persist 

long after the capsid has been destroyed, so their detection yields positive results in the absence of 

infectious virus particles (Tsai and others 1995; Choi and Jiang 2005; Dancer and others 2010). 

Infectious virus particles have an intact genome and an intact capsid, so adaptations to the RT-qPCR 

protocol can be made to attempt exclusive detection of infectious viruses based on these 2 

characteristics (Table 1). As an alternative to (RT)-(q)PCR, viruses may be detected by enzyme-linked 

immuno-sorbent assays (ELISAs) or dissociation enhanced lanthanide fluorescent immuno-assay 

(DELFIA) (Kavanagh and others 2011), but the challenge with these tests will lie in the use of 

conserved antigenic epitopes and the improvement of the sensitivity of the assay (current detection 

limit is 5 log particles per reaction). Furthermore, these assays also do not distinguish between 

infectious and defective viruses (Hardy and others 1995). Electron microscopy is the only technique 

which can differentiate intact particles from damaged capsid shells and remnants thereof, but the 

detection limit is also very high, 6 to 7 log particles.  

 

BOX 4: Next-generation sequencing (NGS) in food microbiology 
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Technological advances in sequencing have made it possible to profile an entire complex microbial 

community by high-throughput next-generation sequencing (NGS) rather than detecting a few of its 

specific members by (q)PCR or the most abundant fractions by denaturing gradient gel electrophoresis 

(DGGE) (≥ 1% of the microbial population and about ≥ 3 log CFU/mL). NGS is the first method 

which allows complete identification of the microbiota of a food sample and robust saturated diversity 

analysis of a food microbial community in a single sequencing run of 106 to 109 reads of 

heterogeneous DNA fragments of 50 to 600 bp (Bokulich and Mills 2012). These reads typically 

consist of bacterial 16S rRNA gene fragments, which are then taxonomically assigned and analyzed 

using bioinformatics. Alternatively, retro-transcripts (cDNA) of microbial RNA molecules can be 

analyzed to specifically characterize the viable and/or active microbiota in the sample. For example, 

NGS showed that the spoilage-associated microbiota on beefsteaks originates from the carcasses, but 

is also established as the resident microbiota in the butchery environment from which it further 

contaminates the meat (De Filippis and others 2013). Whole genome sequencing of new species and 

additional strains of the same species for which reference genome sequences are already available can 

be applied to explore genomic diversity within these microbial species and enhance knowledge on 

microbial phylogeny and genome evolution (Solieri and others 2013). NGS also makes genotype-

phenotype association mapping feasible for complex microbial phenotypes, enabling the identification 

of the genetic basis of complex phenotypes, the engineering of new phenotypes and the combination 

of beneficial phenotypes in industrial hosts. For example, whole genome sequencing of commercial 

Saccharomyces cerevisiae strains for wine and beer brewing led to the discovery of 20 new putative 

genes (Borneman and others 2011). NGS also revealed the importance of multiple bacterial species in 

dental caries besides Streptococcus mutans and provided candidate probiotic strains which inhibited 

the growth of these cariogenic bacteria from people who had never suffered from caries (Belda-Ferre 

and others 2012). High-throughput community profiling by NGS provides deeper insight into food 

fermentations at a system level. Such knowledge can be the basis for rational and whole-genome-

assisted choice of starter cultures and probiotics (Solieri and others 2013). For example, NGS was 

applied to identify the sources of the microbiota involved in the fermentation of premium-quality 

water buffalo mozzarella, showing that a few thermophilic lactic acid bacteria from the natural whey 
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culture drive the fermentation, while the raw milk microbiota does not develop (Ercolini and others 

2012). NGS also identified new taxa and revealed higher diversity in the artisanal cheese microbiota 

than was previously known (Quigley and others 2012). Moreover, identification of the pathways or 

enzymes responsible for significant food processes, simultaneous quantification of bacteria and fungi 

during food fermentation processes and prediction of the growth and survival of desirable and 

undesirable microorganisms can lead to enhanced management strategies for fermentation control 

(Solieri and others 2013). Food meta-genomics, that is, sequencing the collective microbial genomes 

in food samples, may identify the genes responsible for characteristic properties and functionalities 

such as probiotic activity, flavor formation, and taste development. Food meta-transcriptomics, that is, 

collective gene expression analysis in food, can clarify microbial behaviors in food ecosystems. 

Moreover, sequencing of RNA will reveal information on the viable and metabolically active 

microbiota. Transcriptomics by NGS is more sensitive and quantitative than by micro-array analysis. 

Furthermore, NGS transcriptomics does not require prior sequence knowledge, so it is able to cover 

the full dynamic range of microbial gene expression.  
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Table 1: Possible strategies to improve the detection of viable, injured, and VBNC bacteria and 

infectious viruses by reducing or even eliminating the positive signal generated by free nucleic acids, 

noninfectious viruses, and dead bacteria. 

Strategy Free nucleic acids 
Noninfectious 
viruses 

Dead bacteria 

Culture confirmation# ü Applicable ü Applicable ü Applicable 
Prior enrichment# ü Applicable û Not applicable ü Applicable 
Secondary large fragment 
amplification ü Applicable ü Applicable ü Applicable 

Prior EMA/PMA treatment ü Applicable ü Applicable ü Applicable 
Prior enzymatic treatment 
with nucleases (with/without 
proteinase K) 

ü Applicable ü Applicable 
û Not 

applicable 

Immuno-capture-PCR: prior 
antibody based binding, 
including IMS 

ü Applicable û Not applicable 
û Not 

applicable 

Prior receptor binding assays, 
including PMS  ü Applicable ü Applicable 

û Not 
applicable 

(m)RNA detection  ü Applicable û Not applicable ü Applicable 
Prior flotation  ü Applicable û Not applicable ü Applicable 
#If in vitro culturing of the microorganism is possible. 
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Table 2: Persistence of free nucleic acids (DNA and RNA) after application of various food processing 

techniques. 

Treatme
nt type 

Treatment conditions Storage 
conditions 

Nucleic acid detection  Reference 

DNA     

Heat 

 

Autoclaving of 
soybean DNA (15 
µg/mL)  

None 

Three-fold decrease in the 
abundance of 80 bp target 
fragments after 20 min of 
autoclaving, 30-fold 
decrease after 40 min, 
400-fold decrease after 60 
min and 80,000-fold 
decrease after 80 min 

(Debode and 
others 2007) 

Heating of soybean 
DNA (15 µg/mL) to 
99 °C for 1 to 7 h 

None 

Severe DNA degradation, 
but no decrease in the 
abundance and thus 
detection of 80 bp target 
fragments (the mean size 
of the DNA segments was 
about 400 bp) 

(Debode and 
others 2007) 

Heating of E. coli 
plasmid DNA pSG100 
(480 µg/mL) at 37 °C 
and 65 °C for 90 min 
in 10 mM Tris-HCl 
with pH 4.0 and in 
tomato serum with pH 
4.3  

None 
Degradation to fragments 
of < 1754 bp by all 
treatments 

(Bauer and 
others 2003) 

Heating of E. coli 
plasmid DNA pSG100 
(480 µg/mL) at 85 °C 
in 10 mM Tris-HCl 
with pH 8.4 for 90 min  

None DNA fragments of 1754 
bp persist  

(Bauer and 
others 2003) 

Heating of genomic 
DNA of transgenic 
maize Bt176 (48 
µg/mL) at 85 °C at pH 
8.4  

 

Degradation to fragments 
of < 1416 bp after 30 min 
and 60 min and to 
fragments of < 1255 bp 
after 90 min 

(Bauer and 
others 2003) 

Microwa
ves 

Exposure of soybean 
DNA (15 ng/µL) to 
microwaves of 800 W 
for 0 to 15 min  

None 

Severe DNA degradation, 
but no decrease in the 
abundance of 80 bp target 
fragments 

(Debode and 
others 2007) 

Sonicatio
n 

Exposure of soybean 
DNA (15 ng/µL) to 
sonication at 170 W 

None 
Three-fold decrease in the 
abundance of 80 bp target 
fragments and 20- to 30-

(Debode and 
others 2007) 
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for 5 min to 8 h fold decrease of 170 bp 
target fragments 

Storage 

 

Genomic and plasmid 
DNA of Yersinia 
enterocolitica 
(between 1 mg/mL and 
1 µg/mL) 

Incubation in 
chicken rinse 
at 4 °C and 
20 °C 

Degradation of 90% of 
the 300 bp fragments after 
8 h at 20 °C and after 9.5 
h at 4 °C and degradation 
of 90% of the 600 bp 
fragments after 0.5 h at 20 
°C and after 1.5 h at 4 °C 

(Wolffs and 
others 2005) 

Incubation in 
chicken 
homogenate 
at 4 °C and 
20 °C 

Degradation of 90% of 
the 300 bp fragments after 
1 h at 20 °C and 4 °C and 
degradation of 90% of the 
600 bp fragments after 0.5 
h at 20 °C and after 1.5 h 
at 4 °C 

Incubation in 
pork rinse at 
4 °C and 20 
°C 

Degradation of 90% of 
the 300 bp fragments after 
120.5 h at 20 °C and 
degradation of 90% of the 
600 bp fragments after 
26.5 h at 20 °C and after 
35 h at 4 °C 

Incubation in 
pork 
homogenate 
at 4 °C and 
20 °C 

Degradation of 90% of 
the 300 bp fragments after 
38.5 h at 20 °C and 
degradation of 90% of the 
600 bp fragments after 
74.5 h at 20 °C and after 
93.5 h at 4 °C 

Degradation of E. coli 
pUC18 plasmid DNA 
(250 µg/mL) and sugar 
beet chromosomal 
DNA (250 µg/mL) 

Incubation in 
raw beet 
juice at 4 °C, 
37 °C and 70 
°C 

DNA was completely 
degraded at 70 °C within 
10 min, while intact DNA 
persisted for 10 min at 37 
°C and for ≥ 20 min at 4 
°C 

(Klein and 
others 1998) 

Chromosomal DNA of 
maize (20 µg/mL)   

Incubation in 
maize silage 
effluent at 
ambient 
temperature 

DNA fragments of 1914 
bp persist for 5 min and 
684 bp fragments for 60 
min  

(Duggan and 
others 2000) 

Incubation in 
ovine saliva 
at 39 °C 

Fragments of 850 bp and 
1914 bp persist for 1 h 
and fragments of 350 bp 
and 684 bp persist for 24 
h 

Incubation in Fragments of 1914 bp, 
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ovine rumen 
fluid at 39 °C 

850 bp and 350 bp persist 
for ≤ 1 min  

Legionella 
pneumophila DNA 
(180 ng/mL)  

Incubation in 
sewage 
effluent at 16 
°C 

DNA fragments of  186 
bp and 108 bp persist for 
≥ 4 days  

(Palmer and 
others 1993) 

Salmonella 
Typhimurium DNA 
(14 to 22 ng/mL, 
corresponding to 5 to 6 
log CFU/mL)  

Incubation in 
seawater at 
10 and 20 °C 

DNA fragments of 284 bp 
persist for 3 to 8 days at 
10 °C and for 2 to 4 days 
at 20 °C  

(Dupray and 
others 1997) 

Legionella 
pneumophila DNA 
(180 ng/mL)  

Incubation in 
ocean water 
at 16 °C 

Degradation of DNA to 
fragments of < 186 bp 
after 2 days and < 108 bp 
after 3 days  

(Palmer and 
others 1993) 

Aeromonas 
salmonicida DNA (10 
ng/mL)  

Incubation in 
fresh water 
with sandy 
and loamy 
sediment at 
13 °C 

Degradation of DNA to 
fragments of < 423 bp 
after 10 days in water, but 
DNA fragments of 423 bp 
persist for 13 weeks in the 
sandy and loamy 
sediment 

(Deere and 
others 1996) 

E. coli plasmid pUC8-
ISP DNA (0.2 µg/g)   

Incubation in 
loamy sand 
soil at 23 °C 

Fragments of 1029 bp 
persist for 60 days in 
loamy sand soil at 3.3% 
of the initial concentration 

(Romanowsk
i and others 
1992) 

Incubation in 
clay soil at 
23 °C 

Fragments of 1029 bp still 
present after 60 days in 
clay soil at 11.2% of the 
initial concentration 

Incubation in 
silty clay soil 
at 23 °C 

Degradation of DNA to 
fragments of < 1029 bp in 
the silty clay soil after 10 
days 

Incubation in 
sterilized 
(ethylene 
oxide-
treated) soils 
at 23 °C 

Fragments of 1029 bp still 
present after 60 days in 
sterilized soils at 100% of 
the initial concentration 

RNA     

Storage Free poliovirus RNA 
(30 ng/mL)  

Incubation in 
seawater at 4 
°C and 23 °C 

Degradation of RNA to 
fragments of < 394 bp 
after 3 days at 23 °C and 
after 14 days at 4 °C  

(Tsai and 
others 1995)  
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Incubation in 
filter-
sterilized 
seawater at 4 
°C and 23 °C 

Degradation of RNA to 
fragments of < 394 bp 
after 35 days at 4 °C and 
23 °C  
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Table 3: Persistence of bacterial nucleic acids (DNA and RNA) after application of complete 

inactivation processes resulting in negative culture results. 

Treatm
ent 
type 

Treatment 
conditions  

Storage 
conditions 

Nucleic acid 
persistence post 
treatment  

Reference 

DNA      

Heat 

Inactivation of 7.5 
log CFU/mL E. 
coli cells in 
nutrient broth by 
boiling 
(unspecified time 
– temperature 
conditions) 

In pond water at 
4 °C 

Degradation of 
DNA to fragments 
of < 179 bp after 3 
weeks  

(Josephson and 
others 1993) 

Inactivation of 8 
log CFU/mL E. 
coli O157:H7 in 
skim milk by 
heating at 60 °C 
for 3 h 

In skim milk at 
23 °C 

DNA was partially 
degraded but 
fragments of 266 
bp persisted after 
48 h storage 

(McKillip and 
others 1999) 

Inactivation of 6 
log CFU/mL E. 
coli in phosphate 
buffer by heating 
for 30 min at 60 
°C and 
autoclaving (15 
min at 121 °C) 

In the dark in 
phosphate buffer 
at 20 °C 

DNA fragments of 
147 bp persist 

(Villarino and 
others 2000) 

Inactivation of 
approximately 5 
log CFU/mL 
Salmonella 
Typhimurium in 
tryptic soy broth 
by boiling (100 
°C) for 10 min  

In the dark in 
filtered (3 µm) 
seawater at 10 
°C  

DNA fragments of  
472 bp persist for 
103 days  

(Dupray and 
others 1997) 

In the dark in 
seawater at 10 
°C 

DNA fragments of 
472 bp persist 10 to 
55 days   

In the dark in 
seawater at 20 
°C 

DNA fragments of 
472 bp persist 11 
days  

Inactivation of 
approximately 9 
log CFU/mL 
Listeria 
monocytogenes in 
Ringer solution 
by heating at 60 

In Ringer 
solution at room 
temperature 

DNA fragments of 
702 bp persisted for 
90 days with 60 °C 
and 100 °C at 1% 
of the initial 
concentration, 
while DNA was 

(Herman 1997) 
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°C for 30 min, at 
100 °C for 10 min 
and at 124 °C for 
10 min and 
autoclaving (124 
°C for 15 min)  

degraded to 
fragments < 702 bp 
after 1 h with 124 
°C and autoclaving 

Inactivation of 
approximately 7 
log CFU/mL 
Campylobacter 
jejuni in water by 
heating at 55 °C, 
72  °C and 100 °C 
for 5 min, 1 h, 6 
h, 24 h and 5 days 

None 

DNA was degraded 
to fragments < 86 
bp after boiling for 
24 h, but after 
heating to 55 and 
72 °C for 5 days 
fragments of 86 bp 
persisted at 0.3 to 
1% of the initial 
quantity 

(Nogva and 
others 2000) 

Inactivation of 7.3 
and 7.7 log 
CFU/mL C. jejuni 
in water by 
heating for 5 min 
at 55 °C, 72  °C 
and 100 °C  

In water at 25 
°C 

Fragments of8 6 bp 
persist for 60 days 
at approximately 
100-fold decreased 
levels  

Inactivation of 8.7 
log CFU/mL 
Salmonella in 
Luria-Bertani 
(LB) broth by 
heating at 65 °C 
for 20 min and at 
80 °C for 30 min 

In LB broth at 
room 
temperature  

Intact genomic 
DNA and 285 bp 
fragments persist 
for 18 days 

(Li and others 
2013) 

Inactivation of 8.7 
log CFU/mL 
Salmonella in LB 
broth by boiling 
for 3 min and 
heating at 121 °C 
for 15 min 

In LB broth at 
room 
temperature 

Intact genomic 
DNA is degraded 
after 6 days storage 
after boiling and 
within 1 day after 
heating at 121 °C, 
but DNA fragments 
of 285 bp persist 
for 10 days  

Starvati
on 

Starvation of 5.5 
log CFU/mL 
Aeromonas 
salmonicida  

In fresh water 
with sandy 
sediment at 13 
°C 

DNA was degraded 
to fragments < 423 
bp simultaneously 
with the 
inactivation in 
water, but DNA 
fragments of 423 
bp were detected 
for 5.5 weeks 
afterwards in the 

(Deere and 
others 1996)  
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sandy sediment 

In fresh water 
with loamy 
sediment at 13 
°C 

DNA fragments of 
423 bp were 
detected for 3.5 
weeks after the 
inactivation in 
water and for 10.5 
weeks in the loamy 
sediment 

Starvation of 
approximately 3.5 
log CFU/mL 
Legionella 
pneumophila  

In ocean water 
at 16 °C 

DNA fragments of 
186 bp and 108 bp 
persist for 5 weeks 
after inactivation  

(Palmer and 
others 1993) 

Starvation of 6 
log CFU/mL L. 
monocytogenes  

In artificial 
seawater at 
room 
temperature 

DNA fragments of 
746 bp persist after 
32 days for L. 
monocytogenes (Masters and 

others 1994) 
Starvation of 7 
log CFU/mL E. 
coli  

In distilled and 
tap water at 4 °C 

DNA fragments of 
1051 bp persist 
after 325 days for 
E. coli 

Irradiati
on 

Inactivation of 6 
log CFU/mL E. 
coli in phosphate 
buffer by UV 
irradiation at 254 
nm at 25 °C for 1 
min and 5 min 

In phosphate 
buffer at 20 °C 
in the dark 

DNA fragments of 
147 bp persisted for 
48 h  

(Villarino and 
others 2000) 

Inactivation of 6 
log CFU/mL E. 
coli by UV 
irradiation (12000 
to 16000 
µWs/cm²) in 
nutrient broth 

None DNA fragments of 
179 bp persist 

(Josephson and 
others 1993) 

Hydrost
atic 
pressure 

Inactivation of E. 
coli and Shigella 
in milk by high 
hydrostatic 
pressure (500 
Mpa for 30 min at 
25 °C) 

None 

Degradation of the 
chromosomal DNA 
into fragments of 
unspecified lengths, 
shown by different 
and weaker pulse 
field gel 
electroforesis 
(PFGE) patterns 

(Yang and 
others 2012) 

Desicca
tion 

Inactivation of 6 
log CFU/mL E. 

In MRD at room 
temperature in 

DNA fragments of 
> 1051 bp persist 

(Masters and 
others 1994) 



59	
  
	
  

coli by 
dessication 
peroxide in 
maximum 
recovery diluents 
(MRD) by 
GryoVap for 20 
min at room 
temperature  

the dark 18 h after 
inactivation  

 

Acid 

Inactivation of 6 
log CFU/mL E. 
coli and 8 log 
CFU/mL L. 
monocytogenes 
by acid (LB broth 
with pH 2.0) at 
room temperature  

None 

Degradation of 
DNA to fragments 
< 1051 bp (for E. 
coli) and < 746 bp 
(L. monocytogenes) 
after 2 days 

(Masters and 
others 1994) 

Disinfe
ctants 

Inactivation of 6 
log CFU/mL E. 
coli by 5 mmol/L 
hydrogen 
peroxide in MRD 
at 37 °C  

None 

Degradation of 
DNA to fragments 
of < 1051 bp in 24 
to 48 h  

(Masters and 
others 1994) Inactivation of 6 

log CFU/mL E. 
coli by 500 
mmol/L hydrogen 
peroxide in MRD 
at 37 °C  

None 

Degradation of 
DNA to fragments 
of < 746 bp in 48 to 
960  

Inactivation of 
approximately 9 
log CFU/mL 
Listeria 
monocytogenes in 
Ringer solution 
with 0.5% and 
2.5% Dettol 

In Ringer 
solution at room 
temperature 

DNA fragments of 
702 bp persisted for 
30 days after 
inactivation with 
0.5% Dettol and for 
90 days with 2.5% 
Dettol 

(Herman 1997) 
Inactivation of 
approximately 9 
log CFU/mL 
Listeria 
monocytogenes in 
Ringer solution 
with 5% NaOCl 

In Ringer 
solution at room 
temperature 

DNA fragments of 
702 bp persisted for 
30 days  

Inactivation of 
approximately 9 
log CFU/mL 
Listeria 
monocytogenes in 

In Ringer 
solution at room 
temperature 

DNA fragments of 
702 bp persisted for 
90 days  
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Ringer solution 
with 1% RBS (R. 
Borghgraef 
Solution) 

 

Inactivation of 
approximately 9 
log CFU/mL 
Listeria 
monocytogenes in 
Ringer solution 
with base (1% 
NaOH) and acid 
(1% HCl)  

In Ringer 
solution at room 
temperature 

DNA was degraded 
to fragments < 702 
bp after 30 days  

RNA      

Heat 

Inactivation of 8.7 
log CFU/mL 
Salmonella in 
Luria-Bertani 
broth by heating 
at 65 °C for 20 
min, at 80 °C for 
30 min, boiling 
for 3 min and at 
121 °C for 15 min 

None 

Ribosomal RNA 
was degraded 
within 1 day after 
and autoclaving, 
but intact rRNA 
persisted after 
heating at 65 °C for 
20 min and even at 
80 °C for 30 min  

mRNA fragments 
of 285 bp of the 
invA gene were 
never detected  

(Li and others 
2013) 

Inactivation of 6 
log CFU/mL E. 
coli O157:H7 and 
S. aureus in brain 
heart infusion 
(BHI) broth by 
autoclaving (15 
min at 121 °C)  

In BHI broth at 
37 °C 

Degradation of 16S 
rRNA to fragments 
of < 323 bp 
immediately after 
autoclaving 

(McKillip and 
others 1998)  

Inactivation of 6 
log CFU/mL E. 
coli O157:H7 and 
S. aureus in BHI 
broth by heating 
at 80 °C for 20 
min 

In BHI broth at 
37 °C 

Fragments of 
approximately 1400 
bp persisted for 48 
h 

Inactivation of 5 
and 8 log 
CFU/mL C. jejuni 
cells inoculated 
on chicken skin 

Storage of 
chicken skin 
samples at 37 
°C 

16S rRNA 
fragments of 100-
170 bp persisted for 
12 days with the 8 
log CFU/mL 

(Uyttendaele 
and others 1997) 
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by heating at 100 
°C for 10 min  

inoculum for 24 h 
with the 5 log 
CFU/mL inoculum 

Inactivation of 7 
log CFU/mL E. 
coli in LB broth 
by heating at 100 
°C for 5 min, at 
80 °C for 10 min 
and at 60 °C for 
20 min 

In LB broth at 
room 
temperature 

Degradation of 
mRNA from the 
rpoH, groEL and 
tufA genes to 
fragments of 
respectively < 450 
bp, < 653 bp and < 
578 bp after > 2 h, 
but 16S rRNA 
fragments of 405 
bp persisted for 16 
h 

(Sheridan and 
others 1998) 

Inactivation of 8 
log CFU/mL E. 
coli O157:H7 in 
skim milk by 
heating at 60 °C 
for 3 h 

In skim milk at 
23 °C 

16S rRNA was 
partially degraded 
but fragments of 
266 bp persisted 
after 48 h 

(McKillip and 
others 1999) 

Inactivation of 8 
log CFU/mL 
Campylobacter 
spp. by various 
heat treatments 
ranging from 10 
min at 60 °C to 90 
min at 90 °C in 
phosphate-
buffered saline 
(PBS) 

In PBS at 37 °C 

Complete 
degradation of 
mRNA after 0.5 h 
to 10 h  

(Sung and 
others 2005) 

Inactivation of 6 
and 9 log 
CFU/mL Listeria 
monocytogenes in 
PBS by heating at 
72.5 °C and 98 °C 
for 0, 5 and 30 
min and 
autoclaving for 15 
min 

In PBS at room 
temperature 

16S rRNA 
fragments of 149 
bp persisted for 24 
h after all 
treatments and 
mRNA fragments 
of the inlA (86 bp) 
and rplD (132 bp) 
genes persist after 
all treatments 
except autoclaving 
and heating at 98 
°C for 30 min of 6 
log CFU/mL cells 

(Xiao and others 
2012) 

Inactivation of 6 
log CFU/mL E. 
coli in phosphate 
buffer by heating 

In phosphate 
buffer at 20 °C 
in the dark 

16 S rRNA was 
completely 
degraded to 
fragments < 18 bp 

(Villarino and 
others 2000) 
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at 60 °C for 30 
min and 
autoclaving 

after 120 h  

Irradiati
on 

Inactivation of 6 
log CFU/mL E. 
coli in phosphate 
buffer by UV 
irradiation at 254 
nm at 25 °C for 1 
min and 5 min 

In phosphate 
buffer at 20 °C 

16S rRNA was 
degraded to 
fragments < 18 bp 
within 24 to 48 h  

(Villarino and 
others 2000) 

Inactivation of 6 
log CFU/mL E. 
coli O157:H7 and 
S. aureus in BHI 
broth by UV 
irradiation of 254 
nm for 2.5 h at 23 
°C  

In BHI broth at 
37 °C 

16S rRNA of 
fragments of 1400 
bp persist for 48 h 

(McKillip and 
others 1998) 

Disinfe
ctants 

Inactivation of 7 
log CFU/mL E. 
coli in LB broth 
by exposure to 
67% ethanol for 7 
min 

In the LB broth 
at room 
temperature 

Degradation of 
mRNA from the 
groEL to fragments 
< 653 bp after 2 h 
and from rpoH 
genes to fragments 
< 450 bp after 16 h, 
but 16S rRNA 
fragments of 405 
bp and tufA 
fragments of 578 
bp persisted for ≥ 
16 h 

(Sheridan and 
others 1998) 
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Table 4: Stability of viral nucleic acids (DNA or RNA) after complete viral inactivation.  

Treatment 
Type 

Treatment 
conditions 

Storage 
conditions Nucleic acid detection Reference 

Heat 

Inactivation of 
murine norovirus 
1 (MNV-1) (> 7.8 
log PFU/mL 
reduction) by 
heating at 80 °C 
for 2.5 min, 15 
min, 30 min and 1 
h 

 

 

None 

No intact RNA genomes 
were detected anymore after 
2.5 min by a transfection 
assay 

RNA fragments of 154 bp 
were always detected at high 
concentrations, for example, 
83% of the initial 
concentration of genomic 
copies of MNV-1/mL after 
2.5 min, 59% after 15 min, 
24% after 30 min and 3% 
after 1 h 

(Baert and others 
2008) 

Inactivation of 
murine norovirus 
1 (MNV-1) (> 3.5 
log PFU/mL 
reduction) in 
water and milk by 
heating at 72 °C 
for 2 min 

 

None RNA fragments of 125 bp 
still detected (0.4 and 0.7 log 
genomic copies/mL 
reduction in water and milk 
respectively) 

(Hewitt and others, 
2009) 

Inactivation of 
murine norovirus 
1 (MNV-1) (> 6 
log PFU/mL 
reduction) in 
tissue culture 
medium by 
heating at 70 °C 
for 2 min 

 

None 
RNA fragments of 159 bp 
still detected (0.8 log 
genomic copies/mL 
reduction) 

(Li and others, 
2012) 

Inactivation of 
murine norovirus 
1 (MNV-1) (> 5 
log PFU/mL 
reduction) in 
tissue culture 
medium and 1% 
stool in PBS by 
heating at 73 °C 
for 3 min 

 

 

None 
RNA fragments of 159 bp 
still detected (0.8 and 0.4 log 
genomic copies/mL 
reduction in tissue culture 
medium and 1% stool in PBS 
respectively) 

(Tuladhar and 
others, 2012) 

Inactivation of 
feline calicivirus 
(FCV) (> 4 log 
TCID50/mL 
reduction) in 

 

None 

RNA fragments of 111 bp 
still detected (2.0 and 1.3 log 
genomic copies/mL 
reduction in chives and mint 
respectively) 

(Butot and others, 
2009) 
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chives and mint 
by heating at 75 
°C for 2.5 min 

Inactivation of 
hepatitis A virus 
(HAV) in mussels 
(> 2.5 log 
TCID50/mL 
reduction) by 
boiling for 3 min 
(mean internal 
temperature of 92 
°C) 

4°C for up 
to 1 h 

RNA fragments of 206 bp 
still detected (2.9 log 
genomic copies/mL 
reduction) 

(Hewitt and 
Greening 2006) 

Chlorine 

Inactivation of 
feline calicivirus 
(FCV) (> 3.5 log 
TCID50/mL 
reduction) in 
blueberries, 
raspberries, 
strawberries and 
basil by 200 ppm 
chlorine at 18 °C 
for 0.5 min 

 

 

None RNA fragments of 111 bp 
still detected (4, > 3, 3.4, and 
2.5 log genomic copies/mL 
reduction in blueberries, 
raspberries, strawberries and 
basil respectively) 

(Butot and others, 
2008) 

Inactivation of 
feline calicivirus 
(FCV) (> 5 log 
TCID50/mL 
reduction) in 
tissue culture 
medium by 3000 
and 6000 ppm 
chlorine at room 
temperature for 
10 min 

 

None 

RNA fragments of 83 bp still 
detected (2.5 and 4.2 log 
genomic copies/mL 
reduction by 3000 and 6000 
ppm chlorine respectively) 

(Duizer and others, 
2004) 

Inactivation of 
feline calicivirus 
(FCV) (> 3 log 
TCID50/mL 
reduction) in 10% 
stool in hard 
water by 6000 
and 7000 ppm 
chlorine for 15 
min 

None 

RNA fragments of 126 bp 
still detected (3 log genomic 
copies/mL reduction) 

(Poschetto and 
others, 2007) 

Inactivation of 
Poliovirus (> 3.8 
log TCID50/mL 
reduction) in 
water by 1ppm 

None RNA fragments of 197 bp 
and 866 bp still detected (1.5 
and 2.0 log genomic 
copies/mL reduction, 
respectively) 

(Shin and Sobsey, 
2008) 
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chlorine at 5 °C 
for 10 min 

Inactivation of 
feline calicivirus 
(FCV) (> 4 log 
TCID50/mL 
reduction) in 
0.03% BSA in 
hard water by 48 
and 66 ppm 
chlorine at room 
temperature for 
30 min 

 

None 

RNA degraded to < 89 bp 
fragments (no longer 
detected by RT-qPCR) 

(Nowak and others, 
2011) 

Inactivation of 
feline calicivirus 
(FCV) (> 4.5 log 
TCID50/mL 
reduction) in 10% 
stool on stainless 
steel surface by 
5000 ppm 
chlorine for 4 min 

 

None 
RNA fragments of 229 bp 
still detected (1.25 log 
genomic copies/mL 
reduction) 

(Park and Sobsey, 
2011) 

Acid 

Inactivation of 
feline calicivirus 
(FCV) from 11.3 
to < 1.6 log 
TCID50/mL in 
acid marinade 
(pH 3.75)  

 

Stored at 4 
° 

RNA fragments of 287 bp 
were still detected, although 
at a considerably lower level 
(4 log decrease from 11 to 7 
log genomic copies/mL); 
three weeks of storage at 4 
°C resulted in only 1 log 
additional decrease of the 
RNA fragment detection to 6 
log genomic copies/mL 

(Hewitt and 
Greening 2004) 

Oxidation 

Inactivation of 10 
log PFU/mL 
bacteriophage 
MS2 by singlet 
oxygen at a 
constant 
concentration of 4 
× 10-12 M for 4 h 

 

 

None 

RNA fragments between 244 
bp to 335 bp (12 different 
fragments covering the entire 
genome) were still detected, 
but at lower concentrations 
(reductions of 1.2 to 2.4 log) 

(Pecson and others 
2009) 

Multiple 
treatments 

Inactivation of 
feline calicivirus 
(FCV) from 9.4 to 
< 1.6 log 
TCID50/mL 
within 1 week of 
storage at 4 °C in 
mussels after a 
commercial 
marination 

 

 

 

Stored at 4 
°C  

RNA fragments of 287 bp 
were still detected, although 
at a considerably lower level 
(3 log decrease from 8 to 5 
log genomic copies/mL); 
three weeks of storage at 4 
°C resulted in only 1 log 
additional decrease of the 
RNA fragment detection to 4 

(Hewitt and 
Greening 2004) 
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process 
combining heat 
and acid 
treatment, for 
example, boiling 
in water for 37 s, 
steaming for 188 
s, cooled 
immediately on 
ice, shucked, 
immersed in acid 
marinade (an 
acetic acid 
solution with pH 
3.75)  

log genomic copies/mL 

Incubation 
in seawater 

Poliovirus (4.6 
log PFU/mL) was 
completely 
inactivated in 
natural seawater  

 

22 and 30 
°C for 30 
days  

RNA fragments of 197 bp 
were no longer detected in 
natural seawater after 10 
days at 22 °C and 3 days at 
30 °C, despite the presence 
of 1 to 2 log PFU/mL 

(Wetz and others 
2004) 

Poliovirus (4.6 
log PFU/mL) was 
completely 
inactivated in 
filter-sterilized 
seawater  

 

22 and 30 
°C for 30 
days  

RNA fragments of 197 bp 
were detected after ≥ 60 days 
at 22 °C and 37 days at 30 
°C, so RNA persisted at least 
1 week after the complete 
inactivation of polioviruses 
in filter-sterilized seawater 

(Wetz and others 
2004) 

Incubation 
in liquid 
dairy 
manure 

Murine norovirus 
1 (MNV-1) was 
completely 
inactivated (> 2 
log PFU/mL 
reduction) in 
liquid dairy 
manure  

 

4°C for 20 
days  RNA degraded to < 318 bp 

fragments (no longer 
detected by RT-qPCR) 

(Wei and others, 
2010) 
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Figure 1: Overview of possible contamination routes of food with microbial pathogens and/or their 

nucleic acids and the possible consequences for detection with nucleic acid-based and culture-based 

methods. 

 

PersonnelRaw materials 
and ingredients

Processing environment

Processing aids

Food containing pathogens and/or pathogen-derived nucleic acids

Microbiological testing: nucleic acid detection vs. culture

Intact microorganism
Extracellular microbial 
nucleic acids in the food 
matrix (usually 
fragmented/degraded)Dead VBNC (Sub-lethally) injured Live/infectious

Nucleic  acids detectable

Culture detectable

+ + + + +

– – + / – + –

Sources of  food-borne pathogens and their nucleic acids

Food processing: 
Validated microbial kill-reduction-growth 

inhibition processes, preservation, etc.

Interpretation of 
nucleic  acid detection 
in food products
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Figure 2: Different pathotypes of E. coli and their characterizing genetic determinants; stx: 

verocytotoxin/Shiga toxin, eae: intimin, bfp: bundle-forming pili, ipa: invasion plasmid antigens, tia: 

toxigenic invasion loci A, astA: plasmid with enteroaggregative heat-stable toxin, shET: Shigella 

enterotoxin, CFA: colonization factor antigens, ST: heat-stable enterotoxin, LT: heat-labile 

enterotoxin.  

Escherichia coliEnteropathogenic E. coli 
(EPEC)
Genes: eae (and bfp in 
typical strains)

Shiga toxin-producing E. coli 
(STEC) a.k.a. Verocytotoxin
producing E. coli (VTEC)
Genes: stx

Shigella and enteroinvasive
E. coli (EIEC)
Genes: ipa and shET

Enteroaggregative
E. coli (EAEC)
Genes: tia and astA

Diffusely adherent E. coli 
(DAEC)
Genes: no uniform markers

Enterotoxigenic
E. coli (ETEC)
Genes: CFs, LT, ST

Adherent invasive E. coli 
(AIEC)
Genes: uncharacterized

Enterohemorrhagic E. coli (EHEC)
Genes: stx and eae
Causes hemorrhagic colitis (HC) and 
hemolytic uremic syndrome (HUS)

E. coli O104:H4
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Figure 3: Interpretation of nucleic acid detection results and possible solutions to cope with 

interpretation problems 

 

Culture and PCR positive
• Infectious viruses 
•Viable bacteria

Culture and PCR negative
•No nucleic acids 
•No microorganisms

Culture positive and PCR negative
•Recalcitrant microorganisms (spores, biofilms, 
internalization)

à Possible solutions
• Sample preparation optimization

Culture negative and PCR positive
•Free nucleic acids 
•Non-infectious viruses 
•Dead bacteria
•Sub-lethally injured and VBNC bacteria

à Possible solutions
• Culture confirmation  
• Prior EMA/PMA treatment 
• Secondary and/or large region amplification 
• Prior enzymatic treatment with nucleases
• Prior binding assays
• Prior enrichment/resuscitation
• (m)RNA detection
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Figure 4: Principle of EMA/PMA-PCR to specifically detect nucleic acids from viable bacteria, based 

on the exclusion of PMA from viable bacteria due to their intact cell membrane.  
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Figure 5: Alternative virus detection strategies to target infectious virus particles based on capsid 

integrity. (A) Conducting a binding assay prior to (RT)-(q)PCR detection aims to retain virus particles 

with intact capsids for subsequent nucleic acid extraction while unbound defective particles and free 

nucleic acids are removed by washing (B) Enzymatic pre-treatment nucleases attempts to degrade all 

accessible nucleic acids, namely, free nucleic acids and nucleic acids from viruses with damaged 

capsids.   
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Figure BOX 1: Detection of DNA by (q)PCR, of viral RNA and bacterial mRNA and rRNA by RT-

(q)PCR and proteins by ELSIA.  
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Figure BOX 3: Different virus particles and remnants present in virus suspensions. 


