
This full text was downloaded from iris - AperTO: https://iris.unito.it/

iris - AperTO

University of Turin’s Institutional Research Information System and Open Access Institutional Repository

This is the author's final version of the contribution published as:

Matteo Baldoni; Cristina Baroglio; Federico Capuzzimati. Social Computing
in JaCaMo, in: Proc. of the 21st European Conference on Artificial
Intelligence, ECAI 2014, IOS Press, 2014, 9781614994183, pp: 959-960.

The publisher's version is available at:
http://ebooks.iospress.nl/publication/37069

When citing, please refer to the published version.

Link to this full text:
http://hdl.handle.net/2318/151898

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Institutional Research Information System University of Turin

https://core.ac.uk/display/301912799?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Social Computing in JaCaMo
Matteo Baldoni and Cristina Baroglio and Federico Capuzzimati1

Abstract. Social Computing (SC) requires agents to reason seam-
lessly both on their social relationships and on their goals, beliefs.
We claim the need to explicitly represent the social state and social
relationships as resources, available to agents. We built a framework,
based on JaCaMo, where this vision is realized and SC is imple-
mented through social commitments and commitment protocols.

1 PROPOSAL AND MOTIVATION
Many systems, developed to support human users, require a transi-
tion from an individualistic to a societal perspective. For instance,
Socio-Technical Systems (STS) are large-scale, multi-party, cross-
organizational systems, which help stakeholders to interact and to use
shared resources [11]. Such systems perform a social computation
which is the sum of the independent contributions of autonomous,
and heterogeneous, parties [10]. Traditional approaches to software
engineering do not fit the needs of such systems, because they do
not help capturing the social aspects of the computation, like the so-
cial relationships between the parties. The way suggested by STS
is to foresee a specific layer that contains the regulations that norm
the system behavior. This direction is followed by normative MAS,
e.g. [7], which enrich MASs by representing the norms that rule the
system. However, such approaches lack proper abstractions for cap-
turing the social state, i.e. the set of relationships and dependencies
that are created and exist along the course of events, which are the
foundations on which the social behavior of the parties is established.
Social relationships connect the interacting parties, they have a nor-
mative value (in that they allow agents to have expectations on one
another), and they can be verified based just on the observable be-
havior of the agents. From a Software Engineering perspective, the
advantage of explicitly representing the social state is to allow the
realization of systems with a high degree of decoupling and of mod-
ularity of their components, avoiding to “hard code” the logic of in-
teraction inside the code of the agents, whose executions are kept
aligned by the social state itself.

Most of Multi-Agent frameworks and platforms do not explic-
itly account for the social state. We propose an agent framework,
2COMM4JASON, that, instead, does so by explicitly representing
the social state through the social relationships and the rules that
cause it to evolve along the interaction. Agents and social relation-
ships are first-class entities that interact in a bi-directional manner.
Social relationships are created by the execution of interaction pro-
tocols and provide expectations on the agents’ behavior. On the other
hand, existing social relationships affect the decisions and the behav-
iors of the agents they involve.

Our proposal exploits the Agents&Artifacts (A&A) meta-model
[8] and reifies the social state as a set of resources, in a way that al-

1 Università di Torino, Dipartimento di Informatica, Italy, email:
{matteo.baldoni,cristina.baroglio,federico.capuzzimati}@unito.it

lows agents to seamlessly reason on them and on their beliefs, goals,
etc. Thus parties can dynamically recognize, accept, refuse rules and
relationships, as advised in [4]. Moreover, the social state, as a re-
source, can be used to monitor the interaction. Social relationships
are modeled as commitments and the rules that cause the social state
to evolve are modeled as commitment-based interaction protocols.
The framework builds upon the JaCaMo platform [2], and the Jason
language is extended so to allow reasoning on commitments.

2 2COMM4JASON

We model social relationships as commitments [9]: C(x, y, r, p) cap-
tures that the agent x (debtor) commits to the agent y (creditor) to
bring about the consequent condition p when the antecedent condi-
tion r holds. Antecedent and consequent are conjunctions or disjunc-
tions of events and commitments. Debtors are expected to satisfy the
engagements they have taken – they are expected to behave so as
to achieve the respective consequent conditions. Commitments sat-
isfy the requirement that [5] in a system made of autonomous and
heterogeneous actors, social relationships cannot but concern the ob-
servable behavior. They also satisfy the requirement [4] of having a
normative value, consequently providing social expectations on the
agents’ behavior. As a consequence, they can be used by agents in
their practical reasoning together with beliefs, intentions, and goals.
A commitment-based interaction protocol is a collection of actions,
whose social effects are expressed in terms of standard commitment
operations (create, cancel, release, discharge, assign, delegate).

The framework is implemented based on JaCaMo [2], a platform
integrating Jason (as an agent programming language), CArtAgO (as
a realization of A&A), and Moise (as a support for realizing organi-
zations). In JaCaMo a MAS is a Moise agent organization, which in-
volves a set of Jason agents, all working in shared distributed artifact-
based environments, programmed in CArtAgO. Environments are
programmed as a dynamic set of artifacts, possibly distributed among
various nodes of a network, that are collected into workspaces. They
can be joined by agents at run-time and there agents can create, use,
share artifacts to support their activities. Artifacts are computational,
programmable system resources, that can be manipulated by agents.
By focusing on an artifact, an agent registers to be notified of events
that are generated inside the artifact, e.g. when other agents exe-
cute some action. Jason [3] implements in Java, and extends, the
agent programming language AgentSpeak(L). Jason agents have a
BDI architecture: each has an own belief base, a set of ground (first-
order) atomic formulas, and a set of plans (plan library). It is possible
to specify achievement (‘!’) and test goals (‘?’). Agents can reason
on their beliefs/goals and react to events, amounting either to belief
changes (occurred by sensing their environment) or to goal changes.
In JaCaMo, agent beliefs can also change due to the automatic prop-
agation of the effects of actions executed in the environment. Plans

are activated by the creation/deletion of some belief or goal.
We introduce commitments in Jason as terms of form: cc(debtor,

creditor, antecedent, consequent, status), where debtor and
creditor are the identities of the involved agents, while antecedent
and consequent are the commitment conditions. Status is a further
parameter that we use to keep track of the commitment state (cre-
ated, satisfied, violated, conditional, detached, expired, pending, ter-
minated). We introduced a class of artifacts that reify social states.
The belief bases of the agents focusing on such an artifact are aligned
to the social state of the ongoing interaction: any modification of the
latter is propagated to the former by the artifact itself by exploiting
proper observable properties, that are added to or removed from the
artifact properties. The artifact is responsible for maintaining the so-
cial state up-to-date, depending on the actions executed.

A protocol action is implemented as an artifact operation; its exe-
cution causes the update of the social state. An agent can execute a
protocol action if its role matches with the one to which the action is
associated. The check is transparent to the agent.

1 p u b l i c c l a s s Cnp ex tends P r o t o c o l A r t i f a c t {
2 @OPERATION
3 @ROLE(name="initiator")
4 p u b l i c vo id c f p (S t r i n g t a s k) {
5 Ro le Id i n i t i a t o r =
6 ge tRole IdByPlayerName (getOpUserName ()) ;
7 t h i s . d e f i n e O b s P r o p e r t y ("task" , t a s k ,
8 i n i t i a t o r . ge tCanonica lName ()) ;
9 Ro le Id d e s t = new Ro le Id ("participant") ;

10 c r e a t e A l l C o m m i t m e n t s (new Commitment (i n i t i a t o r ,
11 d e s t , "propose" , "accept OR reject")) ;
12 a s s e r t F a c t (new F a c t ("cfp" , i n i t i a t o r , t a s k)) ;
13 } . . .

Agent plans can be triggered by events involving commitments.
Commitments can also be used inside a plan context or body. As a
difference with beliefs, commitment assertion/deletion can only oc-
cur through the artifact, after a modification of the social state. For
example, the plan +cc(d, c, ant, cons, s) : 〈context〉 ← 〈body〉 is
triggered when the commitment appears in the social state with the
specified status. The plan may aim at achieving a change of the sta-
tus of the commitment (e.g. the debtor will satisfy the consequent,
the creditor will satisfy the antecedent and detach the commitment)
or it may allow the agent to react to the event (e.g. collecting informa-
tion). Similarly for commitment deletion. Commitments can also be
used in contexts and in plans as test goals (?cc(. . .)) or achievement
goals (!cc(. . .)). Addition or deletion of such goals can, as well, be
managed by plans. For example, the plan +!cc(d, c, ant, cons, s) :
〈context〉 ← 〈body〉 is triggered when the agent creates an achieve-
ment goal concerning a commitment. Consequently, the agent will
act upon the artifact to create the desired social relationship. After
the execution cc(d, c, ant, cons, s) will hold in the social state and
will be projected onto the belief bases of its parties.

This is an excerpt of Jason agent code for playing the role Initiator
of the Contract Net Protocol.

1 +! s t a r t C N P : t rue
2 <− m a k e A r t i f a c t ("cnp" ,"cnp.Cnp" , [] , C) ;
3 f o c u s (C) ; e n a c t ("initiator") .
4 + e n a c t e d (Id ,"initiator" , R Id) : t rue
5 <− + e n a c t m e n t i d (R Id) ;
6 ! cc (R Id , "part" , "propose" ,
7 "(accept OR reject)" ,"CONDITIONAL") .
8 +! cc (My R Id , "part" , "propose" ,
9 "(accept OR reject)" ,"CONDITIONAL")

10 <− c f p ("task-one") .
11 +cc (My R Id , "part" , "true" ,
12 "(accept OR reject)" , "DETACHED")
13 : e n a c t m e n t i d (My R Id)
14 <− ! cc (My R Id , "part" , "true" ,
15 "(accept OR reject)" , "SATISFIED") .
16 +! cc (My R Id , "part" , "true" ,
17 "(accept OR reject)" , "SATISFIED")

18 : not e v a l u a t e d
19 <− + e v a l u a t e d ; . . . f i n d winner . . .
20 a c c e p t (Winner R Id) .
21 . . . a c t i o n ’reject’ f o r a l l o t h e r p r o p o s a l s . . .
22 +cc (P a r t i c i p a n t R I d , My R Id , "true" ,
23 "(done OR failure)" , "DISCHARGED")
24 : done (R e s u l t) <− / / c o l l e c t r e s u l t s
25 +cc (P a r t i c i p a n t R I d , My R Id , "true" ,
26 "(done OR failure)" , "DISCHARGED")
27 : f a i l u r e (P a r t R I d) <− t rue .

The agent playing this role creates the artifact that will be used for the
interaction. The initiator agent can, then, execute cfp. When enough
proposals will be received, the initiator agent evaluates them and de-
cides which to accept and to reject. Accepting a proposal is an action
offered by the CNP artifact; it will update the social state according
to the social effects devised for the action.

Agent behaviour is defined based on the existing social relation-
ships and not on the process by which they are created. For instance,
the initiator becomes active when the commitments that involve it as
a debtor, and which bind it to accept or reject the proposals, are de-
tached. It is not necessary to specify nor to manage, inside the agent,
such things as deadlines or counting the received proposals: the arti-
fact is in charge of these aspects. Indeed, the framework provides a
strong decoupling between the design of the agents and the design of
the interaction, that builds on the decoupling between computation
and coordination done by coordination models, like tuple spaces: the
protocol is not implemented inside the agent code but it is a separate
resource. Protocols can be updated separately from agents; as a con-
sequence, the system maintainability is increased and the autonomy
of the agents preserved. However, when an agent uses a protocol arti-
fact, it accepts the commitments that may involve it and the rules the
artifact reifies. This allows the interacting parties to perform practical
reasoning based on expectations. Moreover, the artifact can act as a
monitor of the interaction because this occurs through its roles, and
detect violations that it can ascribe to the violators without agent in-
trospection. Instead, in solutions that hard code the interaction rules,
the check necessarily requires agent introspection.

We mean to extend to richer norm expressions, e.g. to account for
temporal constraints [6, 1].

REFERENCES
[1] M. Baldoni, C. Baroglio, E. Marengo, and V. Patti, ‘Constitutive and

Regulative Specifications of Commitment Protocols: a Decoupled Ap-
proach’, ACM TIST, 4(2), 22:1–22:25, (March 2013).

[2] O. Boissier, R. H. Bordini, J. F. Hübner, A. Ricci, and A. Santi, ‘Multi-
agent oriented programming with JaCaMo’, Science of Computer Pro-
gramming, 78(6), 747 – 761, (2013).

[3] R. H. Bordini, J. Fred Hübner, and ¡. Wooldridge, Programming Multi-
Agent Systems in AgentSpeak Using Jason, John Wiley & Sons, 2007.

[4] R. Conte, C. Castelfranchi, and F. Dignum, ‘Autonomous Norm Accep-
tance’, in ATAL, volume 1555 of LNCS, pp. 99–112. Springer, (1998).

[5] M. Dastani, D. Grossi, J.-J. Ch. Meyer, and N. A. M. Tinnemeier, ‘Nor-
mative Multi-agent Programs and Their Logics’, in KRAMAS, volume
5605 of LNCS, pp. 16–31. Springer, (2008).

[6] E. Marengo, M. Baldoni, C. Baroglio, A. K. Chopra, V. Patti, and M. P.
Singh, ‘Commitments with regulations: reasoning about safety and con-
trol in REGULA’, in AAMAS, pp. 467–474. IFAAMAS, (2011).

[7] F. R. Meneguzzi and M. Luck, ‘Norm-based behaviour modification in
BDI agents.’, in AAMAS (1), pp. 177–184. IFAAMAS, (2009).

[8] A. Omicini, A. Ricci, and M. Viroli, ‘Artifacts in the A&A meta-model
for multi-agent systems’, J. AAMAS, 17(3), 432–456, (2008).

[9] M. P. Singh, ‘An ontology for commitments in multiagent systems’,
Artif. Intell. Law, 7(1), 97–113, (1999).

[10] M. P. Singh. Social computing: Principles, methods, and technologies,
2014. Invited talk at the First Int. Workshop on Multiagent Foundations
of Social Computing.

[11] I. Sommerville, Software Engineering, Addison-Wesley, 9 edn., 2010.

