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ABSTRACT

Aims. The transport of energy through radiation is very important in many astrophysical phenomena. In dynamical problems the time-
dependent equations of radiation hydrodynamics have to be solved. We present a newly developed radiation-hydrodynamics module
specifically designed for the versatile magnetohydrodynamic (MHD) code PLUTO.
Methods. The solver is based on the flux-limited diffusion approximation in the two-temperature approach. All equations are solved
in the co-moving frame in the frequency-independent (gray) approximation. The hydrodynamics is solved by the different Godunov
schemes implemented in PLUTO, and for the radiation transport we use a fully implicit scheme. The resulting system of linear equations
is solved either using the successive over-relaxation (SOR) method (for testing purposes) or using matrix solvers that are available in
the PETSc library. We state in detail the methodology and describe several test cases to verify the correctness of our implementation.
The solver works in standard coordinate systems, such as Cartesian, cylindrical, and spherical, and also for non-equidistant grids.
Results. We present a new radiation-hydrodynamics solver coupled to the MHD-code PLUTO that is a modern, versatile, and efficient
new module for treating complex radiation hydrodynamical problems in astrophysics. As test cases, either purely radiative situations,
or full radiation-hydrodynamical setups (including radiative shocks and convection in accretion disks) were successfully studied. The
new module scales very well on parallel computers using MPI. For problems in star or planet formation, we added the possibility of
irradiation by a central source.
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1. Introduction

Radiative effects play a very important role in nearly all astro-
physical fluid flows, ranging from planet and star formation to
the largest structures in the Universe. Coupling the equations of
radiation transport to those of (magneto-)hydrodynamics (MHD)
has been studied for decades, and comprehensive treatments can
be found for example in textbooks by Mihalas & Mihalas (1984)
or Pomraning (1973). The numerical implementation of two-
temperature radiation hydrodynamics (in the diffusion approxi-
mation) into multi-dimensional MHD/HD-codes has been made
over twenty years ago in various implementations, for example
by Eggum et al. (1988), Kley (1989), in the ZEUS-code (Stone
et al. 1992), and more recently by Turner & Stone (2001).

To study the dynamics and characteristics of stellar atmo-
spheres together with convection, for example, more accurate
solvers for the radiation transport based on the method of short
characteristics have been developed, see Davis et al. (2012) and
Freytag et al. (2012) for the current status. This can then be cou-
pled to the hydrodynamics using the Variable Eddington Tensor
method (Jiang et al. 2012). Another approach is the M1 clo-
sure model where the radiative moment equations are closed at
a higher level (González et al. 2007; Aubert & Teyssier 2008).
Despite this progress, it is still useful and desirable to have a
method at hand that solves the interaction of matter and radi-
ation primarily within the bulk part of the matter, which may
be optically thick. In this type of applications, the method of
flux-limited diffusion (FLD, see Levermore & Pomraning 1981)

has its clear merits and is still implemented into existing MHD-
codes, for example in NIRVANA (Kley et al. 2009) to study the
planet formation process, in RAMSES (Commerçon et al. 2011)
for protostellar collapse simulations, and in combination with a
multi-frequency irradiation tool into PLUTO (Kuiper et al. 2010)
for massive star formation.

Since the 3D-MHD code PLUTO (Mignone et al. 2007) is
becoming increasingly popular within the astrophysics commu-
nity, we added a publicly available radiation module that is based
on the two-temperature FLD-approximation, as described by
Commerçon et al. (2011). PLUTO solves the equations of hydro-
dynamics and magnetohydrodynamics including the non-ideal
effects of viscosity, thermal conduction, and resistivity by means
of shock-capturing Godunov-type methods. Several Riemann
solvers, time-stepping methods and interpolation schemes can
be chosen. Additionally, we added a ray-tracing routine that al-
lows for additional irradiation by a point source in the center.
Treating the irradiation in a ray-tracing approach guarantees the
long-range character of the radiation better than FLD (Kuiper
et al. 2012; Kuiper & Klessen 2013).

The paper is organized as follows. In Sect. 2.1, we briefly
introduce the equations of hydrodynamics including radiation
transport. Additionally, we describe the general idea behind the
flux-limited diffusion approximation. In Sect. 3, we present the
discretization of the equations, the solver of the resulting ma-
trix equation, and our numerical implementation of irradiation.
In Sect. 4, we present six different test cases to show the cor-
rectness of the implemented equations: four test cases with an
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analytical solution (Sects. 4.1 to 4.4) and two others in which
our results are compared with those from other codes (Sects. 4.5
and 4.6). We conclude with a summary and conclusions.

2. Radiation hydrodynamics

2.1. Equations

Even though the PLUTO-environment includes the full MHD-
equations and nonideal effects such as viscosity, we restrict
ourselves here to the Euler equations of ideal hydrodynamics.
Radiation effects are included in the two-temperature approxi-
mation, which implies an additional equation for the radiation
energy. To follow the transport of radiation, we applied the flux-
limited diffusion approximation and treated the exchange of en-
ergy and momentum between the gas and the radiation field with
additional terms in the gas momentum and energy equations.
The system of equations then reads

∂

∂t
ρ + ∇ · (ρu) = 0 (1)

∂

∂t
ρu + ∇ · (ρu ⊗ u) + ∇p = + ρ(aext + arad) (2)

∂

∂t
e + ∇ ·

[
(e + p) u

]
= + ρu · (aext + arad) (3)

− κPρc(aRT 4 − E)

∂

∂t
E + ∇ · F = κPρc

(
aRT 4 − E

)
. (4)

The first three Eqs. ((1)–(3)) describe the evolution of the gas
motion, where ρ is the gas density, p the thermal pressure, u the
velocity, e = ρ ε + 1/2 ρ v2 the total energy density (i.e., the sum
of internal and kinetic) of the gas without radiation, and aext an
acceleration caused by external forces (e.g. gravity), not induced
by the radiation field (see below). This system of equations is
closed by the ideal gas relation

p = (γ − 1) ρ ε = ρ
kB T
µmH

, (5)

where γ is the ratio of specific heats, T the gas temperature, kB
the Boltzmann constant, µ the mean molecular weight, and mH
the mass of hydrogen. The specific internal energy can be written
as ε = cV T , with the specific heat capacity given by

cV =
kB

(γ − 1)µmH
· (6)

Here, we assumed constant γ and µ, which also implies a con-
stant cV.

The evolution of the radiation energy density E is given by
Eq. (4), where F denotes the radiative flux, κP the Planck mean
opacity, c the speed of light, and aR the radiation constant. The
fluid is influenced by the radiation in two different ways. First,
the radiation may be absorbed or emitted by the fluid, leading
to variation of its energy density. This variation is given by the
expression κPρc

(
aRT 4 − E

)
, see the right-hand side of Eqs. (3)

and (4). The second effect is that of radiation pressure. We in-
cluded this term as an additional acceleration to the momentum
equation, arad = κR

c F. The present implementation does not in-
clude the advective transport terms for the radiation energy and
radiative pressure work in Eqs. (3) and (4). For the relatively

low temperature protoplanetary disk application that we con-
sider here, these terms are of minor importance. If required,
these terms can be treated in our implementation straightfor-
wardly within PLUTO by adding source terms.

2.2. Flux-limited diffusion approximation

The system of equations shown cannot be solved without addi-
tional assumptions for the radiative flux F. Here we used the
flux-limited diffusion approximation (FLD) where the radiation
flux is given by a diffusion approximation

F = −λ
c
κR ρ
∇E, (7)

with the Rosseland mean opacity κR. The flux-limiter λ describes
approximately the transition from very optically thick regions
with λ = 1/3 to optically thin regimes, where F → −cE ∇E

|∇E| .
This leads to the formal definition of the flux-limiter, which is a
function of the dimensionless quantity

R =
|∇E|
κRρE

, (8)

with the following behavior:

λ(R) =

 1
3 , R→ 0
1
R , R→ ∞.

(9)

Physically sensitive flux-limiters thus have to fulfill the Eq. (9)
in the given limits and describe the behavior between the limits
approximately. We implemented three different flux-limiters:

λ(R) =
1
R

(
coth R −

1
R

)
(10)

λ(R) =


2

3 +
√

9 + 12R2
0 ≤ R ≤

3
2

1

1 + R +
√

1 + 2R

3
2
< R ≤ ∞

(11)

λ(R) =


2

3 +
√

9 + 10R2
0 ≤ R ≤ 2

10

10R + 9 +
√

180R + 81
2 < R ≤ ∞

(12)

from Levermore & Pomraning (1981), Minerbo (1978), and
Kley (1989), respectively. A comparison of them is presented
in Kley (1989).

In general, it is necessary to solve the equations for each
frequency that appears in the physical problem. However, here
we used the gray approximation in which all radiative quanti-
ties including the opacities are integrated over all frequencies.
Scattering is not accounted for directly in our treatment, but it is
included in the effective isotropic absorption and emission coef-
ficients.

3. Solving the radiation part

3.1. Reformulation of the equations

Instead of solving the system of Eqs. ((1)–(4)) directly as a
whole, the problem is split into two steps. In the first step, PLUTO
is used to solve the equations of fluid dynamics with the addi-
tional force caused by the radiation. This corresponds to Eqs. (1)
to (3) with the additional acceleration, arad, but without the
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interaction term between the matter and radiation (last term in
Eq. (3)). By using PLUTO for solving the non-radiative part of the
equations, we are not limited to the Euler equations, but are able
to use the full capabilities of PLUTO for solving the equations of
hydrodynamics or magnetohydrodynamics, including the effects
of viscosity and magnetic resistivity.

In a second additional step the radiation energy Eq. (4) is
solved together with the corresponding heating-cooling term in
the internal energy of the fluid

∂

∂t
E − ∇ ·

(
cλ
κRρ
∇E

)
= κPρc

(
aRT 4 − E

)
∂

∂t
ρε = −κPρc

(
aRT 4 − E

)
 . (13)

To obtain the radiation energy density, the system of coupled
Eq. (13) is solved. Within one time step PLUTO advances the hy-
drodynamical quantities, that is, the density ρ, the velocity u, and
a temporary pressure p from time tn to time tn + 1, where the time
step, ∆t = tn + 1 − tn, is determined by PLUTO using the CFL con-
ditions, currently without the radiation pressure. These depend
on the used time-stepping method in PLUTO; for more informa-
tion see Mignone et al. (2007) and the userguide of PLUTO.

The physical process of radiation transport takes place on
timescales much shorter than the one in hydrodynamics. To use
the same time step for hydrodynamics and the radiation trans-
port, we applied an implicit scheme to handle the radiation diffu-
sion and the coupling between matter and radiation described by
Eq. (13). Because of the coupling of the equations, the method
updates T and E simultaneously, which formally leads to a non-
linear set of coupled equations. As outlined below, the system is
solved for the radiation energy density E. From the new values
for E, the new fluid temperature (see Eq. (17) below) is com-
puted and the fluid pressure is updated by using the ideal gas
relation from Eq. (5). This is then used within PLUTO to calcu-
late a new total gas energy e.

3.2. Discretization

To discretize the Eqs. (13), we applied a finite-volume method.
For that purpose we integrated over the volume of a grid cell and
transformed the divergence into a surface integral. Furthermore,
we replaced the gradient of E by finite differences and applied an
implicit scheme. The discretization scheme was implemented in
3D for Cartesian, cylindrical, and spherical polar coordinates in-
cluding all the necessary geometry terms for the divergence and
gradient. Since the density has been updated already in the hy-
drodynamical part of the solver, we can replace ∂ρε

∂t with ρ cV
∂T
∂t ,

which is valid for a constant heat capacity. Then the resulting
discretized equations for the radiative part can be written as

En + 1
i, j,k − En

i, j,k

∆t
=

Gr
x1Kn

i+ 1
2 , j,k

En + 1
i+1, j,k − En + 1

i, j,k

∆x1i+ 1
2

−Gl
x1Kn

i− 1
2 , j,k

En + 1
i, j,k − En + 1

i−1, j,k

∆x1i− 1
2

+ Gr
x2Kn

i, j+ 1
2 ,k

En + 1
i, j+1,k − En + 1

i, j,k

∆x2 j+ 1
2

−Gl
x2Kn

i, j− 1
2 ,k

En + 1
i, j,k − En + 1

i, j−1,k

∆x2 j− 1
2

+ Gr
x3Kn

i, j,k+ 1
2

En + 1
i, j,k+1 − En + 1

i, j,k

∆x3k+ 1
2

−Gl
x3Kn

i, j,k− 1
2

En + 1
i, j,k − En + 1

i, j,k−1

∆x3k− 1
2

+ κn
Pi, j,k ρ

n
i, j,kc

(
aR(T n + 1

i, j,k )4 − En + 1
i, j,k

)
, (14)

and for the thermal energy (or temperature, respectively)

T n + 1
i, j,k − T n

i, j,k

∆t
= −

κP
n
i, j,k c

cV

(
aR

(
T n + 1

i, j,k

)4
− En + 1

i, j,k

)
. (15)

Here, the superscript n refers to the values of all variables af-
ter the most recent update from the hydrodynamical step. To
simplify the notation for the separate radiation module, it is as-
sumed that the update takes place from time n to n + 1. The
subscripts i, j, k refer to the three spatial directions of the com-
putational grid, where all variables are located at the cell cen-
ters. Half-integer indices refer to cell interfaces. The physical
sizes (proper length) of each cell in the three spatial direc-
tions m (m = 1, 2, 3) are given by ∆xm, where we additionally
allowed for non-equidistant grids. The effective radiative diffu-
sion coefficient (defined at cell centers) is given by

Kn
i, j,k =

cλ(Ri, j,k)
κR

n
i, j,k ρ

n
i, j,k

,

where Ri, j,k is calculated from Eq. (8) by central differencing.
Values at cell interfaces are obtained by linear interpolation.
The factors Gl,r

xm are geometrical terms defined, respectively, as
the left and right surface areas divided by the cell volume in the
direction given by m = 1, 2, 3. In the recent work by Bitsch et al.
(2013b) the difference equations have been written out in more
detail for Cartesian equidistant grids. The required opacities are
evaluated using the values of ρ and T after the hydrodynamical
update at time tn.

As mentioned before, Eqs. (13) constitute a set of coupled
nonlinear equations. The nonlinear term (T n + 1

i, j,k )4 that appears in
Eq. (15) is linearized using the method outlined in Commerçon
et al. (2011),

(T n + 1
i, j,k )4 = (T n

i, j,k)4

1 +
T n + 1

i, j,k − T n
i, j,k

T n
i, j,k

4

≈4(T n
i, j,k)3T n + 1

i, j,k −3(T n
i, j,k)4.

(16)

Using this approximation, we obtained an equation for comput-
ing the new temperature in terms of the new radiation energy
density, En + 1

i, j,k , and the old temperatures, T n
i, j,k

T n + 1
i, j,k =

κP
n
i, j,kc

(
3aR(T n

i, j,k)4 + En + 1
i, j,k

)
∆t + cVT n

i, j,k

cV + 4κP
n
i, j,kcaR(T n

i, j,k)3∆t
· (17)

The expression can be substituted into Eq. (14) to obtain a linear
system of equations for the new radiation energies En + 1

i, j,k , which
can be solved using standard matrix solvers, see Sect. 3.4. The
new temperature can then be calculated from Eq. (17). We im-
plemented several boundary conditions for the radiation energy
density including periodic, symmetric, and fixed values.

3.3. Irradiation

To couple possible irradiation to the radiation transport equa-
tions, a new source term, S , has to be added to the right-hand
side of the thermal energy equation in system (13)

∂ρε

∂t
= −κPρc(aRT 4 − E) + S . (18)

This results in an additional term, S i, j,k/(ρi, j,kcV), in Eq. (15),
correspondingly in Eq. (17), and in a modification of the right-
hand side of the resulting matrix equation for En + 1

i, j,k .
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For the present implementation, we assumed that the irra-
diating source is located at the center of a spherical coordi-
nate system. Therefore it is straightforward to compute the op-
tical depth τi, j,k even for simulations using parallel computers.
Assuming that a ray of light travels along the radial direction
from the origin to the grid cell i, j, k under consideration, the
optical depth from the inner radius r0 to the ith grid cell with
radius ri can be simply expressed as the integral along the radial
coordinate,

τi, j,k =

∫ ri

r0

κ?ρ(r) dr ≈
i∑

n = 0

κ?n, j,k ρn, j,k∆rn, (19)

where ∆rn is the radial length of the nth grid cell, and κ? the
opacity used for irradiation. For the sake of readability, we
write τi instead of τi, j,k in the following. We used κ? = κP in the
test case with irradiation as presented in Sect. 4.3. Additionally,
κ? can be defined by the user, as can the other opacities. Re-
emission of the photons that were absorbed in the cell volume
is handled in our treatment by the heating-cooling term, see
Eq. (13).

The luminosity of the source is given by

L? = 4πR2
?σT 4

?, (20)

where σ denotes the Stefan-Boltzmann constant, T? is the tem-
perature of the star, and R? its radius. To compute the amount of
irradiated energy that is absorbed by a specific grid cell we have
to know the surface area A of a grid cell oriented perpendicular
to the radiation from the star and the flux f at the radius r. This
surface area A is given by the expression

Ai, j,k =

θ j + 1∫
θ j

φk + 1∫
φk

dA = r2
i (φk + 1 − φk)(cos θ j − cos θ j + 1), (21)

where θ is the azimuthal and φ the polar angle in the spherical
coordinate system. Without absorption, the flux f is given by the
expression

f =
L?

4πr2 = σT 4
?

(R?

r

)2

· (22)

The amount of energy per time that arrives at the surface of the
grid cell (i, j, k) is

Hi, j,k = Ai, j,k f = (φk+1 − φk)(cos θ j − cos θ j+1)σT 4
?R2

?, (23)

again without absorption. If the irradiated energy is partly
absorbed, the remaining amount of energy per time is then
Hi, j,ke−τi, j,k . Using these results, we can compute the energy den-
sity per time, S , that is absorbed by one grid cell (i, j, k)

S i, j,k =
Hi, j,ke−τi − Hi, j,ke−τi + 1

Vi, j,k
=

Hi, j,k (e−τi − e−τi + 1 )
Vi, j,k

=
3σT 4

?R2
? (e−τi − e−τi + 1 )

(r3
i + 1 − r3

i )
, (24)

with the volume of a grid cell

Vi, j,k =

ri + 1∫
ri

θ j + 1∫
θ j

φk + 1∫
φk

r2 sin θ dr dθ dφ

=
1
3

(
r3

i + 1 − r3
i

)
(cos θ j − cos θ j + 1)(φk + 1 − φk). (25)

The absorbed energy density per time, S i, j,k, is computed for
each grid cell before solving the matrix equation. A similar treat-
ment of irradiation has been described recently by Bitsch et al.
(2013b), for a multi-frequency implementation see Kuiper et al.
(2010).

3.4. Matrix solver

We implemented two different solvers for the matrix equation.
The first one uses the method of successive over-relaxation
(SOR), and as a faster and more flexible solver the PETSc1 li-
brary is used. From the PETSc library the Krylov subspace it-
erative method and a preconditioner is used to solve the matrix
equation. For all test cases described we used gmres (general-
ized minimal residual) as iterative method and bjacobi (block
Jacobi) as preconditioner. Among others, the convergence of the
SOR algorithm and the PETSc library can be estimated using the
following criteria:∥∥∥r(k)

∥∥∥ < max(εr · ‖b‖ , εa), (26)

where b is the right-hand side of the matrix equation Ax = b,
r(k) = b − Ax(k) is the residual vector for the kth iteration of the
solver and x is the solution vector (here the radiation energy den-
sity). As the norm we used the L2 norm here. The quantities εr
and εa are the relative and absolute tolerance, respectively, and
are problem dependent, with a common value of 10−50 for εa.
For the test cases in Sect. 4 we used relative tolerances εr be-
tween 10−5 and 10−8. The criterion (26) is the default one used
by the PETSc library. For more information about the conver-
gence test in PETSc we refer to Sect. 4.3.2. of Balay et al. (2012).
The solver performance in a parallel environment is described in
Sect. 4.6.4.

4. Test cases

To verify the implemented method, we simulated several test
problems and compared the results with either corresponding an-
alytical solutions or calculations made with different numerical
codes. Most of the tests correspond to one-dimensional prob-
lems. To model these, we used quasi-one-dimensional domains,
with a very long cuboid with the height h, width w, and length l.
The length l is much longer than the width or height, and for
simplicity we used w = h. We performed some of the tests
in all three implemented coordinate systems (Cartesian, cylin-
drical, and spherical) and in three different alignments of the
cuboid along each coordinate direction. This was made to check
whether the geometry factors are correct. For a non-Cartesian
coordinate system we placed the cuboid at large distances r
from the origin such that the domain approximately describes
a Cartesian setup.

We used the solver based on the PETSc library for all
test cases with the default iterative solver gmres and the pre-
conditioner bjacobi.

4.1. Linear diffusion test

The following test was adapted from Commerçon et al. (2011).
The initial profile of the radiation energy density was set to a
delta function that was evolved in time and compared with the

1 For more information visit the website http://www.mcs.anl.
gov/petsc or see Balay et al. (2012).
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analytical one-dimensional solution. We performed this test in
all implemented coordinate systems (Cartesian, cylindrical, and
spherical coordinates) as described above, which resulted in nine
different simulations. The used domain is quasi-one-dimensional
and the equations of hydrodynamics are not solved in this test.
Only the radiation diffusion equation

∂

∂t
E = ∇ ·

(
cλ
κRρ
∇E

)
(27)

is solved, which we obtained from Eqs. (13) by setting κP = 0.
An analytical solution to Eq. (27) can be calculated in the one-
dimensional case with a constant flux-limiter λ = 1

3 and a con-
stant product of the Rosseland opacity and density, here we set
κRρ = 1 cm−1. The equation to solve is then given by

∂

∂t
E(x, t) =

c
3
∂2

∂x2 E(x, t), (28)

with the solution

E(x, t) =
Ẽ0√
4
3 cπt

e−
3x2
4ct , (29)

where Ẽ0 is the integral over the initial profile of the energy den-
sity, E(x, t = 0). Note that in the quasi-one-dimensional case
(using a stretched three-dimensional domain) Ẽ0 has the unit
erg cm−2.

4.1.1. Setup

The domain is a cuboid with a length of 4 cm and a width and
height of 0.04 cm. We used here 301 × 3 × 3 grid cells. The
initial profile of the radiation energy density in the quasi one-
dimensional case is set by

Ei =


1

erg
cm3 , i = 1, 2, . . . ,N with i ,

N
2

Ẽ0

∆x
, i =

N
2

, (30)

where ∆x is the length of a grid cell. For numerical reasons, we
set Ei for i , N

2 to the value 1 erg cm−3 instead of 0 erg cm−3.
This choice is not problematic, since Ẽ0/∆x � 1 erg cm−3 for
our chosen value of Ẽ0 = 105 erg cm−2. The initial values for
pressure and density are p = 1 g cm−1 s−2 and ρ = 1 g cm−3.
Furthermore, we used κR = 1 cm2 g−1 for the Rosseland opac-
ity. All boundary conditions were set to periodic except for the
boundary conditions at the beginning and end of the quasi-one-
dimensional domain, which were set to outflow. For the matrix
solver we used a relative tolerance of εr = 10−8. The simulation
started at t = 0 s with a constant time step of ∆t = 1 × 10−14 s
and stopped at t = 4.2 × 10−12 s.

4.1.2. Results

The numerical solution En and the analytical solution Ea from
Eq. (29) are plotted in Figs. 1 and 2 together with the absolute
value of the relative error. In Fig. 1 the radiation energy density
is plotted against the position at time t = 4.2 × 10−12 s. The rel-
ative error in the relevant range from −1 cm to 1 cm is always
lower than one percent. In Fig. 2 the time evolution from t = 0 s
to 4.2 × 10−12 s is shown for the positions x = {0, 0.5, 1.0} cm

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5
x [cm]

100

101

102

103

104

105

106

E
[er

g
cm

3
]

10−4

10−3

10−2

∣ ∣ ∣E n−E
a

E
a

∣ ∣ ∣

Fig. 1. Linear diffusion test at time t = 4.2 × 10−12 s. The simulated
(read dots) and the analytical (black line) solutions are plotted. We
also plot the solution with the absolute value of the relative error (blue
dashed line) that belongs to the axis on the right.
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Fig. 2. Time evolution for the linear diffusion test from time t = 0 s
to 4.2 × 10−12 s at three different positions: at x = 0 cm (black lines),
at x = 0.5 cm (blue lines) and at x = 1.0 cm (red lines). The dotted
lines for each position belong to the simulated solution, the solid lines
to the analytical solution, and the dashed lines show the relative error
that belongs to the axis on the right.

coded in black, blue, and red, respectively. The results shown
in this figure strongly depend on the position. For the position
x = 0 cm the error is lower than one percent for all times later
than t = 4× 10−13 s, and decreases with time. For the other posi-
tions, the behavior is different. The relative error rises and after
a while it decreases. This behavior can be explained by looking
at Fig. 1. The error is higher at the diffusion front. This region
moves with time and causes the effect for the other positions.
The test shows that the time evolution of the radiation energy
density is reproduced correctly. As described, this test was per-
formed in different coordinate systems and orientations, with the
same results.
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4.2. Coupling test

The purpose of this test from Turner & Stone (2001) is to check
the coupling between radiation and the fluid. For this purpose
we simulated a stationary fluid that is initially out of thermal
equilibrium. In this simulation the radiation energy density is the
dominant energy, which is constant over the whole simulation.
The system of Eqs. (13) decouples in this case and, in addition,
it is not necessary to solve the matrix equation for E. By set-
ting σP = κPρ and T =

p
ρ
µmH
kB

from Eq. (5) with the assumption
that σP and ρ are constant, we can rewrite the thermal energy
equation of the system (13) as

de
dt

= cσPE︸︷︷︸
C1

− cσPaR

(
γ − 1
ρ

µmH

kB

)4

︸                    ︷︷                    ︸
C2

e4. (31)

With these approximations, the coefficients C1 and C2 are con-
stant. The solution to Eq. (31) can be calculated analytically in
terms of an algebraic equation that would have to be solved iter-
atively. Here, we integrated Eq. (31) numerically using a Runge
Kutta solver of fourth-order scheme with adaptive step size. In
the following we refer to this solution as the reference solution.

Information on the expected behavior of the solution can be
obtained directly from the differential equation. It is clear that in
the final equilibrium state (with de

dt = 0) the gas temperature has

to be equal to the radiation temperature T = 4
√

E
aR

, thus the final
gas energy density will be

efinal =

(
C1

C2

) 1
4

· (32)

If the initial gas energy density e0 is much lower than efinal, we
can neglect the second term in Eq. (31) at the beginning, thus
e(t) = C1 t + e0. The corresponding coupling time can be esti-
mated to

τ =
efinal − e0

C1
· (33)

On the other hand, if e0 � efinal, we can neglect the first term in
Eq. (31) and derive

e(t) ∝ (C2 t)−
1
3 and τ =

1
e3

final C2
· (34)

4.2.1. Setup

The computational domain was identical to that of the lin-
ear diffusion test in Sect. 4.1. For the grid we used a reso-
lution of 25 × 3 × 3 grid cells. As before, we did not solve
the equations of hydrodynamics, and the boundary conditions
were quite simple. All boundaries were set to periodic bound-
ary conditions. The constants we used were set to radiation en-
ergy density E = 1012 erg cm−3, density ρ = 10−7 g cm−3, opac-
ity σP = 4 × 10−8 cm−1, mean molecular weight µ = 0.6, and
the ratio of specific heats γ = 5/3. The simulations started
at t = 0 s with an initial time step of ∆t = 10−20 s and evolved un-
til t = 10−4 s. After each step the time step was increased by 1%
to speed up the computation. The simulation was performed with
three different initial gas energy densities, e0 = 1010 erg cm−3,
e0 = 106 erg cm−3 and, e0 = 102 erg cm−3.
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Fig. 3. Coupling test from t = 10−20 s to t = 10−4 s with three different
initial gas energy densities. The reference solution (black lines) and the
simulated results for the initial energy density e0 = 1010 erg cm−3 (red
dots), e0 = 106 erg cm−3 (blue dots), and e0 = 102 erg cm−3 (green dots)
are plotted.

4.2.2. Results

Figure 3 shows the numerical gas energy density and the refer-
ence solution plotted against time for the three different initial
values of e. The agreement of both results is excellent for all
initial values. From the figure we see that in the limit of low
and high initial e0, we find exactly the behavior predicted by the
estimates for Eq. (31). The analytic estimates for the coupling
time τ from Eq. (33) agree very well with our results. The es-
timate for e0 = 102 erg cm−3 is τ = 5.88 × 10−8 s and for e0 =
106 erg cm−3 we calculated τ = 5.78 × 10−8 s. For efinal < e0, the
estimate in Eq. (34) is approximately τ = 5.88×10−8 s. We have
to mention here that this test primarily verifies the correctness of
Eq. (17). As in the linear diffusion test, this test was performed in
three different coordinate systems in different orientations, with
the same results.

4.3. Coupling test with irradiation

This test is in its basic setup the same as that from Sect. 4.2, but
with irradiation enabled, that is, Eq. (18) is solved instead of the
second equation in (13). As described in Sect. 3.3, irradiation is
limited to the spherical coordinates we used for this test. With the
same assumptions as in Sect. 4.2, that is, σP and ρ are constant,
and with the definitions for σP, e, p as well as for T , it is possible
to rewrite S from Eq. (24) as

S (r) =
3σT 4

?R2
?e−σP(r−r0)

(
1 − e−σP∆r

)
(r + ∆r)3 − r3

, (35)

and obtain for Eq. (18)

de
dt

= S (r) + cσPE︸         ︷︷         ︸
C1(r)

− cσPaR

(
γ − 1
ρ

µmH

kB

)4

︸                    ︷︷                    ︸
C2

e4. (36)

The reference solution was computed in the same way as before,
although it now depends on the distance r from the star. The
quasi-one-dimensional domain started at r = 9000 × 105 cm and
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Fig. 4. Coupling test with enabled irradiation from t = 10−7 s to t =
103 s at three different distances d from the inner boundary of the do-
main. The reference solution (black lines) and the simulated results for
the energy density e = 102 erg cm−3 are plotted at distances d = 0 cm
(red dots), d = 3 × 104 cm (blue dots) and d = 3 × 105 cm (green dots).

ended at r = 9003 × 105 cm, and we used 300× 3 × 3 grid cells.
The domain size in θ and φ direction was chosen in a way such
that the grid cells were nearly quadratic. For the simulation we
used a constant radiation energy density of E = 10−2 erg cm−3,
a density of ρ = 10−5 g cm−3, a Rosseland opacity of κR =
10 cm2 g−1, and a Planck opacity of κP = κR, which corresponds
to σP = 10−4 cm−1. The opacity for the irradiation κ? was set
to κP. For the star, the temperature was set to T? = 6000 K
and the radius to R? = 8.1 × 108 cm. Additionally, we assumed
that there is no absorption in the region between the surface
of the star and the inner boundary of the computation domain.
Figure 4 shows the gas energy density plotted against time with
an initial gas energy of e = 102 erg cm−3 at three different po-
sitions d = 0 cm, d = 3 × 104 cm, and d = 3 × 105 cm where
d is measured relative to the inner boundary of the quasi-one-
dimensional domain. In Fig. 5 the radial dependency of the gas
energy density is plotted for the same simulation at five different
times. As expected, the results show that the gas energy density
at a time later than t = 102 s becomes constant and depends on
the distance from the star. The simulated and reference solution
agree excellently.

4.4. Steady-state test

The original version of this test was published in Flaig (2011).
We considered a one-dimensional stationary setup with a given
density stratification. In steady-state, the time derivatives in
Eqs. (13) vanish and the system is reduced to the following equa-
tion for the radiation energy density:

0 = ∇ ·

(
cλ
κRρ
∇E

)
. (37)

A further reduction is obtained when we rewrite this equation
in one dimension along the z-axis in Cartesian coordinates. The
equation is then much simpler and can be written as

d
dz

(
cλ
κRρ

d
dz

E
)

= 0. (38)
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Fig. 5. Radial dependency of the gas energy density for the coupling test
with enabled irradiation. The gas energy density is plotted at different
times, t = 1.12 × 10−4 s (red dots), t = 1.62 × 10−2 s (blue dots), t =
1.43 s (green dots), t = 1.72 × 101 s (yellow dots), and t = 9.18 ×
102 s (magenta dots). The dots represent the numerical solution and the
solid black lines the reference solution. Position d is again measured
relatively to the inner boundary of the quasi one-dimensional domain.

In general, the expression cλ
κRρ

is not known analytically for real-
istic opacities. To circumvent this problem, we defined the effec-
tive optical depth τeff =

∫
dτeff =

∫ za

zb
κeffρ dz, where za and zb

are the lower and upper boundaries of the quasi-one-dimensional
domain, respectively, and κeff is the effective opacity given by
κeff = 1

3
κR
λ

. By using dτeff = κeffρ dz, Eq. (38) can be rewritten as

d
dz

d
dτeff

E = 0. (39)

The solution of this equation is then given by

E = (E(τeff = 1) − E(τeff = 0)) τeff + E(τeff = 0), (40)

where E(τeff = 0) and E(τeff = 1) are the radiation energy den-
sity at the position where the effective optical depth has the val-
ues zero or one, respectively. Thus, in the static case the radiation
energy has a linear dependence on the optical depth τeff for all
opacity laws.

4.4.1. Initial setup

The domain was chosen to have an arbitrary length of 300 cm,
and a width and height of 3 cm and 300 × 3 × 3 grid cells were
used. This test was performed without solving the hydrodynam-
ical equations, but instead we solved Eqs. (13) for a fixed den-
sity and opacity law and evolved the solution, until a stationary
state had been reached. For the radiation boundary conditions,
we used boundary conditions with fixed values of E at the lower
and upper boundary of the domain. At the lower boundary we
chose E = aRT 4 with a temperature of T = 2000 K.

Because the stratification is optically thin at the upper bound-
ary, we want to allow the radiation to escape freely from the do-
main. For this reason we simply set the temperature to a very
low value at the upper boundary, here T = 10 K.

All other boundary conditions were set to periodic. The den-
sity stratification is given by

ρ(z) = ρ0e
1
2

(
z− za

0.46·(zb − za)

)2

. (41)
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Fig. 6. Comparison between the numerical (red dots) and the analytical
(black line) solutions of the steady-state test after t = 1200 s. In addi-
tion, the absolute value of the relative error (blue dashed line) is plotted
relatively to the axis on the right side. This axis is logarithmic.

The initial temperature profile can be chosen randomly in prin-
ciple, but to speed up the computation, we used a linear tem-
perature profile starting at za with T = 2000 K and ending at zb
with T = 10 K. From this temperature profile we assigned pres-
sure values using Eq. (5). The radiation energy density E inside
the domain was also set using the gas temperature profile and
E = aRT 4. The ratio of specific heats and the mean molecular
weight were set to γ = 1.43 and µ = 0.6, respectively. As flux-
limiter we chose Eq. (11), for the Rosseland mean opacity κR we
used data from Lin & Papaloizou (1985), and the Planck mean
opacity was set to κP = κR. The initial time step was ∆t = 0.3 s
and increased slightly with time to speed up the computation and
keep the number of iterations performed by the matrix solver
nearly constant. This simulation was preformed with a relative
tolerance of εr = 10−6 for the matrix solver.

4.4.2. Results

Steady-state was reached approximately after t = 1200 s. In
Fig. 6, we plot the radiation energy density against the effec-
tive optical depth τeff from our numerical solution (red dots) to-
gether with the analytical solution from Eq. (40). The parameters
E(τeff = 1)− E(τeff = 0) and E(τeff = 0) were obtained by fitting
Eq. (40) to the numerical solution. We note here that E(τeff = 0)
was determined by interpolation between ghost cells and active
cells near the upper boundary zb. Hence, the radiation tempera-
ture in the active region can be much higher than 10 K; the value
was specifically chosen to be very low. We also plot the absolute
value of the relative error |(En − Ea)/Ea|. The results from the
simulation agree very well with the analytical prediction. As we
can see from Fig. 6, the strongest deviation from the analytical
solution is at low values of τeff with an relative error of about
one percent. As the linear diffusion and the coupling test, this
test was performed in all three coordinate systems and in differ-
ent orientations, with the same results.

4.5. Radiation shock

In this section we extend the previous tests and solve now
the full equations of hydrodynamics and radiation transport
simultaneously, testing the complete new module within the
PLUTO-environment.

Table 1. Comparison of the results from the radiation shock test with
analytical estimates and the results from Commerçon et al. (2011) for
the pre-shock T− and post-shock T2 gas temperatures as well as the
spike temperature T+.

Analytical
estimate

Numerical
solution

Commerçon
et al.

T2 ≈
2(γ−1)u2

RG(γ+1)2 ∼865 K 816.6 K 825 K

T− ≈
γ−1
ρuRG

2σSBT 4
2√

3
∼315 K 331.9 K 275 K

T+ ≈ T2 +
3−γ
γ+1 T− ∼1075 K 1147.1 K 1038 K

4.5.1. Initial setup

Following the set-up from Ensman (1994), a shock was gener-
ated in a quasi-one-dimensional domain. This test case is more
complex than the others, and it is not possible to derive an an-
alytical solution. Instead we compare our results with the simu-
lations of Commerçon et al. (2011). The computational domain
was chosen to have a length of 7 × 1010 cm and a width and
height of 3.418 × 107 cm with 2048 × 4 × 4 grid cells. The ini-
tial density and temperature were set to ρ = 7.78 × 10−10 g cm−3

and T = 10 K. The initial radiation energy density was set by
the equation E = aRT 4. For the flux-limiter we employed the
Minerbo-formulation according to Eq. (11), and for the opacity
we used κR × ρ = κP × ρ = 3.1 × 10−10 cm−1. Furthermore, the
ratio of specific heats was set to γ = 7/5 and the mean molecu-
lar weight to µ = 1, in analogy to Commerçon et al. (2011). The
time step was computed through the CFL condition of PLUTO,
for which we used a value of 0.4. As solver we used a medium-
accurate, but robust solver named tvdlf, which uses a simple
Lax-Friedrichs scheme. To generate the radiative shock, the fol-
lowing boundary conditions were used: in the direction of the
shock propagation, we employed a reflective boundary condition
at the lower boundary and a zero-gradient at the upper boundary
of the domain. The remaining boundaries were set to periodic.
For the relative tolerance used by the matrix solver we chose a
value of εr = 10−5. The shock was generated by applying an ini-
tial velocity v to the gas. The velocity was directed toward the
reflecting boundary condition, which acts as a wall. The shock
then propagated from the wall back into the domain. Depending
on the velocity, the shock was sub- or supercritical, that is, the
temperature behind the shock front was higher than or equal to
the temperature upstream (in front of the shock front), respec-
tively. In this test we simulated both cases: the subcritical shock
with a velocity of v = 6× 105 cm s−1, and the supercritical shock
with v = 20 × 105 cm s−1.

4.5.2. Results

For a better comparison with the results of simulations, where
the material is at rest and a moving piston causes the shock,
we introduced the quantity s. This quantity is given by the re-
lation s = z − v × t, where z is the position along the quasi-
one-dimensional domain. Note that this quantity is called z in
Commerçon et al. (2011). Figure 7 shows the radiation tem-
perature (blue line) and the gas temperature (red line) against
the previously defined quantity s for both the subcritical (at
t = 3.8 × 104 s) and supercritical case (at t = 7.5 × 103 s). In
the supercritical case the pre- and post-shock gas temperature
are equal, as expected. In the subcritical case these tempera-
tures can be estimated analytically (Ensman 1994; Mihalas &
Mihalas 1984; Commerçon et al. 2011). In Table 1, the analyti-
cal estimates and the numerical values from our simulations and
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Fig. 7. Sub- and supercritical shock tests. In both cases we plot the radi-
ation temperature (blue line) and the gas temperature (red line) against
s = z − v × t, where z is the position along the quasi-one-dimensional
domain and v is the piston velocity. The subcritical shock a) is shown at
time t = 3.8 × 104 s and the supercritical shock b) at t = 7.5 × 103 s.

the results from Commerçon et al. (2011) are shown together.
Here T2 is the post-shock temperature, T− the pre-shock temper-
ature and T+ the spike temperature. In the equations, RG = kB

µmH

is the perfect gas constant, σSB = caR
4 the Stefan-Boltzmann con-

stant, and u is the velocity of the shock relative to the upstream
material (or vice versa) in our case u = 7.19 × 105 cm s−1.

The results agree in general with the analytical estimates and
the results from Commerçon et al. (2011). The analytical esti-
mate for the post-shock temperature is higher than the numeri-
cal results with both codes. We note here that the analytical esti-
mate depends on u and therefore differs from the values given in
Commerçon et al. (2011). The pre-shock and spike temperatures
agree reasonably well with the analytical estimates in our sim-
ulations but are higher than the results from Commerçon et al.
(2011). The differences of our numerical solution to the analyti-
cal estimates may arise because we ignored the advective terms
in the radiation energy density in Eq. (4), which may play a role
in this dynamic situation. Additionally, it is noteworthy that the
position of the shock front is very well reproduced. This test was
performed in Cartesian coordinates.

4.6. Accretion disk

The goal of this last test is to compare the results of different
codes on a more complex two-dimensional physical problem
that involves the onset of convective motions. For this purpose
we modeled a section of an internally heated, viscous accretion
disk in spherical coordinates (r, θ, φ), where r is the distance to
the center of the coordinate system, θ the polar angle measured
from the z-axis in cylindrical coordinates, and φ the azimuth an-
gle. The setup follows the standard disk model as used in Kley
et al. (2009). The tests proceeded in two steps. In a first setup we
reduced the complexity of the problem and considered a static
problem, that is, without solving the equations of hydrodynam-
ics. This will demonstrate that the equilibrium between viscous
heating and radiative cooling is treated correctly in our imple-
mentation. In the second setup we considered the full hydrody-
namic problem and studied the onset of convection in disks.

4.6.1. Initial setup

For both the static and the dynamical case we used the same ini-
tial setup. The radial extent ranged from rmin = 0.4 to rmax = 2.5,
where all lengths are given in units of the semi-major axis of
Jupiter ajup = 5.2 AU. In the vertical direction the domain ex-
tended from θmin = 83◦ to θmax = 90◦ and in φ direction from
φmin = 0◦ to φmax = 360◦. In the three coordinate directions
(r, θ, φ) we used 256 × 32 × 4 grid cells. The disk aspect ratio h
was set to h = H

s = 0.05 , where s = r sin θ describes the (radial)
distance from the z-axis in cylindrical coordinates, and H is the
disk’s vertical scale height. The viscosity ν was set to a value of
ν = 1015 cm2 s−1, and the mean molecular weight to µ = 2.3 . For
the ratio of specific heats we used different values, as specified
below. The density stratification can be obtained from vertical
hydrostatic equilibrium, assuming a temperature that is constant
on cylinders, T = T (s). From this follows (Masset et al. 2006)

ρ(r, θ) = ρ0s−1.5 exp
(

sin θ − 1
h2

)
, (42)

where the quantity ρ0 was chosen such that the total mass of the
disk is Mdisk = 0.01M?, where M? is the mass of the central star
of the system, which is set to the mass of the sun, M? = M�.
The mass within the computational domain is then 1/2 Mdisk,
because we only computed the upper half of the disk. The radial
variation leads to a surface density profile of Σ ∝ r−1/2, which is
the equilibrium profile for constant viscosity, and vanishing mass
flux through the disk. The pressure p is set by the isothermal
relation p = ρc2

s , with the speed of sound cs = HΩK and the
Keplerian angular velocity

ΩK =

√
GM?

s3 ,

with the gravitational constant G. The temperature can be com-
puted through Eq. (5) and results in T =

µmH
kB

p
ρ
. The initial ve-

locities are set to zero except for the angular velocity vφ, which
is set to

vφ =

√(
1 − 2h2)GM?

s
·

For the Rosseland mean opacity κR we used data from Lin &
Papaloizou (1985), and the Planck mean opacity was set to
κP = κR. The displayed simulations were performed in the rotat-
ing frame in which the coordinate system rotates with the con-
stant angular velocity of ΩK at ajup, but for non rotating systems
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identical results are obtained. As before, the radiation energy
density was initialised to E = aRT 4.

For density, pressure, and radial velocity we applied reflec-
tive radial boundary conditions and set the angular velocity to the
Keplerian values. In the azimuthal direction periodic boundary
conditions were used for all variables. In the vertical direction
we applied an equatorial symmetry and reflective boundary con-
dition for θmin. The radiation boundary conditions were set to re-
flective for the r direction (both lower and upper), in θ-direction
we used a fixed value of E = aRT 4 with T = 5 K at θmin (which
denotes the disk surface), and a symmetric boundary condition
holds at the disk’s midplane θmax. For the φ-direction we used
periodic boundary conditions.

In both cases we used a relative tolerance of εr = 10−8 for
the matrix solver. In the simulation with hydrodynamics we used
the Riemann-solver hllc2.

4.6.2. Static case

In this test case only the radiative equations were solved without
the hydrodynamics. To account for the viscous heating in this
case, we added an additional dissipation contribution, D, to the
right-hand side of the internal energy equation in Eqs. (13). We
considered standard viscous heating, and included only the main
contribution from the approximately Keplerian shear flow. At the
individual grid points the dissipation is then given by

Di, j,k = r2
i ρi, j,kν

(
∂Ωi, j,k

∂ri

)2

, (43)

where ν is the constant viscosity and Ωi, j,k the angular velocity at
the individual grid points. In summary, we solved the same equa-
tions as in the case with irradiation, where we substituted S i, j,k
with Di, j,k.

In steady-state, the time derivatives in the Eqs. (13) vanish
and the system is reduced to the following equation for the radi-
ation energy density

∇ ·

(
cλ
κRρ
∇E

)
= D. (44)

In optically thick regions, E = aRT 4 and Eq. (44) determines the
temperature stratification within the disk.

The simulation starts at t = 0 orbits and is evolved until
t = 100 orbits are reached, where one orbit corresponds to the
Keplerian orbital period at the distance of ajup, which is given
here by 3.732 × 108 s. The initial and overall time step was cho-
sen as ∆t = 10−3 orbits = 3.732× 105 s. The results for the static
case are shown in Fig. 8 for a value of γ = 7/5 for the adiabatic
index. The plots show the radial temperature profile of the accre-
tion disk in the mid-plane for the simulations after 10 orbits (top
panel) and after 100 orbits (bottom panel). We display the results
of two different simulations, one performed with the PLUTO code
(red dots) using the described methods, and the second (black
lines) run with the RH2D code (Kley 1989). The results from
both codes are nearly identical. Even after 100 orbits the abso-
lute value of the relative error is always lower than 2%. The test
shows that the time scale of the radiative evolution, and the equi-
librium state are captured correctly. We note that the RH2D code
uses the one-temperature approach of radiation transport in this
case.
2 Harten, Lax, and Van Leer approximated Riemann solver with the
contact discontinuity.
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Fig. 8. Radial mid-plane temperature profile in the simulations with
PLUTO (red dots) and with RH2D (black line) after a) t = 10 orbits and
b) t = 100 orbits, together with the absolute value of the relative error
(blue dashed line) that belongs to the log axis on the right.

4.6.3. Dynamical case

The final equilibrium of the described static case does not de-
pend on the magnitude of γ, because the viscous heating is
independent of it, see Eq. (44). The situation is different, how-
ever, for the dynamical cases, where the hydrodynamical evo-
lution of the flow is taken into account. Since the timescale of
the radiative transport depends on γ (through Eq. 6), one might
expect the possibility of convective instability, see for exam-
ple the recent work by Bitsch et al. (2013a). This is indeed the
case for low enough values of γ. To demonstrate the correct-
ness of our implementation also for the full dynamical problem,
we modeled two disks, one with γ = 5/3, which clearly shows
no convection, and the other with γ = 1.1, which shows strong
convection. The initial setup was identical to that described be-
fore, but now we solved the equations of viscous hydrodynamics
with radiation transport, but without irradiation and explicit dis-
sipation. For viscous flows the energy generation due to viscous
dissipation is automatically included in the total energy equa-
tion. The Eqs. (1) to (3) were solved with PLUTO, and the sys-
tem of Eqs. (13) where solved as described in Sect. 3. Since this
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Fig. 9. Radial mid-plane temperature profile in the simulation with
PLUTO (red line), RH2D (black line) and NIRVANA (blue line) in the
quasi-equilibrium state after 100 orbits a) for γ = 5/3 without con-
vection and b) in the strongly convective case with γ = 1.1 . We added
the results of a simulation performed with PLUTO where we used a log-
arithmic grid in r-direction (green line).

setup is very dynamical and requires a more complex interplay
of hydrodynamics and radiative transport, we used a third code,
NIRVANA, for comparison. The NIRVANA code has been used in
Kley et al. (2009) and Bitsch et al. (2013a) on very similar se-
tups. The results of the two cases are shown in Fig. 9. In the top
panel (a) we display the result for γ = 5/3, which is not con-
vective. Here, the agreement between the codes is excellent with
the maximum deviation in the percentage range. In the lower
panel (b) we display the results for γ = 1.1. Here the radiative
transport timescale is prolonged, which leads to a strongly con-
vective situation, as can be seen in the raggedness of the curves.
In this simulation we doubled the spatial resolution compared
with γ = 5/3, such that the convection cells are reasonably well
resolved, see Fig. 10. The agreement between the three different
codes is very good, despite the very different solution methods
for the hydrodynamics equations: PLUTO uses the total energy
equation with a Riemann solver, while RH2D and NIRVANA use a

second-order upwind scheme and the thermal energy equation.
Additionally, the latter two codes use the full dissipation func-
tion and the one-temperature approach.

4.6.4. Parallel scaling

To test the parallel scaling of our new implementation, we used
the same setup as in Sect. 4.6.3 and increased the number of grid
cells to 1024 × 64 × 256. The computations were only run un-
til t = 5 orbits, and we used the solver PETSc. In this way, we
were able to run the test on 64 to up to 1024 processor cores
within a reasonable time. The simulations were run on clus-
ters of the bwGRiD, which are equipped with Intel Xeon E5440
cpus and have a low-latency InfiniBand network. In Fig. 11 we
show the results of the simulations performed with full hydro-
dynamics and radiation transport. The run-time increases nearly
by a factor of two when doubling the number of cores. With
this setup, solving the hydrodynamics equations needs between
40% and 50% of the computation time and the radiation trans-
port the remaining 60% to 50%, but these numbers are strongly
problem-dependent. Therefore, even for up to 1024 cores, we
see good agreement with ideal scaling. According to Amdahl’s
law, the full code, including the original part of PLUTO and our
implementation of the radiation transport, is well parallelized.

5. Summary and conclusions

We described the implementation of a new radiation module to
the PLUTO code. The module solves for the flux-limited diffu-
sion approximation in the two-temperature approach. For dis-
cretization the finite-volume method was used, and the resulting
difference equations couple the updates of the temperature and
radiation energy density. Because of potentially severe time-step
limitations, the set of equations is solved implicitly. To treat the
non linearity of the temperature in the matter-radiation coupling
term, we used the method of Commerçon et al. (2011).

The accuracy of the implementation was verified using dif-
ferent physical and numerical setups. The first set of tests delt
with purely radiative problems that included the purely diffu-
sive evolution toward an equilibrium, and special setups for test-
ing the coupling terms between radiative and thermal energy. A
newly developed setup checked the correct inclusion of the irra-
diation from a central source in a spherical coordinate system.

In the second test suite we studied the full simultaneous evo-
lution of hydrodynamics and radiation. First, sub- and supercrit-
ical radiative shock simulations were performed, whose resulte
agreed very well with previously published results of identical
setups. Finally, we studied the onset of convection in internally
heated viscous disks and found very good agreement between
three different independent hydrodynamical codes. This last test
also allowed us to test the correct implementation in a spherical
coordinate system and a non-equidistant logarithmic grid. Our
numerical performance tests indicate excellent parallel scaling
for up to at least 1024 processors.

The current version of the radiation module includes rou-
tines for the Rosseland mean opacity from Lin & Papaloizou
(1985) and Bell & Lin (1994). Additionally, it is possible to use
the Rosseland and Planck mean opacities from Semenov et al.
(2003).

The described radiation module can be easily used within the
PLUTO-environment. It can be found on the webpage3 as a patch
for version 4.0 of PLUTO.
3 http://www.tat.physik.uni-tuebingen.de/~pluto/
pluto_radiation/
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Fig. 10. Vertical slice of the disk temperature at t = 100 orbits in the dynamical case with γ = 1.1 showing convection cells. Also plotted in the
inset is the enlarged region from r = 0.4 ajup to 0.6 ajup with the velocity field in the r − θ plane (black arrows).
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Fig. 11. Parallel scaling benchmark results for the static-accretion disk
test case. We plot here the number of processor cores against t64

tN
, where

tN is the runtime used on N processors for t64. The run times with full
hydrodynamics and radiation transport for 64, 128, 256, 512, and 1024
cpu cores (red crosses) are shown together with the ideal case (black
dashed line).
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