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ABSTRACT
Personalized PageRank (PPR) based measures of node proximity
have been shown to be highly effective in many prediction and rec-
ommendation applications. The use of personalized PageRank for
large graphs, however, is difficult due to its high computation cost.
In this paper, we propose a Locality-sensitive, Re-use promoting,
approximate personalized PageRank (LR-PPR) algorithm for effi-
ciently computing the PPR values relying on the localities of the
given seed nodes on the graph: (a) The LR-PPR algorithm is lo-
cality sensitive in the sense that it reduces the computational cost
of the PPR computation process by focusing on the local neighbor-
hoods of the seed nodes. (b) LR-PPR is re-use promoting in that
instead of performing a monolithic computation for the given seed
node set using the entire graph, LR-PPR divides the work into lo-
calities of the seeds and caches the intermediary results obtained
during the computation. These cached results are then reused for
future queries sharing seed nodes. Experiment results for different
data sets and under different scenarios show that LR-PPR algorithm
is highly-efficient and accurate.

Categories and Subject Descriptors
H.3 [Information Storage and Retrieval]: Miscellaneous

Keywords
Personalized PageRank; Locality-Sensitivity; Reuse-Promotion

1. INTRODUCTION
Node distance/proximity measures are commonly used for quan-

tifying how nearby or otherwise related to two or more nodes on
a graph are. Path-length based definitions [17] are useful when the
relatedness can be captured solely based on the properties of the
nodes and edges on the shortest path (based on some definition of
path-length). Random-walk based definitions, such as hitting dis-
tance [16] and personalized page rank (PPR) score [4, 13, 21] of
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Figure 1: Key questions: Given a graph, G, and a seed set of
nodes S = {v1, v2, v3} in G, can we rank the remaining nodes
in the graph regarding their relationships to the set S? Which
of the nodes a through d is the most interesting given the seed
set of nodes v1 through v3?

node relatedness, on the other hand, also take into account the den-
sity of the edges: unlike in path-based definitions, random walk-
based definitions of relatedness also consider how tightly connected
two nodes are and argue that nodes that have many paths between
them can be considered more related. Random-walk based tech-
niques encode the structure of the network in the form a transi-
tion matrix of a stochastic process from which the node relation-
ships can be inferred. When it exists, the convergence probabil-
ity of a node n gives the ratio of the time spent at that node in a
sufficiently long random walk and, therefore, neatly captures the
connectivity of the node n in the graph. Therefore, many web
search and recommendation algorithms, such as PageRank [5],
rely on random-walks to identify significant nodes in the graph:
let us consider a weighted, directed graph G(V, E), where the
weight of the edge ej ∈ E is denoted as wj(≥ 0) and where(∑

ej∈outedge(vi)
wj

)
= 1.0. The PageRank score of the node

vi ∈ V is the stationary distribution of a random walk on G, where
at each step with probability 1−β, the random walk moves along an
outgoing edge of the current node with a probability proportional
to the edge weights and with probability β, the walk jumps to a
random node in V . In other words, if we denote all the PageRank
scores of the nodes in V with a vector �π, then

�π = (1− β)TG × �π + β�j,

where TG denotes the transition matrix corresponding to the graph
G (and the underlying edge weights) and�j is a teleportation vector
where all entries are 1

‖V ‖ .

1.1 Proximity and PageRank
An early attempt to contextualize the PageRank scores is the

topic sensitive PageRank [12] approach which adjusts the PageR-
ank scores of the nodes by assigning the teleportation probabili-
ties in vector �j in a way that reflects the graph nodes’ degrees of
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Figure 2: Locality-sensitivity: Computation of PPR should fo-
cus on the neighborhoods (localities) of the seeds

v1

v2

v3

G1
G2

G3

G

v1

v7

v9

G1
G7

G9

v6

G6

G

(a) PPR query 1 (b) PPR query 2

Figure 3: Re-use promotion: Two PPR queries sharing a seed
node (v1) should also share relevant work

match to the search topic. [6, 7] were among the first works which
recognized that random-walks can also be used for measuring the
degree of association, relatedness, or proximity of the graph nodes
to a given seed node set, S ⊆ V (Figure 1). An alternative to
this approach is to modify (as in topic sensitive PageRank [12]) the
teleportation vector, �j: instead of jumping to a random node in V
with probability β, the random walk jumps to one of the nodes in
the seed set, S, given by the user. More specifically, if we denote
the personalized PageRank scores of the nodes in V with a vector
�φ, then

�φ = (1− β)TG × �φ+ β�s,

where �s is a re-seeding vector, such that if vi ∈ S, then �s[i] = 1
‖S‖

and �s[i] = 0, otherwise. One key advantage of this approach over
modifying the transition matrix as in [6] is that the term β can be
used to directly control the degree of seeding (or personalization)
of the PPR score. However, the use of personalized PageRank for
large graphs is difficult due to the high cost of solving for the vec-
tor �φ, given β, transition matrix TG, and the seeding vector �s.
One way to obtain �φ is to solve the above equation for �φ mathe-
matically. Alternatively, PowerIteration methods [14] simulate the
dissemination of probability mass by repeatedly applying the tran-
sition process to an initial distribution �φ0 until a convergence cri-
terion is satisfied. For large data sets, both of these processes are
prohibitively expensive. Recent advances on personalized PageR-
ank includes top-k and approximate personalized PageRank algo-
rithms [1, 3, 8, 10, 11, 20, 22] and parallelized implementations on
MapReduce or Pregel based batch data processing systems [2, 15].
The FastRWR algorithm presented in [22] for example partitions
the graph into subgraphs and indexes partial intermediary solutions.
Unfortunately, for large data sets, FastRWR requires large number
of partitions to ensure that the intermediary metadata (which re-
quires dense matrix representation) fits into the available memory
and this negatively impacts execution time and accuracy.

1.2 Contributions of this Paper
In this paper, we argue that we can improve both scalability and

accuracy through a Locality-sensitive, Re-use promoting, approxi-
mate personalized PageRank (LR-PPR) algorithm: LR-PPR is
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Figure 4: Incoming and outgoing boundary nodes/edges and a
node shared between two localities

• locality sensitive in the sense that it reduces the computa-
tional cost of the PPR computation process and improve ac-
curacy by focusing on the neighborhoods of the seed nodes
(Figure 2); and

• re-use promoting in that it enables caching and re-use of sig-
nificant portions of the intermediary work for the individual
seed nodes in future queries (Figure 3).

In the following section, we first formally introduce the problem
and then present our solution for locality-sensitive, re-use promot-
ing, approximate personalized PageRank computations. We evalu-
ate LR-PPR for different data sets and under different scenarios in
Section 3. We conclude in Section 4.

2. PROPOSED APPROACH
Let G = (V,E) be a directed graph. For the simplicity of the

discussion, without any loss of generality, let us assume that G is
unweighted1. Let us be given a set S ⊆ V of seed nodes (Figure 1)
and a personalization parameter, β. Let GS = {Gh(Vh, Eh) | 1 ≤
h ≤ K} be K = ‖S‖ subgraphs of G, such that

• for each vi ∈ S, there exists a corresponding Gi ∈ GS such
that vi ∈ Vi and

• for all Gh ∈ GS , ‖Gh‖ � ‖G‖.
We first formalize the locality-sensitivity goal (Figure 2):

Desideratum 1: Locality-Sensitivity. Our goal is to compute an
approximate PPR vector, �φapx, using GS instead of G, such that
�φapx ∼ �φ, where �φ represents the true PPR scores of the nodes in
V relative to S: i.e.,

�φapx ∼ �φ = (1− β)TG × �φ+ β�s,

where TG is the transition matrix corresponding to G and �s is the
re-seeding vector corresponding to the seed nodes in S.

We next formalize the re-use promotion goal (Figure 3):
Desideratum 2: Reuse-Promotion. Let S1 and S2 be two sets of
seed nodes and let vi be a node such that vi ∈ S1∩S2. Let also the
approximate PPR vector, �φapx,1 corresponding to S1 have already
been computed using GS1 and let us assume that the approximate
PPR vector, �φapx,2 corresponding to S2 is being requested. The
part of the work performed when processing Gi ∈ GS1 (corre-
sponding to vi) should not need to be re-performed when process-

ing Gi ∈ GS2 , when computing �φapx,2 using GS2 .

2.1 Combined Locality and its Boundary
Unlike existing approximate PPR algorithms [1, 3, 8, 10, 11, 20,

22], LR-PPR is location sensitive. Therefore, given the set, S, of
1Extending the proposed algorithms to weighted graphs is trivial.
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Figure 5: An equivalence set consists of the copies of a node
shared across multiple seed locality graphs

seed nodes and the corresponding localities, GS , the computation
focuses on the combined locality G+(V +, E+) ⊆ G, where

V + =
⋃

1≤l≤K

Vl and E+ =
⋃

1≤l≤K

El.

Given a combined locality, G+, we can also define its external
graph, G−(V −, E−), as the set of nodes and edges of G that
are outside of G+ and boundary nodes and edges. As shown in
Figure 4, we refer to vi ∈ Vl as an outgoing boundary node of
Gl if there is an outgoing edge ei,j = [vi → vj ] ∈ E, where
vj /∈ Vl; the edge ej is also referred to as an outgoing boundary
edge of Gl. The set of all outgoing boundary nodes of Gl is de-
noted as Voutbound,l and the set of all outgoing boundary edges of
Gl is denoted as Eoutbound,l. Note that Voutbound,l ⊆ Vl, whereas
Eoutbound,l ∩El = ∅.

We also define incoming boundary nodes (Vinbound,l) and in-
coming boundary edges (Einbound,l) similarly to the outgoing
boundary nodes and edges of Gl, but considering inbound edges
to these subgraphs. More specifically, Einbound,l consists of edges
of the form [vi → vj ] ∈ E, where vj ∈ Vl and vi /∈ Vl.

2.2 Localized Transition Matrix
Since LR-PPR focuses on the combined locality, G+, the next

step is to combine the transition matrices of the individual localities
into a combined transition matrix. To produce accurate approxima-
tions, this localized transition matrix, however, should nevertheless
take the external graph, G−, and the boundaries between G− and
G+, into account.

2.2.1 Transition Matrices of Individual Localities
Let v(l,i) (1 ≤ l ≤ K) denote a re-indexing of vertices in Vl.

If v(l,i) ∈ Vl and vc ∈ V s.t. v(l,i) = vc, we say that v(l,i) is a
member of an equivalence set, Vc (Figure 5). Intuitively, the equiv-
alence sets capture the common parts across the localities of the
individual seed nodes. Given Gl(Vl, El) ⊆ G and an appropriate
re-indexing, we define the corresponding local transition matrix,
Ml, as a ‖Vl‖ × ‖Vl‖ matrix, where

• (
�ei,j = [v(l,i) → v(l,j)] ∈ El

) → Ml[j, i] = 0 and

• (∃ei,j = [v(l,i) → v(l,j)] ∈ El

) → Ml[j, i] =
1

out(v(l,i))
,

where out(v(l,i)) is the number of outgoing edges of vi.

2.2.2 Localization of the Transition Matrix
Given the local transition matrices, M1 through MK , we local-

ize the transition matrix of G by approximating it as

Mapx = Mbd +M0,

where Mbd is a block-diagonal matrix of the form

⎛
⎜⎜⎜⎝

M1 0‖V1‖×‖V2‖ . . . 0‖V1‖×‖VK‖ 0‖V1‖×1

0‖V2‖×‖V1‖ M2 . . . 0‖V2‖×‖VK‖ 0‖V2‖×1

. . . . . . . . . . . . . . .
0‖VK‖×‖V1‖ 0‖VK‖×‖V2‖ . . . MK 0‖VK‖×1

01×‖V1‖ 01×‖V2‖ . . . 01×‖VK‖ MK+1

⎞
⎟⎟⎟⎠ ,

where MK+1 is equal to the 1 × 1 matrix 01×1. Intuitively,
Mbd combines the K subgraphs into one transition matrix, without
considering common nodes/edges or incoming/outgoing boundary
edges and ignoring all outgoing and incoming edges. All the exter-
nal nodes in G− are accounted by a single node represented by the
1× 1 matrix MK+1.

A key advantage of Mbd is that it is block-diagonal and, hence,
there are efficient ways to process it. However, this block-diagonal
matrix, Mbd, cannot accurately represent the graph G as it ignores
potential overlaps among the individual localities and ignores all
the nodes and edges outside of G+. We therefore need a compen-
sation matrix to

• make sure that nodes and edges shared between the localities
are not double counted during PPR computation and

• take into account the topology of the graph external to both
localities G1 through GK .

2.2.3 Compensation Matrix, M0

Let t be (‖V1‖ + ‖V2‖ + . . .+ ‖VK‖ + 1). The compensation
matrix, M0, is a t × t matrix accounting for the boundary edges
of the seed localities as well as the nodes/edges in G−. M0 also
ensures that the common nodes in V1 through VK are not double
counted during PPR calculations. M0 is constructed as follows:
Row/column indexing: Let vl,i be a vertex in Vl. We introduce a
row/column indexing function, ind(), defined as follows:

ind(l, i) =

⎛
⎝ ∑

1≤h<l

‖Vh‖
⎞
⎠+ i

Intuitively the indexing function, ind(), maps the relevant nodes in
the graph to their positions in the M0 matrix.
Compensation for the common nodes: Let el,i,j be an edge
[v(l,i) → v(l,j)] ∈ El and let v(l,j) be a member of the equiva-
lence set Vc for some vc ∈ V . Then, if ‖Vc‖ > 1

• M0[ind(l, j), ind(l, i)] = − ‖Vc‖−1
‖Vc‖ × 1

out(G,vl,i)
and

• ∀v(h,k) ∈ Vc s.t. v(h,k) �= v(l,j), we have

M0[ind(h, k), ind(l, i)] = − 1

‖Vc‖ × 1

out(G, vl,i)
,

where out(G, v) is the outdegree of node v in G. Intuitively, the
compensation matrix re-routes a portion of the transitions going
towards a shared node in a given locality Vl to the copies in other
seed localities. This prevents the transitions to and from the shared
node from being mis-counted.
Compensation for outgoing boundary edges: The compensa-
tion matrix needs to account also for outgoing boundary edges that
are not accounted for by the neighborhood transition matrices M1

through MK :
• Accounting for boundary edges from nodes in Vl to nodes in

Vh: ∀[v(l,i) → v(h,j)] ∈ Eoutbound,l

– M0[ind(h, j), ind(l, i)] =
1

out(v(l,i))

• Accounting for boundary edges from nodes in Vl to graph
nodes that are in V −:

if ∃[v(l,i) → v] ∈ Eoutbound,l s.t. v ∈ V −
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– M0[t, ind(l, i)] =
bnd(v(l,i))

out(v(l,i))
, where bnd(v(l,i)) is

the number of edges of the form [v(l,i) → v] ∈
Eoutbound,l where v ∈ V −

else M0[t, ind(l, i)] = 0

The compensation matrix records all outgoing edges, whether they
cross into another locality or they are into external nodes in G−. If
a node has more than one outgoing edge into the nodes in G−, all
such edges are captured using one single compensation edge which
aggregates all the corresponding transition probabilities.
Compensation for incoming boundary edges (from G−): Sim-
ilarly to the outgoing boundary edges, the compensation matrix
needs also to account for incoming boundary edges that are not
accounted for by the neighborhood transition matrices M1 through
MK . Since incoming edges from other localities have been ac-
counted for in the previous step, here we only need to consider
incoming boundary edges (from G−). Following the formulation
in [23], we account for incoming edges where the source is exter-
nal to G+ and the destination is a vertex v(l,i) in Vl by inserting
an edge from the dummy node to v(l,i) with a weight that con-
siders the outdegrees of all external source nodes; i.e., ∀v(l,i) s.t.
∃[vk → v(l,i)] ∈ Einbound,l where vk ∈ V − and v(l,i) is in the
equivalence set Vc for a vc ∈ V , M0[ind(l, i), t] is equal to

1

‖Vc‖

∑
([vk→v(l,i)]∈Einbound,l)∧(vk∈V −)

1
out(G,vk)

‖V −‖ ,

where out(G, v) is the outdegree of node v in G.
Compensation for the edges in G−: We account for edges that
are entirely in G− by creating a self-loop that represents the sum of
outdegree flow between all external nodes averaged by the number
of external nodes; i.e.,

M0[t, t] =

∑
v∈V −

out(G−,v)
out(G,v)

‖V −‖ ,

where out(G−, v) and out(G, v) are the outdegrees of node v in
G− and G, respectively.
Completion: For any matrix position p, q not considered above, no
compensation is necessary; i.e., M0[p, q] = 0.

2.3 L-PPR: Locality Sensitive PPR
Once the block-diagonal local transition matrix, Mbd, and the

compensation matrix, M0, are obtained, the next step is to obtain
the PPR scores of the nodes in V +. This can be performed using
any fast PPR computation algorithm discussed in Section 1.1.

Note that the overall transition matrix Mapx = Mbd + M0 is
approximate in the sense that all the nodes external to G+ are clus-
tered into a single node, represented by the last row and column of
the matrix. Otherwise, the combined matrix Mapx accurately rep-
resents the nodes and edges in the “merged localities graph” com-
bining the seed localities, G1 through GK . As we see in Section 3,
this leads to highly accurate PPR scores with better scalability than
existing techniques.

2.4 LR-PPR: Locality Sensitive and Reuse
Promoting PPR

Our goal is not only to leverage locality-sensitivity as in L-PPR,
but also to boost sub-result re-use. Remember that, as discussed
above, the localized transition matrix Mapx is equal to Mbd+M0

where (by construction) Mbd is a block-diagonal matrix, whereas
M0 (which accounts for shared, boundary, and external nodes) is
relatively sparse. We next use these two properties of the decompo-
sition of Mapx to efficiently compute approximate PPR scores of

the nodes in V +. In particular, we rely on the following result due
to [22], which itself relies on the Sherman-Morisson lemma [18]:

Let C = A + USV. Let also (I − cA)−1 = Q−1. Then,
the equation

�r = (1− c)(I− cA)−1�e

has the solution

�r = (1− c)(Q−1�e+ cQ−1UΛVQ−1�e),

where

Λ = (S−1 − cVQ−1U)−1.

If A is a block diagonal matrix consisting of k blocks, A1

through Ak, then Q−1 is also a block diagonal matrix con-
sisting of k corresponding blocks, Q−1

1 through Q−1
k , where

Q−1
i = (I− cAi)

−1.

We use the above observation to efficiently obtain PPR scores by
setting c = (1 − β), C = Mapx, A = Mbd, and USV = M0.
In particular, we divide the PPR computation into two steps: a
locality-sensitive and re-usable step involving the computation of
the Q−1 term using the local transition matrices and a run-time
computation step involving the compensation matrix.

2.4.1 Locality-sensitive and Re-usable Q−1
bd

Local transition matrices, M1 through MK corresponding to the
seeds v1 through vK are constant (unless the graph itself evolves
over time). Therefore, ifQ−1

h = (I− (1− β)Mh)
−1 is computed

and cached once, it can be reused for obtaining Q−1
bd , which is a

block diagonal matrix consisting ofQ−1
1 throughQ−1

K+1 (as before,
the last block, Q−1

K+1, is simply equal to 11×1):
⎛
⎜⎜⎜⎜⎝

Q−1
1 0‖V1‖×‖V2‖ . . . 0‖V1‖×‖VK‖ 0‖V1‖×1

0‖V2‖×‖V1‖ Q−1
2 . . . 0‖V2‖×‖VK‖ 0‖V2‖×1

. . . . . . . . . . . . . . .
0‖VK‖×‖V1‖ 0‖VK‖×‖V2‖ . . . Q−1

K 0‖VK‖×1

01×‖V1‖ 01×‖V2‖ . . . 01×‖VK‖ Q−1
K+1

⎞
⎟⎟⎟⎟⎠

,

2.4.2 Computation of the LR-PPR Scores
In order to be able to use the above formulation for obtaining the

PPR scores of the nodes in V +, in the query time, we need to de-
compose the compensation matrix, M0, into U0S0V0. While ob-
taining a precise decomposition in run-time would be prohibitively
expensive, since M0 is sparse and since we are looking for an ap-
proximation of the PPR scores, we can obtain a fairly accurate low-
rank approximation of M0 efficiently [22]:

M0 � Ũ0S̃0Ṽ0.

Given this decomposition, the result vector �φapx, which contains
the (approximate) PPR scores of the nodes in V +, is computed as

�φapx = β
(
Q−1

bd �s+ (1− β)Q−1
bd Ũ0ΛṼ0Q

−1
bd �s

)
,

where

Λ =
(
S̃−1
0 − (1− β)Ṽ0Q

−1
bd Ũ0

)−1

.

Note that the compensation matrix M0 is query specific and,
thus, the work done for the last step cannot be reused across queries.
However, as we experimentally verify in Section 3, the last step
is relatively cheap and the earlier(costlier) steps involve re-usable
work. Thus, caching and re-use through LR-PPR enables signifi-
cant savings in execution time. We discuss the overall complexity
and the opportunities for re-use next.
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2.5 Complexity and Re-use
Analysis of LR-PPR points to the following advantages: First of

all, computation is done using only local nodes and edges. Sec-
ondly, most of the results of the expensive sub-tasks can be cached
and re-used. Moreover, costly matrix inversions are limited to the
smaller matrices representing localities and small matrices of size
r × r. Various subtasks have complexity proportional to ‖V +‖2,
where ‖V +‖ =

∑
1≤l≤K ‖Vl‖. While in theory the locality Vl can

be arbitrarily large, in practice we select localities with a bounded
number of nodes; i.e., ∀1≤l≤K , ‖Vl‖ ≤ L for some L � ‖V ‖.

As described above LR-PPR algorithm supports caching and re-
use of some of the intermediary work. The process results in lo-
cal transition matrices, each of which can be cached in O(‖El‖)
space (where El is the number edges in the locality) assuming a
sparse representation. The algorithm also involves a matrix in-
version, which results in a dense matrix; as a result, caching the
inverted matrix takes O(‖Vl‖2) space (where Vl is the number of
vertices in the locality). If the locality is size-constrained, this leads
to constant space usage of O(L2), where L is the maximum num-
ber of nodes in the locality. If the inverted matrix of a locality is
cached, then the local transition matrix does not need to be main-
tained further. For cache replacement, any frequency-based or pre-
dictive cache-replacement policy can be used.

3. EXPERIMENTAL EVALUATION
In this section, we present results of experiments assessing

the efficiency and effectiveness of the Locality-Sensitive, Re-use
Promoting Approximate Personalized PageRank (LR-PPR) algo-
rithm. Table 1 provides overviews of the three data sets (from
http : //snap.stanford.edu/data/) considered in the experi-
ments. We considered graphs with different sizes and edge densi-
ties. We also varied numbers of seeds and the distances between the
seeds (thereby varying the overlaps among seed localities). We also
considered seed neighborhoods (or localities) of different sizes.

Experiments were carried out using a 4-core Intel Core i5-2400,
3.10GHz, machine with 8GB memory and 64-bit Windows 7 En-
terprise. Codes were executed using Matlab 7.11.0(2010b). All
experiments were run 10 times and averages are reported.

3.1 Alternative Approaches
Global PPR: This is the default approach where the entire graph is
used for PPR computation. We compute the PPR scores by solving
the equation presented in Section 1.1.
FastRWR: This is an approximation algorithm, referred to as
NB_LIN in [22]. The algorithm reduces query execution times by
partitioning the graph into subgraphs and preprocessing each par-
tition. The pre-computed files are stored on disk and loaded to the
memory during the query stage. To be fair to FastRWR, we selected
the number of partitions in a way that minimizes its execution time
and memory and maximizes its quality.
L-PPR: This is our locality sensitive algorithm, where instead of
using the whole graph, we use the localized graph created by com-
bining the locality nodes and edges as described in Section 2.2.
Once the localized transition matrix is created, the PPR scores are
computed by solving the equation presented in Section 1.1.
LR-PPR: This is the locality sensitive and re-use promoting algo-
rithm proposed described in detail in Section 2.4.

The restart probability, β, is set to 0.15 for all approaches.

3.2 Evaluation Measures
Efficiency: This is the amount of time taken to load the relevant
(cached) data from the disk plus the time needed to carry out the
operations to obtain the PPR scores.
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Figure 6: Accuracies of L-PPR, LR-PPR, and FastRWR
against the Global PPR for different numbers of target nodes

Accuracy: For different algorithm pairs, we report the Spearman’s
rank correlation

∑
i(xi − x̄)(yi − ȳ)√∑

i(xi − x̄)2
∑

i(yi − ȳ)2
,

which measures the agreement between two rankings (nodes with
the same score are assigned the average of their positions in the
ranking). Here, x and y are rankings by two algorithms and x̄ and ȳ
are average ranks. To compute the rank coefficient, a portion of the
highest ranked nodes in the merged graph according to x are con-
sidered. As default, we considered 10% highest ranked nodes; but
we also varied the target percentage (5%, 10%, 25%, 50%, 75%) to
observe how the accuracy varies with result size.
Memory: We also report the amount of data read from the cache.

3.3 Results and Discussions
Table 2 presents experimental results for FastRWR, L-PPR, and

LR-PPR. First of all, all three algorithms are much faster than
Global PPR. As expected, in small data sets (Epinions and Slash-
dot) FastRWR works faster than L-PPR and LR-PPR, though in
many cases, it requires more memory. In large data sets, however,
L-PPR and LR-PPR significantly outperform FastRWR in terms of
query processing efficiency and run-time memory requirement.

In terms of accuracy, the proposed locality sensitive techniques,
L-PPR and LR-PPR, constantly outperform FastRWR. This is be-
cause, FastRWR tries to approximate the whole graph, whereas
the proposed algorithms focus on the relevant localities. Fas-
tRWR requires large number of partitions to ensure that the inter-
mediary metadata (which requires dense matrix representation) fits
into memory and this negatively impacts accuracy. Our locality-
sensitive algorithms, L-PPR and LR-PPR, avoid this and provide
high accuracy with low memory consumption, especially in large
graphs, like WikiTalk.

Figure 6 confirms that the accuracies of L-PPR and LR-PPR
both stay high as we consider larger numbers of top ranked net-
work nodes for accuracy assessment, whereas the accuracy of Fas-
tRWR suffers significantly when we consider larger portions of the
merged locality graph.

Figure 7 studies the execution time behavior for L-PPR, LR-
PPR, and FastRWR for different number of seed nodes. As the
figure shows, the time cost increases for both L-PPR and LR-PPR
algorithms as the number of seeds increases. But, the cost of LR-
PPR (which leverages re-use) increases much slower than the cost
of L-PPR and both remain significantly cheaper than FastRWR.
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Table 1: Data sets
Data Set Overall Graph Characteristics Locality Graph Characteristics Seeds

# nodes # edges # nodes per neighborhood # edges per neighborhood # seeds seed distances (hops)

Epinions ∼76K ∼500K from ∼200 to ∼2000 from ∼10K to ∼75K 2-3 3-4
SlashDot ∼82K ∼870K from ∼700 to ∼5000 from ∼10K to ∼75K 2-3 3-4
WikiTalk ∼2.4M ∼5M from ∼700 to ∼6000 from ∼10K to ∼75K 2-8 3-4

Table 2: Summary of the results for different configurations (in all scenarios, individual seed localities have ∼75K edges)
Seeds Merged Network Execution Time (sec.) Top-10% Spearman’s

Correl. (vs. Global PPR)
Memory usage(MB)

Data set # Dist Avg Avg Global Fast L- LR- Fast L- LR- Fast L- LR-
seeds (#hops) # nodes # edges PPR RWR PPR PPR RWR PPR PPR RWR PPR PPR

Epinions 2 3 ∼2.2K ∼90K 27.81 0.21 0.37 0.14 0.963 0.997 0.990 2.9 36.3
∼76K nodes 2 4 ∼3.0K ∼99K 27.58 0.22 0.51 0.20 0.960 0.998 0.990 178.3 3.1 55.2
∼500K edges 3 3 ∼2.7K ∼108K 27.30 0.21 0.58 0.26 0.967 0.998 0.990 4.6 57.6

3 4 ∼3.5K ∼120K 27.90 0.22 0.76 0.36 0.967 0.997 0.991 4.7 77.7
SlashDot 2 3 ∼5.9K ∼117K 21.79 0.35 0.70 0.53 0.955 0.973 0.990 5.0 228.1

∼82K nodes 2 4 ∼5.7K ∼125K 21.85 0.35 0.78 0.42 0.943 0.965 0.983 302.1 4.9 172.8
∼870K edges 3 3 ∼7.1K ∼141K 21.74 0.36 1.12 0.95 0.957 0.971 0.990 7.6 325.9

3 4 ∼7.2K ∼159K 22.93 0.38 1.39 0.83 0.958 0.976 0.986 7.2 256.0
WikiTalk 2 3 ∼5.7K ∼102K 681.08 16.28 0.75 0.37 0.868 0.958 0.944 15.5 114.5

∼2.4M nodes 2 4 ∼5.8K ∼100K 693.44 16.22 0.73 0.37 0.870 0.930 0.909 1429.0 16.2 120.7
∼5M edges 3 3 ∼6.3K ∼101K 701.34 16.32 0.75 0.37 0.877 0.937 0.902 24.0 211.6

3 4 ∼6.7K ∼103K 706.26 16.34 0.78 0.36 0.869 0.976 0.967 28.7 197.5
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Figure 7: Execution times of L-PPR, LR-PPR, and FastRWR
for different numbers of seed nodes

4. CONCLUSIONS
In this paper, we presented a Locality-sensitive, Re-use promot-

ing, approximate Personalized PageRank (LR-PPR) algorithm for
efficiently computing the PPR values relying on the localities of
the seed nodes on the graph. Instead of performing a monolithic
computation for the given seed node set using the entire graph, LR-
PPR divides the work into localities of the seeds and caches the in-
termediary results obtained during the computation. These cached
results can then be reused for future queries sharing seed nodes.
Experiments showed that the proposed LR-PPR approach provides
significant gains in execution time relative to existing approximate
PPR computation techniques, where the PPR scores are computed
from scratch using the whole network. LR-PPR also outperforms
L-PPR, where the PPR scores are computed in a locality-sensitive
manner, but without significant re-use.
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