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A Competitive Idea-Based Growth Model with
Shrinking Workers’Income

Carla Marchese∗ Fabio Privileggi†

May 17, 2014

Abstract

In this paper we present a model in which endogenous growth arises in competitive
markets. Knowledge is described as a labor-augmenting factor used directly in the final
goods’production. Firms demand both basic non-rival knowledge contents, which are
supplied jointly and inelastically with raw labor, and further contents supplied by patent
holders. This fact, together with Lindahl prices for knowledge, allows competition to work,
while it also implies that workers’income share declines overtime. In a first version of the
model with constant cost of knowledge production the first best is attained. In further
versions of the model, in which the cost of knowledge production is allowed to change over
time and externalities arise, in a decentralized economy a second best equilibrium occurs
in the transitional period, while in the long run there is convergence to effi ciency.

JEL Classification Numbers: C61, E10, O31, O41.
Keywords: Endogenous growth, Competitive markets, Lindahl prices, Scale effects

1 Introduction

The mainstream literature on growth follows Romer (1990) in maintaining that only market
power can provide the economic incentives for research activity and thus for economic growth.
Hence it departs from the idea that competition is a viable reference model, which is otherwise
standard in economics. The arguments forcefully put forth by Romer are the following.

i) Technological change, which essentially consists in improvements of knowledge about the
way in which we should combine raw materials, is the main engine of economic growth.

ii) Knowledge is a non rival good, only partially excludable.

iii) The non-rivalry of knowledge implies increasing returns to scale in the production of final
goods, since it is possible to replicate every production process based on a given blueprint
without having to run again the research effort that led to design that blueprint. Knowl-
edge is thus a factor clearly different from human capital, which is rival, since, e.g., if an
engineer is needed in a production process, to replicate it a further engineer is needed.

∗Institute POLIS - DiGSPES, Università del Piemonte Orientale “Amedeo Avogadro”, Via Cavour 84, 15121
Alessandria (Italy). Phone: +39-0131-283718; fax: +39-0131-283704; e-mail carla.marchese@unipmn.it
†Dept. of Economics and Statistics “Cognetti de Martiis”, Università di Torino, Lungo Dora Siena 100 A,

10153 Torino (Italy). Phone: +39-011-6702635; fax: +39-011-6703895; e-mail fabio.privileggi@unito.it
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iv) While under constant returns to scale and in a competitive market the value of production
is fully distributed by paying the production factors the value of their marginal product,
this is not the case under decreasing or increasing returns. Under decreasing returns rents
would arise, and losses would be incurred under increasing returns after paying factors
this way. In other words, under increasing returns, after the payment to the other inputs,
nothing is left for compensating the contribution of knowledge, which thus would lack
any market financing.

On the basis of these premises, Romer (1990) concludes that a non-competitive market must
occur somewhere, in order to provide private economic incentives for research. He presents
a model in which each inventor, by patenting her blueprint, can become the sole producer
of a differentiated capital or intermediate good, thus enjoying market power and receiving
a monopoly profit that covers her research costs. Moreover, in his model research activity
produces positive externalities, since the number of blueprint varieties operates as a multiplier
of final goods’production. Hence, markets are incomplete.
In this paper we present a very simple model that maintains many of the Romer premises,

but is characterized by assumptions that render competition viable. While our assumptions
are demanding, they capture some features that might prevail in the economy thanks to the
characteristics that technological change assumed in the last decades. The first feature we
consider is that technical progress leads more and more to the provision of immaterial goods such
as computer programs, internet applications, business models, etc., patentable1 and directly
usable in the final goods production (Chantrel et al., 2012). It thus seems appropriate to
assume that knowledge enters directly into the final goods production function, without having
to be incorporated into capital or intermediate goods. This direct penetration of immaterial
contents into final goods production also implies that much more information that in the past
is available to asses the value of the marginal product of knowledge.
The second feature that we consider and whose implications we explore, is the progressive

commoditization of education, specifically with reference to training for work. This increasingly
occurs through on-line courses, distance-learning, learning through games etc., with a frequent
updating of competencies according to changes in technology, markets etc. An example of
this process is provided by taxi drivers. Regulations often constrain them to follow traditional
forms of human capital accumulation, that is they must show of knowing all the roads in the
city area. Learning all the roads in a big city requires long time (estimated in 50 weeks for
London nowadays), but if we judge only on the basis of the available technology, a GPS can
enable an untrained driver to make a performance quite alike that of a taxi driver. In the
foreseeable future firms cannot dispense with low-skilled workers, endowed with the basic levels
of human capital, which we assume as being supplied tied with raw labor, and which are still
needed to exploit patented intellectual contents. In the example about taxis, a driver able
at reading a GPS navigator is needed2. However, also these basic skills, which render raw
labor useful, can be traced back to the sharing in families or in social institutions of basic
cultural contents, habits, and social attitudes as part of the rearing process. In this case too
doubling the population would not imply doubling the effort that built the cultural contents

1This trend for the U.S. can be dated back to 1998, when in the so called State Street Bank case a business
method was declared patentable. Many other similar rulings followed with respect to software. The Supreme
Court should reconsider in 2014 the patentability of software with respect to the requisite of producing useful
and concrete results.

2The development of driverless car might render also the driver redundant, but in building the model we do
not consider processes of robotization with the potential for substituting labor altogether, since their perspective
diffusion and economic impact is still questioned (Gordon, 2014).
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that are routinely passed on from one generation to the other, while the private expenditures
that might occur in this process —which can be huge in advanced societies —can be considered
as consumption expenditures that a dynastic agent bears to continue to be alive.
The main technical ingredients that we use to incorporate these features into the model,

which also render competition viable, are 1) Lindahl prices paid by the final goods’sector to
compensate knowledge suppliers, and 2) the virtual disappearance of the labor income share —
which happens to be subsumed under that of knowledge —due to the fact that knowledge supply
(the inherited basic social knowledge endowment) is provided jointly with raw labor. Under
these assumptions, as will become clear in the following, it is possible to overcome the problems
arising from the non-convexity (i.e., from increasing returns to scale). In the basic version of the
model, knowledge is non-rival but fully excludable, so that the first best is reached. In a further
version of the model, knowledge is only partially excludable. Hence externalities arise and a
second best result is attained in the transitional period, while in the long run the decentralized
solution converges to the optimal Asymptotic Balanced Growth Path (ABGP).
The model accords with some stylized facts, such as the decline of the income share of labor

(Karabarbounis and Neiman, 2014), at the advantage of the share going to intangibles and
particularly to holders of patents (Corrado et al., 2009). The novel contribution of the paper
is actually that of providing a rationale for a declining workers’ income share in a growing
competitive economy. Hence, while we do not address the problem of public policies, our results
suggest that governments should focus primarily on redistributive interventions to improve
social welfare. While effi cient competitive markets are viable in the long run, policies aimed at
correcting market failures should be considered in specific cases only in the transitional period.
The paper is organized as follows: after presenting the basic model in sections 2 and 3,

in section 4 we consider the case in which the cost of knowledge production is not constant
overtime, establishing in Section 5 that the decentralized equilibrium attains Pareto optimality
only in the long-run. Section 6 provides a parameterized example, while a version of the model
with population growth and weak scale effects is presented in section 7. Conclusions follow in
section 8.

2 A Simple “Immaterial”Model

Our model is a Ramsey-type model of growth with endogenous creation of knowledge. The
economy is composed of households, firms and the government. Households receive compensa-
tions for supplying inputs to the production sector, purchase a composite consumption good,
which also represents the numeraire, and choose how much to save in order to accumulate new
knowledge. There are two types of firms: one producing the final consumption good (F—firms)
and one performing knowledge creation activities (R&D—firms).

2.1 Households

For now we shed population growth and assume that the size of the economy —i.e., the total
number of households —is constant. We adopt the standard assumption that all households have
the same rate of time preference, ρ > 0, and an identical increasing and concave instantaneous
utility function.

A. 1 The aggregate representative consumer is endowed with an instantaneous objective u (C),
where C is aggregate consumption, with u′ (C) > 0 and u′′ (C) < 0.
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Households’goal consists of choosing consumption in order to maximize their own lifetime
discounted utility subject to the usual asset accumulation constraint, and their initial common
knowledge endowment A (0). Knowledge is a non rival but excludable good. The initial knowl-
edge endowment A (0) belongs to the households in the sense that they share it as a part of their
cultural heritage, so that doubling the population would not imply doubling the effort that led
to built it. Households supply A (0) to the final good producers at all instants t ≥ 0 jointly
with constant labor L (t) ≡ L, and firms can exploit A (0) only by hiring workers. Thanks
to such joint supply and the fact that labor supply is inelastic, workers are compensated just
as owners of their initial knowledge endowment. No specific compensation for labor is paid.
However, the royalty that workers receive for A (0) can alternatively be interpreted as a wage,
as it clears the labor market.
As, under these assumptions the representative household earns only royalties from renting

knowledge to F—firms while no wage is being earned for labor supplied, she faces the following
maximization problem,

max
[C(t)]∞t=0

∫ +∞

0

u [C (t)] e−ρt dt (1)

subject to Ḃ (t) = r (t)B (t)− C (t) ,

where B (t) denotes an asset that will be specified later on and r (t) is the market rate of returns
on assets, with the additional constraint 0 ≤ C (t) ≤ r (t)B (t), for a given initial asset level
B (0) = B0 > 0. Standard analysis of the (concave) current-value Hamiltonian associated to (1)
yields the following necessary condition of optimality, which is the well known Euler equation:

Ċ (t)

C (t)
=

1

εu [C (t)]
[r (t)− ρ] , (2)

where 1/εu (C) = −u′ (C) / [u′′ (C)C] is the intertemporal elasticity of substitution.

2.2 Producing Sector

In the final good sector F—firms are competitive and operate in a standard neoclassical frame-
work: at each instant t F—firm i employs a composite intermediate good and knowledge-
augmented labor to produce a composite consumption good according to a neoclassical pro-
duction function, Yi = F (Xi, ALi).

A. 2 F (·, ·) is concave and linearly homogenous, with F1 > 0, F2 > 0, F11 < 0 and F22 <
0, where Fj and Fjj denote the first-order and second-order partial derivatives with respect
to arguments j = 1, 2 respectively. Moreover, the standard Inada conditions hold for both
arguments.

The intermediate good Xi is made up of final goods destined to production, so that its
price is the numeraire, pX = 1, while Li denotes the number of workers employed by firm
i, who are picked from a large and constant labor population of size L. We assume that
knowledge A represents a homogeneous good that can be directly used in production to augment
the effectiveness of labor. The transfer of knowledge from the research sector to the final
good’s production, however, involves a rescaling in order to take into account its decreasing
effectiveness3 in terms of output augmentation, which, according to Assumption A.2, translates

3Due, e.g., to partial substitution by new knowledge for previously used results.
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in decreasing returns to knowledge of the production function F . Let us reformulate output as

Yi = ALif
( x
A

)
, with f (·) = F (·, 1) , (3)

where4 x = Xi/Li is the per capita intermediate good. At each instant t we assume that
there is a large number of firms, say M (t), and several, say N (t) < M (t), output levels Yi (t),
for i = 1 . . . N (t), each corresponding to a different amount Li of labor employed, that are
being produced by mi (t) identical firms operating at the same level, with mi (t) ≥ m > 0
where m is a number suffi ciently large to sustain a competitive market. Therefore, at each
instant t the economy is populated by M (t) =

∑N(t)
i=1 mi (t) firms producing a total amount

Y (t) =
∑N(t)

i=1 mi (t)Yi (t) of final consumption good.5 If N (t) = 1 then M (t) = m1 (t) and
Y (t) = m1 (t)Y1 (t).
Because labor is supplied inelastically and jointly with the initial knowledge A(0), F—firms

just demand the intermediate good and knowledge. Each firm is willing to pay for intermediate
goods and for knowledge the respective marginal product,

∂Yi
∂Xi

= f ′
( x
A

)
and

∂Yi
∂A

= Li

[
f
( x
A

)
− x

A
f ′
( x
A

)]
.

Firms are eager to pay for knowledge because it is a perfectly excludable good6 and they can
rent it on the market. As there are many firms operating at each output level, one can identify
N (t) sub-markets for knowledge, in which the demand price is scaled by the labor amount Li
used by each sub-market firm. As knowledge is a collective good when considered from the
supply side, all the F—firms can be supplied at the same time with the whole lot available,
which is the given stock A. In other words, knowledge supply is inelastic and at each instant
the equilibrium price depends on demand. In order to the whole available A be employed by
all the buyers, all the sub-markets must clear; however, because F—firms demand prices depend
on the labor amount they use, the knowledge equilibrium price in each sub-market will differ
accordingly.
Hence, the FOC for each F—firm’s profit maximization are:

∂Yi
∂Xi

= f ′
( x
A

)
= 1 (4)

∂Yi
∂A

= Li

[
f
( x
A

)
− x

A
f ′
( x
A

)]
= Liγ

( x
A

)
. (5)

Condition (4) holds because the intermediate goods are priced at the numeraire, while in (5)
the term γ (x/A) denotes the equilibrium royalty per augmented worker, which depends on the
ratio x/A. As long as the royalties Liγ (x/A) clear all the the sub-markets according to their
labor usage, for all i, the whole knowledge market is cleared. The labor market is cleared as
well because, as labor is supplied jointly with A(0),

∑
i Li = L must hold. Households who

invested in new patented knowledge receive payments from all the sub-markets and in total

4All firms employ the same intermediate good/labor ratio, x ≡ xi = Xi/Li, as will become clear in the
sequel.

5Alternatively, one can assume that there is a continuum of output levels Y (i, t) ≥ 0, i ∈ [0, N (t)], each
produced by a density m (i, t) ≥ 0 of identical F -firms, so that the economy is populated by an absolutely
continuous distribution of firms over the compact support [0, N (t)], and total output is given by Y (t) =∫ N(t)

0
m (i, t)Y (i, t) di. Note that when m (i, t) > 0 there is a continuum of firms each producing Y (i, t), thus

assuring that such sub-market is competitive, while if m (i, t) = 0 there are no firms producing the Y (i, t) level.
6F—firms cannot re-rent knowledge or share it with other firms; that is, no arbitrage is allowed.
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earn Lγ (x/A) [A− A(0)], while workers in total receive Lγ (x/A)A(0). The rental price of
knowledge Lγ (x/A) is allocated according to each firm’s willingness to pay; in other words, the
market equilibrium occurs at Lindahl prices.7

While in general the resort to Lindahl prices for public goods is deemed unattainable due
to the lack of proper information, in this case the tie between knowledge and labor allows to
overcome the problem of demand revelation. The observable labor input used by each firm
renders it possible to ascribe it to a specific sub-market, and all the suppliers of knowledge can
easily identify such sub-markets and compete within each one. The demand revelation problem
is in general less severe when the public good is an input than when it is a consumption good,
as demand in the former case derives from the profit function while in the latter it derives from
the utility function which has a lower degree of measurability (Dasgupta, 2001). In the specific
case of patents it is in fact common that licences for, e.g., software or access to repositories of
papers, data, etc., are granted upon payments that depend on the number of people habilitated
by the licence within an organization.
According to (4) and (5) the per capita product yi = Yi/Li = Af (x/A) is fully distributed

to the per capita intermediate good, x = Xi/Li, and knowledge, A, that is,

yi − x− γ (x/A)A = Af (x/A)− f ′ (x/A)x− Af (x/A) + xf ′ (x/A) = 0,

so that each firm (and thus the whole industry) makes no profit. Both workers as suppliers of
A (0) and households as holders of the patents covering [A (t)− A (0)] are paid according to
their entitlements.8 Because in the market for final goods all firms face the same rental price
for intermediate goods and face Lindahl prices for knowledge, all use the same combination of
capital and knowledge-augmented labor. We thus refer in the following to a representative firm
and drop the suffi x i.
The absence of a specific price for labor does not imply effi ciency losses, since labor is

inelastically supplied jointly with A (0). One implication of the model is that the benefits of
technical progress are funneled to the owners of the intangible capital protected by patents,
leaving labor as a residual input factor whose compensation —which can be identified with a
wage amounting to γ (t)A (0), with γ (t) = γ [x (t) /A (t)] —falls short of marginal product of
labor for given A. The negative implication of the model with respect to labor income accords,
at any rate, with the stylized facts pertaining to the long term evolution of the income shares.
Corrado et al. (2009), e.g., show that labor’s income share decreased significantly over the last
50 years in the US, provided that investments in intangibles and their income share are properly
accounted for. These negative effects on salaries might be mitigated if the role of worker and
that of licensee would overlap. As long as worker’s abilities can increase thanks to the access to
non rival but excludable immaterial inputs which they pay for, labor demand can be rationalized
as a way through which firms resort to intermediaries in the access to the (growing) pool of
non-rival ideas, so that firms can pay Lindahl prices to these workers-intermediaries. In such a
case the option for either a direct access (through patent renting) or an indirect one (through
trained workers) would imply the consideration of the respective transaction costs, an extension
of the model that we leave for future research.

7A similar approach has been pursued in Chantrel et al. (2012) with reference to knowledge demanded by
producers of differentiated goods, each one with its specific demand (and thus Lindahl) price.

8Households actually play both roles of workers and patent holders; we distinguish between them to clarify
the economic mechanisms governing each one.
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2.3 R&D Sector

Consistently with (6) and (14) below, throughout the whole paper we will resort to the standard
simplified approach that describes aggregate knowledge creation as a deterministic process.
That is, we assume that there is no aggregate uncertainty in the innovation process while, of
course, there may be idiosyncratic uncertainty.9 In a first version of the model we simplify
things further by considering a constant cost of new knowledge production.

A. 3 Each new idea can be produced at a constant unit cost, η > 0.

Under Assumption A.3 the innovation possibilities frontier is given by

Ȧ =
J

η
, (6)

where J represents investment in new knowledge production. Every R&D—firm produces new
knowledge and aims at profit maximization. In order to obtain a patent, knowledge must be new
and differentiated, while when knowledge is used by the F—firms, it represents a homogeneous
good. Because the number of R&D—firms is large, the market for each invention is competitive
and each R&D—firm makes zero profits. Hence, the value of the patent associated to each
(differentiated) unit of new knowledge purchased by households at instant t corresponds to the
same constant:10 η.

3 Market Equilibrium

As, under Assumption A.2, the derivative of function f defined in (3) is decreasing, f ′ is
invertible and from (4) we get the demand for the intermediate good x by the F—firms, which
turns out to be linear in A:

x = δA, with δ = (f ′)
−1

(1) . (7)

Thus, δ is a constant uniquely defined by the choice of the production function F (·, ·). As the
ratio δ ≡ x/A is constant, from (5) we obtain the per capita willingness to pay for knowledge,
which turns out to be constant as well:

γ
( x
A

)
≡ γ = f (δ)− δf ′ (δ) = f (δ)− δ, (8)

where in the third equality we used the definition of δ in (7).
In order to incentivate all households to invest in new knowledge production, under Assump-

tion A.3 the following free-entry condition, postulating that the present value of future royalties,
Γ (t) = γ (t)L, be equal to the (constant) production cost η of a unit of new knowledge, must
hold:

V (t) =

∫ +∞

t

γ (v)Le−
∫ v
t r(s) ds dv = η. (9)

Differentiating with respect to t and recalling from (8) that γ is constant, (9) boils down to

V̇ (t) = r (t)

∫ +∞

t

γLe−
∫ v
t r(s) ds dv−γL = 0,

9See, e.g., pp. 428—429 in Acemoglu (2009).
10Let ψ denote the patent’s price. Then, according to (6), the representative R&D—firm maximizes its profit,

ψȦ− J = ψ (J/η)− J with respect to J , which immediately yields ψ = η.
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which implies that the present value of future royalties does not change in time and, after
substituting the integral with (9), the interest rate regulating the transfer of wealth through
time (via the only state variable, which is the knowledge A) is constant as well, r (t) ≡ r, and
given by

r =
γL

η
. (10)

In order to use (2) to look for a balanced growth path (BGP) type of equilibrium, we must
assume that 1/εu (C) = 1/σ is a constant,11 with σ > 0. Hence, using (10) in (2) we obtain the
following constant rate of growth of consumption, C, knowledge, A, and output, Y , along the
BGP:

g =
Ċ

C
=
Ȧ

A
=
Ẏ

Y
=

1

σ

(
γL

η
− ρ
)
. (11)

Proposition 1 Suppose that Assumptions A.1—A.3 hold and the intertemporal elasticity of
substitution is constant —i.e., εu (C) = − [u′′ (C)C] /u′ (C) ≡ σ > 0. Then, if

γL > ρη and (1− σ) γL < ρη, (12)

the economy admits a unique BGP along which knowledge, output, and consumption all grow
at the same rate g > 0 given by (11). Moreover, there are no transition dynamics: the economy
immediately jumps on the BGP starting from t = 0.

Proof. See the Appendix.

The novelty introduced by assuming that F—firms pay for the use of knowledge through
Lindahl prices both to compensate patent holders and suppliers of basic knowledge joint with
labor, together with Assumption A.3 of a constant cost for new knowledge production, allows for
the solution characterized in Proposition 1 to be Pareto optimal even in a totally decentralized
setting.

Proposition 2 The BGP equilibrium characterized in Proposition 1 is Pareto optimal.

Proof. See the Appendix.

Three features of our model are crucial to explain Proposition 2: 1) as knowledge is paid
its Lindahl price there is no room for monopolistic power exploitation in the economy as in
the standard literature, that is, all prices turn out to be competitive and nowhere mark-ups
are being applied; 2) as labor supply is fixed and joint with initial knowledge supply, workers
are paid less than their marginal product and thus the problem of the non-convexity of the
final goods production function does not arise; 3) Assumption A.3, by postulating a constant
unit cost η for the production of new ideas, rules out knowledge spillovers or other types of
externalities. Our next step is to relax the last assumption.

11If we are interested in an asymptotic balanced growth path (ABGP) it is suffi cient to assume that
limt→+∞ [1/εu (C)] = limt→+∞ {−u′ (C) / [u′′ (C)C]} = 1/σ. This approach wil be pursued in Section 4.

8



4 Non Constant Cost of Knowledge Production

An example of a well known model in which the cost of knowledge production turns out to be
constant like in our simple setting discussed in the previous sections is the celebrated original
contribution by Romer (1990). However, as most of the major contributions that followed
Romer’s seminal paper confirm, it is widely accepted that Assumption A.3 introduces a defi-
nitely unrealistic restriction. For instance, Tsur and Zemel (2007) consider a continuous-time
version of the original model by Weitzman (1998) in which knowledge evolves according to a
recombinant technology characterized by a variable unit cost of knowledge production,

η (t) = ϕ [A (t)] , (13)

in which the unit cost function ϕ (·) indirectly depends on time through the knowledge stock
A (t) evolution. The recombinant knowledge production function by Weitzman is well suited
for our approach because it assumes that its main input is expressed in terms of financial
resources,12 J (t). Hence, in this subsection we allow the unit cost of knowledge production, η,
to vary over time.

A. 4 Each new idea can be produced at a time-dependent unit cost, η (t) > 0.

According to Assumption A.4, define the innovation possibilities frontier as

Ȧ (t) =
J (t)

η (t)
, (14)

in which time-dependence has been emphasized.13

From the representative household optimization problem (1) we get the same necessary
Euler condition as in (2). Also, nothing changes from the point of view of knowledge demand:
the per augmented worker royalty is still constant and, according to (8), given by γ (x/A) ≡
γ = f (δ)− δ. Only the free-entry condition (9) changes, as now the RHS depends on time:

V (t) =

∫ +∞

t

γ (v)Le−
∫ v
t r(s) ds dv = η (t) . (15)

Differentiating it with respect to time leads to

V̇ (t) = r (t)

∫ +∞

t

γLe−
∫ v
t r(s) ds dv−γL = η̇ (t) ,

which, after substituting the integral with (15), yields the interest rate

r (t) =
γL

η (t)
+
η̇ (t)

η (t)
. (16)

12As a matter of fact, all mainstream extensions of Romer’s model implicitly assume time-dependent costs of
producing new ideas. However, like Romer’s one, all these models are based on knowledge production functions
that use labor as a main input factor, so that the cost of new knowledge depends on the equilibrium wage.
Because, according to (6) and (14), in our setting we assume that knowledge is produced through financial
investment rather than labor, these contributions are not directly comparable with our model. We will return
to this issue in Section 7, where scale effects will be tackled.
13Note that (14) encompasses also the case in which new knowledge is being produced by decentralized R&D—

firms for a price η (t) = ψ [A (t)] that includes a mark-up over the Tsur and Zemel (2007) first-best cost ϕ [A (t)],
as in Marchese et al. (2014).
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Note that, although the total royalty Γ = γL remains constant, under Assumption A.4 the
interest rate varies in time according to the law of motion of η (t).
Because from (15) V (t) = η (t), equation (16) can be rewritten in the familiar form of a

Hamilton-Jacobi-Bellman equation,

r (t)V (t) = γL+ V̇ (t) , (17)

in which the evolution through time of knowledge’s value takes into account the assets’gains/
losses V̇ (t) = η̇ (t) due to variations in the new knowledge’s cost η (t).
Using (16) in (2) we obtain the following time-dependent growth rate of consumption:

g (t) =
Ċ (t)

C (t)
=

1

εu [C (t)]

[
γL

η (t)
+
η̇ (t)

η (t)
− ρ
]
. (18)

As, by construction, this version of the model exhibits transition dynamics, we look for an
Asymptotic Balanced Growth Path (ABGP) type of equilibrium. To this aim, we assume that
asymptotically the intertemporal elasticity of substitution becomes constant, while the growth
rate of the unit cost of new knowledge is required to vanish in the long-run; that is, we set
limt→+∞ [1/εu (C)] = 1/σ, σ > 0, and limt→+∞ [η̇ (t) /η (t)] = 0. Note that this setting is
suffi ciently general to encompass any type of new knowledge production function, envisaging
either increasing or decreasing η (t) along transition dynamics, while asymptotically the unit
cost of new knowledge must converge to some positive constant, limt→+∞ η (t) = η∗ > 0, in
order to satisfy the transversality condition for a solution of problem (1), as will be explained
in Remark 1.

Proposition 3 Under Assumptions A.1, A.2 and A.4, assume that limt→+∞ [1/εu (C)] = 1/σ,
σ > 0, and limt→+∞ η (t) = η∗ > 0. Then, if

γL > ρη∗ and (1− σ) γL < ρη∗, (19)

then the economy admits a unique ABGP along which knowledge, output, and consumption all
grow at the same asymptotic growth rate given by

g∗ =
Ċ

C
=
Ȧ

A
=
Ẏ

Y
=

1

σ

(
γL

η∗
− ρ
)
. (20)

Proof. See the Appendix.

Conditions (19) and the growth rate (20) are the same as those in (12) and (11) respectively,
only with the asymptotic value η∗ in place of the constant unit cost η. Note that along the
transition dynamics the consumption growth rate g in (18) may be either larger or smaller than
its asymptotic value g∗ in (20), depending on the sign of η̇/η, that is, on whether building new
knowledge involves increasing or decreasing costs as time elapses.

Remark 1 If we relax the assumption that limt→+∞ η (t) = η∗ > 0 and allow either that η (t)
grows asymptotically, limt→+∞ [η̇ (t) /η (t)] > 0 with η (t)→ +∞ as t→ +∞, or that η (t) keeps
decreasing, limt→+∞ [η̇ (t) /η (t)] < 0 with η (t) → 0 as t → +∞ (asymptotically vanishing cost
of producing new ideas), an ABGP type of equilibrium cannot exist. To see this, suppose, on the
contrary, that limt→+∞ [η̇ (t) /η (t)] = gη > 0. Then γL/η (t) → 0 as t → +∞ and, from (16)
and (18), limt→+∞ r (t) = r∗ ≡ gη and limt→+∞ g (t) = (gη − ρ) /σ ≡ g∗ respectively, so that,
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assuming gη > ρ to have g∗ > 0 (positive asymptotic growth), one has gη + g∗ = r∗ + g∗ > r∗,
which violates the transversality condition limt→+∞ η (t)A (t) e−r

∗t = 0.
The interpretation is that, according to (15), an increasing cost of knowledge production must

be compensated by an increasing market value of knowledge, V (t), a too heavy burden for the
economy to sustain. On the other hand, limt→+∞ [η̇ (t) /η (t)] = gη < 0 implies γL/η (t)→ +∞
as t → +∞, which would generate explosive growth and is thus incompatible with an ABGP
of the sort defined by (20). In this case, vanishing costs of new knowledge production leads an
immaterial economy like ours to outburst.

5 The Social Optimum

When the cost of knowledge varies through time depending on the evolution of the knowledge
stock, externalities arise, but the households are not able to keep them into account in their
decision process, as they can only observe the ensuing price changes, η̇ (t), embedded in the
interest rate according to (16). Clearly, under these circumstances the equilibrium described in
Proposition 3 turns out to be not Pareto optimal, as we now show by solving the social planner
problem associated to (1).
Now we assume that the unit cost of new knowledge production η (t) has the form in (13)

and, as in Proposition 3, limt→+∞ η (t) = limt→+∞ ϕ [A (t)] = η∗ > 0 when there is knowledge
growth, Ȧ (t) /A (t) > 0. Following the same argument as in the proof of Proposition 2 in the
Appendix, the social planner first maximizes net output, Y (t)−X (t) = A (t)Lf [x (t) /A (t)]−
x (t)L, with respect to x (t), obtaining the optimal net output Y S (t)−XS (t) = γLA (t). Then,
she maximizes the representative household’s lifetime discounted utility as in (1) subject to the
resource constraint γLA (t) = C (t) + J (t), which, according to (13) and (14), can be written
as

Ȧ (t) =
γLA (t)− C (t)

ϕ [A (t)]
. (21)

Denoting by λ (t) the costate variable associated to the unique dynamic constraint (21) and
dropping the time argument for simplicity, the current-value Hamiltonian of the social planner
problem is

H (A,C, λ) = u (C) + λ
γLA− C
ϕ (A)

.

Necessary conditions are

u′ (C) =
λ

ϕ (A)
(22)

λ̇ = ρλ− λγLϕ (A)− (γLA− C)ϕ′ (A)

[ϕ (A)]2
(23)

lim
t→+∞

λ (t)A (t) e−ρt = 0, (24)

where (24) is the transversality condition. Differentiating with respect to time (22) one gets

λ̇

λ
=
ϕ′ (A) Ȧ

ϕ (A)
− εu (C)

Ċ

C
, (25)

where εu (C), as usual, denotes the inverse of the intertemporal elasticity of substitution. Cou-
pling (25) with (23), using (21) and rearranging terms we obtain the following transitory con-
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sumption growth rate:

gS (t) =
Ċ (t)

C (t)
=

1

εu [C (t)]

{
γL

ϕ [A (t)]
− ρ
}
. (26)

Also this version of the model exhibits transition dynamics; thus, we again look for an ABGP
type of equilibrium which, because as t→ +∞ gS in (26) converges to the same consumption
growth rate g∗ defined in (20), turns out to be the same as that characterized in Proposition 3.

Proposition 4 Suppose that Assumptions A.1, A.2 and A.4 with the specification in (13) hold.
Moreover assume that limt→+∞ {1/εu [C (t)]} = 1/σ, σ > 0, and limt→+∞ ϕ [A (t)] = η∗ > 0
whenever there is positive knowledge growth, Ȧ/A > 0. Then, if conditions (19) hold, the social
planner economy admits a unique ABGP along which knowledge, output, and consumption all
grow at the same asymptotic growth rate characterized by the common constant growth rate as
in (20) of Proposition 3 for the decentralized economy.
Furthermore, along the transition dynamics the consumption growth rate in (26) can be

either larger or smaller than that in (18), specifically, gS > g when ϕ′ [A (t)] < 0, while gS < g
when ϕ′ [A (t)] > 0.

Proof. See the Appendix.

From Proposition 4 we conclude that, asymptotically, the equilibrium in the decentralized
model of Section 4 converges to the Pareto optimal solution. However, along the transition
dynamics the consumption growth rate under social planner supervision in (26) can be either
larger or smaller than that in the decentralized market economy in (18), depending on the sign
of ϕ′ [A (t)] which, in turn, determines the sign of the term η̇ (t) /η (t) = ϕ′ [A (t)] Ȧ (t) /ϕ [A (t)]
in the square bracket of the RHS in (18). Indeed, a social planner controls the whole evolution
of the knowledge stock A (t) so that, with a unit cost of new knowledge production as in (13),
the externalities of investments in knowledge leading to changes in ϕ [A (t)] through time are
now taken into account.
Specifically, with costs that decrease in time, ϕ′ [A (t)] < 0, the growth rate in the tran-

sitional period is larger under central control than in the decentralized model of Section 4:
gS > g. This is due to the presence of a positive externality, that is, when knowledge costs
are decreasing in time, it becomes possible to produce subsequent inventions by subtracting
less and less resources from other uses. This external effect, however, is not accounted for by
private investors, while it is being considered by the central planner, who, accordingly, chooses
a larger growth rate gS in the transitional period.
Conversely, if ϕ′ [A (t)] > 0, the growth rate in the transitional period is smaller under the

social planner supervision than in the decentralized model: gS < g.
As ineffi ciencies arise in the transitional period under decentralization, corrective policy

interventions might be designed. That is, a subsidy to R&D investments along the transition
when ϕ′ [A (t)] < 0 (a tax when ϕ′ [A (t)] > 0) could be introduced to align the behavior of
decentralized agents to the path envisaged by the social planner. We do not pursue here the
detailed specification of such tools.

6 A Parameterized Example

Assume households have an instantaneous CIES utility, u (C) = (C1−σ − 1) / (1− σ), σ > 0,
and F—firms production function has the Cobb-Douglas form, Y = F (X,AL) = θXα (AL)1−α =
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θAL (x/A)α, θ > 0 and 0 < α < 1. Thus, f (x/A) = θ (x/A)α and parameters in (7) and (8)
are given by δ = (θα)1/(1−α) and γ = θ1/(1−α)αα/(1−α) (1− α) respectively. Under Assumption
A.3 the unit cost of new knowledge production, η, is constant, and the interest rate in (10) is
given by

r =
γL

η
=
θ1/(1−α)αα/(1−α) (1− α)L

η
,

while, according to Proposition 1, the economy growth rate common to all variables is

g =
Ċ

C
=
Ȧ

A
=
Ẏ

Y
=

1

σ

[
θ1/(1−α)αα/(1−α) (1− α)L

η
− ρ
]
,

whenever θ1/(1−α)αα/(1−α) (1− α)L > ρη and (1− σ) θ1/(1−α)αα/(1−α) (1− α)L < ρη hold.
To consider a time-dependent unit cost of new knowledge production, η (t), as foreseen by

Assumption A.4 with the (13) specification, let

η (t) = ϕ [A (t)] =
β

A (t)
+ η∗, β, η∗ > 0.

As the function ϕ (A) is decreasing in A, under positive knowledge growth, Ȧ/A > 0, η (t) is
decreasing in time and limt→+∞ η (t) = limA→+∞ ϕ (A) = η∗ > 0, so that the assumptions of
Proposition 3 hold. According to (14), the new knowledge production function is

Ȧ (t) =
J (t)

ϕ [A (t)]
=

A (t)

β + η∗A (t)
J (t) ,

envisaging increasing knowledge spillovers as (∂/∂A) [A/ (β + η∗A)] = β/ (β + η∗A)2 > 0, with
decreasing returns as (∂2/∂A2) [A/ (β + η∗A)] = −2βη∗/ (β + η∗A)3 < 0. From (16) we get the
transition interest rate as

r (t) =
θ1/(1−α)αα/(1−α) (1− α)LA (t)

β + η∗A (t)
− β

β + η∗A (t)

Ȧ (t)

A (t)
,

and Proposition 3 predicts an ABGP characterized by the following growth rate common to all
variables,

g∗ =
Ċ

C
=
Ȧ

A
=
Ẏ

Y
=

1

σ

[
θ1/(1−α)αα/(1−α) (1− α)L

η∗
− ρ
]

(27)

whenever θ1/(1−α)αα/(1−α) (1− α)L > ρη∗ and (1− σ) θ1/(1−α)αα/(1−α) (1− α)L < ρη∗ hold.
If we let

η (t) = ϕ [A (t)] = η∗
[
1− 1

A (t) + β

]
, β ≥ 1 and η∗ > 0,

we have a function ϕ (A) which is increasing in A so that, under positive knowledge growth,
Ȧ/A > 0, η (t) is increasing in time and again limt→+∞ η (t) = limA→+∞ ϕ (A) = η∗ > 0;
moreover, with β ≥ 1 and assuming A (0) > 0, η (0) = η∗ {1− 1/ [A (0) + β]} > 0. Hence, the
assumptions of Proposition 3 still hold, but now the unit cost of new knowledge increases in
time. According to (14), the new knowledge production function is

Ȧ (t) =
J (t)

ϕ [A (t)]
=

A (t) + β

η∗ [A (t) + β − 1]
J (t) ,

characterized by decreasing knowledge spillovers because (∂/∂A) {(A+ β) / [η∗ (A+ β − 1)]} =
−1/

[
η∗ (β + η∗A)2] < 0; however, now such spillovers occur at a decreasing negative rate as
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(∂2/∂A2) {(A+ β) / [η∗ (A+ β − 1)]} = 2/
[
η∗ (β + η∗A)3] > 0. From (16) we get the transi-

tion interest rate as

r (t) =
θ1/(1−α)αα/(1−α) (1− α)L [A (t) + β]

η∗ [A (t) + β − 1]
+

Ȧ (t)

[A (t) + β − 1] [A (t) + β]
,

and Proposition 3 again predicts the same ABGP constant growth rate common to all variables
given by (27) whenever θ1/(1−α)αα/(1−α) (1− α)L > ρη∗ and (1− σ) θ1/(1−α)αα/(1−α) (1− α)L <
ρη∗ hold.

7 Scale Effects and Population Growth

It is evident from (11) and (20) that, as one expects, both versions of our simplified economy
exhibit the strong scale effect —the growth rate of the economy increases in population size —
as postulated by Jones (1995, 1999 and 2005) for knowledge-based endogenous growth models.
Scale effects are in a sense built-in in idea-based growth models: as ideas are collective goods,
their returns increase as a larger number of agents are affected by their spillovers. While in the
original Romer (1990) model the strong scale effect is determined by full knowledge spillovers
among researchers, in our setting this effect is present because labor plays the role of the
“carrier” of the knowledge input factor in the final good production, so that the economy’s
growth rate turns out to be directly affected by the total royalty Γ = γL, corresponding to the
Lindahl pricing of knowledge.
Also in our scenario, however, a more realistic weak scale effect can hold if there are in-

creasing technical diffi culties in combining labor and knowledge. That is, besides the decreasing
marginal returns to augmented labor that characterize the instantaneous production function
in the final good production sector, the “labor augmentation”process may become more dif-
ficult through time. To take this feature into account, we add a “damping” term, Ω (t), to
the second argument in the neoclassical production function of Assumption A.2 by defining
aggregate output at instant t as14

Y (t) = F

[
X (t) ,

A (t)L (t)

Ω (t)

]
, (28)

where X (t) still denotes the aggregate intermediate good amount used in final production.
Because our aim is to tackle scale effects, in the sequel it will be assumed that population —
and thus workers —grows exogenously at a constant rate n > 0, i.e., L̇ (t) = nL (t). For now let
us only assume that the term Ω (t) depends on time; a more precise characterization of Ω (t)
will be specified later on. Note the role of the term Ω (t) in (28): it mirrors the same effect as
in the new knowledge production functions of Segerstrom (1998) and Kuwahara (2013), except
that here such term affects final rather than knowledge production.

7.1 Market equilibrium

As in Subsection 2.2 we rewrite (28) as

Y (t) =
A (t)

Ω (t)
L (t) f

[
Ω (t)x (t)

A (t)

]
, with f (·) = F (·, 1) , (29)

14As explained in Subsection 2.2, all produncing firms in the economy use the same production function;
hence, there is no reason to keep the index i and we can consider the representative F -firm.
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where, as usual, x (t) = X (t) /L (t) denotes per capita intermediate good. Dropping the time
index for simplicity, FOC for the representative F—firm now become:

∂Y

∂X
= f ′

(
Ωx

A

)
= 1 (30)

∂Y

∂A
=
L

Ω

[
f

(
Ωx

A

)
−
(

Ωx

A

)
f ′
(

Ωx

A

)]
=
L

Ω
γ

(
Ωx

A

)
, (31)

where in (31) the term γ (Ωx/A) still denotes the equilibrium royalty per augmented worker,
which here depends on the ratio (Ωx/A) and is being further ‘diminished’ by the term Ω.
Following the same arguments as in Section 3 it is readily seen that (30) implies the demand
for the intermediate good x be still linear in A, but now it depends also on Ω, according to
x =

[
(f ′)−1 (1) /Ω

]
A = (δ/Ω)A. Replacing the constant δ = (f ′)−1 (1) = (Ωx/A) in (31) we

obtain the per capita willingness to pay for knowledge, which is still the constant given by (8):
γ (Ωx/A) ≡ γ = f (δ) − δf ′ (δ) = f (δ) − δ. Hence, according to (31), the total royalty at
instant t is now given by

Γ (t) = γ
L (t)

Ω (t)
, (32)

which is no more a constant because both L (t) and Ω (t) depend on time.
Under Assumption A.4 the free-entry condition in (15) can be rewritten as:

V (t) =

∫ +∞

t

Γ (v) e−
∫ v
t r(s) ds dv = η (t) , (33)

where now Γ (t) is given by (32). Differentiating both sides with respect to time leads to

V̇ (t) = r (t)

∫ +∞

t

Γ (v) e−
∫ v
t r(s) ds dv−Γ (t) = η̇ (t) ,

which, after substituting the integral with (33) and using (32), yields the interest rate

r (t) =
Γ (t)

η (t)
+
η̇ (t)

η (t)
=

γL (t)

η (t) Ω (t)
+
η̇ (t)

η (t)
. (34)

Using (33), equation (34) can be rewritten in the familiar form of a Hamilton-Jacobi-Bellman
equation:

r (t)V (t) =
γL (t)

Ω (t)
+ V̇ (t) . (35)

Under the assumption of constant exogenous population growth it is convenient to restate
the representative household’s problem in per capita terms:

max
[c(t)]∞t=0

∫ +∞

0

u [c (t)] e−(ρ−n)t dt (36)

subject to ḃ (t) = [r (t)− n] b (t)− c (t) ,

where u (·) still satisfies Assumption A.1, c (t) = C (t) /L (t) and b (t) = B (t) /L (t) denote
per capita consumption and asset respectively, r (t) is the market rate of returns on assets,
and n = L̇ (t) /L (t), with the additional constraint 0 ≤ c (t) ≤ r (t) b (t), for a given initial
asset level b (0) = b0 > 0. The associated Euler equation is now stated in terms of per capita
consumption growth rate:

ċ (t)

c (t)
=

1

εu [c (t)]
[r (t)− ρ] , (37)
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where again 1/εu (c) = −u′ (c) / [u′′ (c) c] is the intertemporal elasticity of substitution. Using
(34) it can be rewritten as

gc (t) =
ċ (t)

c (t)
=

1

εu [c (t)]

[
γL (t)

η (t) Ω (t)
+
η̇ (t)

η (t)
− ρ
]
, (38)

from which it is apparent that this model exhibits transition dynamics.
From (38) it is clear that in order to achieve an ABGP in the long-run, besides the as-

sumptions of Proposition 3, i.e., limt→+∞ [1/εu (C)] = 1/σ > 0, and limt→+∞ η (t) = η∗ > 0
[which implies that η̇ (t) /η (t) → 0 as t → +∞], now we need the additional restriction that
limt→+∞

[
Ω̇ (t) /Ω (t)

]
= n; that is, to have an ABGP the term Ω (t) asymptotically must grow

at the same exogenous growth rate of population.
As, under the assumption that Ω̇/Ω = n, the ratio L/Ω becomes constant in the long-run, it

follows that also the ratio c (t) /a (t) must eventually become constant (see the proof of the next
Proposition 5 in the Appendix), that is, the asymptotic growth rate of per capita consumption
must be equal to that of per capita knowledge: limt→+∞ [ċ (t) /c (t)] = limt→+∞ [ȧ (t) /a (t)] =

limt→+∞

[
Ȧ (t) /A (t)

]
− n. Therefore, in order to close the asymptotic equilibrium of our

model we need to evaluate the long-run growth rate of knowledge, limt→+∞

[
Ȧ (t) /A (t)

]
; to

this purpose a relationship between the damping term Ω and the stock of knowledge A is
required.

A. 5 The function Ω (t) depends on the stock of knowledge, i.e., Ω (t) = Ω [A (t)], and has
elasticity that becomes constant as A→ +∞:

lim
A→+∞

Ω′ (A)A

Ω (A)
= ε∗Ω, with 0 < ε∗Ω < 1.

Proposition 5 Under the assumptions of Proposition 3 suppose that population grows accord-
ing to a constant exogenous rate, L̇/L = n, and Assumption A.5 holds. Then, if

1− (1− ε∗Ω)σ

ε∗Ω
n < ρ, (39)

the economy admits a unique ABGP along which per capita consumption grows at the constant
asymptotic rate

g∗c =
ċ

c
=

(
1

ε∗Ω
− 1

)
n, (40)

while (aggregate) knowledge and output grow at the same constant asymptotic growth rate given
by

g∗ =
Ȧ

A
=
Ẏ

Y
=

n

ε∗Ω
, (41)

and the constant asymptotic interest rate is

r∗ =

(
1

ε∗Ω
− 1

)
σn+ ρ. (42)

Proof. See the Appendix.

According to (40), Assumption A.5 is necessary to have positive per capita consumption
growth. In other words, the damping function Ω [A (t)] asymptotically must grow less than
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proportionally with respect to the stock of knowledge. This is consistent with the Jones (1995,
1999, 2005) and Kortum (1997) approach as, from (28), one can see that Ω (A) enters the
denominator of a ratio having A in the numerator, thus contributing to slowing down the
returns to knowledge for fixed labor L entering the production function of the final sector as time
elapses.15 As a consequence, (40) typically represents the growth rate of a “semi-endogenous”
growth model as, if on one hand the economy exhibits sustained growth, on the other hand the
per capita growth rate depends only on population growth and the technological parameter ε∗Ω
that determines how effectively knowledge is being employed in the final sector; specifically, the
asymptotic growth rate cannot be affected by taxation or other policies. Interestingly, unlike
the equilibria obtained in previous sections, here the per capita growth rate g∗c does not depend
either on preferences (parameters σ and ρ), the final good production function (parameter γ),
or, most importantly, the new knowledge production function (parameter η∗).

Example 1 Assume that Ω (A) = A1−φ, with 0 < φ < 1. Then ε∗Ω ≡ 1 − φ for all A (and
thus for all t ≥ 0) and the second argument of the production function in (28) boils down to
AφL, resembling the familiar form of Jones (1995, 1999 and 2005) new knowledge production
function. Indeed, by Proposition 5, the long-run per capita consumption growth rate turns out
to be

g∗c =
φn

1− φ, (43)

not much different than that found by Jones, which, in its simplified version, amounts to16

gJc = n/ (1− φ). Note that the appearance of φ both in the numerator and in the denominator
of (43) lets the consumption growth rate be more sensitive with respect to the technological
parameter φ than it occurs in Jones’s growth rate, as for values of φ close to 0 our economy
exhibits a per capita consumption growth rate smaller than that in Jones, which vanishes as
φ → 0+. The intuition might be that while in Jones the technological parameter φ affects
income growth by slowing only the productivity of researchers, in our case it affects the whole
labor. It becomes clear at any rate that the insensitivity to standard policy tools, as subsidies to
R&D, arises both here and in semi-endogenous growth models when ineffi ciencies involve labor.

7.2 Centralized solution

In this section so far we considered a unit cost of knowledge production, η (t), that changes
through time along the transitory dynamics. In order to focus on the correction of the market
failure generated by the damping function Ω (t) in (28), we resume Assumption A.3 and assume
that the unit cost of knowledge production is constant η (t) ≡ η; therefore, from Proposition 2
we know that no externalities are involved in the knowledge generation process and can examine
exclusively how the function Ω (t) let the decentralized equilibrium characterized above depart
from the optimal solution.
Under Assumptions A.1—A.3, suppose that population grows exogenously at a constant

rate n > 0, i.e., L̇ (t) = nL (t), and total output is given by (29), with a damping function

15Note, however, that ε∗Ω < 1 rules out the case in which the ratio A (t) /Ω (t) is decreasing in time; this
scenario corresponds to ε∗Ω > 1, which implies a negative per capita consumption asymptotic growth rate.
In other words, to have positive per-capita consumption growth in the long-run a Segerstrom (1998) type of
damping function Ω (A), reducing the productivity of labor as the stock of knowledge increases, cannot be
applied in our setting.
16This value corresponds to that defined in equation (13.38) on p. 447 in Acemoglu (2009). In the original

works of Jones (1995, 1999 and 2005) also a parameter 0 < λ ≤ 1 indicating decreasiong returns in researchers’
effort appear in the numerator, yielding a per capita consumption growth rate given by gJc = λn/ (1− φ).
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Ω (t) = Ω [A (t)] satisfying assumption A.5. As usual, the social planner first maximizes net
output which, using (29) and X (t) = x (t)L (t), amounts to

Y (t)−X (t) =
A (t)

Ω (t)
L (t) f

[
Ω (t)x (t)

A (t)

]
− x (t)L (t) ,

with respect to x (t), obtaining the optimal net output Y S (t) − XS (t) = γA (t)L (t) /Ω (t),
with γ still defined by (8). Using (6) the dynamic resource constraint can be written as

Ȧ (t) =
1

η

[
γL (t)A (t)

Ω [A (t)]
− C (t)

]
,

where all variables, including consumption, are written in aggregate terms. Hence, the social
planner problem associated to (36) is:

max
[c(t)]∞t=0

∫ +∞

0

L (t)u [c (t)] e−ρt dt (44)

subject to Ȧ (t) =
L (t)

η

[
γA (t)

Ω [A (t)]
− c (t)

]
,

where c (t) = C (t) /L (t) denotes per capita consumption, with the additional constraint 0 ≤
c (t) ≤ γA (t) /Ω [A (t)], for a given initial knowledge stock A (0) = A0 > 0.
Denoting by λ (t) the costate variable associated to the unique dynamic constraint and

dropping the time argument for simplicity, the current-value Hamiltonian of the social planner
problem is

H (A,C, λ) = Lu (c) +
λL

η

[
γA

Ω (A)
− c
]
.

Necessary conditions are

u′ (c) =
λ

η
(45)

λ̇ = ρλ− λγL [Ω (A)− AΩ′ (A)]

η [Ω (A)]2
(46)

lim
t→+∞

λ (t)A (t) e−ρt = 0, (47)

where (47) is the transversality condition. Differentiating with respect to time (45) one gets
the usual condition λ̇/λ = −εu (c) (ċ/c),where εu (c) denotes the inverse of the intertemporal
elasticity of substitution, which, coupled with (46) and rearranging terms yields the following
transitory consumption growth rate:

gSc =
ċ

c
=

1

εu (c)

{
γL

ηΩ (A)

[
1− Ω′ (A)A

Ω (A)

]
− ρ
}
. (48)

Also this version of the model exhibits transition dynamics; hence, again we look for an
ABGP type of equilibrium.

Proposition 6 Under the assumptions of Proposition 5, if condition (39) holds, the social
planner economy admits a unique ABGP along which per capita consumption grows at the as-
ymptotic constant growth rate given by (40), while knowledge and output grow at the asymptotic
constant growth rate as in (41) of Proposition 5 for the decentralized economy.
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Furthermore, along the transition dynamics the consumption growth rate in (48) is larger,
equal to, or smaller than that in (38), i.e., gSc (t) > gc (t), gSc (t) = gc (t), or gSc (t) < gc (t),
provided that ε∗Ω (t) = Ω′ [A (t)]A (t) /Ω [A (t)] satisfies ε∗Ω (t) < 0, ε∗Ω (t) = 0, or ε∗Ω (t) > 0,
respectively.

Proof. See the Appendix.

Proposition 6 states that, like in all previous versions of the model, asymptotically the
equilibrium in the decentralized model characterized by Proposition 5 converges to the Pareto
optimal solution. However, along the transition dynamics the consumption growth rate under
social planner supervision in (48) may be larger or smaller than that in the decentralized market
economy described by (38) depending on the transitory value of parameter ε∗Ω (t). This is
because a social planner takes into account the negative externalities associated to the function
Ω [A (t)] in the final sector production process. Specifically, depending on whether the damping
term Ω [A (t)] decreases or increases as knowledge A piles up through time — i.e., Ω′ [A (t)] <
0 or Ω′ [A (t)] ≥ 0 — the social planner is able to increase or decrease consumption growth
accordingly, pushing it up when knowledge is expected to become more effectively employed
by the final sector in the near future, that is, when the term Ω [A (t)] decreases, while it may
be optimal even a negative consumption growth rate if ε∗Ω (t) is suffi ciently large, i.e., when
ε∗Ω (t) > 1 − ρηΩ [A (t)] / [γL (t)]. Households, on the other hand, can only observe the effect
of Ω [A (t)] through the interest rate, which, according to (34) when η is constant and thus
η̇/η = 0, is given by r (t) = (γ/η)L (t) /Ω [A (t)], and are not able to discount changes in
Ω [A (t)] that will affect the future effectiveness of the knowledge factor in final production.
Note, however, that Assumption A.5 implies that after some (perhaps large) instant T > 0,

ε∗Ω (t) must satisfy ε∗Ω (t) > 0 for all t ≥ T . Therefore, after T and before reaching the ABGP
—where, according to the first part Proposition 6, the asymptotic growth rate of consumption
is the same both in the centralized and decentralized models —the social planner will choose a
smaller consumption growth rate than in the decentralized equilibrium because, unlike house-
holds, she anticipates the increasing diffi culty in knowledge usage by the final sector firms.

8 Conclusions

In this paper we take into account the increasingly immaterial characteristics assumed by
technical progress and the implications this has on the ways in which it is transferred to final
goods’production. On this basis we assume that both a direct use of ideas in final production
and the revelation of firm’s willingness to pay for accessing knowledge arise. A further feature
that characterizes our model is the reconsideration of the role of human capital. Education
has traditionally been identified with a lengthy investment process concentrated in the initial
years of life and mainly built through inputs represented by physical and human capital. In the
last decades this path has been challenged on the one hand by the emerging of the necessity
of permanent and quick updating and adapting of competencies, on the other by the potential
disruption that technical progress could bring to the way in which education is delivered.
Nowadays non-rival inputs such as educational software, data repositories and standardized
routines seem poised to assume an increasing role in enhancing labor performance. Non rival
components have also always been paramount in the basic education processes that pass-on
social attitudes and the cultural heritage, whose contents become built-in in raw labor supply.
As noted by Romer (1990), knowledge in general can be accessed only through the interme-

diation of some rival good or factor, but with some simplification we can treat ideas as non-rival
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goods as long as their circulation means have a tiny cost with respect to that of producing the
contents they carry. In this paper we consider a framework in which raw labor too is demanded
as a low cost mean for accessing valuable ideas. Thus, both workers and patent holders supply
the same type of input —knowledge —while the former provide it jointly with raw labor. As
knowledge growth occurs through investment in patented innovations, an important implica-
tion of the model is a tendency toward the compression of incomes paid to workers —which can
reduce to the sole compensation of the basic competencies —while the remaining income goes
to patent holders.
We also showed that when one takes into account the aforementioned features of recent

technical progress, competition becomes viable. Hence the economy can reach the first best
if knowledge, while being non-rival, is homogeneous and fully excludable when used in final
goods production. Even if partial excludability occurs, second best results would be confined
to the transitional period, while first best is reached all the same in the long run. Even though
non competitive markets in practice are often observed, stressing that competition is logically
viable has important policy implications, since it means that, e.g., regulatory and judicial
interventions in the field of patents and IPR can foster competition without fearing that a
collapse of research activities arises.
While the potential unwanted effects of technical progress have been often identified with

the possible growth in unemployment due to the substitution of capital for labor, these dire
effects did not materialize in the last decades in advanced countries, where unemployment —bar
for the financial crisis years —has not been the more worrying problem. One of the prominent
social concerns has actually been instead the shrinking of labor income share. The contribution
of this paper is a possible rationale for this stylized fact, which does not fit well into standard
growth models where the stability of factors’income shares is a tenet. As long as development
disempowers the role of human capital, it raises also potential severe distributive problems.
Our simple setting, however, is not suitable for studying them, and thus they are left for future
research.

Appendix

Proof of Proposition 1. Clearly, the first condition in (12) implies that, according to (11),
g = Ċ/C > 0. Differentiating with respect to time ln (Y ), with Y as in (3), and recalling that,
from (7), x/A ≡ δ is constant, it is immediately seen that Ẏ /Y = Ȧ/A. As the only asset in
the economy is expressed in terms of the knowledge stock A owned by households, from (9)
B = V A = ηA must hold; hence, as under Assumption A.3 both η and, by (10), the interest
rate, r = γL/η, are constant the instantaneous budget constraint in (1) can be rewritten as

Ȧ

A
=

1

η

(
γL− C

A

)
, (49)

which implies that, in order to Ȧ/A be constant along the BGP, the ratio C/A on the RHS
must be constant as well, which is possible if and only if Ȧ/A = Ċ/C = g. Next, note that
the second condition in (12) implies that r > g = Ȧ/A, so that the transversality condition
for problem (1), limt→+∞B (t) e−rt = limt→+∞ ηA (t) e−rt = 0, holds. Finally, for each A (t)
the amount of the intermediate good is given by (7) as x (t) = δA (t); therefore, in t = 0,
x (0) = δA (0) and the economy is immediately put on the BGP.

Proof of Proposition 2. The resource constraint of the economy at instant t is

C (t) + J (t) = Y (t)−X (t) , (50)
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where on the RHS we consider total output net of the intermediate goods, X (t) = x (t)L.
Dropping time dependency for simplicity, in order to obtain a dynamic constraint in the only
variables A (state) and C (control) a social planner first considers maximization of the net
output Y − X = [Af (x/A)− x]L with respect to x for a given stock A at instant t: the
solution is xS = (f ′)−1 (1)A = δA, where the superscript “S”denotes the level of per capita
intermediate good chosen by the social planner, which happens to be the same as in (7). Hence,
net output turns out to be Y S (t) − XS (t) = L [f (δ)− δ]A (t) = γLA (t), where in the last
equality we used (8). Under Assumption A.3 J = ηȦ, and (50) can be rewritten as

Ȧ (t) =
γ (t)LA (t)− C (t)

η
,

which, as B (t) = ηA (t) with η constant, turns out to be the same as the household’s budget
constraint in (1). Hence, the social planner problem is the same as (1) and has the same
equilibrium of Proposition 1 as solution.

Proof of Proposition 3. The arguments are the same as in the previous proof of Propo-
sition 1 and thus we omit them. The only difference is that now from (15) B (t) = V (t)A (t) =
η (t)A (t) holds, so that Ḃ (t) = η̇ (t)A (t) + η (t) Ȧ (t); however, it is immediately seen that the
instantaneous budget constraint in (1) at each instant t remains the same as in (49), as, using
(16) and rearranging terms,

Ȧ (t)

A (t)
=

γL

η (t)
+
η̇ (t)

η (t)
− η̇ (t)

η (t)
− C (t)

η (t)A (t)
=

1

η (t)

[
γL− C (t)

A (t)

]
.

When limt→+∞ η (t) = η∗ > 0, η̇ (t) → 0 as t → +∞ and, according to (16), limt→+∞ r (t) =
r∗ ≡ γL/η∗; thus, the second condition in (19) implies that r∗ > g∗ = Ȧ/A, with g∗ de-
fined in (20), so that the transversality condition for problem (1), limt→+∞ η (t)A (t) e−r(t)t =
limt→+∞ η

∗A (t) e−r
∗t = 0, holds.

Proof of Proposition 4. When Ȧ/A > 0, limt→+∞ ϕ [A (t)] = η∗ > 0 implies that
limt→+∞ ϕ

′ [A (t)] = 0, so that it is immediately seen that, as limt→+∞ [1/εu (C)] = 1/σ, the
consumption growth rate in (26) asymptotically converges to that defined in (20). As asymp-
totically the dynamic constraint (21) becomes equal to (49), the same argument as in the
proofs of Proposition 1 applies to establish that Ẏ /Y = Ȧ/A = Ċ/C = g∗ while the first
condition in (19) implies that, according to (20), g∗ > 0. The second condition in (19) is
equivalent to (1− σ) g∗ < ρ, which, according to (25) and, under (13), limt→+∞ [η̇ (t) /η (t)] =

limt→+∞

{
ϕ′ [A (t)] Ȧ (t) /ϕ [A (t)]

}
= 0, implies

lim
t→+∞

(
λ̇

λ
+
Ȧ

A

)
= lim

t→+∞

(
η̇

η
− σĊ

C
+
Ȧ

A

)
= (1− σ) g∗ < ρ,

thus ensuring that the transversality condition (24) holds.

Proof of Proposition 5. Under the assumptions limt→+∞ [1/εu (c)] = 1/σ > 0 and
limt→+∞ η (t) = η∗ > 0 [implying η̇ (t) /η (t) → 0 as t → +∞], from (38) it is clear that, in
order to achieve an ABGP in the long-run, additionally

lim
t→+∞

Ω̇ (t)

Ω (t)
=
L̇ (t)

L (t)
= n (51)
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must hold. In view of (29) and recalling that the argument of the function f (·) is constant,
(Ωx/A) = δ, it is immediately seen that, under (51), on the ABGP aggregate output grows at
the same growth rate of knowledge:

Ẏ (t)

Y (t)
=

∂

∂t
[lnA (t)− ln Ω (t) + lnL (t) + ln f (δ)] =

Ȧ (t)

A (t)
− Ω̇ (t)

Ω (t)
+
L̇ (t)

L (t)

=
Ȧ (t)

A (t)
− n+ n =

Ȧ (t)

A (t)
. (52)

From (33) we obtain the per capita asset as a function of per capita knowledge: b (t) =
B (t) /L (t) = V (t)A (t) /L (t) = η (t) a (t), where a (t) = A (t) /L (t). Thus, the per capita
household’s budget constraint in (36) can be rewritten as

ȧ (t)

a (t)
= r (t)− n− η̇ (t)

η (t)
− c (t)

η (t) a (t)
=

γL (t)

η (t) Ω (t)
+
η̇ (t)

η (t)
− n− η̇ (t)

η (t)
− c (t)

η (t) a (t)

=
γL (t)

η (t) Ω (t)
− n− c (t)

η (t) a (t)
, (53)

where in the second equality we used (34). Because, by Assumption A.5,

lim
t→+∞

Ω̇ (t)

Ω (t)
= lim

t→+∞

Ω′ [A (t)] Ȧ (t)

Ω [A (t)]
= lim

t→+∞

{
Ω′ [A (t)]A (t)

Ω [A (t)]
· Ȧ (t)

A (t)

}

= lim
t→+∞

Ω′ [A (t)]A (t)

Ω [A (t)]
lim
t→+∞

Ȧ (t)

A (t)

= ε∗Ωg
∗,

joining it with (51) from (52) one immediately gets (41). It follows from (53) that g∗c =
limt→+∞ [ċ (t) /c (t)] = g∗ − n = (1/ε∗Ω − 1)n, which is (40). The interest rate in (42) is
immediately obtained using (40) in the (asymptotic) Euler equation (37). Finally, using (42),
condition (39) implies that r∗ > g∗ = Ȧ/A, so that the transversality condition for problem
(36), limt→+∞ η (t)A (t) e−r(t)t = limt→+∞ η

∗A (t) e−r
∗t = 0, holds.

Proof of Proposition 6. Under the same assumptions as in Proposition 5, specifically
under Assumption A.5, from (48) it follows that, in order to achieve an ABGP in the long-run,
Ω (t) and L (t) must grow at the same constant rate, n, so that g∗ as in (41) is immediately
obtained. Rewriting the dynamic resource constrain of (44) as

Ȧ (t)

A (t)
=

1

η

[
γL (t)

Ω [A (t)]
− L (t) c (t)

A (t)

]
,

it is immediately seen that Ȧ/A is constant along the ABGP only if the ratio L (t) c (t) /A (t)
on the RHS is constant as well, which is possible only if Ȧ/A = g∗ = L̇/L + ċ/c = n + g∗c ,
which, using (41), yields (40). Using (46) and (41), it holds

lim
t→+∞

(
λ̇

λ
+
Ȧ

A

)
= lim

t→+∞

{
ρ− γL

ηΩ (A)

[
1− Ω′ (A)A

Ω (A)

]}
+ lim

t→+∞

Ȧ

A

= lim
t→+∞

[
ρ− γL

ηΩ (A)
(1− ε∗Ω)

]
+

n

ε∗Ω
. (54)
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On the other hand, from (48), asymptotically it holds

lim
t→+∞

1

εu (c)

{
γL

ηΩ (A)

[
1− Ω′ (A)A

Ω (A)

]
− ρ
}

=
1

σ
lim
t→+∞

[
γL

ηΩ (A)
(1− ε∗Ω)− ρ

]
= g∗c ,

from which, using (40), one gets

σg∗c = lim
t→+∞

[
γL

ηΩ (A)
(1− ε∗Ω)− ρ

]
= σ

(
1

ε∗Ω
− 1

)
n

which, substituting into (54), yields

lim
t→+∞

(
λ̇

λ
+
Ȧ

A

)
= −σ

(
1

ε∗Ω
− 1

)
n+

n

ε∗Ω
=

1− (1− ε∗Ω)σ

ε∗Ω
n,

so that the transversality condition (47) holds whenever condition (39) is satisfied.
Finally, recall that under Assumption A.3 η̇/η = 0, so that (38) becomes

gc (t) =
1

εu [c (t)]

{(
γ

η

)
L (t)

Ω [A (t)]
− ρ
}
,

which is clearly smaller, equal to, or larger than gSc (t) in (48) whenever ε∗Ω (t) < 0, ε∗Ω (t) = 0,
or ε∗Ω (t) > 0, respectively.
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