
15 December 2021

AperTO - Archivio Istituzionale Open Access dell'Università di Torino

Original Citation:

Norms for Typing MAS Multi-Agent Systems

Terms of use:

Open Access

(Article begins on next page)

Anyone can freely access the full text of works made available as "Open Access". Works made available under a
Creative Commons license can be used according to the terms and conditions of said license. Use of all other works
requires consent of the right holder (author or publisher) if not exempted from copyright protection by the applicable law.

Availability:

This is the author's manuscript

This version is available http://hdl.handle.net/2318/145391 since 2016-06-28T08:43:07Z

Normative Multi-Agent Systems: NorMAS 2013

Norms for Typing MAS

M. Baldoni1 C. Baroglio1 F. Capuzzimati1

1Dipartimento di Informatica, Università degli Studi di Torino

Leiden, August 19-23, 2013

BBC (UniTO) NorMAS 2013 Leiden, August 19-23, 2013 1 / 22

Overview

1 Vision and motivation

2 Types and MAS

3 Commitment Protocols

4 Reifying commitment protocols into artifacts

5 Type checking via commitments

6 Discussion and conclusions

BBC (UniTO) NorMAS 2013 Leiden, August 19-23, 2013 2 / 22

B2B, cross-business, open environment systems

Software infrastructures:
more and more global,
pervasive and autonomic

Computing is becoming
ubiquitous, with embedded
and distributed devices
interacting with each other

MAS have been recognized to
be a promising paradigm for
this kind of scenarios

BBC (UniTO) NorMAS 2013 Leiden, August 19-23, 2013 3 / 22

Typing Systems

HOWEVER

The more the complexity of
programming these systems will
increase, the more the need for
effective tools for reasoning on
properties of programs is noticed

Types

provide abstractions to perform
sophisticated forms of program
analysis and verifications that help
programmers to face the
complexity of their job

BBC (UniTO) NorMAS 2013 Leiden, August 19-23, 2013 4 / 22

Typing Systems

HOWEVER

The more the complexity of
programming these systems will
increase, the more the need for
effective tools for reasoning on
properties of programs is noticed

Types

provide abstractions to perform
sophisticated forms of program
analysis and verifications that help
programmers to face the
complexity of their job

BBC (UniTO) NorMAS 2013 Leiden, August 19-23, 2013 4 / 22

Typing Systems

Enable compile time/runtime
error checking

Conceptual and abstraction
tools for modeling

Documentation

Conformance and compliance

Reasoning about programs
and components

Type checking as a simple
form of (a priori/runtime)
verification

BBC (UniTO) NorMAS 2013 Leiden, August 19-23, 2013 5 / 22

Typing Systems for MAS

Here we focus on two more recent proposals:

Global Session Types in
Jason

By D. Ancona, S.
Drossopoulou, and V.
Mascardi
[Ancona et al., 2012,
Ancona et al., 2013]

Behavioral types for
multiparty interactions

Monitoring agent that
verifies (dinamically) the
conformance of interacting
agents w.r.t. a global
session type

simpAL

By A. Ricci and A. Santi
[Ricci and Santi, 2012a,
Ricci and Santi, 2012b]

An agent-oriented
programming language
with types checking
inspired by main stream
OO languages

Static type checking for
error detection

BBC (UniTO) NorMAS 2013 Leiden, August 19-23, 2013 6 / 22

Typing Systems for MAS

Here we focus on two more recent proposals:

Global Session Types in
Jason

By D. Ancona, S.
Drossopoulou, and V.
Mascardi
[Ancona et al., 2012,
Ancona et al., 2013]

Behavioral types for
multiparty interactions

Monitoring agent that
verifies (dinamically) the
conformance of interacting
agents w.r.t. a global
session type

simpAL

By A. Ricci and A. Santi
[Ricci and Santi, 2012a,
Ricci and Santi, 2012b]

An agent-oriented
programming language
with types checking
inspired by main stream
OO languages

Static type checking for
error detection

BBC (UniTO) NorMAS 2013 Leiden, August 19-23, 2013 6 / 22

Typing Systems for MAS

Here we focus on two more recent proposals:

Global Session Types in
Jason

By D. Ancona, S.
Drossopoulou, and V.
Mascardi
[Ancona et al., 2012,
Ancona et al., 2013]

Behavioral types for
multiparty interactions

Monitoring agent that
verifies (dinamically) the
conformance of interacting
agents w.r.t. a global
session type

simpAL

By A. Ricci and A. Santi
[Ricci and Santi, 2012a,
Ricci and Santi, 2012b]

An agent-oriented
programming language
with types checking
inspired by main stream
OO languages

Static type checking for
error detection

BBC (UniTO) NorMAS 2013 Leiden, August 19-23, 2013 6 / 22

Global Session Types in Jason

Inspired by Scribble, in [Ancona et al., 2012, Ancona et al., 2013]
protocols are the key aspect

Protocols are expressed by means of global session types

Jason is extended in order to automatically generate an agent monitor
for dynamic conformance (compliance) verification

Cyclic Prolog terms

BBC (UniTO) NorMAS 2013 Leiden, August 19-23, 2013 7 / 22

Global Session Types in Jason

Global session types are “procedural” types (process abstraction), so
they do not:

I respect autonomy of agents
I clearly espress what is expected from a role and what is possible for a

role

Who is the agent monitor? Who trusts it? Should all
messages/actions be notified to it? How to guarantee this fact?

Lack of a normative characterization of coordination
[Castelfranchi, 1997, Singh, 1999], so that the publicly acceptance of
the regulation allows reasoning about agents’ behavior
[Conte et al., 1998]

BBC (UniTO) NorMAS 2013 Leiden, August 19-23, 2013 8 / 22

simpAL

Inspired by main stream OO languages, in
[Ricci and Santi, 2012a, Ricci and Santi, 2012b] static type checking
for error detection is the key aspect

Builds on the experience of JaCaMo

role, usage-interface, org-model: interfaces

agent-script, artifact, org: implementations

BBC (UniTO) NorMAS 2013 Leiden, August 19-23, 2013 9 / 22

simpAL

BBC (UniTO) NorMAS 2013 Leiden, August 19-23, 2013 10 / 22

simpAL

Static vs dynamic type systems: is compile time checking the key
point? Sometimes this is not good also for OO languages (eg.
downcasting)

Types or ontological reasoning?

Are roles mere agent interfaces?

What is the semantics of types? Is type checking only a syntactic
matching?

BBC (UniTO) NorMAS 2013 Leiden, August 19-23, 2013 11 / 22

Commitment

Commitment

C (x , y , r , p)

represents the engagement from x to y, to bring about the consequent
condition p when the antecedent condition r holds.

Commitments have a normative nature: agents are liable for the
violation of the commitments they have taken

Commitment protocols allow for flexible behaviours: x is free to
choose its actions

The agent’s compliance can be verified by observing the interaction

BBC (UniTO) NorMAS 2013 Leiden, August 19-23, 2013 12 / 22

Commitment-based protocols

A commitment-based protocol is a set of actions whose meaning in terms
of effects on the social state is agreed upon by all the interacting agents.

Actions definition

action means effects if condition

The means construct captures which physical events count as which social
events

means: introduces the social effects

if: condition for the action to have the intended meaning

BBC (UniTO) NorMAS 2013 Leiden, August 19-23, 2013 13 / 22

Commitment-based protocols

Investor Agent
Finantial Promoter

Agent

behavior
1 behavior

n

behavior for
Commitment C3

behavior for
Commitment C4

CommitmentProtocol
ARTIFACT CONTRACT-NET-PROTOCOL

Initiator Participant

cfp means
 create(C(i,p,propose,accept V reject))

propose means
 create (C(p,i,accept,done V failure))

refuse means
 release(C(i,p,propose,accept V reject))

accept means
 none

reject means
 release (C(p,i,accept,done V failure))

done means none

failure means none

behavior
1 behavior

n

behavior for
Commitment C1

behavior for
Commitment C2

An agent/initiator should be able to accept or refuse a proposal

An agent/participant should be able to complete the assigned task
(done) or to communicate its failure

BBC (UniTO) NorMAS 2013 Leiden, August 19-23, 2013 14 / 22

Commitment-based protocols

Investor Agent
Finantial Promoter

Agent

behavior
1 behavior

n

behavior for
Commitment C3

behavior for
Commitment C4

CommitmentProtocol
ARTIFACT CONTRACT-NET-PROTOCOL

Initiator Participant

cfp means
 create(C(i,p,propose,accept V reject))

propose means
 create (C(p,i,accept,done V failure))

refuse means
 release(C(i,p,propose,accept V reject))

accept means
 none

reject means
 release (C(p,i,accept,done V failure))

done means none

failure means none

behavior
1 behavior

n

behavior for
Commitment C1

behavior for
Commitment C2

Organizational Roles
[Baldoni et al., 2007, Boella and van der Torre, 2007]

Foundation, definitional dependence, and institutional empowerment

Requirements (ability to satisfy own commitments) and powers
(action with a institutional meaning)

BBC (UniTO) NorMAS 2013 Leiden, August 19-23, 2013 14 / 22

Mercurio [Baldoni et al., 2011]

Integrating JADE with support
for indirect communication

According to Keil and Goldin,
indirect communication fosters
the collaboration and the
coordination inside open systems

PrThe adoption of
programmable communication
channels allows the specification
of a normative facet that applies
to the agents that are involved
in the interaction

BBC (UniTO) NorMAS 2013 Leiden, August 19-23, 2013 15 / 22

Mercurio [Baldoni et al., 2011]

Artifact abstraction
[Weyns et al., 2007,
Omicini et al., 2008]: first-class
entity, i.e. non-agent dynamic and
programmable resource, that an
agent can use, perceive, observe

Artifacts can provide mediated,
indirect communication to agents

Designers can leverage artifacts to
explicitly model interaction
protocols, defining a social
agreement accepted by agents using
them

BBC (UniTO) NorMAS 2013 Leiden, August 19-23, 2013 16 / 22

Mercurio [Baldoni et al., 2011]

Artifacts, as programmable
indirect communication
channels, can reify and
implement normative
characterization and social
expectation

Such an artifact entails mutual,
social dependencies between
agents using it

We model social dependencies as
commitments

BBC (UniTO) NorMAS 2013 Leiden, August 19-23, 2013 17 / 22

2COMM [Baldoni et al., 2013]

2COMM: reifying commitment protocols in JADE by means of
CArtAgO framework [Ricci et al., 2009]

BBC (UniTO) NorMAS 2013 Leiden, August 19-23, 2013 18 / 22

2COMM [Baldoni et al., 2013]

An agent can use a
communication artifact
enacting a role

A role represents the
interface between the
artifact and the agent
using it

When acting as a
certain role, an agent’s
actions impact on the
interaction state

Observable Properties
socialState: SocialState
roles: Role [1…*]

<< Artifact >>
BasicCommitmentCommunicationArtifact

Artifact Operations
+ enact (role: Role) : void
+ deact (role: Role) : void

Internal Operations
- create (commit: Commitment)
- discharge (commit: Commitment)
- cancel (commit: Commitment)
- release (commit: Commitment)
- assign (commit: Commitment, role: Role)
- delegate (commit: Commitment, role: Role)

commitments: Commitment [0…*]
facts: SocialFact [0…*]
context:
 BasicCommitmentCommunicationArtifact

SocialState

+ getFacts ()
+ getCommitments()
+ addFact (fact: SocialFact)
+ addCommitment (commit: Commitment)
+ removeFact (fact: SocialFact)
+ removeCommitment
 (commit: Commitment)
+ getContext()

creditor: Role
debtor: Role
conditionalCondition: SocialFact [1…*]
commitCondition: SocialFact [1…*]
status : enum {created, discharged, ...}

Commitment

+ getCreditor()
+ setCreditor (role: Role)
+ getDebtor ()
+ setDebtor (role: Role)
+ getStatus ()
+ setStatus (status: enum)

agentBody: CartAgoAgent
agentMind: JADEAgent.AID
refProtocol:
 BasicCommitmentCommunicationArtifact

Role

+ getAgentMind ()
+ setAgentMind (agent: JADEAgent.AID)

predicate: String
arguments: Object [0…*]

SocialFact

+ getPredicate ()
+ setPredicate (pred: String)
+ getArguments ()
+ setArguments (list: Object [1…*])
+ getFact ()

*1

1

1

1

0…*

1
0…*

0…1

1…*

BBC (UniTO) NorMAS 2013 Leiden, August 19-23, 2013 19 / 22

Type checking via commitments

BBC (UniTO) NorMAS 2013 Leiden, August 19-23, 2013 20 / 22

Type checking with commitments

Type checking by means of Java Annotations

Dynamic type checking: behaviors must comply to requirements (java
reflection is used)

Type system as a logic “theory” of commitments

Commitment to regulation [Marengo et al., 2011]: regulating how

BBC (UniTO) NorMAS 2013 Leiden, August 19-23, 2013 21 / 22

Conclusion

Dynamic vs static type checking

Conformance as logic entailment

Compliance: programmable communication channel with monitoring
functionalities

A normative value thanks to commitment-based approach

Flexibility and openess typical of MAS

Modularity and compositionality typical of design and development
methodologies

Enable a business level architecture as fostered in
[Chopra and Singh, 2009]

BBC (UniTO) NorMAS 2013 Leiden, August 19-23, 2013 22 / 22

Ancona, D., Barbieri, M., and Mascardi, V. (2013).
Constrained global types for dynamic checking of protocol
conformance in multi-agent systems.
In Shin, S. Y. and Maldonado, J. C., editors, SAC, pages 1377–1379.
ACM.

Ancona, D., Drossopoulou, S., and Mascardi, V. (2012).
Automatic generation of self-monitoring mass from multiparty global
session types in jason.
In Baldoni, M., Dennis, L. A., Mascardi, V., and Vasconcelos, W.,
editors, DALT, volume 7784 of Lecture Notes in Computer Science,
pages 76–95. Springer.

Baldoni, M., Baroglio, C., and Capuzzimati, F. (2013).
2COMM: a commitment-based MAS architecture.
In Cossentino, M., El Fallah Seghrouchni, A., and Winikoff, M.,
editors, Proc. of the 1st International Workshop on Engineering
Multi-Agent Systems, EMAS 2013, held in conjuction with AAMAS
2013, pages 17–32, St. Paul, Minnesota, USA.

BBC (UniTO) NorMAS 2013 Leiden, August 19-23, 2013 22 / 22

Baldoni, M., Baroglio, C., Marengo, E., Patti, V., and Ricci, A.
(2011).
Back to the future: An interaction-oriented framework for social
computing.
In RESC, pages 2–5. IEEE.

Baldoni, M., Boella, G., and van der Torre, L. W. N. (2007).
Interaction between objects in powerjava.
Journal of Object Technology, 6(2):5–30.

Boella, G. and van der Torre, L. W. N. (2007).
The ontological properties of social roles in multi-agent systems:
definitional dependence, powers and roles playing roles.
Artif. Intell. Law, 15(3):201–221.

Castelfranchi, C. (1997).
Principles of Individual Social Action.
In Holmstrom-Hintikka, G. and Tuomela, R., editors, Contemporary
action theory: Social action, volume 2, pages 163–192, Dordrecht.
Kluwer.

BBC (UniTO) NorMAS 2013 Leiden, August 19-23, 2013 22 / 22

Chopra, A. K. and Singh, M. P. (2009).
Elements of a business-level architecture for multiagent systems.
In Braubach, L., Briot, J.-P., and Thangarajah, J., editors, PROMAS,
volume 5919 of Lecture Notes in Computer Science, pages 15–30.
Springer.

Conte, R., Castelfranchi, C., and Dignum, F. (1998).
Autonomous norm acceptance.
In Müller, J. P., Singh, M. P., and Rao, A. S., editors, ATAL, volume
1555 of Lecture Notes in Computer Science, pages 99–112. Springer.

Marengo, E., Baldoni, M., Baroglio, C., Chopra, A. K., Patti, V., and
Singh, M. P. (2011).
Commitments with regulations: reasoning about safety and control in
regula.
In Sonenberg, L., Stone, P., Tumer, K., and Yolum, P., editors,
AAMAS, pages 467–474. IFAAMAS.

Omicini, A., Ricci, A., and Viroli, M. (2008).
Artifacts in the a&a meta-model for multi-agent systems.

BBC (UniTO) NorMAS 2013 Leiden, August 19-23, 2013 22 / 22

Autonomous Agents and Multi-Agent Systems, 17(3):432–456.

Ricci, A., Piunti, M., Viroli, M., and Omicini, A. (2009).
Environment Programming in CArtAgO.
In Multi-Agent Programming II: Languages, Platforms and
Applications, Multiagent Systems, Artificial Societies, and Simulated
Organizations.

Ricci, A. and Santi, A. (2012a).
From actors to agent-oriented programming abstractions in simpal.
In Leavens, G. T., editor, SPLASH, pages 73–74. ACM.

Ricci, A. and Santi, A. (2012b).
Typing multi-agent programs in simpal.
In Dastani, M., Hübner, J. F., and Logan, B., editors, ProMAS,
volume 7837 of Lecture Notes in Computer Science, pages 138–157.
Springer.

Singh, M. P. (1999).
An ontology for commitments in multiagent systems.
Artif. Intell. Law, 7(1):97–113.

BBC (UniTO) NorMAS 2013 Leiden, August 19-23, 2013 22 / 22

Weyns, D., Omicini, A., and Odell, J. (2007).
Environment as a first class abstraction in multiagent systems.
Autonomous Agents and Multi-Agent Systems, 14(1):5–30.

BBC (UniTO) NorMAS 2013 Leiden, August 19-23, 2013 22 / 22

