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A complete theoretical characterization of dielectric, elastic, photoelastic and piezoelectric tensors of
the low-temperature rhombohedral phase of BaTiO3 was performed by accurate ab initio simulations
within periodic boundary conditions, using one-electron Hamiltonians and atom-centered Gaussian-
type-function basis sets as in the Crystal program. Because this phase is stable only at very low
temperature, experimental characterization is difficult and none of such tensorial properties have
been measured. For this reason, we validated our method by comparing structural, electronic and
vibrational properties of the other three phases of BaTiO3 (cubic, tetragonal and orthorhombic) with
available experimental data. The effect of the adopted one-electron Hamiltonian on the considered
tensorial properties, beyond the simple local density approximation and the dependence on the
electric field frequency of dielectric and photoelastic constants are explicitly investigated.

I. INTRODUCTION

Barium titanate, BaTiO3, is one of the most studied
ferroelectric ceramics. This material is widely used in ad-
vanced technological applications as capacitor or compo-
nent of non-linear optical, piezoelectric and energy/data-
storage devices.1–4 Since the discovery of its ferroelectric
character, a lot of attention has been devoted to the pe-
culiar dielectric and piezoelectric properties of BaTiO3.
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From a structural point of view, BaTiO3 shows a cu-
bic ABO3-type perovskite crystal structure at high tem-
perature where A sites host divalent cations (Ba2+ in
this case) and B sites are occupied by tetravalent cations
(Ti4+ in this case). With reference to the conventional
cubic cell at high temperature, Ba2+ ions are placed at
corners, O2− ions at the center of faces, thus forming an
octahedron, and a Ti4+ ion at the body center of the cell.

Upon cooling, three consecutive ferroelectric transi-
tions occur starting from the cubic structure, due to the
displacement of Ti ions along different crystallographic
directions, the resulting macroscopic polarization of the
material being always parallel to this displacement.6 At
393 K, BaTiO3 undergoes the first transition from a cu-
bic paraelectric to a tetragonal ferroelectric phase, which
corresponds to a small structural elongation along a [001]
crystallographic direction. Then, an orthorhombic fer-
roelectric phase occurs between 278 K and 183 K that
can be interpreted as a deformation along a face diago-
nal [011] direction.7 Finally, below 183 K, BaTiO3 trans-
forms into a low-temperature ferroelectric rhombohedral
phase characterized by an elongation along the cell body
diagonal [111] direction. Two models have been pro-
posed for phase transitions of BaTiO3: the displacive
model8 is governed by a Γ point soft phonon mode; the
order-disorder model9–11 implies the coexistence of local
configurations with lower symmetry with respect to the

macroscopic order parameter, that is, the macroscopic
polarization in this case.

The structure of the paraelectric cubic phase of
BaTiO3 was refined experimentally long time ago.12,13

Single-crystal X-ray and neutron diffraction struc-
tural studies of the tetragonal,14–16 orthorhombic17 and
rhombohedral18,19 ferroelectric phases of BaTiO3 have
been reported. Among others, the neutron diffrac-
tion study of the three ferroelectric phases performed
by Kwei et al.

6 in 1993 is here taken as a refer-
ence as regards their structural properties. Several
computational studies of the structures of the differ-
ent phases of BaTiO3 have also been reported, ei-
ther with an atom-centered Gaussian-type function
(GTF)20–23 or a plane-wave pseudopotential24–31 basis
set approach. Many of the above-mentioned theoret-
ical studies have also investigated the phonon proper-
ties of the cubic phase,20,21,25,26,28 whereas no exper-
imental spectroscopic measurements are known. Ra-
man scattering experiments have been performed for
the tetragonal,32,33 orthorhombic34 and rhombohedral35

phases. As regards theoretical investigations of vi-
brational frequencies, several studies have addressed
this topic for the tetragonal,20,36–38 orthorhombic20 and
rhombohedral20,22,31,38,39 phases.

Elastic, piezoelectric and dielectric constants of
cubic,40 tetragonal41–43 and orthorhombic44 phases of
BaTiO3 have been measured experimentally. In partic-
ular, a complete set of dielectric, elastic, piezoelectric,
electro-optic and elasto-optic constants has been deter-
mined for the ferroelectric tetragonal phase by Zgonik
et al.

43 The temperature dependence of different elasto-
optic tensor components of the cubic phase has been
measured also by Cohen et al.

45 None of these tenso-
rial properties have been measured experimentally for the
low-temperature rhombohedral phase, yet.

A couple of computational studies have been reported
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on such tensorial properties of the rhombohedral phase.
Wang et al.

46 computed elastic, polarization and elec-
trostrictive properties of the four different phases of
BaTiO3 by using a local density approximation (LDA),
with projector-augmented waves (PAW) and density-
functional perturbation theory (DFPT). Elastic, dielec-
tric and piezoelectric properties of the low-temperature
ferroelectric rhombohedral phase have been reported by
Wu et al.

31 who used the same LDA-DFPT approach. In
both cases, cell volumes were taken at the experimental
values.

In this paper, beside structural, electronic and vibra-
tional properties of the four phases, we focus on accu-
rate ab initio simulation of tensorial properties, such as
dielectric, elastic, piezoelectric and photoelastic, of the
low-temperature rhombohedral phase of BaTiO3. Both
electronic and nuclear contributions to these properties
are computed and discussed. Recent developments by
some of us of fully automated algorithms for the calcula-
tion of such tensorial properties in the Crystal program
make now such a complete theoretical investigation fea-
sible at relatively low computational cost.47–50

The effect of the adopted one-electron Hamiltonian
on these tensorial properties is investigated systemati-
cally here for the first time beyond the simple LDA ap-
proach. In particular, four one-electron Hamiltonians
are considered which are representative of four differ-
ent classes: the reference Hartree-Fock (HF) method,
LDA and generalized-gradient approximation (GGA) to
the density functional theory (DFT), namely Perdew-
Burke-Ernzerhof (PBE),51 and a global hybrid functional
(PBE0) with 25 % of exact HF exchange.52 All the calcu-
lations reported in this manuscript have been performed
with a development version of the Crystal program.53,54

A fairly similar computational approach has been suc-
cessfully adopted by Evarestov and Bandura for comput-
ing structural, thermodynamical and phonon properties
of the rhombohedral phase of BaTiO3.

20–22

The structure of the paper is as follows: in Section
II we briefly illustrate the theoretical methods used for
the calculation of structural parameters, dielectric, elas-
tic, piezoelectric and photoelastic constants and we re-
port the main computational parameters adopted for
these calculations; in Section III A, the major outcomes
of structural parameters and phonon frequencies for the
four different phases of BaTiO3 are presented; in the fol-
lowing subsections elastic, piezoelectric and photoelastic
properties of the low-temperature rhombohedral phase
are presented and dicussed. Conclusions are drawn in
Section IV.

II. COMPUTATIONAL METHOD AND

DETAILS

All the calculations reported in this paper are per-
formed with a development version of the Crystal pro-
gram for ab initio quantum chemistry of solid state.53,54

An atom-centered Gaussian-type-function (GTF) ba-
sis set is adopted whose coefficients for valence elec-
trons have been re-optimized for the cubic phase of
BaTiO3, by minimizing the HF energy using the
LoptCG script.55 Oxygen atoms are described by a
split-valence 8-411G(2d1f) basis set, Titanium atoms
by a 86-411G(3d1f) one while core and valence elec-
trons of Barium atoms are described by a Hay-Wadt
small-core pseudopotential56–58 and 311G(1d1f) func-
tions, respectively.59

In Crystal, the truncation of infinite lattice sums is
controlled by five thresholds T1, . . . , T5; here T1 = T2 =
T3 = 10−10 a.u., T4 = 10−12 a.u. and T5 = 10−24 a.u.
Reciprocal space is sampled according to a sub-lattice
with shrinking factor 8, corresponding to 35, 75, 105
and 65 points in the irreducible Brillouin zone for cubic,
tetragonal, orthorhombic and rhombohedral phases, re-
spectively. The DFT exchange-correlation contribution
is evaluated by numerical integration over the cell vol-
ume: radial and angular points of the atomic grid are
generated through Gauss-Legendre and Lebedev quadra-
ture schemes, using an accurate predefined pruned grid:
the accuracy in the integration procedure can be esti-
mated by evaluating the error associated with the inte-
grated electronic charge density in the unit cell versus the
total number of electrons per cell: 3×10−5|e| out of a to-
tal number of 56 electrons per cell for the rhombohedral
phase, for instance.

A. Dielectric Tensor

The electronic contribution to the static dielectric ten-
sor, at infinite electric field wavelength λ → ∞, is
evaluated through a Coupled-Perturbed-HF/Kohn-Sham
(CPHF/KS) scheme60 adapted for periodic systems.61

From an experimental viewpoint, it corresponds to the
dielectric response of the crystal measured for sufficiently
high frequencies of the applied electric field to make nu-
clear contributions negligible, but not high enough for
generating electronic excitations. CPHF/KS is a per-
turbative, self-consistent method that focuses on the de-
scription of relaxation of crystalline orbitals under the
effect of an external electric field. The perturbed wave-
function is then used to calculate the dielectric properties
as energy derivatives. Further details about the method
and its implementation in the Crystal program can be
found elsewhere62 as well as some recent example of its
application.48–50,63–65 The electronic dielectric tensor of
a 3D crystal is obtained from the polarizability α as:

ǫ = 1 +
4π

V
α , (1)

where V is the cell volume. With such a scheme, the
explicit dependence of the polarizability and dielectric
tensors from the electric field wavelength λ can be com-
puted as well.
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TABLE I: Fractional atomic coordinates of the symmetry-irreducible atoms of the four different phases of BaTiO3: cubic,
tetragonal, orthorhombic and rhombohedral (corresponding space group symbols are also given).

Phase Cubic Tetragonal Orthorhombic Rhombohedral

Space group Pm3m P4mm Amm2 R3m

Atomic positions

Ba (0, 0, 0) Ba (0, 0, 0) Ba (0, 0, 0) Ba (0, 0, 0)

Ti ( 1
2
, 1

2
, 1

2
) Ti ( 1

2
, 1

2
, 1

2
+∆zTi) Ti ( 1

2
, 0, 1

2
+∆zTi) Ti ( 1

2
+∆xTi,

1
2
+∆xTi,

1
2
+∆xTi)

O ( 1
2
, 1

2
, 0) O1 ( 1

2
, 1

2
, ∆zO1) O1 (0, 0, 1

2
+∆zO1) O ( 1

2
+∆xO, 1

2
+∆xO, ∆zO)

O2 ( 1
2
, 0, 1

2
+∆zO2) O2(

1
2
, 1

4
+∆yO2, 1

4
+∆zO2)

B. Elastic, Piezoelectric and Photoelastic Tensors

The elements of the fourth-rank elastic tensor C for
3D systems are usually defined as second energy density
derivatives with respect to pairs of deformations:66

Cvu =
1

V

∂2E

∂ηv∂ηu

∣

∣

∣

∣

∣

0

, (2)

where η is the symmetric second-rank pure strain tensor,
V the equilibrium cell volume and Voigt’s notation is
used according to which v, u = 1, . . . 6 (1 = xx, 2 = yy,
3 = zz, 4 = yz, 5 = xz, 6 = xy). An automated scheme
for the calculation of C (and of S = C−1, the compliance
tensor) has been implemented in the Crystal program
that exploits analytical gradients and computes second
derivatives numerically.47,67

In the linear regime, direct e and converse d piezoelec-
tric tensors describe the polarization P induced by strain
η and the strain induced by an external electric field E,
respectively:

direct effect P = eη at constant field (3)

converse effect η = d
T
E at constant stress (4)

The direct and converse piezoelectric tensors are con-
nected to each other: e = dC and d = e S. Our approach
consists in directly computing the intensity of polariza-
tion induced by strain. In Crystal, the polarization can
be computed either via localized Wannier functions or
via the Berry phase (BP) approach.68 The latter scheme
is adopted in the automated implementation exploited
here.48

The elements of the Pockels’ elasto-optic fourth-rank
tensor P (i.e. elasto-optic constants {pijkl}) are defined
by the relation:

∆ǫ−1
ij =

∑

kl

pijklηkl . (5)

In the above expression, ∆ǫ
−1 is the difference between

the inverse dielectric tensor of a strained and the un-
strained equilibrium configuration; i, j, k, l = x, y, z rep-
resent Cartesian directions. If Voigt’s notation is used,

Pockels’ tensor becomes a 6×6 matrix like C and S.
An automated implementation in the Crystal program
of the calculation of elasto-optic constants is exploited
here.49

We recall that elastic, piezoelectric and elasto-optic
constants can be decomposed into purely electronic
“clamped-ion” and nuclear “internal-strain” contribu-
tions; the latter measures the effect of relaxation of the
relative positions of atoms induced by the strain and
can be computed simply by optimizing atomic positions
within the strained cell.69,70

III. RESULTS AND DISCUSSION

The main objective of this section is that of reporting
and discussing the results of accurate ab initio simula-
tions of piezoelectric, elastic, dielectric and photoelastic
properties of the low-temperature rhombohedral phase
of BaTiO3. Given the predictive character of this study,
due to the lack of experimental determinations of these
tensorial quantities for the low-temperature ferroelectric
phase, the accuracy of our theoretical approach will be
discussed with respect to structural, electronic and vibra-
tional properties of the four phases of BaTiO3, for which
experimental data have been reported. Section III A is
devoted to the illustration of the structural and vibra-
tional description of the four phases.

A. Structural and Vibrational Features of the Four

Phases

Before illustrating the accuracy of the present simula-
tions in describing structural features of the four phases,
let us recall that, at high temperature, BaTiO3 shows a
centro-symmetric cubic structure (space group Pm3m)
that can be described by three symmetry-irreducible
atoms in the cell: a Ba2+ cation is placed at the origin,
an O2− anion at the center of a face and a Ti4+ cation
at the body center of the crystallographic cubic cell.
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TABLE II: Structural and electronic properties of the cu-
bic, tetragonal, orthorhombic and rhombohedral phases of
BaTiO3, as computed at PBE0 level and compared with ex-
perimental data and a previous theoretical determination at
the same PBE0 level (see Ref. 20): lattice parameters a, b, c,
volume V , bulk modulus B, bandgap Eg and atomic posi-
tions as defined in Table I. For the rhombohedral phase, the
lattice angle α is also reported. For each ferroelectric phase,
the energy difference ∆Ec with respect to the cubic phase is
given.

Calc. PBE0 Exp.

Cubic (Pm3m) (Ref. 20)

a (Å) 3.980 3.992 3.99612

V (Å3) 63.03 63.62 63.8112

B (GPa) 194 189 162a-195b

Eg (eV) 4.0 4.0 3.271

Tetragonal (P4mm)

a (Å) 3.960 3.968 3.9976

c (Å) 4.097 4.137 4.0316

V (Å3) 64.24 65.14 64.416

∆zTi 0.0202 0.0203 0.02036

∆zO1 -0.0391 -0.0431 -0.02586

∆zO2 -0.0202 -0.0226 -0.01236

B (GPa) 117 112 134c-14143

Eg (eV) 4.2 4.1 3.471

∆Ec (mHa) -1.24 -1.51 -

Orthorhombic (Amm2)

a (Å) 3.951 3.958 3.9836

b (Å) 5.696 5.728 5.6756

c (Å) 5.729 5.770 5.6926

V (Å3) 128.91 130.81 128.636

∆zTi 0.0171 0.0175 0.01706

∆zO1 -0.0189 -0.0186 -0.01106

∆yO2 0.0086 - 0.00616

∆zO2 -0.0185 - -0.01576

B (GPa) 115 109 -

Eg (eV) 4.6 4.7 -

∆Ec (mHa) -1.56 -2.06 -

Rhombohedral (R3m)

a (Å) 4.010 4.029 4.0046

α (deg) 89.800 89.727 89.8396

V (Å3) 64.47 - 64.176

∆xTi -0.0132 -0.0151 -0.01286

∆xO 0.0232 0.0129 0.01096

∆zO 0.0124 0.0242 0.01936

B (GPa) 121 114 -

Eg (eV) 4.8 4.9 -

∆Ec (mHa) -1.62 -2.24 -

a Ambient pressure, high temperature from Ref. 13
b Room temperature, 1.6 GPa from Ref. 72
c Computed from the elastic constants of Ref. 41

Upon cooling, at 393 K, the paraelectric cubic struc-
ture undergoes a ferroelectric phase transition to a
tetragonal phase, with space group P4mm, that con-
tains four symmetry-irreducible atoms in the cell; with
respect to the cubic lattice, Ti and O atoms are displaced
along the z direction, as indicated in Table I. Below 278
K, symmetry is further reduced to orthorhombic (space
group Amm2) with four symmetry-irreducible atoms in
the cell; with respect to the tetragonal phase, the second
O atom is displaced also along the y direction. Even-
tually, below 183 K, a rhombohedral ferroelectric phase
with space group R3m, is found with three symmetry-
irreducible atoms per cell: whereas Ba remains fixed at
the origin of the cell, both Ti and O atoms are displaced
along the three Cartesian axes, as shown in Table I.

Structural and electronic properties of the four phases
of BaTiO3 are given in Table II, as theoretically deter-
mined in this study at the PBE0 level and compared with
existing experimental data and a previous theoretical in-
vestigation, at PBE0 level, by Evarestov and Bandura.20

Lattice parameters a, b, c, volume V , bulk modulus B,
electronic direct band-gap Eg and atomic positions, as
defined in Table I, are reported. For the rhombohedral
phase, the lattice angle α is also shown. For each ferro-
electric phase, its energy difference ∆Ec with respect to
the cubic phase is given.

As previously observed for other perovskites,48,73 the
PBE0 hybrid functional is providing a fairly reasonable
description of the volume of the four systems under in-
vestigation, the largest deviation from experiment be-
ing the underestimation by 1.27 % in the cubic phase; a
slight underestimation by 0.26 % is found for the tetrag-
onal phase while slight overestimations by 0.22 % and
0.47 % are obtained for the orthorhombic and rhombo-
hedral phases. In this respect, underestimations of the
volume of the two high-temperature cubic and tetragonal
phases can be easily understood in terms of the lack of
any thermal lattice expansion in the calculations, which
refer to 0 K. The computed bulk modulus B of the cubic
phase, 194 GPa, compares with the experimental value
at a pressure of 1.6 GPa, 195 GPa, thus indirectly con-
firming the underestimation of the volume. The theo-
retical bulk moduli of the three ferroelectric phases are
much smaller than that of the cubic phase, as also par-
tially confirmed by available experimental data for the
tetragonal phase, 134-141 GPa, with respect to 162-195
GPa for the cubic phase. Our computed bulk moduli
are obtained by fitting energy-volume data-points to the
universal exponential Vinet’s equation of state.74

Beside volume, also atomic displacements from their
cubic sites to form the ferroelectric phases are relatively
well described at this level of theory. Even if the absolute
values of the direct band-gap of the cubic and tetragonal
phases deviate from the experimental data by 0.8 eV,
the 0.2 eV increase of the band-gap from the cubic to the
tetragonal phase is perfectly reproduced. As a further
internal check for consistency, the energy difference ∆Ec

of the ferroelectric phases with respect to the cubic one
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TABLE III: Computed vibration frequencies of the optical phonon modes for the four different phases of BaTiO3 as compared
with available experimental data. For the tetragonal, orthorhombic and rhombohedral phases, the measured frequencies are
taken from Ref. 32, Ref. 34 and Ref. 35, respectively. The longitudinal-optical/transverse-optical (LO/TO) splitting has
been computed. Theoretical values of the infrared (IR) intensities are also reported for TO modes. Phonon modes are labeled
according to the irreducible representation (irrep) they belong to. Imaginary frequencies are labeled with i.

Cubic Tetragonal Orthorhombic Rhombohedral

Mode νcalc Icalc Mode νcalc νexp Icalc Mode νcalc νexp Icalc Mode νcalc νexp Icalc

(irrep) (cm−1) (km/mol) (irrep) (cm−1) (cm−1) (km/mol) (irrep) (cm−1) (cm−1) (km/mol) (irrep) (cm−1) (cm−1) (km/mol)

TO TO TO TO

T1u i230 - E i128 soft - B2 i71 - A1 176 173 186

T1u 193 453 A 168 175 237 B1 174 313 E 180 575

T2u 317 not active E 182 181 247 A1 178 not active E 245 4681

T1u 489 60 B 303 silent not active B2 180 193 115 A2 302 silent not active

LO E 316 306 30 B1 285 270 1872 E 318 not active

T1u 180 A 373 275 1308 B1 302 301 A1 320 242 1539

T1u 486 E 487 487 105 A2 316 320 not active E 491 347

T1u 694 A 566 516 648 A1 318 not active A1 557 522 325

LO A1 345 16 LO

E 176 180 B2 487 490 59 E 188

A 199 191 B1 496 270 A1 193 187

E 315 305 A1 562 532 198 E 318 310

E 479 468 LO E 473

A 492 471 B2 176 A1 503 485

E 701 717 A1 178 A1 729 714

A 775 725 B1 190 E 739

B1 300

A1 318 320

A1 349

B1 472

B2 477

A1 594

B2 704

B2 752 720

is found to regularly increase, in absolute value, while
going down the phase transition series from tetragonal

to rhombohedral, according to their relative stability at
0 K.

According to the displacive model, ferroelectric phase
transitions in BaTiO3 are driven by soft phonon modes.8

The structural features of the ferroelectric phases are
then very closely connected to their vibrational proper-
ties. In Table III, we report computed phonon frequen-
cies of both transverse-optical (TO) and longitudinal-
optical (LO) modes, as compared with available exper-
imental data. To the best of our knowledge, no exper-
imental phonon frequency data have been reported for
the cubic phase while a number of theoretical simula-
tions have been performed.20,21,25,26,28 A quite complete
experimental characterization is reported for the tetrag-
onal phase spectrum32 while few phonon frequency val-
ues are reported for the orthorhombic and rhombohedral
phases.34,35 All phonon modes in the table are labeled
according to the symmetry irreducible representation (ir-

rep) they belong to. Infrared (IR) intensities Icalc for the
TO modes are also reported, as computed for each mode
p by means of the mass-weighted effective mode Born
charge vector Zp,

75,76 evaluated through a Berry phase
approach:77,78

Ip =
π

3

NA

c2
dp

∣

∣Zp

∣

∣

2
with

∣

∣Zp

∣

∣

2
=

∣

∣

∣

∣

∣

∂µ

∂Qp

∣

∣

∣

∣

∣

2

, (6)

where NA is Avogadro’s number, c the speed of light, dp

the degeneracy of the p-th mode, µ the cell dipole mo-
ment and Qp the normal mode displacement coordinate.
More details on the calculation of the infrared intensities
in the Crystal program can be found in Ref. 79.

Since our simulations are performed at 0 K, soft
phonon modes driving the transitions from the cubic to
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the tetragonal and orthorhombic phases are projected
down to absolute zero and, thus, show imaginary fre-
quencies. As expected, the low-temperature rhombohe-
dral phase is characterized by phonon frequencies which
are all positive that implies its stability at 0 K. In par-
ticular, for the cubic phase, we find an imaginary fre-
quency of i230 cm−1 that is comparable to i240 cm−1

and i257 cm−1 obtained by Evarestov and Bandura in
their recent ab initio periodic study at PBE and PBE0
level of theory, respectively.20 For the tetragonal phase,
calculated optical phonon frequencies are in good agree-
ment with the rich set of experimental values measured
by Nakamura.32 The only significant deviation refers to
a TO phonon mode belonging to the totally-symmetric
A irrep, for which the calculated value is 373 cm−1 and
the measured one 275 cm−1.

For the orthorhombic and rhombohedral ferroelectric
phases, few experimental phonon frequencies are re-
ported, in good agreement with our simulated values,
with the exception of a single TO mode of A1 symmetry
of the rhombohedral phase where the computed value of
320 cm−1 largely overestimates the experimental value of
242 cm−1. Given the overall good agreement with the ex-
perimental data, such few deviations are likely to be due
to specific problems in extracting the correct vibration
frequencies from incomplete experimental spectra.

B. The Rhombohedral Phase

In this section, dielectric, elastic, piezoelectric and pho-
toelastic properties of the low-temperature rhombohedral
phase of BaTiO3 are discussed and the effect on these
properties of the adopted one-electron Hamiltonian is in-
vestigated.

1. Dielectric Tensor

Given the relatively high symmetry of the system,
there are only two independent components in the opti-
cal (i.e. purely electronic) dielectric tensor: ǫ11 and ǫ33.
They were computed as a function of the electric field
wavelength λ with four different one-electron Hamiltoni-
ans: HF, PBE0, LDA and PBE (Figure 1). From previ-
ous applications of the CPHF/KS method, we know that
the generalized-gradient approximation to the DFT, such
as the PBE functional, usually provides the best agree-
ment with experimental dielectric tensors, even better
than hybrid schemes when the crystal structure, includ-
ing cell parameters, is fully relaxed.62,80

All the Hamiltonians describe ǫ11 > ǫ33. The HF
method gives very small values of dielectric constants,
relatively close to each other and almost independent on
the electric field wavelength λ. Pure DFT functionals,
PBE and LDA, predict much larger values (LDA more
so than PBE), with a larger separation between them and
with a strong dependence on λ. As expected, the hybrid

FIG. 1: For each considered Hamiltonian, the two dielectric
constants ǫ11 and ǫ33 (in units of ǫ0) are reported as a function
of the electric field wavelength λ, for the rhombohedral phase;
ǫ11 > ǫ33 in all cases.

PBE0 functional provides an intermediate description of
the dielectric constants, in all respects.

As clearly seen from pure DFT and hybrid data, which
are known to accurately describe dielectric properties of
solids, the explicit account of the dependence of com-
puted dielectric response properties on the electric field
wavelength λ is found to be mandatory before any com-
parison with future experiments which, as usual, will be
performed at finite (and relatively small) values of λ (be-
tween 500 nm and 600 nm).

Two previous theoretical studies, one by Wu et al.
31

in 2005 and one by Evarestov and Bandura20 in 2012,
discussed their results of the dielectric constants of the
rhombohedral phase of BaTiO3 comparing with what
they assumed to be the corresponding experimental coun-
terpart, that is, data from Ref. 81 (2001). As a matter
of fact, the values reported in Ref. 81 are in turn taken
from a much earlier study by Wemple et al.

71 (1968)
which, however, refers to the room-temperature tetrago-
nal phase of BaTiO3 (see Figure 4 therein and the related
discussion). In that work, the authors also explicitly
measured the λ-dependence of the dielectric constants,
in the 400 nm - 700 nm range, which was found to be
rather strong.

2. Elastic and Photoelastic Properties

Predicted elastic and photoelastic properties of low-
temperature BaTiO3, with four different Hamiltonians,
are given in Table IV. In particular, elasto-optic con-
stants here refer to the λ → ∞ limit; see below for
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TABLE IV: Elastic and photoelastic constants of the rhombohedral phase of BaTiO3 as computed with four different one-
electron Hamiltonians. The density ρ, along with a number of polycrystalline aggregate elastic properties, such as bulk
modulus B, shear modulus G, Young’s modulus E, Poisson’s ratio σ and transverse, vs, and longitudinal, vp, seismic wave
velocities, are also reported. Electronic “clamped-ion” and total “nuclear-relaxed” values are reported for each quantity.

Elastic Constants (GPa) Photoelastic Constants ρ B G E σ vs vp

C11 C12 C13 C14 C33 C44 C66 p11 p12 p13 p14 p33 p44 p66 (g/cm3) (GPa) (GPa) (GPa) (km/s) (km/s)

HF

Relaxed 290 66 1 76 282 45 112 0.074 0.241 0.249 -0.097 0.467 0.125 -0.083 5.92 110 41 109 0.33 2.6 5.3

Clamped 399 116 91 28 395 116 141 0.036 0.096 0.143 -0.046 0.043 0.001 -0.030 5.92 199 131 322 0.23 4.7 7.9

LDA

Relaxed 327 96 64 34 319 83 116 0.228 0.169 0.314 -0.169 0.510 0.207 0.030 6.31 158 99 245 0.24 4.0 6.8

Clamped 381 119 109 9 377 122 131 -0.026 -0.010 0.032 -0.041 -0.034 0.022 -0.008 6.31 202 128 317 0.24 4.5 7.7

PBE

Relaxed 250 70 31 43 226 39 90 0.217 0.185 0.341 -0.166 0.558 0.261 0.016 5.85 109 52 134 0.29 3.0 5.5

Clamped 323 101 85 12 299 95 111 -0.053 0.002 0.069 -0.035 0.005 0.005 -0.027 5.85 165 105 259 0.23 4.2 7.2

PBE0

Relaxed 282 73 31 47 258 44 104 0.161 0.193 0.299 -0.140 0.500 0.213 -0.016 6.02 121 61 156 0.28 3.2 5.8

Clamped 365 113 94 14 340 108 126 -0.032 0.032 0.098 -0.041 0.018 0.002 -0.032 6.02 185 118 293 0.24 4.8 7.5

an explicit account of electric field wavelength depen-
dence. Unfortunately, no experimental data are cur-
rently available to compare with. From previous stud-
ies, we expect the hybrid PBE0 scheme to give the best
description of elastic properties and the PBE functional
the best description of photoelastic properties.47,49 Elec-

tronic “clamped-ion” and total “nuclear-relaxed” values
are reported; their difference corresponds to the nuclear
relaxation term, which is found to be dramatic. Even
with a balanced Hamiltonian, such as PBE, it can be
as large as twice the electronic contribution (see, for in-
stance, C13 and C14).

Elastic properties of isotropic polycrystalline aggre-
gates can be computed from the elastic and compliance
constants defined in Section II B via the so-called Voigt-
Reuss-Hill averaging scheme.82 For a rhombohedral crys-
tal, the adiabatic bulk modulus is defined as the average
B = 1

2 [BV + BR] between Voigt upper and Reuss lower
bounds:

BV =
1

9
(2C11 + C33 + 2C12 + 4C13)

BR = (2S11 + S33 + 2S12 + 4S13)
−1 .

The shear modulus G = 1
2 [GV + GR] is expressed as the

average between Voigt upper GV and Reuss lower GR

bounds:

GV =
1

15
(2C11 + C33 − C12 − 2C13 + 6C44 + 3C66)

GR = 15(8S11 + 4S33 − 4S12 − 8S13 + 6S44 + 3S66) .

From the average bulk and shear moduli defined above,
Young’s modulus E and Poisson’s ratio σ are defined as
follows:

E =
9B G

3B + G
and σ =

3B − 2G

2(3B + G)
. (7)

According to the elastic continuum theory, the three
acoustic wave velocities of a crystal, along any general
direction, are related to the elastic constants by Christof-
fel’s equation.83,84 Within the Voigt-Reuss-Hill averaging
scheme, the average values of transverse (shear), vs, and
longitudinal, vp, seismic wave velocities, for an isotropic
polycrystalline aggregate, can be computed from the elas-
tic properties defined above and the density ρ of the crys-
tal as:85

vs =

√

G

ρ
and vp =

√

B + 4
3G

ρ
. (8)

All the elastic properties introduced above have been
computed with different Hamiltonians for the rhombohe-
dral low-temperature phase of BaTiO3 and reported in
Table IV. The relevance of the nuclear relaxation effect,
which systematically reduces the rigidity of the system,
can be clearly seen from all these average properties.

As stated above, the elasto-optic constants reported in
Table IV, refer to the λ → ∞ limit. Since Brillouin scat-
tering experiments are usually performed at finite electric
field wavelengths (500 nm < λ < 600 nm), in order to
facilitate the comparison with future experimental mea-
surements, we have computed the explicit dependence
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FIG. 2: (color online) Elasto-optic constants pvu of the rhom-
bohedral phase of BaTiO3 as computed at PBE level, as a
function of the electric field wavelength λ. Computed values
at the λ → ∞ limit are also reported as red circles.

of all these constants on λ at the PBE level: a wide
range, from 500 nm to 1000 nm, is considered. Results
are shown in Figure 2, along with simulated values at
λ → ∞. None of the elasto-optic constants changes sign
as a function of λ. All six symmetry-independent posi-
tive components decrease with λ while the only negative
one, p14, increases with λ. Three constants, p12, p66 and
p14, show a relatively small dependence on the field wave-
length, whereas the remaining four more strongly depend
on λ, particularly in the region between 500 nm and 600
nm.

3. Piezoelectricity

In recent years, the interest in the piezoelectric re-
sponse of simple perovskites at very low temperature has
been raised by the discovery, by Grupp and Goldman in
1997, of a giant piezoelectric effect of strontium titanate
SrTiO3 down to 1.6 K where piezoelectricity is usually
severely reduced.48,86 Such findings opened the way to
applications of these materials at cryogenic temperatures
as actuators for adaptive optics and low-temperature ca-
pacitors.

We report a complete characterization of the direct e

and converse d third-order piezoelectric tensors of rhom-
bohedral BaTiO3, as introduced in Section II B. Piezo-
electric constants are reported in Table V, as computed
with four one-electron Hamiltonians. For this property,
as for elastic constants, hybrid functionals, as PBE0, usu-
ally provide a rather good description. Total values are
given along with purely electronic “clamped-ion” contri-

TABLE V: Direct and converse piezoelectric constants of the
rhombohedral phase of BaTiO3, as computed with four differ-
ent Hamiltonians. Electronic and total nuclear relaxed values
are given.

Direct (C/m2) Converse (pm/V)

e15 e21 e31 e33 d15 d21 d31 d33

HF

Relaxed -7.52 3.24 -3.30 -4.41 1562† -511† -9.2 -15.6

Clamped 0.14 -0.19 0.06 -0.14 1.6 -0.8 0.2 -0.4

LDA

Relaxed -5.81 3.75 -4.77 -6.46 -95.0 30.3 -8.7 -16.8

Clamped 0.13 -0.15 0.04 -0.12 1.1 -0.6 0.2 -0.4

PBE

Relaxed -4.31 1.93 -2.11 -3.52 -290 80.6 -5.2 -14.1

Clamped 0.20 -0.28 0.05 -0.23 2.5 -1.4 0.3 -0.9

PBE0

Relaxed -4.67 1.99 -2.17 -3.45 -271 73.9 -5.0 -12.2

Clamped 0.21 -0.28 0.06 -0.22 2.3 -1.2 0.3 -0.8

† These unusual large values are due to very large elements of the HF
compliance tensor S = C

−1 in this case.

butions. Nuclear relaxation effect plays here a funda-
mental role: three direct, symmetry-independent, piezo-
electric constants out of four change their sign when in-
cluding such an effect (e15, e21 and e31). In particular,
the pure electronic contribution to e31 is predicted to
be very small, 0.06 C/m2. All these features agree with
the outcomes of a previous LDA theoretical investigation,
performed at the experimental volume.31

Converse piezoelectricity depends on both the direct
piezoelectric tensor and the elastic tensor (or its inverse,
the compliance tensor). The hybrid PBE0 approach
with full geometry optimization is found to provide re-
sults that are in good agreement with those of a pre-
vious LDA simulation, constrained at the experimental
volume, where d15 = −243.2, d21 = 70.1, d31 = −6.8,
d33 = −14.7.31

IV. CONCLUSIONS

Accurate ab initio simulations have been applied to the
theoretical characterization of several tensorial properties
of the low-temperature rhombohedral phase of barium
titanate, BaTiO3. Dielectric, elastic, piezoelectric and
photoelastic tensors have been computed with four differ-
ent one-electron Hamiltonians (including Hartree-Fock,
here reported as a benchmark), representatives of four
different levels of approximation. The explicit treatment
of the dependence of dielectric and photoelastic constants
on the electric field frequency provides with results that
can be more directly compared with future experimental
ones.

The adopted computational approach has been dis-
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cussed by comparing computed with experimental struc-
tural and vibrational properties of four phases of BaTiO3:
cubic Pm3m, tetragonal P4mm, orthorhombic Amm2
and rhombohedral R3m. The agreement with available
experimental data and previous theoretical investigations
is remarkable. In general, we expect predictions by the
PBE0 hybrid functional to be the most reliable as regards
elastic and piezoelectric properties of the rhombohedral
phase whereas those by PBE to describe accurately di-
electric and photoelastic properties.

In the analysis of available experimental data, we could
realize that some experimental measurements of the di-
electric constants of BaTiO3 were wrongly assigned, by
some authors of theoretical investigations, to the rhom-

bohedral phase, and not to the correct phase, that is the
tetragonal one, in past years.
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30 J. Íñiguez and D. Vanderbilt, Phys. Rev. Lett. 89, 115503

(2002).
31 X. Wu, D. Vanderbilt, and D. R. Hamann, Phys. Rev. B

72, 035105 (2005).
32 T. Nakamura, Ferroelectrics 137, 65 (1992).
33 U. D. Venkateswaran, V. M. Naik, and R. Naik, Phys. Rev.

B 58, 14256 (1998).
34 K. Laabidi and M. D. Fontana, Solid State Commun. 76,

765 (1990).
35 D. A. Tenne, X. X. Xi, Y. L. Li, L. Q. Chen, A. Soukiassian,

M. H. Zhu, A. R. James, J. Lettieri, D. G. Schlom, W.
Tian, and X. Q. Pan, Phys. Rev. B 69, 174101 (2004).

36 S. Sanna, C. Thierfelder, S. Wippermann, T. P. Sinha, and
W. G. Schmidt, Phys. Rev. B 83, 054112 (2011).

37 M. Uludogan, D. P. Guarin, Z. E. Gomez, T. Cagin, and
W. A. G. III, Comput. Mod. Eng. Sci. 24, 215 (2008).

38 P. Hermet, M. Veithen, and P. Ghosez, J. Phys.: Condens.
Matter 21, 215901 (2009).

39 N. Choudhury, E. J. Walter, A. I. Kolesnikov, and C.-K.
Loong, Phys. Rev. B 77, 134111 (2008).

40 D. Berlincourt and H. Jaffe, Phys. Rev. 111, 143 (1958).
41 A. Schaefer, H. Schmitt, and A. Dorr, Ferroelectrics 69,

253 (1986).
42 A. Khalal, D. Khatib, and B. Jannot, Phys. B 271, 343

(1999).
43 M. Zgonik, P. Bernasconi, M. Duelli, R. Schlesser,

P. Günter, M. H. G. D. Rytz, Y. Zhu, and X. Wu, Phys.
Rev. B 50, 5941 (1994).

44 A. V. Turik, Soviet Physics-Solid State 12, 688 (1970).
45 M. G. Cohen, M. DiDomenico, and S. H. Wemple, Phys.

Rev. B 1, 4334 (1970).
46 J. J. Wang, F. Y. Meng, X. Q. Ma, M. X. Xu, and L. Q.

Chen, J. Appl. Phys. 108, 034107 (2010).



10

47 A. Erba, A. Mahmoud, R. Orlando, and R. Dovesi, Phys.
Chem. Minerals (2013), doi: 10.1007/s00269-013-0630-4.

48 A. Erba, K. E. El-Kelany, M. Ferrero, I. Baraille, and
M. Rérat, Phys. Rev. B 88, 035102 (2013).

49 A. Erba and R. Dovesi, Phys. Rev. B 88, 045121 (2013).
50 A. Erba, M. Ferrabone, J. Baima, R. Orlando, M. Rérat,
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User’s Manual, Università di Torino, Torino (2010),
http://www.crystal.unito.it.

54 R. Dovesi, R. Orlando, B. Civalleri, C. Roetti, V. R. Saun-
ders, and C. M. Zicovich-Wilson, Z. Kristallogr. 220, 571
(2005).

55 C. Zicovich-Wilson, Loptcg shell procedure for numerical
gradient optimization (1998).

56 P. J. Hay and W. R. Wadt, J. Chem. Phys. 82, 299 (1985).
57 P. J. Hay and W. R. Wadt, J. Chem. Phys. 82, 270 (1985).
58 P. J. Hay and W. R. Wadt, J. Chem. Phys. 82, 284 (1985).
59 The basis set used in this work can be found

in the Crystal website following the link:
http://www.crystal.unito.it/Basis Sets/Ptable.html
(2013).

60 G. J. B. Hurst, M. Dupuis, and E. Clementi, J. Chem.
Phys. 89, 385 (1988).

61 B. Kirtman, F. L. Gu, and D. M. Bishop, J. Chem. Phys.
113, 1294 (2000).
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