
This is the author’s final version of the contribution published as:

Matteo Baldoni, Cristina Baroglio, Federico Capuzzimati, Elisa Marengo,
and Viviana Patti A Generalized Commitment Machine for 2CL Protocols
and Its Implementation. In M. Baldoni, L. Dennis, V. Mascardi, and W. Vas-
concelos, editors, Post-Proc. of the 10th International Workshop on Declara-
tive Agent Languages and Technologies X, DALT 2012, Revised Selected and
Invited Papers, number 7784 in LNAI, pages 190-196. Springer, 2013. ISBN:
9783642378898, DOI: 10.1007/978-3-642-37890-4 6

The publisher’s version is available at:
http://dx.doi.org/10.1007/978-3-642-37890-4_6

When citing, please refer to the published version.

Link to this full text:
http://hdl.handle.net/2318/145575

This full text was downloaded from iris -AperTO: https://iris.unito.it/

iris-AperTO
University of Turin’s Institutional Research Information System and Open Access Institutional Repository

A Generalized Commitment Machine for 2CL
Protocols and its Implementation

Matteo Baldoni, Cristina Baroglio, Federico Capuzzimati,
Elisa Marengo, and Viviana Patti

Università degli Studi di Torino
Dipartimento di Informatica

c.so Svizzera 185, I-10149 Torino (Italy)
Email: name.surname@unito.it

Abstract. This work proposes an operational semantics for the com-
mitment protocol language 2CL. This semantics relies on an extension of
Singh’s Generalized Commitment Machine, that we named 2CL-Generali-
zed Commitment Machines. The 2CL-Generalized Commitment Machine
was implemented in Prolog by extending Winikoff, Liu and Harland’s
implementation. The implementation is equipped with a graphical tool
that allows the analyst to explore all the possible executions, showing
both commitment and constraint violations, and thus helping the ana-
lyst as well as the protocol designer to identify the risks the interaction
could encounter. The implementation is part of an Eclipse plug-in which
supports 2CL-protocol design and analysis.

Keywords: Commitment protocols, constraints among commitments, commit-
ment machine, commitment machine implementation

1 Introduction and Motivation

Agent interaction is generally specified by defining interaction protocols [21].
For communicating with one another, agents must follow the schema that the
protocol shapes. Different protocol models can be found in the literature, this
work concerns commitment-based protocols [19, 24]. This kind of protocols relies
on the notion of commitment, which in turn encompasses the notions of debtor
and creditor: when a commitment is not fulfilled, the debtor is liable for that
violation but as long as agents reciprocally satisfy their commitments, any course
of action is fine.

In many practical contexts where protocols model business interactions (e.g.
trading, banking), designers must be able to regulate and constrain the pos-
sible interactions as specified by conventions, regulations, preferences or habits
[2, 5]. Some proposals address the issue of introducing similar regulations in-
side commitment protocols [4, 11, 7, 17], but none of them developed tools for
visualizing and analyzing how regulations or constraints impact on the interac-
tions allowed by a commitment-based protocol. The availability of intuitive and

possibly graphical tools of this kind would support the identification of possible
violations, thus enabling an analysis of the risks the interaction could encounter.
As a consequence, it would be possible to raise alerts concerning possible vio-
lations before the protocol is enacted, and to reduce risks by defining proper
operational strategies, like regimentation (aimed at preventing the occurrence of
violations) or enforcement (introduction of warning mechanisms) [14].

The work presented in this paper aims at filling this gap. To this purpose,
we started from the commitment protocol language 2CL described in [4], whose
key characteristic is the extension of the regulative nature of commitments by
featuring the definition of patterns of interaction as sets of constraints. Such
constraints declaratively specify either conditions to be achieved or the order in
which some of them should be achieved. The first contribution is, therefore, a
formal, operational semantics for the proposal in [4], which relies on the Gener-
alized Commitment Machine in [20]. We named our extension 2CL-Generalized
Commitment Machines (2CL-GCM for short). On top of this, it was possible
to realize the second contribution of this work: a Prolog implementation for
2CL-GCM, which extends the implementation in [22], and is equipped with a
graphical tool to explore all the possible executions, showing both commitment
and constraint violations. The implementation is part of a plug-in Eclipse which
supports 2CL-protocol design and analysis.

The chief characteristic of our solution is that it performs a state evaluation of
protocol constraints, rather than performing path evaluation (as, instead, done
by model checking techniques). State evaluation allows considering each state
only once, labeling it as a state of violation if some constraint is violated in it
or as a legal state when no constraint is violated. This is a great difference with
respect to path evaluation, where a state belonging to different paths can be
classified as a state of violation or not depending on the path that is considered.
The advantage is practical: state evaluation allows to easily supply the user an
overall view of the possible alternatives of action, highlighting those which will
bring to a violation and those that will not. State evaluation, however, is possible
only by making some restriction on the proposal in [4]. Specifically, we assume
that the domain is expressed in terms of positive facts only.

The paper is organized as follows. Section 2 briefly summarizes 2CL inter-
action protocol specification. Section 3 describes the formalization of 2CL-GCM.
Section 4 presents a Prolog implementation of 2CL-GCM. Section 5 describes the
2CL Tools that supply features for supporting the protocol design and analysis.
Section 6 discusses Related Work and Conclusions. Along the paper we use as a
running example the well-known NetBill interaction protocol.

2 Background: 2CL Interaction Protocols

Let us briefly recall the main characteristics of commitment protocols, as defined
in [4]. In this approach, commitment protocols are extended with a set of tempo-
ral constraints the interaction should respect. Constraints relate commitments.
By C(x, y, r, p) agent x commits to an agent y to bring about the consequent

Table 1. 2CL operators and their meaning.

Relation Operator Repr. LTL formula

Relation
Operators

Correlation
A correlate B A •− B ♦A ⊃ ♦B
A not correlate B A 6•− B ♦A ⊃ ¬♦B

Co-existence
A co-exist B A •−• B A •− B ∧B •− A
A not co-exist B A 6•−• B A 6•− B ∧B 6•− A

Temporal
Operators

Response
A response B A •−. B �(A ⊃ ♦B)

A not response B A 6•−. B �(A ⊃ ¬♦B)

Before
A before B A −.• B ¬B ∪A
A not before B A 6−.• B �(♦B ⊃ ¬A)

Cause
A cause B A •−.• B A •−. B∧A −.• B

A not cause B A 6•−.• B A 6•−. B∧A 6−.• B

condition p when the antecedent condition r holds. When r equals true, we use
the short notation C(x, y, p). Commitments are used to define the social effects
of the protocol actions.

Definition 1 (Interaction protocol). P = 〈Ro, F, s0, A, Cst〉 An interaction
protocol P is a tuple 〈Ro, F, s0, A, Cst〉, where Ro is a set of roles, identifying
the interacting parties, F is a set of facts and commitments that can occur in
the social state, s0 is the set of facts and commitments in the initial state of the
interaction, A is a set of actions, and Cst is a set of constraints.

The set of social actions A, defined on F and on Ro, forms the constitutive
specification of the protocol. The social effects are introduced by the construct
means, which amounts to a counts-as relation [18, 14]: by means of it, a physical
event is given a social meaning. An if condition denotes the context in which a
counts-as relation holds. For instance, consider the action sendGoods reported in
Table 1. Its social meaning is that it makes the facts goods true (the goods were
delivered to the customer) and creates the commitment C(m, c, pay, receipt) that
corresponds to a promise by the merchant to send a receipt after the customer
has paid. Further examples can be found in the first part of Table 1, which
reports all the actions of the NetBill protocol. The formalization is inspired by
those in [24, 22].

2CL constraints Cst, defined on F and on Ro as well. Constraints express
what is mandatory and what is forbidden without the need of listing the possible
executions extensionally. The syntax is “dnf1 op dnf2”, where dnf1 and dnf2
are disjunctive normal forms of facts and commitments, and op is one of the 2CL
operators, reported in Table 1 together with their Linear-time Temporal Logic
[10] interpretation and with their graphical notation.

Constraints can either be relational or temporal. The former kind expresses
constraints on the co-occurrence of conditions (if a condition is achieved then
also another condition must be achieved, but the order of the two achievements
does not matter). For instance, one may wish to express that both the payment

Action Definitions
(a1) sendRequest means request if ¬quote ∧ ¬goods
(a2) sendQuote means quote ∧ create(C(m, c,C(c,m, goods, pay), goods))

∧ create(C(m, c, pay, receipt))
(a3) sendAccept means create(C(c,m, goods, pay)) if ¬pay
(a4) sendGoods means goods ∧ create(C(m, c, pay, receipt))
(a5) sendEPO means pay
(a6) sendReceipt means receipt if pay

Constraints
(c1) quote −.• C(c,m, goods, pay) ∨ C(c,m, pay)
(c2) C(m, c, pay, receipt) ∧ goods −.• pay
(c2) pay •−.• receipt

Fig. 1. Actions and constraints for the NetBill protocol: m stands for merchant while
c stands for customer.

for some item and its delivery must occur without constraining the order of the
two conditions: no matter which occurs first, when one is met, also the other
must be achieved. Temporal constraints, instead, capture the relative order at
which different conditions should be achieved. Fig. 1 reports the constraints
imposed by the NetBill protocol: (c1) means that a quotation for a price must
occur before a commitment to pay or a conditional commitment to pay given
that some goods were delivered; (c2) that the conditional commitment to send a
receipt after payment and the delivery of goods must occur before the payment
is done; (c3) that after payment a receipt must be issued and if a receipt is
issued a payment must have occurred before.

Only interactions which respect the constraints are legal. Violations amount-
ing to the fact that a constraint is not respected can be detected during the
execution.

3 2CL Generalized Commitment Machine

The semantics of 2CL commitment protocols is given based on the 2CL general-
ized commitment machine (2CL-GCM). In turn, 2CL-GCM relies on the notion of
generalized commitment machine (GCM) (introduced in [20]), extending it with
a proper account of 2CL constraints. Below we introduce the technical elements
on top of which the definition of a 2CL-GCM will be given.

Propositions. Propositions are meant to capture conditions of interests (e.g. the
fact that a payment has occurred or that a request for quote has been made) and
social relationships among the interacting parties. We represent them in terms
of facts and commitments, whose meaning is assumed to be known and agreed
by all the agents. Let us assume true and false to be part of this set, representing
respectively the true and the false values of propositional logic.

States. The evolution of an interaction is represented by means of states: each
state captures a snapshot on a particular moment of the interaction. According
to [20], a GCM features a set S of possible states, each of which is represented
by a logical expression defined on a set of propositions.

Example 1. Considering NetBill, goods ∧ C(c,m, pay) represents one possible
configuration of the social state, i.e. it is a state in S. This expression means
that the goods were shipped and that there is a commitment from c (customer)
to m (merchant) to pay for them.

Initial state. Denoted by s0, it is the state from which the interaction starts.

Example 2. In the NetBill example, if we assume the commitment C(m, c, pay,
goods) to be part of the initial state it represents that, when accepting the role
of merchant, the agent is also taking the engagement to send the goods when
these are paid.

Good States. We identify a set G ⊆ S as the set of good states. Intuitively, they
capture desired possible endings of the interaction. For instance, they may be
those that do not contain unsatisfied active commitments, or those satisfying a
condition of interest (e.g. payment done and goods shipped).

Physical Events. The interaction evolves as the consequence of the occurrence
of physical events. We denote by LA their set.

Action Theory. Given the definition of an action a, and two states s and s′, it
is possible to determine whether a transition between the two can be inferred
as a consequence of the occurrence of a physical event a. As in [20], in 2CL-
GCM transitions between the states are logically inferred on the basis of an

action theory, that contains a set of axioms of the kind p
a
↪→ q, meaning that

q is a consequence of performing action a in a state where p holds. When q
is false the meaning is that a is impossible if p holds. Only transitions that
find correspondence in an axiom of the action theory can be inferred. In the
following E is the conjunction of EF, which is a logical expression (possibly
true) concerning facts only, and Eop, which is a logical expression (possibly true)
concerning operations on commitments only.

Definition 2 (Action theory). An action axiom s
a
↪→ s′ belongs to the

action theory ∆ of a protocol P = 〈Ro,F, s0,A,Cst〉 iff there exists a definition
“a means E if Cond” in A s.t. s ` Cond and:

(a) ∀eop s.t. Eop ` eop and given z
eop
↪→ z′ according to commitment operations’

axioms (see [20, Section 2.2]) then if s ` z then s′ ` z′; and
(b) ∀eF s.t. EF ` eF then s′ ` eF and:

(b.1) if s ` C(x, y, e, eF) (with e possibly true) then s′ ` ¬C(x, y, e, eF) and
(b.2) if s ` C(x, y, eF, e

′) then:
if s′ 0 e′ then s′ ` ¬C(x, y, eF, e

′)∧C(x, y, e′); otherwise s′ ` ¬C(x, y, eF, e
′)∧

¬C(x, y, e′).

where ` and ≡ represent respectively the logical consequence and the logical equiv-
alence of propositional logic.

Given two states, in order to determine whether the latter can be a consequence
of the occurrence of a physical event in the former, it is necessary to consider
the definition of the corresponding action ‘a means E if Cond’. A transition
labelled by ‘a’ can be inferred only if the condition Cond can be derived in
the starting state. In this case it is necessary to consider the effects E of the
action and whether they can be derived on the target state. The target state
should derive all the facts in EF while for the operations on commitments Eop

we apply the rules defined in [20, Section 2.2]. Finally, conditions (b.1) and (b.2)
in Definition 2 check the discharge and the detach of commitments, due to facts
derived from EF.

Example 3. The action sendAccept, performed by the customer to accept a quote
by the merchant, is defined as sendAccept means create(C(c,m, goods, pay))

if ¬pay. The corresponding axiom is ¬pay sendAccept
↪→ C(c,m, goods, pay). Note

that, given a state, in which ¬pay ∧ quote holds, it is also possible to infer the

axiom ¬pay ∧ quote
sendAccept

↪→ C(c,m, goods, pay).

Constraints. A 2CL-GCM accounts for a set of constraints Cst that coincides
with that defined in the corresponding protocol. These constraints will be taken
into account for determining whether an interaction can be considered as a path
of the machine.

We now have all the elements for defining a 2CL-GCM. The definition adopts
the same notation in [20].

Definition 3 (2CL-GCM of a protocol). A 2CL-GCM of a protocol P = 〈Ro,
F, s0, A, Cst〉 is a tuple P = 〈S, LA, s0, ∆,G,Cst〉 where:

– S is a set of states represented as logical expressions;
– LA is a set of physical events s.t. a ∈ LA iff ∃a means E if Cond ∈ A ;
– s0 ∈ S and represents the initial state;

– ∆ is an action theory s.t. ∀s, s′ ∈ S, s
a
↪→ s′ ∈ ∆ iff there exists a means E

if Cond ∈ A s.t. s
a
↪→ s′ is an action axiom of ‘a’ according to Definition 2;

– G ⊆ S is a set of good states;
– Cst is a set of 2CL constraints.

Moreover:

– ∀s, s′ ∈ S, s 6≡ s′, i.e. members of S are logically distinct;
– false 6∈ S; and
– ∀s ∈ G, s′ ∈ S : (s′ ` s) ⇒ (s′ ∈ G), i.e. any state that logically derives a

good state is also good.

Notice that by varying the sets S and G different 2CL-GCMs associated to the
same protocol can be obtained: when S contains all the states that can be reached
from s0, applying the protocol actions, the machine can infer all the possible
interactions; when S is smaller, only a subset of the possible interactions is
determined.

3.1 Path of a 2CL-GCM.

Interactions between agents can be seen as paths traversing states, the transitions
among which are labeled by the physical events which caused them. We denote
a path τ as the sequence 〈(τ0, a0, τ1), (τ1, a1, τ2), . . . 〉. In order for a path to be
part of a 2CL-GCM it must respect some conditions:

1. The path must be infinite;
2. All the transitions of the path must be inferable by the machine; and
3. All constraints must be satisfied in the path.

It is not restrictive to focus on infinite paths. Indeed, all finite paths can be
transformed into infinite ones by adding a transition from the last state of the
finite path towards an artificial new state with a self loop [20]. In 2CL-GCM we
assume that the action axioms that allow inferring such transitions are part of
∆.

2CL constraints verification can be done by exploiting the LTL formula as-
sociated to each of them. In particular, a constraint is satisfied in a path when
it is verified in the transition system corresponding to the path. Given a path,
the corresponding transition system can be derived quite straightforwardly.

Definition 4 (Transition System). A transition system T (τ) of a path τ =
〈(τ0, a0, τ1), (τ1, a1, τ2), . . . 〉 is a tuple 〈Sτ , δτ , Lτ 〉 where:

– Sτ = {τi| τi is a state in τ};
– δτ : Sτ → Sτ is a transition function s.t. δ(τj) = τk iff (τj , a, τk) is in τ ;
– L : Sτ → 2F is a labelling function, s.t. F is a set of facts and commitments

and L(τi) = {e|τi ` e}.
To define a 2CL-GCM path, we extend the definition of GCM path by addi-

tionally requiring the satisfaction of all the constraints of the 2CL-GCM.

Definition 5 (2CL-GCM path). A path τ = 〈(τ0, a0, τ1), (τ1, a1, τ2) . . . 〉 is a
path of a 2CL-GCM P = 〈S, LA, s0, ∆,G,Cst〉 when:

i. ∀(τi, ai, τi+1) in τ then τi, τi+1 ∈ S, ai ∈ LA, and τi
ai
↪→ τi+1 ∈ ∆; and

ii. being inf(τ) the set of states that occur infinitely often in τ , then
inf(τ) ∩ G 6= ∅; and

iii. being T (τ) the transition system of τ according to Definition 4, ∀c ∈ Cst :
T (τ), τ0 |=LTL c.

where the LTL satisfaction relation |=LTL is the one defined in [1].

In the above definition, (i) and (ii) are the conditions for a path to be generated.
Condition (i) requires that each state in the path is a state of the 2CL-GCM,
that the action that causes the transition from a state to the subsequent one
in the path is an action of the 2CL-GCM, and that the transition is inferable
according to the axioms in ∆. Condition (ii) requires that at least one good state
occurs infinitely often in the path. Condition (iii) accounts for the evaluation of
the constraints. According to the LTL semantics, T (τ), τ0 |=LTL c amounts to
checking if c is satisfied in all the paths of the transition system, corresponding
to τ . By construction T (τ) is a transition system made only of one linear path,
whose starting state is the starting state of τ .

4 Implementation of the 2CL Commitment Machine

This section describes a Prolog implementation that allows exploring all the
possible executions of an interaction protocol, showing the regulative violations –
i.e. both those states in which some constraint is violated and those that contain
unsatisfied commitments. We also prove the soundness of the implementation
w.r.t. the 2CL-GCM formalization presented in the previous sections.

We used tuProlog1 in our implementation, starting from the enhanced com-
mitment machine by Winikoff et al. [22]. By relying on it, we inherit the mecha-
nisms for the computation of the possible interactions. Specifically, the enhanced
commitment machine features the generation of the reachable states, the tran-
sitions among them and the management of commitments (like the operations
of discharge, creation and so on). Our extension equips it with the possibility of
evaluating 2CL constraints.

The main characteristic of our tool is that it provides an overall graphical
view of the possible interactions, highlighting those that will bring to a violation
and those that will not. To this aim, constraints are used as a means to classify
the possible interactions, rather than to prune the search space. The interact-
ing parties, indeed, are not prevented from entering in illegal paths (due to the
agent’s autonomy), but they are made aware of the risks they are encountering
and that they may incur in penalties as a consequence of the violations they
caused [5]. This is a difference compared with those proposals where only the
set of legal paths is shown, or with other proposals that aim at properties veri-
fication. In these cases, the verification ends when a path that does not satisfy
the property is found. Alternatively, only one path at a time is considered [6, 9].
Thus, none of these proposals provide an overview of possible interactions.

Starting from a protocol specification, our implementation determines the
set of reachable states by applying a depth-first search (as in [22]). Specifically,
given a state the program finds the set of applicable actions and computes the
set of successors. A state is added to the graph only if it is new, otherwise only
the transition is added. For what concerns the evaluation of protocol constraints,
we implemented it as a state evaluation, that is to say that given a constraint
its evaluation can be done on a state by considering its content only. In this
way, each possible state (reachable given the starting state and the protocol
actions) is considered only once and it is classified as a state of violation if some
constraint is violated in it or as a legal state when no constraint is violated. This
is a great difference with respect to path evaluation, where a state belonging to
different paths can be classified as a state of violation or not depending on the
path that is considered. The advantage is practical: given the set of reachable
states, the user is able to immediately determine which of them are legal and
which violate some constraints. Moreover, the overall representation results to
be more compact because each state appears only once.

In order to perform the state evaluation we consider states whose content is
given in terms of commitments and positive facts only. The characteristic of a

1 http://www.alice.unibo.it/xwiki/bin/view/Tuprolog/

fact is that it is false until it becomes invariably true. In this setting, the evalu-
ation of 2CL constraints can be made on single states. For instance, if in a state
b holds but a does not, we can infer that the constraint ‘a before b’ is violated.
Moreover, besides facts asserted by the protocol actions, in our implementation
we additionally consider a set of facts associated to the operations performed
on commitments. Specifically, along the line of Mallya et al. [15], whenever an
operation is performed on a commitment, a corresponding predicate is auto-
matically asserted in the state. For instance, when a commitment C(x, y, r, p)
is created, the predicate created(C(x, y, r, p)) is added to the state; when it is
discharged, the predicate discharged(C(x, y, r, p)) is added, and so forth for the
other operations. Notice that these predicates are not meant to express whether
a commitment is active or not. For instance, created does not mean that the
commitment is active in the state but simply that the corresponding operation
has been performed on the commitment. 2CL constraints can be defined by con-
sidering these facts also.

In order to achieve the benefits of a state evaluation while guaranteeing the
soundness of the verification with the theoretical framework presented in the
previous section, we need to make some assumptions on the way protocols are
specified:

1. Actions should be defined in such a way to do not retract facts;
2. The condition involved in constraints must involve conditions that persist

(i.e. that involve DNFs of facts without negation);
3. Constraints expressed on commitments are to be opportunely transformed

into constraints concerning operations preformed on commitments.

For the sake of clarity, we use the symbol PI to refer to a protocol that respects
these assumptions.

4.1 Generation of the Labeled Graph and its Soundness.

Let us consider a protocol PI. As reported in Listing 1.1, the exploration of
the search space is made as a depth-first-search (as in [22]). Specifically, given
a state, explore and nextstate find the set of possible successors, obtained
by considering the set of actions in PI. For those actions whose preconditions
are satisfied in the state, nextstate determines the resulting state by adding
the facts which constitute their social meaning, executing the operations per-
formed on commitments according to the commitments’ life cycle and asserting
the corresponding facts concerning such operations. Once the successor states
are obtained they are added to the set of reachable states together with the
corresponding transitions. The computation is rooted in the initial state. In our
program, states are represented as predicates.

Definition 6 (State). The predicate state(ID, Content, Label) represents a
state in the implementation where: ID is a unique identifier associated to the
state, Content is a list of facts and commitments and Label ⊆ {final,not-final,
violation, pending} is a list of labels that captures the absence (final) or the

1 exp lo r e (StateNum , Free , NextFree) :− s t a t e (StateNum , State ,) ,
2 f i n d a l l (t (StateNum ,A, S2) , nex t s ta t e (State ,A, S2) ,Ts) ,
3 add s ta t e s (Ts , Free , NextFree) , a dd t r an s i t i o n s (Ts) .
4

5 nex t s ta t e (State , Action , Result) :− happens (Action , State) ,
6 f i n d a l l (Add , i n i t i a t e s (Action ,Add , State) , AddS) ,
7 f i n d a l l (Del , t e rminates (Action , Del , State) , DelS) ,
8 merge addList (AddS , State , NewState) ,
9 f i n d a l l (StableProp , i n i t i a t e s s t a b l e p r o p (Action ,

10 StableProp , State , NewState) , StablePropS) ,
11 merge addList (AddS , StablePropS , AddList) ,
12 compute next state (State , AddList , DelS ,New) ,
13 r emove dup l i ca te s (New, Result) .
14

15 add s ta t e s ([] ,N,N) .
16 add s ta t e s ([t (, , S) | Ss] ,N,N1) :−
17 s t a t e (, St ,) , s e t eq (St , S) , ! , add s ta t e s (Ss ,N,N1) .
18 add s ta t e s ([t (, , S) | Ss] ,N,N3) :−
19 l a b e l s (S ,L) , a s s e r t (s t a t e (N, S ,L)) ,
20 N1 i s N+1, exp lo r e (N,N1 ,N2) , add s ta t e s (Ss ,N2 ,N3) .
21

22 add t r an s i t i o n s ([]) .
23 add t r an s i t i o n s ([t (S1 ,A, S2) | Ss]) :− t r a n s i t i o n (S1 ,A, Ss2) ,
24 s e t eq (S2 , Ss2) , ! , a dd t r an s i t i o n s (Ss) .
25 add t r an s i t i o n s ([t (S1 ,A, S2) | Ss]) :− s t a t e (N2 , Ss2 ,) , s e t eq (Ss2 , S2) ,
26 a s s e r t (t r a n s i t i o n (S1 ,A,N2)) , a dd t r an s i t i o n s (Ss) .
27

28 subsumes (P,P) .
29 subsumes (P, c (, ,PP)) :− subsumes (P,PP) .
30 subsumes (P, cc (, , ,PP)) :− subsumes (P,PP) .
31 subsumes (c (X,Y,P) , cc (X,Y, Q ,PP)) :− subsumes (P,PP) .
32

33 happens (E,T) :− i sAc t i on (E) , precond (E,P) , impl i ed (P,T) .
34

35 i n i t i a t e s (E,P,T) :− happens (E,T) , i sF luen t (P) , causes (E,P) .
36 i n i t i a t e s (E, c (X,Y,P) ,T) :− causes (E, c r e a t e (c (X,Y,P))) , happens (E,T) ,
37 \+(impl i ed (P,T)) .
38 i n i t i a t e s (E, c (X,Y,P) ,T) :− causes (E, c r e a t e (cc (X,Y,Q,P))) ,
39 happens (E,T) , impl i ed (Q,T) , \+(impl i ed (P,T)) .
40 i n i t i a t e s (E, cc (X,Y,P,Q) ,T) :− causes (E, c r e a t e (cc (X,Y,P,Q))) ,
41 happens (E,T) , \+(impl i ed (Q,T)) , \+(impl i ed (P,T)) .
42 i n i t i a t e s (E, c (X,Y,Q) ,T) :− holdsAt (cc (X,Y,P,Q) ,T) , happens (E,T) ,
43 subsumes (PP,P) , i n i t i a t e s (E,PP,T) .
44

45 te rminates (E, c (X,Y,P) ,T) :− holdsAt (c (X,Y,P) ,T) , happens (E,T) ,
46 subsumes (PP,P) , i n i t i a t e s (E,PP,T) .
47 te rminates (E, cc (X,Y,P,Q) , T) :− holdsAt (cc (X,Y,P,Q) ,T) , happens (E,T) ,
48 subsumes (QP,Q) , i n i t i a t e s (E,QP,T) .
49 te rminates (E, cc (X,Y,P,Q) , T) :− holdsAt (cc (X,Y,P,Q) ,T) , happens (E,T) ,
50 subsumes (PP,P) , i n i t i a t e s (E,PP,T) .

Listing 1.1. Prolog clauses that compute the set of reachable states and that assert
the corresponding transitions The complete program can be downloaded at the URL
http://di.unito.it/2cl.

presence (not-final) of unsatisfied active commitments, the presence of pending
constraints or the violation of a constraint.

Notice that according to the clause add state reported in Listing 1.1 (line
16), a state is added only if it is new, that is to say: there are no existing states
with the same content.

Relation State Condition

Correlation
ψ(A •− B) = A ∧B
ψ(A 6•− B) = ¬(A ∧B)

Co-existence
ψ(A •−• B) = ψ(A •− B) ∧ ψ(B •− A)

ψ(A 6•−• B) = ψ(A 6•− B) ∧ ψ(B 6•− A)

Response
ψ(A •−. B) = A ∧B
ψ(A 6•−. B) = ¬(A ∧B)

Before
ψ(A −.• B) = ¬(B ∧ ¬A)

ψ(A 6−.• B) = ¬(A ∧B)

Cause
ψ(A •−.• B) = ψ(A •−. B) ∧ ψ(A −.• B)

ψ(A 6•−.• B) = ψ(A 6•−. B) ∧ ψ(A 6−.• B)
Table 2. State conditions corresponding to 2CL operators.

Also transitions are represented by means of predicates, expressing the start-
ing and the target state and the physical events that caused them.

Definition 7 (Transition). The predicate transition(ID1, A, ID2) represents
a transition where ID1 and ID2 correspond to the identifiers of existing states,
and A is the action responsible for the transition.

Before adding a state, this is labeled according to the constraints it satisfies
or violates and to the commitments holding in it. Thanks to the assumptions
that constraints are defined in terms of positive facts that persist along the
interaction, the LTL formulas associated to the operators can be simplified. The
resulting formulas are reported in Table 2 (a proof of their soundness can be
found in [16, Chapter 6]. Below we provide an intuition).

Given a constraint c, we denote by ψ(c) the corresponding condition to be
verified on one state at a time (state condition). Consider, for instance, the before
operator (−.•): it requires that A is met before or in the same state of B. So,
given a run π, if in π there is a state j such that B holds while A does not, that
is a state where a violation occurred, in formulas: πi |=LTL A −.• B ⇔ ¬∃j ≥
i s.t. πj |=LTL (B ∧ ¬A)2.

The other 2CL operators can be divided in two cases. Correlation (•−) and
response (•−.) are tackled in a similar way. A •− B requires that if A is achieved in
a run, then also B is achieved in the same run (before or after A is not relevant).
If B is achieved before A it will remain true also after. Therefore, in those cases
in which the constraint is satisfied, from a certain time onwards both conditions
will hold. In formulas: πi |=LTL A •− B ⇔ ¬∃j ≥ i s.t. πj |=LTL A and ∀j′ ≥
j, πj′ |=LTL (A∧¬B). The same equivalence holds for πi |=LTL A •−. B. In 2CL
A •−. B requires that when A is met, B is achieved at least once later (even if
it already occurred in the past) but under our assumptions it can be checked in
the same way of correlation. The state condition amounts to verifying whether

2 Notice that since the second formula does not contain temporal operators it is verified
in the current state. Thus it is verified in all the states of the path.

a state satisfies A but does not satisfy B. Notice that states that satisfy the test
cannot be marked as states of violation because the constraint does not require
B to hold whenever A holds. A state of violation is signaled when the interaction
does not continue after it: we say that there is a pending condition.

Negated correlation, response and before correspond to the same formula:
πi |=LTL A op B ⇔ ¬∃j ≥ i s.t. πj |=LTL (A ∧ B) where op ∈ { 6•−, 6•−., 6−.•}.
Intuitively, a constraint of the kind A 6•− B (negative correlation) requires that
if A holds, B is not achieved. Since facts persist, this amounts to check that
the two conditions do not hold in the same state, otherwise a violation occurs.
Negative response (negative before) adds a temporal aspect to not-correlation: if
A holds, B cannot hold later (before, respectively). Since facts persist, the first
achieved condition will remain true also after the other becomes true. Also in
this case we only need to check that the two conditions do not hold together.

Derived operators are decomposed and the reasoning made for the operators,
from which they derive, is applied. For instance, cause (•−.•) derives from before
and response. If a state does not satisfy the response part of the cause, it is
marked as “pending”; if it violates the before part, it is marked as a “violation”.
Both labels are applied when the state does not satisfy any of the two.

Summarizing, given a constraint formula and a state in which to verify it, we
have three possible outcomes: (i) the state satisfies the formula; (ii) the state
does not satisfy the formula and this leads to a violation; and (iii) the state
does not satisfy the formula but the violation is potential, depending on future
evolution. Considering all the constraints of a protocol, a state can both violate
some constraint and have pending conditions. Moreover, states are also evaluated
based on the presence of unsatisfied active commitments.

In our implementation, constraints are represented with predicates. For in-
stance, before(A,B,Id) represents a constraint of kind before whose antecedent
and consequent conditions are are respectively A and B and Id is a unique iden-
tifier for the constraint. The predicates for the other kinds of constraints are
similar, where before is substituted with the operator name. Constraints verifi-
cation is implemented as previously described. Listing 1.2 reports, as an example,
the verification of a response and of a before. The clause check pending that is
reported verifies response constraints: it is satisfied if there is a constraint of
kind response, whose antecedent condition can be derived in the state, while the
consequent condition cannot. In this case, the label pending is added to the list
of labels of the state. A similar clause checks the correlation constraint. Instead,
the clause check violation, checks constraints of kind before, which are violated
if the consequent condition can be derived in the state while their antecedent
cannot. Other similar clauses, checking different conditions, are defined for the
other operators. Finally, the program checks the presence of unsatisfied commit-
ments (check commitments) and adds the label final or not-final accordingly.
The result of running this program on a protocol specification is an annotated
graph of the reachable states.

On the basis of the labels associated to a state, that are a consequence of
constraints verification, we can define a legal path.

1 l a b e l s (State , Labels) :− f i n d l a b e l s (State , [] , Labels) .
2

3 f i n d l a b e l s (S , L1 ,R) :− c h e c k v i o l a t i o n (S , L1 , L2) ,
4 check pending (S , L2 , L3) , check commitments (S , L3 ,R) .
5

6 check pending (State , L , [pending (Constr) |L]) :− re sponse (A,B, Constr) ,
7 consequence (A, State) , \+consequence (B, State) .
8

9 c h e c k v i o l a t i o n (State , L , [v i o l a t i o n (Constr) |L]) :− be f o r e (A,B, Constr) ,
10 consequence (B, State) , \+consequence (A, State) .
11

12 check commitments (State , L , [f i n a l |L]) :− \+member(c (, ,) , State) .
13 check commitments (State , L , [non−f i n a l |L]) :− member(c (, ,) , State) .

Listing 1.2. Prolog clauses checking constraints and adding the corresponding labels
to the states

Definition 8 (Legal path). Let PI = 〈Ro,F, s0,A,Cst〉 be a protocol. A legal
path π for PI is a sequence 〈(0, a0, 1), . . . , (n− 1, an−1, n)〉 where ∀i 0 ≤ i ≤ n,
i represents the identifier of a state, ai is an action in A and π is such that:

i. ∀(i, ai, i + 1) in π, there exist state(i, πi, Labeli) and state(i+1, πi+1,
Labeli+1) and transition(i, ai, i+1); and

ii. state(n, πn, Labeln) is such that final ∈ Labeln and {violation,pending}
∩ Labeln = ∅; and

iii. @i in π s.t. state(i, πi, Labeli) and violation ∈ Labeli.

In words, a sequence of states and transitions is a legal path for a program when
(i) each state in the path can be reached from the initial state by applying
the actions (and in the specified order) identified by the sequence; (ii) the last
state of the path does not contain unsatisfied active commitments or pending
constraints; and (iii) none of the states in the path violates constraints.

In order to prove the soundness of our implementation we have to show that a
legal path for our implementation is also a legal path for the corresponding 2CL-
GCM. This latter, however, works on infinite paths where states are represented
as logical formulas rather then as sets of facts and commitments. Along the line
of [20], we define an equivalent infinite path π∞ for a path π.

Definition 9 (Equivalent infinite path). π∞ = 〈(π0, a0, π1), . . .)〉 is the
equivalent infinite path corresponding to the finite path π = 〈(0, a0, 1), . . . , (n− 1,
an−1, n)〉 iff:

i. ∀i, 0 ≤ i ≤ n, given state(i, πi, Labeli) π
∞
i ` f iff f ∈ πi; and

ii. ∀i, 0 ≤ i < n (π∞i , ai, π
∞
i+1) is in π∞ iff (i, ai, i+ 1) is in π; and

iii. ∀i ≥ n (π∞i , ai, π
∞
i+1) in π∞ is such that π∞i ≡ π∞n and π∞i+1 ≡ π∞n and ai

is the action ‘act means true if π∞n ’.

Intuitively, the infinite path is obtained by adding a self loop on the last state
of the finite path. Now we have all the elements for proving soundness.

Theorem 1 (Soundness). Consider a protocol PI = 〈Ro,F, s0,A,Cst〉. Let
π = 〈(0, a0, 1), . . . , (n− 1, an−1, n)〉 be a path and let π∞ be the correspond-
ing infinite path. Let P = 〈S∞π , LA, s0, ∆,G,Cst〉 be a 2CL-GCM of PI such that
S∞π = {π∞i |π∞i is in π∞} and G = {π∞i |@C(x, y, p) s.t. π∞i ` C(x, y, p)}. If π is
a legal path for PI, then π∞ is a path of P.

Given a protocol and the program representing it, if a path is legal according to
this latter, then there exists a 2CL-GCM for which the corresponding infinite path
is a path according to Definition 5. More precisely a 2CL-GCM of the protocol
for which this condition holds is the one obtained by considering as set of states
the states that are part of the path. As good states we consider those that do
not contain unsatisfied active commitments.

Proof. In order for π∞ to be a path of the 2CL-GCM P = 〈S∞π , LA, s0, ∆, G,
Cst〉 it must satisfy the conditions (i)–(iii) of Definition 5:

i. ∀(π∞i , ai, π∞i+1) in π∞ then (i.1) π∞i , π
∞
i+1 ∈ S∞π , (i.2) ai ∈ LA, and (i.3)

π∞i
ai
↪→ π∞i+1 ∈ ∆. Condition (i.1) holds by construction of PI. Condition

(i.2) holds trivially by definition of P (see Definition 3). Condition (i.3). Let

us assume, by absurd, that π∞i
ai
↪→ π∞i+1 6∈ ∆. This is possible when one of

the conditions in Definition 2 is not satisfied. For construction of π∞ then
∃(i, ai, i+ 1) ∈ π and consequently π∞i ` Cond of ai. Condition (a) holds
because each commitment’s axiom is translated into a corresponding clause
(see [20, Section 2.3]). Condition (b) holds because of clause initiates at
Line 35 in Listing 1.1. Conditions (b.1) and (b.2) are verified respectively by

clauses at Lines 45 and 47-49 of Listing 1.1. Therefore, π∞i
ai
↪→ π∞i+1 ∈ ∆.

ii. inf(τ) ∩ G 6= ∅. Being π a legal path for PI then there exits state(n, πn,
Labeln) such that final ∈ Labeln, thus there are no active commitments in
πn. For construction of π∞, π∞n ∈ G and π∞n ∈ inf(π∞).

iii. ∀c ∈ Cst : T (τ), τ0 |=LTL c. Being π a legal path for PI then @i ∈ π such that
state(i, πi, Labeli) and violation ∈ Labeli. Moreover, pending 6∈ state(n,
πn, Labeln). Thus, for construction of π∞, @c ∈ Cst s.t. T (π∞), π∞0 6|=LTL c.

ut

5 2CL Tool for Protocol Design and Analysis

Based on the described technical framework, we developed a tool which supports
the user in two different ways: (i) it features two graphical editors for specify-
ing the protocol actions and the constraints; (ii) it generates different kinds of
graphs for supporting the user in the analysis of the possible interactions and in
understanding which of them are legal. The system is realized as an Eclipse plug-
in, available at the URL http://di.unito.it/2cl. The functionalities that the
system supports can be grouped into three components: design, reasoning and
visualization (see Fig. 2).

Fig. 2. Components and functionalities supplied by the system.

Design Component. The design component provides the tools that are necessary
for defining the protocol. It supplies two editors: one for the definition of the
actions and one for the definition of constraints (Fig. 3). The action definition
editor is basically a text editor. The regulative specification editor allows the user
to graphically define a set of constraints. Constraints are represented by drawing
facts, connecting them with 2CL arrows (following the graphical representation of
Table 1) or with logical connectives so as to design DNF formulas. The advantage
of having a graphical editor is that it supplies a global view of constraints, thus
giving the perception of the flow imposed by them, without actually specifying
any rigid sequence (no-flow-in-flow principle [3]). Fig. 3 shows a snapshot of
the constraint editor with a representation of the NetBill constraints. On the
right the user can select the element to introduce in the graph. By editing the
properties (bottom of the figure), instead, he/she can specify the name of facts
and other graphical aspects.

Reasoning Component. The reasoning component consists of a Java Parser and
of the Prolog implementation of the commitment machine described in Section 4.
The former generates different kinds of graphs as well as the Prolog program cor-
responding to the protocol specification. The latter is the input of the Prolog
implementation of the commitment machine for the generation of the labeled
graph. As explained, the labeled graph represents all the possible interactions

Fig. 3. Editor for constraint specification.

where each state is labeled according to the evaluation of the protocol con-
straints. The graphical conventions is: (i) a state of violation is represented as
a red diamond, with an incoming red dashed arrow (e.g. states 54, 57, 108 in
Fig. 4); (ii) a state in which there is a pending condition is yellow3 (e.g. states
45, 53, 108); (iii) a state with a single outline, independently from the shape
(e.g. 49, 57, 60), is a state that contains unsatisfied commitments; (iv) a state
with a double outline, independently from the shape, does not contain active
commitments (e.g. 41, 108). Graphical notations can be combined, e.g. a yellow
diamond with single outline is a state where there are unsatisfied active com-
mitments, where a constraint is violated and where there is a pending condition
(e.g. 53, 57, 114).

Visualization Component. All the graphs produced by the reasoning compo-
nent can be visualized as images. Labelled graph, however, can be explored by
means of the tool Graph Explorer, which is implemented in Java and relies on
iDot (Incremental Dot Viewer) – an open source project that uses the prefuse4

visualization framework for Dot graph display. The Graph Explorer supplies dif-
ferent functionalities, like the visualization of the shortest path given a source

3 Light gray states in black and white printing.
4 http://prefuse.org/

Fig. 4. Part of the labelled Graph for NetBill.

and a target state, and the visualization of legal (or illegal) paths only. The user
can add or delete a node in a path; search a state starting from its label; and
search all the states that contain a certain fact or commitment. Moreover, the
tool allows the exploration of the graph one state at a time, by choosing which
node to expand. Fig. 4 reports part of the labeled graph for NetBill.

Protocol Analysis. The tool can be used as a support in protocol analysis [5].
Particularly interesting is the possibility of exploring the labeled graph by means
of the Graph Explorer, which can be used to predict whether performing a certain
sequence of actions results in a violation and, in this case, if there is a way to
return on a legal path. For what concerns the designer, it is not always easy,
when specifying a protocol, to individuate which constraints to introduce but,
with the help of the tool, it becomes easy to identify misbehaviors and revise the
constraints so as to avoid them. Moreover, a designer can decide, by analyzing
the graph, to modify the specification so as to regiment some of the patterns
expressed as constraints, or to remove some of them. For instance, considering
the running example, from Fig. 4 it is possible to infer that the protocol does
not allow the customer to pay (sendEPO) before the merchant sends the goods.
This is due to the constraint created(C(m, c, pay, receipt)) ∧ goods −.• pay. If

this behavior was not in the intention of the designer, he/she can discover it and,
e.g., relax the before constraint (−.•) transforming it into a co-existence (•−•).
If, instead, that is exactly the desired behavior, one may decide to regiment
sendEPO so as to enable the payment only after the goods have been sent.

The complete NetBill protocol encoding and the corresponding labeled graph
together with further examples, like 2CL specifications of classical agent inter-
action protocols (CNet) and of real-life protocols (OECD guidelines and MiFID
[5]) are available at http://di.unito.it/2cl (section Examples).

6 Related Work and Conclusions

This work provides an operational semantics of 2CL protocols [3, 4], based on
an extension of the Generalized Commitment Machine [20], and describes a
Prolog implementation of this formalization, where the constraint evaluation is
performed thanks to state conditions rather than by considering paths. Our aim
was to enrich commitment machines with a mechanism for constraint evaluation,
in a way that is suitable to creating tools which are useful in application domains.
The provided formalization allows the creation of compact and annotated graphs,
which provide a global overview of the possible interactions, showing which are
legal and which cause constraint (or commitment) violations. The aim was to
support an implementation, which enables the verification of exposure to risk
on the graph of the possible executions, and taking decisions concerning how to
behave or to modify the protocol in order to avoid such a risk. Due to this aim, we
decided to base our implementation on [22], rather than on formalizations which
support, for instance, model checking. The reason is that this work already is
along the same line of ours, the intent being to give a global view on desirable and
undesirable states. Winikoff et al. [22], however, propose to cope with undesired
paths or undesired final states by adding ad-hoc preconditions to the actions, or
by adding active commitments to states that are desired not to be final. This,
however, complicates the reuse and the adaptation of the specification to different
domains. On the contrary, the proposal in [4] results to be easily adaptable and
customizable so as to address different needs of different domains, and it also
allows for the specification of more expressive patterns of interaction, given as
2CL constraints.

Concerning model checking, in [8] it is possible to find a proposal of a
branching-time logic that extends CTL*, used to give a logical semantics to
the operations on commitments. This approach was designed to perform verifi-
cations on commitment-protocol ruled interactions by exploiting symbolic model
checking techniques. The properties that can be verified are those that are com-
monly checked in distributed systems: fairness, safety, liveness, and reachability.
It would be interesting to integrate in this logical framework the 2CL constraints
in order to combine the benefits of both approaches: on the one hand, the possi-
bility to embed in the protocols expressive regulative specification, and, on the
other hand, the possibility to exploit the logical framework to perform the listed
verifications.

For what concerns the semantics of commitment protocols, the literature
proposes different formalizations. Some approaches present an operational se-
mantics that relies on commitment machines to specify and execute protocols
[24, 23, 22]. Some others, like [12], use interaction diagrams, operationally spec-
ifying commitments as an abstract data type, and analyzing the commitment’s
life cycle as a trajectory in a suitable space. Further approaches rely on temporal
logics to give a formal semantics to commitments and to the protocols defined
upon them. Among these, [13] uses DLTL. All these approaches allow the infer-
ence of the possible executions of the protocol, but, differently than [4], all of
them consider as the only regulative aspect of the protocol the regulative value
of the commitments.

Acknowledgements

The authors would like to thank the reviewers for their valuable comments.
This research was partially funded by “Regione Piemonte” through the project
ICT4LAW.

References

1. C. Baier and J.-P. Katoen. Principles of Model Checking. MIT Press, 2008.
2. M. Baldoni and C. Baroglio. Some Thoughts about Commitment Protocols. In

M. Baldoni, L. Dennis, V. Mascardi, and W. Vasconcelos, editors, Post-Proc. of
International Workshop on Declarative Agent Languages and Technologies, DALT
2012, volume LNAI. Springer. In this volume.

3. M. Baldoni, C. Baroglio, and E. Marengo. Behavior-Oriented Commitment-based
Protocols. In Proc. of ECAI, volume 215 of Frontiers in Artificial Intelligence and
Applications, pages 137–142. IOS Press, 2010.

4. M. Baldoni, C. Baroglio, E. Marengo, and V . Patti. Constitutive and Regulative
Specifications of Commitment Protocols: a Decoupled Approach. ACM Trans. on
Int. Sys. and Tech., Spec. Iss. on Agent Communication, 4(2), 2013.

5. M. Baldoni, C. Baroglio, E. Marengo, and V. Patti. Grafting Regulations into
Business Protocols: Supporting the Analysis of Risks of Violation. In A. Antón,
D. Baumer, T. Breaux, and D. Karagiannis, editors, Forth International Workshop
on Requirements Engineering and Law (RELAW 2011), held in conjunction with
the 19th IEEE International Requirements Engineering Conference, pages 50–59,
Trento, Italy, August 30th 2011. IEEE Xplore.

6. F. Chesani, P. Mello, M. Montali, and P. Torroni. Commitment Tracking via the
Reactive Event Calculus. In C. Boutilier, editor, IJCAI, pages 91–96, Pasadena,
California, USA, July 2009.

7. A. K. Chopra and M. P. Singh. Constitutive Interoperability. In L. Padgham, D. C.
Parkes, J. Müller, and S. Parsons, editors, Proc. of 7th International Joint Confer-
ence on Autonomous Agents and Multiagent Systems (AAMAS 2008), volume 2,
pages 797–804, Estoril, Portugal, May 2008. IFAAMAS.

8. M. El-Menshawy, J. Bentahar, and R. Dssouli. Verifiable Semantic Model for Agent
Interactions Using Social Commitments. In M. Dastani, A. Seghrouchni El Fal-
lah, J. Leite, and P. Torroni, editors, LAnguages, methodologies and Development

tools for multi-agent systemS (LADS 2009), volume 6039 of LNCS, pages 128–152,
Torino, Italy, September 2010. Springer.

9. M. El-Menshawy, J. Bentahar, and R. Dssouli. Symbolic Model Checking Com-
mitment Protocols using Reduction. In A. Omicini, S. Sardina, and W. Vasconce-
los, editors, Declarative Agent Languages and Technologies VIII, Toronto, Canada,
2011. Springer.

10. E. A. Emerson. Temporal and Modal Logic, volume B. Elsevier, Amsterdam, The
Netherlands, 1990.

11. N. Fornara and M. Colombetti. Defining Interaction Protocols using a
Commitment-based Agent Communication Language. In J. S. Rosenschein,
T. Sandholm, M. Wooldridge, and M. Yokoo, editors, Proc. of the Second Interna-
tional Joint Conference on Autonomous Agents & Multiagent Systems (AAMAS
2003), pages 520–527, Melbourne, Australia, July 2003. ACM.

12. N. Fornara and M. Colombetti. A Commitment-Based Approach To Agent Com-
munication. Applied Artificial Intelligence, 18(9-10):853–866, 2004.

13. L. Giordano, A. Martelli, and C. Schwind. Specifying and Verifying Interaction
Protocols in a Temporal Action Logic. Journal of Applied Logic, 5(2):214–234,
2007.

14. A. J. I. Jones and M. Sergot. On the Characterization of Law and Computer
Systems: the Normative Systems Perspective, pages 275–307. John Wiley & Sons,
Inc., New York, NY, USA, 1994.

15. A. U. Mallya and M. P. Singh. Modeling Exceptions via Commitment Protocols.
In F. Dignum, V. Dignum, S. Koenig, S. Kraus, M. P. Singh, and M. Wooldridge,
editors, AAMAS, pages 122–129, Utrecht, The Netherlands, July 2005. ACM.

16. E. Marengo. 2CL Protocols: Interaction Patterns Specification in Commitment
Protocols. PhD thesis, Università degli Studi di Torino, Research Doctorate in
Science and High Technology, Specialization in Computer Science, October 2012.
http://www.di.unito.it/~emarengo/Thesis.pdf.

17. E. Marengo, M. Baldoni, C. Baroglio, A. K. Chopra, V. Patti, and M. P. Singh.
Commitments with Regulations: Reasoning about Safety and Control in REGULA.
In L. Sonenberg, P. Stone, K. Tumer, and P. Yolum, editors, AAMAS, volume 1–3,
pages 467–474, Taipei, Taiwan, May 2011. IFAAMAS.

18. J.R. Searle. The construction of social reality. Free Press, New York, 1995.
19. M. P. Singh. An Ontology for Commitments in Multiagent Systems. Artificial

Intelligence and Law, 7(1):97–113, 1999.
20. Munindar P. Singh. Formalizing Communication Protocols for Multiagent Systems.

In M. M. Veloso, editor, IJCAI, pages 1519–1524, Hyderabad, India, January 2007.
AAAI Press.

21. Gerhard Weiss, editor. Multiagent Systems: A Modern Approach to Distributed
Artificial Intelligence. The MIT Press, 1999.

22. M. Winikoff, W. Liu, and J. Harland. Enhancing Commitment Machines. In J. A.
Leite, A. Omicini, P. Torroni, and P. Yolum, editors, Proc. of the Second Inter-
national Workshop on Declarative Agent Languages and Technologies II (DALT
2004), volume 3476 of LNCS, pages 198–220, New York, NY, USA, July 2005.
Springer.

23. P. Yolum and M. P. Singh. Designing and Executing Protocols Using the Event
Calculus. In Agents, pages 27–28, New York, NY, USA, 2001. ACM.

24. P. Yolum and M. P. Singh. Commitment Machines. In J.-J. Ch. Meyer and
M. Tambe, editors, Proc. of the 8th International Workshop on Intelligent Agents
VIII (ATAL 2001), volume 2333 of LNCS, pages 235–247, Seattle, WA, USA,
August 2002. Springer.

