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Cell walls are deeply involved in the molecular talk between partners during plant
and microbe interactions, and their role in mycorrhizae, i.e., the widespread symbiotic
associations established between plant roots and soil fungi, has been investigated
extensively. All mycorrhizal interactions achieve full symbiotic functionality through the
development of an extensive contact surface between the plant and fungal cells, where
signals and nutrients are exchanged. The exchange of molecules between the fungal and
the plant cytoplasm takes place both through their plasma membranes and their cell walls;
a functional compartment, known as the symbiotic interface, is thus defined. Among all
the symbiotic interfaces, the complex intracellular interface of arbuscular mycorrhizal (AM)
symbiosis has received a great deal of attention since its first description. Here, in fact, the
host plasma membrane invaginates and proliferates around all the developing intracellular
fungal structures, and cell wall material is laid down between this membrane and the fungal
cell surface. By contrast, in ectomycorrhizae (ECM), where the fungus grows outside and
between the root cells, plant and fungal cell walls are always in direct contact and form
the interface between the two partners. The organization and composition of cell walls
within the interface compartment is a topic that has attracted widespread attention, both
in ecto- and endomycorrhizae. The aim of this review is to provide a general overview of
the current knowledge on this topic by integrating morphological observations, which have
illustrated cell wall features during mycorrhizal interactions, with the current data produced
by genomic and transcriptomic approaches.
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INTRODUCTION
Plant cell walls form a dynamic extracellular matrix that actively
controls growth and development, and are essential for the func-
tionality of plants (Keegstra, 2010). Cell walls provide shape to
the many different cell types needed to form tissues and organs
and, forming the interface between neighboring cells, they control
intercellular communication. Therefore, cell walls mediate most
plant–microbe interactions. However, cell walls are not exclusive
to photosynthetic organisms: fungi also have walls that deter-
mine hyphal growth, shape and responses (Durán and Nombela,
2004).

Unlike pathogenic interactions, where the fungal pathogen may
be effective even with a limited presence in the plant tissues, in
mycorrhizae, i.e., the widespread symbiotic associations estab-
lished between plant roots and soil fungi (Bonfante and Genre,
2010), fungal colonization may involve as much as 80% of the
secondary roots (Smith and Read, 2008). Irrespectively of their
typology and their partner’s identity, mycorrhizal interactions
achieve their functionality through the development of an exten-
sive contact surface between plant and fungal cells, allowing signals
and nutrients to be exchanged. In other words, the transfer of
molecules from the fungus to the plant cytoplasm and viceversa
takes place through both partners’ plasma membranes and cell
walls, defining an apoplastic compartment known as the symbiotic

interface on the basis of the first ultra-structural morphological
observations (Scannerini and Bonfante-Fasolo, 1983).

In spite of the impressive biodiversity that is hidden behind the
word “mycorrhiza” (Smith and Read, 2008), the interface has been
considered a useful unifying concept to describe these plant-fungal
interactions and to deal with both morphological (Bonfante, 2001;
Peterson and Massicotte, 2004; Balestrini and Bonfante, 2005;
Genre and Bonfante, 2012), molecular and genetic aspects (Har-
rison, 1999; Bücking et al., 2007; Reinhardt, 2007; Parniske, 2008;
Gutjahr and Parniske, 2013).

The aim of this review is to provide an overview of the current
knowledge on the dynamics of plant and fungal walls in myc-
orrhizae, as well as on their symbiotic interfaces, which – not
surprisingly – have attracted a great deal of attention from the
scientific community. Attention will mostly be focused on ectomy-
corrhizae (ECM) and arbuscular-mycorrhizae (AM). In ECMs the
fungus covers the root tips, forming a mantle, and grows between
the root cells, while in AM symbiosis the fungus develops inter-
and intra-cellularly all along the root. Once the cortical layers are
reached, fungal hyphae branch, leading to unique structures called
arbuscules (Bonfante and Genre, 2010). The structural issues
that result from morphological observations, and the biosynthetic
aspects that stem from genomic and transcriptomic approaches,
will be considered in this review.
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THE SYMBIOTIC INTERFACE: HOW TO INCREASE THE
PARTNERS’ CONTACTS WHILE MAINTAINING BIOTROPHY
Among all the mycorrhizal interfaces, the complex intracellular
interface of AM symbiosis has received considerable attention
since its first descriptions in the seventies. Following the findings
on fungal pathogens (Bracker and Littlefield, 1973; Scannerini
and Bonfante, 1976) observed that the AM fungus is always
surrounded by a plant-derived membrane, which leads to an
interfacial zone consisting of a fungal plasma membrane, a spe-
cialized interfacial matrix, and a plant membrane, which was
called the periarbuscular membrane (Figure 1). At that time,
observations were mostly made on the cortical cells that host
branched fungal arbuscules. The presence of this interface com-
partment is a typical feature of all endomycorrhizae (Scannerini
and Bonfante-Fasolo, 1983; Peterson and Massicotte, 2004). In
orchid, ericoid and arbutoid interactions, the intracellular fungus
resulted to be confined within this compartment, that provides
the structural basis of biotrophic interactions, since both partners

maintain their individuality and remain alive. In the mean-
time, it causes a huge increase in the contact surface between
the two partners, and the plant membrane increases in length
several-fold during arbuscule development (Cox and Sanders,
1974).

The improved knowledge on the AM colonization process has
allowed to demonstrate that the symbiotic interface is not lim-
ited to the arbusculated stage (Gutjahr and Parniske, 2013). When
the AM germ-tube comes into contact with the epidermal cells,
forming hyphopodia (Genre and Bonfante, 2007), these cells
generate a colonization structure, the prepenetration apparatus
(PPA), which is a transient formation that comprises cytoskele-
tal and endoplasmic reticulum (ER) components (Genre et al.,
2005, 2008). Following this event, the hypha enters and crosses
the epidermal cell, but prevents direct contact with the host cyto-
plasm thanks to a newly synthesized membrane of host origin.
The biosynthesis of this novel perifungal membrane is the result
of a process which involves exocytosis of the Golgi vesicles at

FIGURE 1 | In AM symbiosis, once the fungus overcomes the epidermal

layer, it grows inter- and intracellularly all along the root in order to

spread fungal structures. Only when the fungus reaches the cortical
layers, does a peculiar branching process that leads to the highly branched
structures, called arbuscules, which are the main site for nutrient
exchanges. (A) R. irregularis arbuscule (a) after staining with wheat germ
agglutinin-FITC, on paraffin section of M. truncatula root, to detect chitin in
the fungal cell wall. Arrow points to an intercellular hypha. Bar, 7 μm.
(B) At the electron microscope level, a new apoplastic space, based on

membrane proliferation (arrow), is evident around the intracellular hyphae
(F). The picture shows the morphology of the interface material (asterisk),
with respect to the plant cell walls (W), where neatly arranged fibers are
evident. w, fungal cell wall. Bar, 0.17 μm. (C) The host membrane
surrounding the fungus (F) is smooth (arrows) in a clover root prepared
through high pressure/freeze substitution. The interface material is
electron-dense after PATAg treatment, and the fungal wall (arrowheads) is
very thin. Bar, 0.3 μm. Inset: High magnification of the interface
compartment. F, fungus; H, host cell. Bar, 0.25 μm.
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the growing tips of the AM fungus. Using different GFP Med-
icago contructs, Genre et al. (2012) and Ivanov et al. (2012) have
demonstrated that two VAMPs (vesicle-associated membrane pro-
teins), belonging to R-SNAREs, are required to assemble the
perifungal membrane. Interestingly, these proteins have also been
detected at the cell plate of dividing meristematic root cells
(Ivanov et al., 2012), thus offering the first molecular demon-
stration of the similarities between cell division leading to the
construction of a new cell wall and development of the symbiotic
interface.

Detailed electron microscope observations had already shown
that the interfacial compartment contains cell-wall like material
(Scannerini and Bonfante-Fasolo, 1983; Balestrini and Bonfante,
2005), and this has led to the question about whether the peri-
fungal membrane maintains the capacity to synthesize and deliver
cell wall-related molecules, like the peripheral membrane, (i.e.,
the plasma membrane of the host cell), but directed towards
the interface space. The development of many in situ tech-
niques (enzymes, lectins, and antibodies) has made it possible to
validate this hypothesis: β-1,4-glucans, nonesterified homogalac-
turonans, xyloglucans, proteins rich in hydroxyproline (HRGPs),
and arabinogalactan proteins (AGPs) have been located at the
interface in many different plant/AM fungus combinations, as
on peripheral cell wall, i.e., the cell wall of host cells contain-
ing the fungal structures (Bonfante et al., 1990a; Bonfante-Fasolo
et al., 1991; Balestrini et al., 1994, 1996b; Gollotte et al., 1995;
Balestrini and Bonfante, 2005). Expansins, which are extracel-
lular proteins involved in cell wall-loosening and in the growth
of plant cells (Cosgrove et al., 2002), have also been located in
AM roots: they are present both in the cell walls of the host
cells and in the interface, suggesting that this class of proteins,
involved in cell wall loosening, may be crucial in the accommoda-
tion process of the fungus inside the cortical cells (Balestrini et al.,
2005).

Although the molecular content of the interface reflects the
composition of the host cell wall, the morphology of the interface
material indicates that its components are assembled differently,
and this leads to a more amorphous structure (Figures 2 and 3). In
addition, this cell wall-like material changes in morphology during
the arbuscule’s life cycle: it is very thick and compact around the
arbuscule trunk, it becomes very thin around the fungal branches,
and it again becomes thicker when the arbuscule collapses. Such
dynamics probably mirror the uneven distribution of plant mem-
brane proteins along the perifungal membrane (see Gutjahr and
Parniske, 2013 for a review). Expansins and/or secreted proteins
of fungal origin (see below) could also play a role in keeping the
interfacial material loose.

In liverworts, the disappearance of cell wall autofluorescence,
which is a normal feature of non-colonized parenchyma cells, has
been observed in the fungus-colonized areas, suggesting changes
in cell wall composition upon fungal colonization, and a localized
decrease in cell wall-bound phenolic compounds (Ligrone et al.,
2007).

Compared to AM symbiosis, the symbiotic interface in ECM
appears much simpler, at least on a morphological level: the
plant and fungal cell walls are always in direct contact, since
the ECM fungus remains apoplastic (Balestrini et al., 1996a;

Peterson et al., 2004; Figures 2 and 3). When the hyphae pen-
etrate between the root cells, only subtle alterations can be
observed in the PCW, although a localized loosening has been
reported in several ECMs (Balestrini et al., 1996a). Ultra-structural
observations of ECMs formed by Hebeloma cylindrosporum IAA-
overproducing mutants suggest that fungal IAA may play a role in
Hartig net development by affecting PCW loosening (Gea et al.,
1994). Components specific to both plant (e.g., cellulose and
pectins) and fungal (e.g., SRAPs and hydrophobins) cell walls
have been identified in the cell walls at the symbiotic interface
(Balestrini et al., 1996a; Laurent et al., 1999; Tagu et al., 2001;
Figure 3).

In conclusion, functioning mycorrhizal symbiosis requires both
partners to be alive in order to exchange nutrients in a bal-
anced way (Kiers et al., 2011). From a structural point of view,
this requires the partners to maintain their individuality: this is
guaranteed by a simple wall-to-wall contact during intercellular
interactions and by a more sophisticated interface when the fun-
gus becomes intracellular. Interestingly, the development of such
a complex interface is also characteristic of biotrophic pathogenic
interactions (Yi and Valent, 2013), suggesting that some plant
responses reflect ancient mechanisms which are independent of
the outcome of the interaction. Quoting Yi and Valent (2013)
“…the interface is the site of active secretion by both players.
This cross-talk at the interface determines the winner in adver-
sarial relationships and establishes the partnership in mutualistic
relationships.”

FROM STRUCTURE TO BIOSYNTHESIS: PLANT CELL WALL
RELATED GENES RESPOND TO SYMBIOSIS
Starting from in situ localization data, attention has been focused
on the genesis of the interfacial material, and in particular on the
plant genes involved in the cell wall metabolism. Using targeted
approaches, it was found that genes encoding a putative AGP and
an HRGP were induced in mycorrhizal roots of Medicago truncat-
ula and maize, respectively, and the transcripts were specifically
localized in arbusculated cells (Balestrini et al., 1997; van Buuren
et al., 1999). An endotransglucosylase/hydrolase gene, Mt-XHT1,
induced in M. truncatula roots during AM symbiosis, was identi-
fied (Maldonado-Mendoza et al., 2005). The analysis of transgenic
roots expressing an Mt-XHT1 fusion promoter has shown that
expression is enhanced not only in the root regions colonized by
the fungus, but also at distal sites. On the basis of this expression
pattern, it was suggested that Mt-XHT might be involved in the
systemic modification of a cell wall structure in order to enable
fungal penetration.

Coming to the availability of sequenced genomes for several
plants that are AM hosts, and the possibility of obtaining global
transcriptional profiling of mycorrhizal roots, the regulation of
cell-wall related genes has been studied at a larger scale. On the
basis of localization data, an expansin gene has been found among
the most up-regulated genes in M. truncatula mycorrhizal roots
(Liu et al., 2003). Similarly, expansin/expansin-like genes were up-
regulated during the early symbiotic stages in both M. truncatula
(Weidmann et al., 2004; Siciliano et al., 2007) and tomato roots
(EXLB1; Dermatsev et al., 2009), suggesting that an increase in
PCW plasticity is a prerequisite to the accommodation of the
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FIGURE 2 | During the symbiotic phase, ECM fungi form a fungal sheath

(the mantle), which consists of aggregated hyphae that surround the

root surface. This mycelium is linked to extramatrical hyphae that explore the
substrate and are responsible for the mineral nutrition and water uptake of
the symbiotic tissues. Some hyphae from the inner zone of the mantle
penetrate between the root cells to form the Hartig net, an intercellular
hyphal network inside the root tissues where metabolites are exchanged
between the symbiotic partners. The hyphae always remain apoplastic and
can colonize epidermal and cortical cell layers. (A) Confocal micrograph

showing a section of hazelnut – Tuber melanosporum ectomycorrhizal root.
The mantle (m), formed by packed hyphae, and the Hartig net (arrows), which
surrounds the epidermal and outer cortical cells, show a green signal after
treatment with WGA-FITC. Bar, 15 μm. (B) Hartig net (Hn) in a fully truffle
developed mycorrhiza. Hyphae develop among plant cells, and their cell walls
are in direct contact with the plant cell walls, showing a simple interface
structure. H, host cell; Hn, Hartig net. Bar, 0.6 μm. (C) Magnification of the
contact zone between plant (asterisk) and fungal cell wall (arrows). F, fungus;
H, host cell. Bar, 0.4 μm.

fungus in the plant. In situ hybridization experiments on Med-
icago roots have in fact revealed that an expansin-like protein
was preferentially expressed in epidermal cells in contact with
the hyphopodium (Siciliano et al., 2007). A cellulose synthase-
like gene was also shown to be up-regulated at the same stage
(Siciliano et al., 2007). In agreement with the proposed role played
by the PPA, the up-regulation of genes involved in cell wall syn-
thesis/remodeling, during hyphopodium development, suggests
that the building of the interface starts prior to fungal coloniza-
tion. The symbiosis-dependent expression of an early nodulation
gene (ENOD11), induced during the early stages of root nodula-
tion and coding for a putative proline-rich protein (PRP), has
also been detected in epidermal and cortical cells during root
colonization by AM fungi (Journet et al., 2001; Chabaud et al.,
2002). However, the role of these PRP proteins remains purely
hypothetical. Thanks to a cDNA microarray experiment on Lotus
japonicus, Guether et al. (2009) have demonstrated that a large
number of genes related to membrane dynamics and cell wall
metabolism are induced in mycorrhizal roots. These data support
the hypothesis of plant cells having an active role in fungus accom-
modation via membrane proliferation and cell wall construction.
Among the up-regulated genes related to cell wall metabolism,
transcripts encoding for an endo-β-1,4-beta-glucanase (LjCel1)
and a putative cellulose synthase (LjCesA) were detected exclu-
sively in arbusculated cells, using a microdissection approach.
These data are in agreement with those previously observed for
M. truncatula, where the homologous gene MtCel1 was found
to be specifically expressed during symbiosis and, more specifi-
cally, within arbusculated cells (Liu et al., 2003). Considering the
membrane domain, it was suggested that MtCel1 was located in
the periarbuscular membrane and that it was directly involved
in the assembly of the cellulose/hemicellulose matrix detected
at the interface through in situ methods. Similarly, transcripts

of a putative cellulose synthase, LjCesA, were also found to
accumulate in arbusculated cells. CesA proteins are part of the
cellulose synthase complex in higher plants (Taylor, 2008), which
is a membrane-located enzymatic system that is responsible for
cellulose synthesis.

Morphometric analyses have suggested an increase in the
size of cells containing arbuscules (Balestrini et al., 2005). The
authors hypothesized that LjCesA plays a role in cell expan-
sion during arbuscule development, in conjunction with other
proteins involved in cell wall remodeling (Balestrini and Bon-
fante, 2005). The role of two apoplastic plant proteases of
the subtilase family (LjSbtM1 and LjSbtM3) during AM fun-
gal colonization was also reported (Takeda et al., 2009). The
members inside this protease family, as extracellular enzymes,
are expressed during organ development and may be involved
in the modification of cell wall structure, thus contributing
to cell wall dynamics (Schaller et al., 2012). It has been pro-
posed that these two Lotus genes, which are specifically expressed
during the symbiosis, could play a role in cell wall modifica-
tions: they could facilitate fungal growth, or communication
between the symbiotic partners, e.g., through the generation
of peptides with a signaling role. Localization data have also
shown that LjSbtM1, which is targeted for secretion, is local-
ized in the apoplastic compartments, including the PCWs of the
colonized cells, the intercellular spaces and the periarbuscular
space.

Considering these data, it is tempting to suggest that the AM
fungus not only leads to the construction of the interface compart-
ment, but may also have the peripheral cell wall as an additional
target. This has also been suggested for an ascorbate oxidase gene
(LjAO1), which is up-regulated during AM symbiosis, where it
shows a double location: in the apoplast and in the interface.
This suggests that AO is possibly involved in the accommodation
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FIGURE 3 | Schematic view of the interface zone in AM (A) and ECM (B) symbiosis, in which several of the molecules so far determined through in

situ labeling experiments (Balestrini et al., 1996a,b; Laurent et al., 1999;Tagu et al., 2001; Balestrini and Bonfante, 2005) are listed. HRGPs,
hydroxyproline-rich glycoprotein; SRAPs, symbiosis-regulated acidic polypeptides.

of fungal structures, with the role of maintaining the structure
of the interface compartment, as well as in cell wall loosening
and extension, as observed in arbusculated cells (Balestrini et al.,
2012a).

The activation of a β-xylosidase α-I-arabinosidase (which can
contribute to the turnover of cell wall xylose and arabinose)
has also been shown to be induced in tomato mycorrhizal roots
(Fiorilli et al., 2009); the corresponding transcripts were local-
ized exclusively in the arbuscule-containing cells, suggesting its
involvement during the formation of the periarbuscular matrix,
although involvement in the remodeling of the peripheral wall
cannot be excluded. A monosaccharide transporter, MST2, which

has been identified in an AM fungus (Helber et al., 2011), has been
shown to transport not only glucose, but also cell wall monosac-
charides, i.e., xylose. This result is in agreement with the fact
that the plant-fungal interface in AM symbiosis contains primary
PCW components (Balestrini and Bonfante, 2005). The authors
have suggested that a versatile sugar transporter – capable of
transporting monosaccharides from the apoplast – might be an
optimal adaptation to the biotrophic life style of AMF (Helber
et al., 2011).

Changes in the plant transcriptomic profiles of ECM roots have
been well documented (Voiblet et al., 2001; Johansson et al., 2004;
Duplessis et al., 2005; Le Quéré et al., 2005; Tuskan et al., 2006;
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Heller et al., 2008), although poplar is the only ECM-forming
plant whose genome has been sequenced so far. As a consequence,
the regulation of PCW genes has only been investigated poorly,
while more information is available on the fungal side (see next
section).

The regulation of some PCW-related genes, e.g., the down-
regulation of a pectin methylesterase gene and the up-regulation
of genes coding for an expansin and a cellulose-synthase-like,
has been reported in Paxillus involutus-poplar ECMs (Luo et al.,
2009). The peripheral root cells of these ECM plants are swollen
in comparison to non-ECM root cells, suggesting a role of these
genes in cell wall expansion that mirrors cell enlargement. Genes
coding for PCW proteins, mainly PRP, have been found to be
up-regulated during the ECM association between oak and Pilo-
derma croceum (Tarkka et al., 2013). This result is in agreement
with previous observations where one PRP transcript was over-
expressed in pre-mycorrhizal and mature roots (Frettinger et al.,
2007). Using an oak contig assembly, Tarkka et al. (2013) also
revealed that two extensins and several peroxidase genes were
down-regulated, suggesting a reduced potential for cross-linking
of the cell wall components in ECMs, while an expansin con-
tig, with a putative role in cell wall relaxation also resulted to be
up-regulated.

In conclusion, the development of genomics and transcrip-
tomics tools has made it possible to demonstrate that symbiotic
interface construction leads to a consistent variation in the
expression profile of many cell-wall related genes. In AMs, the up-
regulation of genes linked to the synthesis of cellulose and other
polysaccharides is in line with the presence of cell wall polysac-
charides in the interfacial matrix. However, it is interesting to
note that relevant transcriptomic changes are also detectable in
the ECMs, where no conspicuous morphological modifications
have been described. Finally, the impact of mycorrhizal fungi on
the cell wall metabolism does not seem to be limited to the sym-
biotic interfaces, since a still not fully acknowledged aspect is the
increase in size of the colonized cells, which likely results from
cell wall relaxation. Interestingly, it has recently been demon-
strated that a loss in function mutation in a mycorrhiza-specific
maize Pi transporter gene (Pht1;6) leads to a down-regulation
of cell wall-related genes in AM roots (Willmann et al., 2013),
although the mechanisms at the base of this response still have to be
investigated.

DECIPHERING THE GENOMES OF MYCORRHIZAL FUNGI
SHEDS LIGHT ON CELL WALL DYNAMICS
The sequenced genomes of mycorrhizal fungi are crucial tools
to obtain a deeper understanding of the molecular mecha-
nisms that underlie the symbiotic lifestyle. Focusing on cell
wall genes, the so far sequenced fungi have allowed new infor-
mation to be obtained on the fungal cell wall machinery,
including genes that potentially code for fungal cell wall pro-
teins involved in the interaction with plants, and those that
may code for enzymes which act on PCW. This is a great
step forward, since unlike for pathogenic fungi, a biochem-
ical characterization of the main cell wall components, (i.e.,
polysaccharides and proteins) is not yet available for mycorrhizal
fungi.

The involvement of fungal cell wall proteins, mainly small
secreted proteins, (e.g., SRAPs and hydrophobins), has been well
studied during the development of the symbiotic interface in ECM
associations (Martin et al., 1999; Laurent et al., 1999; Tagu et al.,
2001). Hydrophobins are morphogenetic small-secreted and mod-
erately hydrophobic proteins that are typically present in fungi and
which are involved in several aspects of fungal biology (Wösten,
2001). They are also thought to play important roles during ECM
establishment (Tagu et al., 2001; Voiblet et al., 2001; Plett et al.,
2012). They have been localized on the fungal cell wall in the sym-
biotic structures formed by Pisolithus tinctorius and Eucalyptus
globulus (Tagu et al., 2001), and several hydrophobins are currently
considered to belong to apoplastic MiSSPs (Mycorrhizal-induced
Small Secreted Proteins; Plett et al., 2012). A genome-wide inven-
tory of hydrophobin genes from two different genomes of the
ECM fungus L. bicolor (Martin et al., 2008) has recently been
obtained. This inventory shows a complex diversity and a range of
expression profiles inside this multi-gene family (Plett et al., 2012).
The authors suggest that, during evolution, some hydrophobin
proteins might have acquired new roles that are specific of the
mutualistic lifestyle. Hydrophobin genes have been identified in
the Tuber melanosporum genome (Martin et al., 2010; Balestrini
et al., 2012b), and, among these genes, TmelHYD3, seems to
be slightly up-regulated in ECMs vs the free-living mycelium.
However, these proteins seem to be absent in Rhizophagus irregu-
laris, as in mildews where hydrophobins are lacking (Spanu et al.,
2010).

The main carbohydrate components of fungal cell walls are
chitin and glucans, and these have been localized in the cell walls
of different mycorrhizal fungi (Bonfante et al., 1990b; Balestrini
et al., 1994, 1996a, 2012b; Lemoine et al., 1995; Figures 1 and 2).

Taking advantage of the genome sequence, a genome-wide
inventory of the proteins involved in cell wall synthesis and remod-
eling has been obtained for the T. melanosporum black truffle,
while expression results have revealed that cell wall-related genes
can be involved in the morphogenetic transition from mycelium
growth to the ectomycorrhizal branched hyphae (Balestrini et al.,
2012b).

In addition to their structural role, chitin-derived molecules
are widespread microbial signals that trigger various defense
responses in plant cells (Shimizu et al., 2010; Hayafune et al.,
2014). In Rhizobium-legume symbiosis, the nitrogen-fixing bacte-
ria produce lipochitooligosaccharides (LCOs), which are termed
Nod factors (Dénarié and Cullimore, 1993). It has long been
proposed that AM fungi also release signal molecules (Myc
factors), which are essential for the recognition of the fungal
partner (Catoira et al., 2000; Parniske, 2008). These molecular
signals have recently been characterized as a mixture of sul-
fated and non-sulfated LCOs (Maillet et al., 2011). Myc-LCOs,
which are present at very low concentrations in the exudates of
mycorrhizal carrot roots and R. irregularis germinated spores,
stimulate AM symbiosis formation, and increase root branch-
ing in M. truncatula (Maillet et al., 2011). Fungal orthologs of
bacterial genes coding for enzymes involved in symbiotic LCO
factors synthesis have not been identified so far in the genome
of R. irregularis, the first AM fungus to be sequenced (Tis-
serant et al., 2013). Additionally, it has recently been observed
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that short-chain chitin oligomers (COs) of AM fungus ori-
gin activate a response (Ca2+ spiking) in root epidermal cells,
with the maximum activity being observed for CO4 and CO5
(Genre et al., 2013). Short-chain COs are therefore part of the
molecular dialog with the host plant, that leads to the activa-
tion of the common symbiosis signaling pathway: these data
reveal that AM fungi may produce different chitin-based sig-
nals (Genre et al., 2013). The R. irregularis genome (Tisserant
et al., 2013; Lin et al., 2014) has revealed many genes involved
in the chitin metabolism. In addition, transcriptomic data have
shown that several of these genes, including, e.g., chitin synthases
and putative chitin deacetylases, are expressed during the differ-
ent stages of the fungal life cycle, including the pre-symbiotic
stage (Tisserant et al., 2012). Further investigation on the regu-
lation of specific members inside these gene families, will provide
new information on the relationships between the generation of
chitin-derived signals by AM fungi and their life cycle. It is inter-
esting to note that, until now, the production of chitin-related
molecules with a signaling meaning has not been described in
ECM fungi.

Fungal cell wall-related signals therefore seem to play an
important role in pre-symbiotic communication between the AM
symbiosis partners. This also seems to be true for the plant side:
cutin monomers, which are hydrophobic components of the cell
walls that are mostly present in epidermal cells, have been identi-
fied as signal molecules that induce hyphopodium differentiation
(Wang et al., 2012; Murray et al., 2013).

Several fungal genes encoding enzymes involved in cell wall
metabolism are expressed during AM fungal colonization, sug-
gesting a role in the remodeling of the fungal cell wall during
intracellular colonization (Lanfranco et al., 1999; Tisserant et al.,
2012, 2013). AM fungal cell walls undergo a conspicuous change
in their organization during their life cycle: the spore wall is
thick and layered with a highly fibrillar chitin, while the hyphal
wall becomes progressively thinner during the intracellular phase,
reaching a thin amorphous structure in the thinner arbuscular
branches (Bonfante et al., 1990b). This would seem to suggest that
fungal growth inside the root cells requires a strict regulation of
the genes related to both cell wall synthesis and degradation. Addi-
tionally, the expression of plant chitinase genes has been reported
in arbuscule-containing cells, suggesting a putative role in fungal
cell wall modification, during the development of the arbuscule
branches, as well as in reducing the amount of chitin-derived elici-
tors, during the intracellular colonization and the development of
the symbiotic interface (Bonanomi et al., 2001; Hogekamp et al.,
2011).

As far as the R. irregularis genome is concerned, a surpris-
ing observation is the loss of glycosyl hydrolase (GH) genes
and – among them – genes known to be involved in degrading
PCW polysaccharides (Tisserant et al., 2013). PCW degradation
requires the production of different enzymes that are regulated
by the type and complexity of the plant material, and fungi can
produce these enzymes (Tian et al., 2009). A decreased reper-
toire of PCW degrading enzymes, compared to saprotrophic and
pathogenic fungi, has also been reported for the ECM fungi L.
bicolor and T. melanosporum (Martin et al., 2008, 2010). Although
both genomes have shown a reduced set of enzymes that target

PCW components, subtle differences have been observed in the
enzyme repertoire between the two fungi and in their expression
(Martin et al., 2010; Plett and Martin, 2011). Despite the similarity
of the symbiotic structures that they form, the expression results
suggest differences in the mode of interaction with the respective
host plants. For example, a limited number of PCW degrading
enzymes are expressed in truffle symbiotic tissues, while L. bicolor
expresses very few PCW degrading enzymes, and mainly secretes
expansin-like proteins that may play a role in cell wall remodeling
during hyphal penetration (Plett and Martin, 2011). Similarly,
the ECM fungus Amanita bisporigena (Nagendran et al., 2009)
lacks genes that code for extracellular enzymes which are active
on cell wall linkages. A reduced set of PCW-degrading enzymes
has also been found in some obligate biotrophic pathogens, i.e.,
Blumeria graminis (Spanu et al., 2010). Unlike the enzymatic arse-
nal observed in other pathogenic fungi, the great reduction in
PCW-degrading enzymes in fungi that are phylogenetically and
functionally diverse suggests that this feature is related to their
biotrophic life style. This could be one of the strategies that
biotrophic fungi adopt to lower the defense reactions of their
hosts.

In conclusion, genome sequence projects have, for the first time,
allowed hypotheses to be formulated on the meaning of biotrophy
in mycorrhizal fungi. They may use chitin-related molecules to
dialog with their plant partners, but in spite of their deep intra-root
habit, they do not possess PCW-degrading enzymes that can act on
the PCW. It can be hypothesized that the signal molecules released
by mycorrhizal fungi are perceived by the plant cells, which – in
turn – elicit the activation of their own PCW-degrading enzymes.
This indirect mechanism should prevent the activation of strong
defense reactions.

CONCLUSION
Genome/transcriptome approaches applied to mycorrhizal fungi,
and not only to the green partners, have had a profound
effect on our knowledge of the biology of mycorrhizal sym-
biosis. As expected, the formation of the complex intra-
cellular interface present in AMs is accompanied by a pro-
found modulation of the PCW related genes (as well as the
membrane-related ones). Surprisingly, important transcrip-
tional changes have been detected in ECMs, where cell wall
remodeling does not lead to evident morphological changes.
The production of signaling molecules (Maillet et al., 2011;
Genre et al., 2013), whose composition is related to the fun-
gal cell wall, is probably a key element in the understand-
ing of biotrophism. The mechanisms thanks to which the
plant releases PCW enzymes, which allow fungal coloniza-
tion, merit further detailed investigation. New genome data
sets from several mycorrhizal fungi (ECM and AM), which
are currently being sequenced (see http://genome.jgi.doe.gov/,
http://mycor.nancy.inra.fr/genomeResources.html web sites), and
from other non-AM endomycorrhizal fungi, e.g., Oidiodendron
maius (ericoid symbiont) and Tulasnella calospora (orchid sym-
biont), will increase the knowledge on how different mycorrhizal
fungi have an impact on PCW remodeling, and, consequently, on
how the different mycorrhizal strategies have developed during
the evolution.
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