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Abstract 
T-type Ca

2+
 channels have gained 15 years after cloning an immense interest as novel 

players in very unexpected cell functions and many relations to diseases have been 

discovered. This Special Issue provides a state of the art overview on novel functional 

properties of T-type Ca
2+

 channels, unexpected cellular functions and most importantly 

will also summarizes and review the involvement of this “tiny, transient” type of Ca
2+

 

channels in several disease. It is tried to bridge the gap between molecular biophysical 

properties of T-type Ca
2+

 channels and diseases providing finally a translational view on 

this amazing ion channel.  
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The advent of T-type Ca
2+

 channels 
 

Calcium ions function as the most widespread, versatile and promiscuous signalling 

molecule within intracellular cell compartment. Changes in the concentration of free 

cytosolic Ca
2+

 ([Ca
2+

]i) are of fundamental importance in gene expression, different 

stages of the cell cycle, starting from the fertilization and embryonic pattern formation 

over cell differentiation and proliferation to cell death and cell necrosis. Modulation of 

[Ca
2+

]i is essential for different cellular processes such as gene transcription, transmitter 

release, muscle contraction, secretion, learning and memory (3). It is known since the 

early 1950th that a major part of these changes in [Ca
2+

]i depend on a Ca
2+

 influx via the 

plasma membrane (see for an concise overview 33). However, the first Ca
2+

 currents, 

recorded with a double sucrose gap voltage clamp device, were described only on 1967 

(39). It became clear, especially after refining the electrophysiological methods (19, 22) 

that Ca
2+

 permeates through highly selective Ca
2+

 channels. The accepted paradigm was 

that probably only “a” Ca
2+

 channel existed, although a first indication of the presence of 

a heterogeneity of Ca
2+

 channel populations was obtained already in 1975 (18) using a 

two-electrode voltage clamp  method in starfish eggs. However, the first clear evidence 

for functionally different highly Ca
2+

 selective channels came in 1984–85. The so called, 

low-voltage-activated (LVA) or T-type (from “tiny” and “transient”) Ca
2+

 channels were 

directly measured as single channel events by using the patch-clamp technique in sensory 

neurones (6, 34) and ventricular myocytes (32). Fast inactivating burst-like openings 

were detected at very low voltages in excised membrane patches of sensory neurons with 

activation-inactivation kinetics and holding sensitivity very similar to that of macroscopic 

low-threshold currents (see figure 2 in 6). The clear-cut separation between high-voltage 

activated (HVA) or L-type (from “large” and “long-lasting”) and T-type channels in 

single channel measurements, occurred soon after and came as a surprise. If Ba
2+

 was the 

charge carrier, long-lasting openings representing the ~25 pS L-type channel could be 

easily resolved even in the same patch from burst-like openings representing T-type Ca
2+

 

channels of ~7 pS (see e.g. figure 3 in 32). The tiny single channel conductance with both 

Ba
2+

 or Ca
2+

 being the charge carrier through T-type channel was later confirmed an 

many other studies (8, 13). In this period, it was also evident that besides activating 

transiently at very negative membrane potentials (2, 6, 14), the neuronal T-type channel 

possessed two other unique key properties: a very slow deactivation rate (1, 5) and an 

effective recruitment of full size low-threshold Ca
2+

 currents following short 

hyperpolarization (7, 11). Both features, could nicely account for the existence of Ca
2+

-

mediated rebound spikes observed in the inferior olive and thalamic neurons (25-27) , 

named  “low-threshold Ca
2+

 spikes” (see for a recent review 23).. This feature was also 

described at the single channel level in cardiac myocytes (13). Interestingly, some 

unexpected single channel properties, e.g. the voltage dependence of the first latency for 

single channel openings, could be nicely translated into the macroscopic voltage 

dependent inactivation of T-type Ca
2+

 channels (13).  

In the same period (1985-89), the canonical biophysical properties of neuronal and 

cardiac T-type channels were established (2, 4, 8, 13, 14, 16) and it was also clearly 

anticipated that possibly several genes were responsible for encoding different types of 

Ca
2+

 channels. Now, we know that 10 genes encode for the pore forming-subunit of 



different Ca
2+

 selective ion channels (1S, C, D, F, A, B, E and for T-type 1G, H, I). In 

addition, we also know that 10 genes for non-pore forming Ca
2+

 channel subunits exist 

(1-4, 1-4, 1, 6) which modulate the functional properties and the expression pattern 

of Ca
2+

 channels, but have not been proven so far to play a role for T-type channels (for 

the most recent review see 20). 

 

T-type Ca
2+

 channels: molecular identity and selective antagonists 
 

Surprisingly, it took more than 10 years before the three T-type Ca
2+

 channel genes were 

identified (29, 35-37). Three 1-subunits were cloned (1G, 1H and 1I or Cav3.1, 

Cav3.2 and Cav3.3), which were further extended by alternative splicing (36). This was a 

decisive step to allow the unraveling of structural determinants for permeation and kinetic 

T-type channel properties (41, 44). Even more exciting, the functional role of T-type Ca
2+

 

channels could now be studied systematically, the distribution and expression pattern of 

the three T-type isoforms in several tissues could be unraveled, and, importantly, opened 

the possibility to use antisense and knock-out strategies to unveil the physiological and 

pathological role of these channel (for some reviews from the early period after cloning 

see 15, 33, 35, 36, 42, 43). The molecular cloning of the T-type Ca
2+

 channels is now 

approximately 15 years old and has been so far the focus of the new developments in this 

exciting field.  

Amazingly enough, it took even longer (24 years!) to develop a new generation of 

selective T–type channel blockers (40) that could overcome the weak specificity of anti-

hypertensive drugs (mibefradil) (9, 30) and divalent cations (Ni
2+

) toward T-type 

channels. Mibefradil and Ni
2+

 have been for years the only pharmacological tools on 

hands of physiologists and pharmacologists to dissect the effects of T-type from other 

voltage-gated channels. Their usage, however, was often limited to a qualitative 

identification of T-type channel expression for specific cellular functions, particularly 

when Ca
2+

 currents could not be directly measured. It is not surprising, therefore that the 

recent synthesis of piperidine derivatives (TTA-P2) (40), which potently and selectively 

block T-type channels (12), boosted the number of reports on T-type channels in the last 

5 years and allowed the discovery of unexpected cell functions in which low-voltage 

activated channels are involved (21, 28). 

T-type channels are now recognized as therapeutic targets in a variety of diseases, like 

epilepsy, insomnia, pain, cancer and hypertension (for recent reviews see 38). It can thus 

be predicted that present and future Ca
2+

 channel antagonists selective for Cav3 channels 

will be increasingly used to better understand the role of these channels in the regulation 

of key body functions with a search for clinical products. 

 

A Special Issue on T-type Ca
2+

 channels: amazing new functional roles 
 

The first ideas about a functional impact of T-type Ca
2+

 channels came from heart muscle 

and central neurons rhythmicity. In one case, the T-type channel has been hypothesized 

to play a critical role in cardiac pacemaking (17, 31). In the other case, T-type channel 

was essential for the synchronized repetitive activity of thalamic neurons (10, 25) 



characteristic of certain stages of sleep (see for an historical overview 24). Later, T-type 

channels were considered as important for smooth muscle contraction, hormone and 

neurotransmitter secretion, gamete interaction and gene expression (discussed in a 

historical overview on T-type channel in 33). Research in the last 10 years has indicated a 

plethora of new cell functions in which T-type Ca
2+

 channels are involved. 

This special issue of Pflügers Archiv focuses on the multiple roles that T-type channels 

play in the regulation of critical body functions. T-type channels control neuronal 

excitability, muscle contraction, hormone and neurotransmitter release, pain sensation, 

cell development and proliferation. Thus, it is not surprising that up- or down-regulation 

or critical mutations of Cav3 channels can cause neurodegenerative diseases (epilepsy, 

sleep disorders, stress, hyperalgesia), as well as tumor growth and cardiovascular diseases 

(cardiac arrhythmias, heart block and hypertension). In this special issue we have 

therefore given equal emphasis to the new functional roles of T-type channels and to the 

search of newly available T-type channel antagonists with potential use in the therapy. 

In the first article related to the structure and function of Cav3.1, Cav3.2 and Cav3.3 

channels Dr Edward Perez-Reyes discusses the importance of two critical regions of the 

channel: the extracellular high affinity metal binding site and the intracellular loop 

connecting repeats I and II (the “gating brake”) which stabilizes Cav3 channel gating and 

regulates surface channel expression. Dr. Yaroslav Shuba then describes the mechanism 

by which Ca
2+

 ions permeate through open Cav3 channels and how the intrapore binding 

sites for Ca
2+

 of LVA channels differs from that of HVA channels. Along these lines, Dr. 

David Spafford compares the impressive similar structure and function of Cav3 channels 

of invertebrates and mammals providing insights into key shared features between these 

distant channels.  

In relation to the interaction of T-type channels with other ion channels, membrane 

proteins or bioactive lipids, Drs. Ray Turner and Gerald Zamponi focus on the newly 

discovered property of T-type to form signaling complexes with different calcium-gated 

(KCa1.1 and KCa3.1) and even with voltage-gated K
+
 channels via associated KChIP 

proteins, broadening the regulatory role of Cav3 channels in neuronal excitability. Dr. 

Emilio Carbone discuss new emerging views on the role of T-type channels in controlling 

synaptic transmission in central neurons and vesicular exocytosis in neuroendocrine cells 

in the light of recent reports on the co-localization of T-type channels with ion channels, 

membrane receptors and SNARE proteins. Drs. Jeanne Chemin and Philippe Lory 

describe the inhibitory effects of various endogenous lipids on Cav3.2 and Cav3.3 

channels and how these modulatory effects could be critically associated with pain 

sensation and vasodilation. 

Concerning the involvement of T-type channels in neurodegenerative diseases, Dr. 

Slobodan Todorovic provides a detailed overview of the role that T-type channels play in 

the increased sensitization of pain response in animal models of type 1 and type 2 

peripheral diabetic neuropathy. Dr. Emmanuel Bourinet discusses the role of T-type in 

the perception and modulation of pain and how recent T-type channel blockers could be 

possibly used as new analgesic. Dr. Hee-Sup Shin focuses on recent studies on the T-type 

channels in absence epilepsy showing that T-type channels of excitatory thalamocortical 

neurons rather than T-type channels of the inhibitory thalamic reticular nuclei are crucial 

for the generation of spikes and wave discharges at the origin of the disease. On the same 



topic, Drs. Régis Lambert, Nathalie Leresche and Vincenzo Crunelli discuss how the use 

of selective T-type channel blockers helps understanding the key function of T-type 

“window current” in the control of slow waves and spindles of natural sleep in thalamic 

neurons. Dr. Chung-Chin Kuo provides new emerging evidence on the role of T-type 

window current in the genesis of bursts discharges in neurons of subthalamic nucleus of 

parkinsonian models and how T-type channel antagonists could be beneficial for the 

treatment of Parkinson’s disease. In relation to the neuroprotective action of T-type 

channel blockers, Dr. Janxin Bao describes in details the efficacy of newly developed 

chemical compounds with promising neuroprotective effects.  

Regarding the T-type channels expressed in the cardiovascular system, Dr. Cary Hill 

discusses the peculiar properties of Cav3 channels and their coupling to Ca
2+

-gated K
+
 

channels in smooth muscle tissues and how their rapid up- or down-regulation can affect 

peripheral vasoconstriction. In line with this, Dr. Christopher Fry furnishes a detailed 

description of T-type channels expressed in the muscle and epithelial tissues of the 

urinary and male genital tracts and how an up-regulation of their activity could induce 

functional disorders (prostate tumors). Dr. Matteo Mangoni describes the relevance of T-

type channels in impulse conduction and heart rate automaticity of sino-atrial and atrio-

ventricular nodes using mice models, discussing their significance in the light of recent 

studies on the role of T-type channels in congenital heart block in humans. 

Concerning the specific involvement of T-type channels in cancer, Dr. Jaroslav 

Dziegielewski discusses recent findings which identify the T-type channels as the 

molecular target for anticancer therapy and indicate new directions for the design of 

novel therapeutic strategies using T-type channel antagonists. Along this line, Dr Jin Tao 

focuses on the use of T-type channel blockers for the treatment of highly proliferative 

tumors like glioblastoma. Drs. Alberto Darzson and Arturo Hernandez-Cruz complete the 

issue providing a detailed description of the evidence for the role of Cav3 channels in 

spermatogenic cells and in spermatozoa  

Obviously, this reviews collection of world's leading T-type channel researchers does not 

cover all the many exciting aspects on the structure and function of Cav3 channels. It 

certainly provides a topical overview of pertinent issues that will be further developed in 

future studies, hopefully with the entry of new research groups. 
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