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KRIT1 loss-of-function causes a ROS-dependent up-regulation of c-Jun 
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Highlights 

•KRIT1 loss-of-function leads to the up-regulation of c-Jun. 

•c-Jun up-regulation occurs in human Cerebral Cavernous Malformation (CCM) lesions. 

•KRIT1 loss-dependent c-Jun up-regulation can be reversed by ROS scavenging. 

•KRIT1 over-expression prevents forced up-regulation of c-Jun induced by oxidative stimuli. 

•A novel mechanism for CCM pathogenesis is suggested. 
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SUMMARY 

Loss-of-function mutations of the KRIT1 gene (CCM1) have been associated with the pathogenesis 

of Cerebral Cavernous Malformations (CCM), a major cerebrovascular disease. 

However, KRIT1 functions and CCM pathogenetic mechanisms remain incompletely understood. 

Indeed, recent experiments in animal models have clearly demonstrated that the homozygous loss 

of KRIT1 is not sufficient to induce CCM lesions, suggesting that additional factors are necessary 

to cause CCM disease. 

Previously, we found that KRIT1 is involved in the maintenance of the intracellular reactive oxygen 

species (ROS) homeostasis to prevent ROS-induced cellular dysfunctions, including a reduced 

ability to maintain a quiescent state. 

Here, we show that KRIT1 loss-of-function leads to enhanced expression and phosphorylation of 

the redox-sensitive transcription factor c-Jun, as well as induction of its downstream target COX-2, 

both in cellular models and human CCM tissues. Furthermore, we demonstrate that c-Jun up-

regulation can be reversed by either KRIT1 re-expression or ROS scavenging, whereas KRIT1 

over-expression prevents forced up-regulation of c-Jun induced by oxidative stimuli. Taken 

together with the reported role of c-Jun in vascular dysfunctions triggered by oxidative stress, our 

findings shed new light into the molecular mechanisms underlying KRIT1 function and CCM 

pathogenesis. 



INTRODUCTION 

 

Cerebral Cavernous Malformation (CCM) is a major cerebrovascular disease with a prevalence of 

0.3%-0.5% in the general population. It is characterized by closely clustered, abnormally dilated 

and leaky capillary channels (caverns) surrounded by a thick, segmental layered basal membrane, 

and may cause serious clinical symptoms, including recurrent headaches, neurological deficits, 

seizures, stroke, and fatal intracerebral haemorrhage [1]. However, only approximately 30% of 

people with CCM lesions will eventually develop clinical symptoms, which usually occurs between 

the 2nd and 5th decades of life. 

Although advances have been made toward understanding the natural history and molecular basis of 

CCM disease, a complete understanding of the pathogenic mechanisms is still a research challenge 

for defining pharmacological therapies and prognostic factors [1-4]. Indeed, to date there are not 

direct therapeutic approaches for the CCM disease, besides the surgical removal of accessible 

lesions in patients with recurrent haemorrhage or intractable seizures. In particular, novel 

pharmacological strategies are required for preventing the de novo formation of CCM lesions in 

susceptible individuals and the progression of the disease. 

CCM is a disease of proven genetic origin (OMIM 116860) that may arise sporadically or be 

inherited as an autosomal dominant condition with incomplete penetrance and variable expressivity. 

Sporadic cases usually present with a single lesion on cerebral MRI, whereas the familial form 

(fCCM) is characterized by the presence of multiple and evolutive lesions. 

Genetic studies have so far identified three genes whose mutation causes CCM: KRIT1 (CCM1), 

MGC4607 (CCM2) and PDCD10 (CCM3) [5]. Comprehensive studies in cellular and animal 

models have revealed a major role for these genes in blood vessel formation and quiescence 

maintenance, showing a causal link between their loss-of-function mutations and the 

hyperactivation of the RhoA GTPase, which destabilizes endothelial barrier function leading to 

increased vascular permeability [6-8], and suggesting a potential therapy for CCM based on RhoA 

signalling inhibitors, including statins and fasudil [6, 9, 10]. However, whereas the mechanisms 

underlying Rho activation in CCM lesions have yet to be clearly defined, the mechanisms of CCM 

pathogenesis remain incompletely understood and still fundamental challenges for basic and 

translational research [2, 3]. In fact, recent experiments in conditional knockout mouse models have 

clearly demonstrated that the homozygous loss of CCM genes is not sufficient to induce CCM 

lesions, suggesting that additional factors, possibly specific for the neurovascular 

microenvironment, are necessary to cause CCM disease [11]. Deeper insights into the mechanisms 



by which CCM proteins affect vascular functions are therefore urgently needed to ultimately 

provide better treatment options [3]. 

Previously, we found that KRIT1 is involved in the maintenance of the intracellular reactive oxygen 

species (ROS) homeostasis to prevent ROS-mediated cellular dysfunctions via an antioxidant 

pathway involving SOD2, the major cellular antioxidant enzyme, and the transcriptional factor 

FoxO1, a master regulator of cell responses to oxidative stress and a modulator of SOD2 levels. 

Moreover, we demonstrated that the role of KRIT1 in preventing the accumulation of intracellular 

ROS facilitates the down-regulation of Cyclin D1 expression required for cell transition from 

proliferative growth to quiescence [12]. 

To test whether the inverse relationship between KRIT1 and ROS levels could affect sensitive 

intracellular targets involved in the control of important biological functions, including vascular 

permeability and angiogenesis, we analyzed gene regulatory proteins known to be target of 

oxidative stimuli as well as involved in the modulation of endothelial barrier function, including c-

Jun, a major redox-sensitive component of the transcription factor Activator Protein 1 (AP-1) that 

mediates endothelial cell gene responses to oxidants [13, 14]. Indeed, whereas there is clear 

evidence that ROS can act as intracellular second messengers that trigger c-Jun expression and 

activity [13, 15-19], it is known that enhanced ROS levels and c-Jun activation have a critical role 

in the induction of endothelial dysfunction and vascular permeability [17, 20-26]. 

The experimental outcomes showed that KRIT1 loss-of-function is associated with the up-

regulation of c-Jun both in cellular models and human CCM tissue samples. Conversely, either 

KRIT1 re-expression or ROS scavenging reversed the up-regulation of c-Jun induced by KRIT1 

loss. Furthermore, c-Jun up-regulation was correlated with the induction of COX-2, a c-Jun 

downstream target involved in oxidative stress, inflammatory and angiogenic responses [27-29], 

whereas KRIT1 over-expression prevented forced up-regulation of c-Jun induced by exogenous 

oxidative stimuli. 

Taken together, these results demonstrate that KRIT1 controls c-Jun expression through a 

mechanism involving the modulation of ROS homeostasis, suggesting that KRIT1 function may 

exert a protective role in CCM pathogenesis by preventing c-Jun-dependent induction of endothelial 

dysfunction and vascular permeability triggered by oxidative insults. 



MATERIAL AND METHODS 

 

Cell culture, transfection and gene silencing 

KRIT1
-/-

 and KRIT1
+/+

 Mouse Embryonic Fibroblast (MEF) cell lines were established from 

KRIT1
-/-

 and KRIT1
+/+

 E8.5 mouse embryos, respectively, whereas KRIT1 9/6 MEF were obtained 

by infecting KRIT1
-/-

 cells with a lentiviral vector encoding KRIT1 [12]. MEF and HeLa cells were 

cultured at 37°C and 5% CO2 in DMEM supplemented with 10% FCS, 2 mM glutamine and 100 

U/ml penicillin/streptomycin. Human Umbilical Vein Endothelial cells (HUVEC) were cultivated 

in M199 supplemented with 10% FCS, heparin and bovine brain extract (BBE) and maintained at 

37°C and 5% CO2. 

HeLa cells were transiently transfected with pEGFP-KRIT1A construct or pEGFP empty vector as 

control with FuGENE 6 Transfection Reagent (Roche) according to the manufacturer's instructions. 

At 48 h after transfection, cells were used for Western blotting analysis [30].  

The expression of KRIT1 in HeLa cells was silenced by the RNA interference (RNAi) technology 

using two distinct short interfering double stranded RNA oligomers (siRNAs), Silencer® Validated 

#15655 (siK655) and #15469 (siK469) siRNAs (Ambion), corresponding to exon 12 and exon 9 

sequences (GenBank accession n° NM_194455), respectively. The BLOCK-iT
™

 Alexa Fluor
®
 Red 

Fluorescent Oligo (Invitrogen) was used for determination of efficiency of siRNA transfection as 

well as RNAi negative control along with the Silencer® Negative Control #1 siRNA (Ambion). 

Cells were reverse transfected with 30 nM KRIT1-specific or Negative Control siRNAs using the 

Amaxa
®
 HUVEC Nucleofector

®
 Kit and electroporation device (Lonza) according to the optimized 

manufacturer’s reverse transfection protocol. Briefly, cells were harvested by trypsinization and cell 

density was determined using the Countess
™

 automated cell counter (Invitrogen). 5x10
5
 cells per 

sample were pelleted, resuspended in 100 µl of supplemented HUVEC Nucleofector
®
 solution, 

combined with the appropriate dilution of siRNAs, electroporated using the U-001 Nucleofector
®

 

program, and seeded in 6-well plates containing complete culture medium. 48-72 hours post-

transfection, cells were lysed and analyzed by real-time quantitative PCR (RT-qPCR) and Western 

blotting. 

 

Real-Time quantitative PCR 

DNA-free RNA was obtained by purification from cell monolayers using the PureLink RNA Mini 

Kit and DNase I treatment (Invitrogen), and used for cDNA synthesis with the High-Capacity 

cDNA Reverse Transcription Kit (Invitrogen) according to the manufacturer’s instructions. To 

quantify transcript expression levels, an optimal TaqMan
®

 real-time PCR assay was designed for 



each target transcript using the ProbeFinder software (version 2.45) of the Universal Probe Library 

from Roche. TaqMan
®
 gene expression assays were performed in triplicate on MicroAmp

®
 96-well 

optical plates using a 7300 Real Time PCR System (Applied Biosystems). Reactions were carried 

out in 25 μl, containing 8 μl diluted (1:10) cDNA, 12.5 μl 2× qPCR Master Mix (Invitrogen), 0.2 μl 

each primer (20 μM) (Sigma), 0.2 μl Probe (10 μM) (Roche), and 3.9 μl H2O, using the following 

parameters: 50°C for 2 min, 95°C for 2 min, and 45 cycles of 90°C for 15 sec and 60°C for 30 sec. 

The amounts of the target gene expressed in a sample were normalized to the amounts of internal 

normalization controls, including the endogenous 'house-keeping' 18S rRNA and GAPDH 

(glyceraldehyde 3-phosphate dehydrogenase) transcripts. All TaqMan PCR data were collected 

using the Sequence Detector Software (SDS v1.3.1, Applied Biosystems). 

 

Western blotting analysis 

Cells grown in complete culture medium were either mock-treated or treated with either hydrogen 

peroxide (H2O2) (0.1 mM) or the ROS scavenger N-acetylcysteine (NAC) (20 mM) in complete 

medium at 37°C for different time periods. Cells were then lysed and total cell lysates were 

analyzed by Western blotting as previously described [31]. Briefly, cell lysates containing equal 

amounts of total proteins (~50µg) were separated by either 10% or 12% SDS-PAGE and 

electroblotted onto Hybond-C transfer membrane (Amersham). The blots were blocked with 5% 

BSA in Tris-buffered saline (TBS) containing 0.1% Tween 20 for 1 hour at 42°C, incubated with 

appropriate dilutions of primary antibodies overnight at 4°C and subsequently with HRP-

conjugated secondary antibodies for 2 hours at room temperature (RT). Proteins were then 

visualized by an enhanced chemiluminescence (ECL) detection system (Millipore). 

The following antibodies were used: rabbit polyclonal antibodies (pAb) against KRIT1 (K2 pAb, 

Goitre et al., 2010), c-Jun (H-79:sc-1694, Santa Cruz Biotechnology), JNK (sc-571, Santa Cruz 

Biotechnology), GFP (G1544, Sigma); mouse monoclonal antibodies (mAb) against alpha tubulin 

(T5168, Sigma), phospho-c-Jun (KM-1:sc-822, Santa Cruz Biotechnology), phospho-JNK (sc-6254, 

Santa Cruz Biotechnology), COX-2 (610203, BD Transduction Laboratories™), Vinculin (Retta et 

al., 1996). Primary antibodies were detected using affinity purified HRP-conjugated secondary 

antibodies (Sigma). 

In order to compare the density of protein bands of interest and test for significant differences 

between samples in Western blotting experiments, blots were scanned and quantified using ImageJ 

(http://rsb.info.nih.gov/ij/index.html). Band optical density values (mean ± s.d.) were expressed as 

relative protein level units and plotted in representative histograms showed in figures. 

 



Fluorescence microscopy 

For immunofluorescence microscopy analyses, cells were fixed in 3,7% paraformaldehyde for 15 

min, permeabilized with 0.5% Triton X-100 in TBS for 1 min, incubated with 1% BSA in TBS for 

1 h, and stained with primary antibodies and Alexa Fluor® 488 (Invitrogen) secondary antibodies 

for 1 h each at RT. Cells were then counterstained with a blue fluorescent nuclear dye (DAPI) and 

mounted on microscope slides with ProLongH Gold antifade reagent (Molecular Probes, 

Invitrogen) before imaging. Confocal microscopy imaging was performed on a Leica TCS_SP5 

confocal microscope (Leica Microsystems). Instrument parameters for sequential image acquisition, 

including pinhole diameter, laser intensity, exposure time, PMT gain and offset, were set and held 

constant to minimize autofluorescence and for comparison between samples. 

 

Immunohistochemistry 

Histological samples of surgically resected CCM specimens fixed with Carnoy’s fluid 

(methanol:chloroform:acetic acid, 6:3:1) and embedded in paraffin were retrieved from files of the 

Surgical Pathology Unit of Turin's Pediatric Hospital (OIRM - Ospedale Infantile Regina 

Margherita). At the time of neurosurgery an informed consent was asked by neurosurgeons to 

patients (or parents or legal representatives if minors) for genetic analysis of the known CCM 

genes, including CCM1 (KRIT1), and for scientific use of residual materials according to 

Institutional Rules defined by OIRM Ethic Committee. 

Specifically, histological samples of two surgically resected CCM specimens from distinct KRIT1 

loss-of-function mutation carriers were available, including carriers of either a frameshift 

(c.1254delA, 419fs436X) or aberrant splicing (c.1255-4delGTA) mutation. 

Histological serial sections (4 µm thick) of paraffin-embedded CCM specimens were obtained and 

processed by a two-step immunohistochemical staining technique (DAKO EnVision™+ System, 

HRP). Briefly, histological sections were deparaffinized, rehydrated, and subjected to three cycles 

of 5 minutes at boiling temperature in Citrate Buffer (0.01 M pH 6.0) for antigen retrieval. 

Endogenous peroxidase activity was blocked by incubation with hydrogen peroxide (H2O2) 0.3% in 

methanol for 15 minutes, and non-specific binding was prevented by blocking with normal goat 

serum (ab7481, Abcam). Thereafter, the sections were incubated with either rabbit polyclonal or 

mouse monoclonal primary antibodies, including a pAb for c-Jun (H-79:sc-1694, Santa Cruz 

Biotechnology) and mAbs for phospho-c-Jun (KM-1:sc-822, Santa Cruz Biotechnology) and COX-

2 (610203, BD Transduction Laboratories), diluted 1:200 in PBS 0,01 M containing 0,1% BSA and 

0,01% sodium azide, or negative control reagent, followed by incubation with an HRP labelled 

polymer conjugated to secondary antibodies, using two sequential 30-minute incubations at room 



temperature (RT). Labelling was then visualized by a 5-10 minute incubation with 3,3’-

diaminobenzidine (DAB)+H2O2 substrate-chromogen, which results in a brown-coloured 

precipitate at the antigen site. The sections were subsequently counterstained with haematoxylin. 

 

Statistics 

Data are expressed as mean ± s.d.. Statistical analyses were performed by one-way analysis of 

variance (ANOVA) followed by Bonferroni correction. P < 0.05 was used as the threshold for 

statistically significant differences. The results showed in figures are representative of at least three 

independent experiments. 

 



RESULTS 

 

KRIT1 regulates c-Jun expression 

Previously we showed that KRIT1 loss is associated with an increase in intracellular ROS levels as 

well as with ROS-mediated cellular dysfunctions, including a reduced ability to maintain a 

quiescent state [12]. 

A growing body of evidence suggests that the cellular response to unbalanced ROS overproduction 

and detoxification is primarily regulated at the level of transcription. Indeed, posttranslational 

modification of redox-sensitive transcription factors may provide a mechanism by which cells sense 

these redox changes [18]. 

To further characterize the functional significance of KRIT1 involvement in the maintenance of the 

intracellular ROS homeostasis, we analyzed the effects of KRIT1 loss on the expression of c-Jun, a 

redox-sensitive transcription factor known to be involved in the modulation of endothelial barrier 

function and angiogenesis [13, 18, 21, 22, 25, 26]. 

As a first approach, we performed real-time quantitative PCR (RT-qPCR) and Western blotting 

analysis of c-Jun mRNA and protein expression levels in KRIT1
-/-

 (K
-/-

) and wild-type (K
+/+

) mouse 

embryonic fibroblasts (MEF), established from KRIT1
-/-

 and KRIT1
+/+

 E8.5 mouse embryos 

respectively, as well as in KRIT1
-/-

 MEFs re-expressing KRIT1 (K9/6) [12]. 

The outcomes of these experiments showed that c-Jun expression was significantly higher in 

KRIT1
-/-

 (K
-/-

) than in wild-type (K
+/+

) and KRIT1
-/-

 MEFs re-expressing KRIT1 (K9/6) both at 

mRNA (Fig. 1A) and protein (Fig. 1B) levels, suggesting that KRIT1 loss leads to c-Jun up-

regulation. 

To evaluate whether this effect was associated with c-Jun activating phosphorylation and efficient 

import into the nucleus, we examined phospho-c-Jun levels and subcellular localization. Western 

blotting analysis of whole cell extracts with a mAb specific for the active, phosphorylated form of 

c-Jun (at Ser-63 and Ser-73) (P-c-Jun) showed that phospho-c-Jun levels were always correlated 

with total c-Jun levels, being significantly higher in K
-/-

 than in K
+/+

 and K9/6 MEF cells (Fig. 1B, 

P-c-Jun, and 1C). Furthermore, fluorescence microscopy analysis of K
-/-

 and K9/6 MEF cells with 

the anti-phospho-c-Jun mAb confirmed that phospho-c-Jun levels were higher in K
-/-

 than in K9/6 

MEF cells (Fig. 1D, panels a,b), and showed a correct nuclear localization in cells lacking KRIT1 

(Fig. 1D, panels a,c,e). 

Remarkably, an inverse correlation between KRIT1 and c-Jun expression/phosphorylation levels 

was also observed (Fig. 1A-C), suggesting that KRIT1 plays a role in controlling c-Jun expression 

and activity. 



To further assess this evidence, we used other cell types, including epithelial and endothelial cells, 

and modulated the expression of KRIT1 by two additional and complementary approaches, such as 

knockdown and overexpression approaches. 

KRIT1 knockdown was performed in HeLa (Fig. 2A-E) and HUVEC (Fig. 2F) cells using two 

distinct KRIT1-specific siRNA (siK655 and siK469), which induced a significant decrease of 

KRIT1 expression at both mRNA (Fig. 2A) and protein (Fig. 2C-F) levels. Notably, as detected by 

real time RT-PCR (RT-qPCR) and Western blotting assays, the siRNA-mediated knockdown of 

KRIT1 resulted in a significant up-regulation of c-Jun mRNA (Fig. 2B) and protein (Fig. 2C-F) 

expression levels, supporting the evidence that KRIT1 down-regulation causes the up-regulation of 

c-Jun. Notably, the up-regulated levels of c-Jun were again correlated with corresponding enhanced 

levels of the active, phosphorylated form of c-Jun (Fig. 2D). 

Taken together, the KRIT1 knockout and knockdown approaches demonstrate that KRIT1 

loss/down-regulation is associated with a significant up-regulation of c-Jun/phospho-c-Jun levels. 

Conversely, the forced re-expression of KRIT1 in KRIT1
-/-

 MEF cells to levels higher than wild-

type cells (Fig. 1B, compare KRIT1 levels in K9/6 and K
+/+

 MEFs) caused a significant down-

regulation of c-Jun/phospho-c-Jun expression both at protein (Fig. 1B) and mRNA (Fig. 1A) levels, 

suggesting a dose-dependent inverse relationship between KRIT1 and c-Jun levels. 

To provide further support to the existence of this inverse relationship, we induced KRIT1 

overexpression in HeLa cells via transient transfection with a GFP-tagged KRIT1 construct [30]. 

Consistent with the outcomes of the alternative KRIT1 knockout and knockdown approaches 

described above, this third complementary approach showed that the forced up-regulation of KRIT1 

leads to a strong down-regulation of c-Jun protein levels (Fig. 3A,B), clearly demonstrating that 

KRIT1 is able to keep c-Jun expression under strict control. 

All together, these results suggest that KRIT1 plays a dose-dependent role in limiting c-Jun 

expression and activity. 

 

ROS scavenging reverses the up-regulation of c-Jun expression/phosphorylation caused by 

KRIT1 loss 

There is clear evidence that ROS trigger c-Jun activity by inducing both c-Jun expression and 

activating phosphorylation [13, 18]. 

To test whether the c-Jun up-regulation observed in KRIT1
-/-

 MEF cells was attributable to the 

previously reported KRIT1 loss-dependent enhanced steady-state levels of intracellular ROS [12], 

we analyzed both c-Jun expression and phosphorylation in KRIT1
-/-

 (K
-/-

), wild-type (K
+/+

) and 

KRIT1 overexpressing (K9/6) MEF cells after cell treatment with the antioxidant N-acetylcysteine 



(NAC), which was previously demonstrated to be effective in reducing the levels of ROS in K
-/-

 

cells closely near to the levels of K9/6 cells and rescuing KRIT1 loss-dependent ROS-mediated 

molecular and cellular dysfunctions, including the up-regulation of Cyclin D1 and the reduced cell 

ability to maintain a quiescent state [12]. The outcomes of these experiments showed that treatment 

of KRIT1
-/-

 cells with NAC led to a significant reduction of both c-Jun expression and 

phosphorylation as compared with relative levels in untreated cells (Fig. 4A-D), indicating that the 

enhanced c-Jun expression and phosphorylation associated with KRIT1 loss is a redox-sensitive 

phenomenon. Furthermore, the reduced levels of c-Jun expression and phosphorylation observed in 

KRIT1
-/-

 cells upon NAC treatment were close to levels observed in untreated wild-type cells (Fig. 

4A,B), suggesting that the enhanced c-Jun expression and phosphorylation associated with KRIT1 

loss may indeed be largely reversed by antioxidants. 

 

KRIT1 overexpression prevents forced up-regulation of c-Jun induced by oxidative stimuli 

There is strong evidence that oxidative stress due to either exogenous oxidants or the unbalanced 

overproduction and detoxification of intracellular ROS, including superoxide anion (O2
∙-
) and 

hydrogen peroxide (H2O2), leads to an increase in c-Jun expression and transcriptional activity [15, 

16, 18, 19, 32-35]. 

On the other hand, we showed previously that KRIT1 prevents oxidative stress-mediated cellular 

dysfunctions by limiting the accumulation of intracellular ROS in a dose-dependent manner [36]. 

In this light, we hypothesized that the expression of KRIT1 could prevent the increase of c-Jun 

expression levels triggered by exogenous oxidative stimuli. To test this hypothesis, c-Jun protein 

levels were assayed in KRIT1
-/-

 (K
-/-

), wild-type (K
+/+

) and KRIT1 overexpressing (K9/6) MEF 

cells either mock-treated or treated with H2O2. 

Consistent with the above reported finding that KRIT1 dose-dependently regulates c-Jun steady-

state levels, these resulted inversely proportional to KRIT1 expression levels in untreated MEFs 

(Fig. 5A, lanes 1,3,5, and 5B,C). However, while c-Jun was significantly up-regulated upon H2O2 

treatment in both K
-/-

 and K
+/+

 MEFs, confirming that oxidative stimuli induce c-Jun up-regulation 

[18], this did not occur in K9/6 MEFs (Fig. 5A, lanes 2,4,6, and 5B), indicating that KRIT1 

overexpression prevents forced up-regulation of c-Jun induced by oxidative stimuli, and further 

suggesting that KRIT1 plays a role in protecting cells against exogenous oxidative insults. 

Furthermore, whereas previous FACS analysis demonstrated that KRIT1 overexpression prevents 

ROS enhancement in response to cell treatment with either inorganic or organic oxidants, including 

H2O2 and tert-butyl hydroperoxide [12], Western blotting assays showed that phospho-c-Jun levels 

were again correlated with total c-Jun levels (Fig. 5A,B,D,E),. Intriguingly, a slight down-



regulation of KRIT1 protein levels was also observed upon H2O2 treatment in both wild-type (K
+/+

) 

and KRIT1 overexpressing (K9/6) MEF cells (Fig. 5A,C,D), which deserve future investigation. 

 

c-Jun expression/phosphorylation is enhanced in CCM lesions from KRIT1 loss-of-function 

mutation carriers 

CCM lesions are characterized by altered blood-brain barrier function and increased vessel 

permeability due to the weakening of endothelial cell-cell junctions [6-8]. Interestingly, there is 

clear evidence that c-Jun up-regulation is linked to the induction of endothelial dysfunction and 

vascular permeability [21, 22, 25, 26]. In this light, we hypothesized that the KRIT1 loss-of-

function-dependent up-regulation of c-Jun expression and phosphorylation observed in cellular 

models could also occur in vivo. To address this hypothesis, we performed immunohistochemical 

analysis of c-Jun expression and phosphorylation levels in surgically resected human CCM 

specimens from patients carrying a KRIT1 loss-of-function mutation. Notably, the results of these 

experiments showed a significant positive staining for both total c-Jun and phospho-c-Jun in 

endothelial cells lining the lumen of CCM lesions as compared with peri-lesion normal vessels, 

with up to 90% of positive cells in the most abnormally dilated vessels (Fig. 6), clearly 

demonstrating that the up-regulation of c-Jun caused by KRIT1 loss-of-function occurs also in vivo, 

and suggesting a potential relationship with CCM disease. 

 

KRIT1 loss-of-function induces a ROS-dependent activation of JNK 

There is evidence that the role of oxidants and oxidative stress in enhancing c-Jun expression and 

transcriptional activity is mediated, at least in part, by the c-Jun NH2-terminal kinase (JNK), a 

major upstream regulator of c-Jun. Indeed, oxidative stress induces phosphorylation and activation 

of JNK, facilitating its entry into the nucleus. Nuclear JNK phosphorylates c-Jun at serines 63 and 

73 regulatory sites within the N-terminal transactivation domain, enhancing its transcriptional 

activities [13, 18].  

To test whether c-Jun up-regulation induced by KRIT1 loss-of-function was correlated with the 

activation of JNK, we performed Western blotting analysis of cell extracts from KRIT1
-/-

 (K
-/-

) and 

KRIT1 overexpressing (K9/6) MEF cells using a monoclonal antibody specific for the active, 

phosphorylated form of JNK (at Thr 183 and Tyr 185) (P-JNK). The outcomes of these experiments 

showed that phospho-JNK levels were significantly higher in K
-/-

 than in K9/6 MEF cells (Fig. 7A, 

P-JNK), thus paralleling the enhanced P-c-Jun levels (Fig. 7A, P-c-Jun, and previous figures); in 

contrast, the levels of total JNK were not significantly varied (Fig. 7A, JNK). 



To test whether the activating phosphorylation of JNK observed in KRIT1
-/-

 MEF cells was ROS-

dependent, we then analyzed P-JNK levels upon cell treatment with the antioxidant NAC. Indeed, 

cell treatment with NAC was effective in reducing both JNK and c-Jun phosphorylation (Fig. 7B), 

indicating that KRIT1 loss-of-function induces a ROS-dependent activation of JNK, and suggesting 

that this activation plays an upstream regulatory role in mediating the ROS-dependent up-regulation 

of c-Jun. However, cell treatment with an inhibitor of JNK (SP600125) rescued only partially the 

ROS-dependent up-regulation of c-Jun induced by KRIT1 loss (data not shown), suggesting that 

additional regulatory factors acting upstream of c-Jun are likely involved. 

 

KRIT1 loss-of-function induces downstream targets of c-Jun 

Activation of c-Jun promotes induction of both proliferative and proinflammatory gene products. 

Notably, we previously found that KRIT1 loss-of-function leads to a ROS-mediated up-regulation 

of Cyclin D1 [12, 37], a major c-Jun target gene involved in cell cycle progression through the G1 

phase [12, 37], suggesting a plausible involvement of c-Jun in the reduced cell ability to maintain a 

quiescent state caused by KRIT1 loss. To further extend the potential functional significance of the 

inverse relationship between KRIT1 expression and c-Jun expression and its oxidative stress-

induced activation, we then tested c-Jun target genes known to be involved in proinflammatory 

responses, including cycloxygenase-2 (COX-2), a major oxidative stress biomarker and 

inflammatory mediator involved in angiogenesis and vascular dysfunction [27-29]. 

As detected by real time RT-PCR (RT-qPCR) and Western blotting assays, COX-2 expression was 

significantly higher in KRIT1
-/-

 (K
-/-

) than in wild-type (K
+/+

) and KRIT1
-/-

 MEFs re-expressing 

KRIT1 (K9/6) both at mRNA (Fig. 8A) and protein (Fig. 8B) levels, suggesting that KRIT1 loss 

leads to COX-2 up-regulation. Moreover, COX-2 protein levels were directly correlated with P-c-

Jun levels (Fig. 8B), suggesting a potential relationship. Furthermore, immunohistochemical 

analysis of COX-2 expression in surgically resected human CCM specimens from patients carrying 

a KRIT1 loss-of-function mutation showed a significant positive staining in endothelial cells lining 

the lumen of CCM lesions, with most cells showing a prevalent COX-2 perinuclear/nuclear 

localization (Fig. 8C), suggesting that the up-regulation of COX-2 caused by KRIT1 loss-of-

function may occur also in vivo, and pointing to a potential relationship with CCM disease. 

While further studies based on c-Jun dominant negative inhibition and RNAi-mediated knockdown 

are required to verify the putative direct relationship between the KRIT1 loss-dependent up-

regulation of c-Jun and its target genes, including but not limited to Cyclin D1 and COX2, the 

findings that KRIT1 plays a role in regulating distinct proteins involved in oxidative stress 



responses open novel avenues for future investigations aimed at better defining the molecular 

mechanisms of CCM pathogenesis. 



DISCUSSION 

 

KRIT1 loss-of-function mutations have been clearly associated with the pathogenesis of Cerebral 

Cavernous Malformations (CCM), a major cerebrovascular disease characterized by abnormally 

enlarged and leaky capillaries that predispose to seizures, focal neurological deficits, and fatal 

intracerebral haemorrhage. In particular, comprehensive analysis of the KRIT1 gene in CCM 

patients has suggested that KRIT1 functions need to be severely impaired for pathogenesis, whereas 

studies in cellular and animal models have demonstrated that KRIT1 deficiency leads to the major 

molecular and cellular hallmarks of CCM disease, including destabilization of endothelial cell-cell 

junctions, reduced cells’ ability to maintain a quiescent state, and increased vascular permeability 

and angiogenic potential [6, 12, 38-42]. However, recent experiments in animal models have shown 

that loss-of function of CCM genes, including KRIT1 (CCM1), is not sufficient to induce CCM 

lesions, suggesting that additional triggers occurring locally at neurovascular units, including 

microenvironmental stress factors and brain injuries, are necessary to promote the onset and 

progression of CCM disease [3, 11]. 

Among the microenvironmental stress events that might account for a sort of environmental second 

hit, triggering CCM lesion formation in sensitive vascular areas of CCM mutation carriers, there is 

oxidative stress. This may occur as a consequence of an endogenous imbalance between the 

production of reactive oxygen species (ROS) and the ability of cellular antioxidant mechanisms to 

readily prevent excessive ROS accumulation maintaining a physiological equilibrium, as well as by 

exogenous oxidative insults, including cell exposure to xenobiotics or ionizing radiations [36]. 

Furthermore, pro-oxidant factors may be released locally following inflammatory responses, 

impaired neurovascular coupling, and ischemia-reperfusion events [20]. Remarkably, there is now a 

wealth of evidence indicating that oxidative stress is indeed a major cause of vascular remodelling 

and neurovascular unit dysfunction associated with cerebrovascular diseases [20, 23, 43]. In 

particular, oxidative stress has been clearly implicated in all the major molecular and cellular 

dysfunctions related to CCM diseases, including destabilization of endothelial cell-cell junctions, 

reduced cells’ ability to maintain a quiescent state, and increased vascular permeability and 

angiogenic activity [24, 36, 44], suggesting that it might represent a significant additive factor 

involved in the initiation and progression of CCM disease. 

Consistently, we previously reported that KRIT1 is involved in the maintenance of intracellular 

ROS homeostasis to prevent ROS-mediated cell dysfunctions through an antioxidant pathway 

involving SOD2, the major cellular antioxidant enzyme, and the transcriptional factor FoxO1, a 

master regulator of cell responses to oxidative stress and a modulator of SOD2 levels, raising the 



hypothesis that CCM lesions may result from an impaired oxidative stress defence in microvascular 

districts of genetically predisposed subjects, and opening new therapeutic perspectives [12, 45]. 

These original results and hypothesis are now further supported and expanded by novel findings 

showing that KRIT1 loss-of-function causes the up-regulation of c-Jun both in cellular models and 

human CCM tissue samples, as well as that this up-regulation can be reversed by either KRIT1 re-

expression or ROS scavenging with antioxidant compounds, including N-acetylcysteine (NAC), 

suggesting that KRIT1 controls c-Jun expression through the regulation of intracellular ROS 

homeostasis. 

c-Jun, a prominent member of the AP-1 transcription family, has been implicated in the regulation 

of a wide range of biological processes including development, differentiation, transformation, and 

apoptosis [14]. It is now clear that c-Jun activity is closely associated with a steady elevation of its 

expression through an autocrine and feed-forward transcriptional mechanism, as well as with the 

phosphorylation of two serine residues, Ser-63 and Ser-73, located within the N-terminal 

transcription activation domain, whereas its effects on cellular responses depend strongly on the 

context of other regulatory influences that the cell is receiving [14]. Both c-Jun expression and 

phosphorylation are highly induced in response to environmental cues, including mitogenic stimuli 

and various stresses [14, 46]. 

According with our findings, there is clear evidence that c-Jun is highly up-regulated in response to 

either oxidants or oxidative stress, and associated with vascular dysfunctions, including vascular 

remodelling and inflammation, and enhanced vascular permeability [13, 15-19, 47]. Conversely, 

there is also evidence that increased cellular glutathione levels by NAC inhibit the expression and 

transcriptional activity of c-Jun triggered by numerous stimuli [18], including the binding of c-Jun 

to the AP-1 element within the VEGF promoter [48]. 

Notably, the finding that KRIT1 high expression levels prevent forced up-regulation of c-Jun 

induced by oxidative stimuli suggests that the dose-dependent inverse relationship between KRIT1 

and c-Jun levels may play an important role in protecting cells against exogenous oxidative insults. 

Accordingly, previously reported findings showed that KRIT1 overexpression prevents ROS 

enhancement in response to cell treatment with either inorganic or organic oxidants, including H2O2 

and tert-butyl hydroperoxide, conferring resistance to exogenous oxidative challenge-induced DNA 

damage and apoptotic response [12]. 

Moreover, our novel findings are reinforced by complementary results showing that KRIT1 loss-of-

function-dependent and redox-sensitive up-regulation of c-Jun correlates with the up-regulation of 

both upstream regulators and downstream targets of c-Jun. In particular, we show that the up-

regulation of c-Jun is accompanied by a redox-sensitive activating phosphorylation of JNK, a major 



c-Jun upstream regulator known to be activated by oxidants and oxidative stress [13, 18]. 

Accordingly and intriguingly, an enhanced phosphorylation of JNK has been previously observed in 

CCM2-depleted cells [6-8], suggesting that it might represent a general consequence of the 

deficiency of any CCM protein. 

Besides JNK, multiple signalling molecules have been proposed as potential upstream regulators for 

ROS induction of c-Jun expression and activity, including extracellular signal-regulated kinases 

(ERKs), p38 mitogen-activated protein kinases (p38MAPK), phospholipase A2 (PLA2), 

arachidonic acid, lipoxygenase (LOX), and protein kinase C (PKC), as well as tyrosine kinases and 

tyrosine and serine/threonine phosphatises [13, 15-19]. Accordingly, cell treatment with an inhibitor 

of JNK (SP600125) rescued only partially the ROS-dependent up-regulation of c-Jun induced by 

KRIT1 loss, suggesting that additional regulatory factors acting upstream of c-Jun are likely 

involved. Further studies based on pharmacologic inhibition and RNAi-mediated knockdown of 

distinct c-Jun upstream regulators are therefore required to gain further insights into the likely 

complex redox-sensitive molecular machinery that links KRIT1 to the ROS-mediated activation of 

c-Jun. 

On the other hand, previous results showed that KRIT1 loss-of-function leads to a ROS-mediated 

up-regulation of Cyclin D1 [12, 37], a major c-Jun target gene involved in cell cycle progression 

[12, 37], suggesting a potential involvement of c-Jun in the reduced cell ability to maintain a 

quiescent state caused by KRIT1 loss [12, 37]. In addition, here we report that the up-regulation of 

c-Jun is paralleled by the induction of COX-2, a major c-Jun target gene [49] as well as a major 

oxidative stress biomarker and inflammatory mediator involved in vascular dysfunction [27-29], 

raising the possibility that KRIT1 loss-of-function might be implicated in synergistic oxidative 

stress and inflammatory responses. Consistently, a close relationship between oxidative stress and 

local inflammation has been clearly established and shown to underlie vascular disease of diverse 

etiology [43, 50]. Furthermore, whereas a recent report shows that mice heterozygous for the 

deletion of the KRIT1 gene (KRIT1
+/-

) exhibit an enhanced sensitivity to inflammatory stimuli [38], 

there is evidence that inflammatory response occurs in CCM lesions [51, 52], supporting a potential 

role for inflammatory processes in the pathogenesis of CCM disease. On the other hand, whereas 

evidence in animal models suggests that neoangiogenic events are necessary to cause CCM disease 

[11], a key molecular link connecting oxidative stress and angiogenesis has been also established, 

with oxidative stress having potential primacy [53]. Indeed, reciprocity of inflammation, oxidative 

stress and neovascularization is emerging as an important mechanism underlying numerous 

biological processes [53], raising the possibility that these mechanisms play key sequential and 

synergistic roles in CCM pathogenesis. 



Consistently, an increased ROS production has been associated with endothelial dysfunction and 

onset of the CCM-related disease Hereditary Hemorrhagic Telangiectasia [54, 55]. 

In this light, the evidence that both the phosphorylated, active form of c-Jun and COX-2 are 

enhanced in endothelial cells lining CCM lesions from KRIT1 loss-of-function mutation carriers 

suggests that the up-regulation of these proteins may actively contribute to the pathogenesis of 

CCM disease by acting synergistically with local microenvironmental factors affecting endothelial 

function and vascular permeability, including locally released oxidative stress, inflammatory and 

angiogenic factors. 

Future focused research is required to address this possibility, as well as to assess whether COX-2 is 

activated as a consequence of the KRIT1 loss-of-function-dependent and ROS-mediated up-

regulation of c-Jun. Indeed, although it is clearly established that c-Jun activation is upstream of 

COX-2 expression, there is also evidence that COX-2 can be induced by other redox-sensitive 

transcription factors, including NF-kB, and may act both upstream and downstream of ROS 

signalling [27-29]. Nonetheless, our findings open a promising novel research avenue and provide a 

useful framework for paving the way toward a better understanding of the molecular events 

underlying the pathogenesis of CCM disease. 

Remarkably and consistent with our finding and hypothesis, c-Jun up-regulation has been linked 

with pathological angiogenesis and microvascular diseases in humans, whereas its inhibition has 

been shown to be effective as a rescue therapy for these diseases [21, 22, 25, 26, 34, 56]. In 

particular, it has been demonstrated that targeting of c-Jun inhibits microvascular endothelial cell 

proliferation, migration, invasion, tubule formation, and endothelial cell production of matrix 

metalloproteinase-2 (MMP-2) in vitro [25, 26], and suppresses VEGF-induced neovascularization, 

MMP-2 production, and vascular permeability and inflammation in vivo [21, 25, 26]. 

In this light, it is noteworthy that an up-regulation of c-Jun downstream targets involved in cell 

cycle progression and extracellular matrix remodelling, including cyclin D1 and MMP2 [25, 37], 

has been previously observed in cellular models of CCM [12] and human CCM lesions [57], 

respectively. On the other hand, our recently reported findings related to a role of TGF-β in CCM 

patients [58] might also be connected to and downstream of deregulation of oxidative stress and c-

Jun activity. Indeed, whereas there is clear evidence that ROS can stimulate the activation of the 

TGF-β pathway with important consequences on cellular functions [59, 60], it has been 

demonstrated that this ROS-mediated regulation is dependent on AP-1 transcriptional activity [60]. 

 

 

 



CONCLUSIONS 

Taken together with the above observations, our experimental results demonstrating that KRIT1 

controls c-Jun expression and phosphorylation through a mechanism involving the modulation of 

ROS homeostasis suggest an important role for ROS and the redox-sensitive transcription factor c-

Jun in CCM pathogenesis, and point to a model mechanism whereby the dose of KRIT1 may be 

relevant in preventing c-Jun-dependent induction of vascular dysfunctions triggered by oxidative 

stress (Fig. 9). 

Importantly, our findings provide also an alternative explanation to the suggested effectiveness of 

fasudil and statins as potential therapy for CCM disease [6, 9, 10]. Indeed, whereas it has been 

demonstrated that the Rho GTPase pathway can be directly activated by ROS [61], there is clear 

evidence that both fasudil and statins exert powerful intracellular antioxidant activities in 

endothelial cells, including the inhibition of superoxide production and the improvement of both 

ROS scavenging and NO bioavailability [62-64]. 

Future progress toward this novel perspective should pave the way for the development of novel, 

safe and effective therapeutic strategies for prevention and treatment of CCM disease. 
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FIGURE LEGENDS 

 

Figure 1. KRIT1 regulates c-Jun expression - KRIT1 knockout and re-expression approach. 

KRIT1
-/-

 (K
-/-

) and wild-type (K
+/+

) MEFs and KRIT1
-/-

 MEFs re-expressing KRIT1 (K9/6) were 

grown to confluence under standard conditions and analyzed by RT-qPCR (A), Western blotting 

(B,C), and immunofluorescence (D) as described in Materials and Methods. 

A) RT-qPCR analysis of c-Jun mRNA expression levels. The amount of each target mRNA 

expressed in a sample was analyzed in triplicate using appropriate TaqMan
®
 gene expression assays 

(Roche), and normalized to the amounts of internal normalization control transcripts (18S rRNA). 

Results are expressed as relative mRNA level units referred to the average value obtained for the 

KRIT1
-/-

 (K
-/-

) samples, and represent the mean (± s.d.) of n≥3 independent RT-qPCR experiments. 

***P≤0.001 versus KRIT1
-/-

 (K
-/-

) cells. Notice that c-Jun mRNA levels are significantly higher in 

K
-/-

 than in K
+/+

 and K9/6 MEFs. 

B) Representative Western blot analysis of the relative c-Jun, phospho-c-Jun, and KRIT1 

expression levels. Tubulin (-Tub) was used as loading control. Notice that both c-Jun and 

phospho-c-Jun levels are significantly higher in K
-/-

 than in K
+/+

 and K9/6 MEFs. An inverse 

correlation between c-Jun/phospho-c-Jun and KRIT1 protein levels is also evident. 

C) Histograms showing quantitative results of Western blot analysis of the relative c-Jun, phospho-

c-Jun, and KRIT1 expression levels. Optical density values are expressed as relative protein level 

units referred to the average value obtained for the KRIT1
-/-

 (K
-/-

) samples, and represent the mean 

(± s.d.) of n≥3 independent Western blot experiments. ***P≤0.001 versus KRIT1
-/-

 (K
-/-

) cells. 

Notice that differences in phospho-c-Jun levels are correlated with differences in total c-Jun levels. 

D) Confocal microscopy analysis of phospho-c-Jun levels and subcellular localization in K
-/-

 and 

K9/6 MEF cells. Phospho-c-Jun and nuclei were visualized with anti-phospho-c-Jun mAb coupled 

to Alexa Fluor® 488 secondary antibody and DAPI dye, respectively. Notice that phospho-c-Jun is 

correctly localized to the nucleus in cells lacking KRIT1 (K
-/-

) and shows enhanced levels as 

compared to KRIT1 re-expressing cells (K9/6). Scale bar represents 15 μm. 

 

Figure 2. KRIT1 regulates c-Jun expression - KRIT1 down-regulation (siRNA) approach. 

HeLa (A-E) and Human Umbilical Vein Endothelial (HUVEC) cells (F) were mock transfected or 

transfected with either a KRIT1-specific siRNA (siK655 or siK469) or a negative control siRNA 

(siNC). 48 hours post-transfection, cells were lysed and analyzed by RT-qPCR (A-B) and Western 

blotting (C,D,F) to assess c-Jun and KRIT1 mRNA and protein levels, respectively. 18S rRNA and 

Tubulin (-Tub) were used as endogenous controls for RT-qPCR normalization and Western blot 



loading, respectively. Notice that the siRNA-mediated knockdown of KRIT1 results in the up-

regulation of c-Jun and phospho-c-Jun expression levels. Histograms show quantitative results of 

RT-qPCR (A,B) and Western blot (E,F) analysis of the relative c-Jun and KRIT1 mRNA and 

protein expression levels, respectively. mRNA levels (A,B) and optical density values of Western 

blot bands (E,F) are expressed as relative level units referred to the average value obtained for the 

mock transfected cells, and represent the mean (± s.d.) of n=3 independent experiments. 

***P≤0.001 versus mock transfected cells. 

 

Figure 3. KRIT1 regulates c-Jun expression - KRIT1 overexpression approach. 

HeLa cells were mock transfected or transiently transfected with a GFP-tagged KRIT1A construct. 

48 hours post-transfection, cells were lysed and analyzed by Western blotting with anti-c-Jun (c-

Jun) and anti-GFP (GFP-KRIT1 and GFP) antibodies. Tubulin (-Tub) was used as loading control. 

Notice that KRIT1 overexpression in HeLa cells results in the down-regulation of c-Jun protein 

levels. Histograms show quantitative results of Western blot analysis of the relative c-Jun and 

KRIT1 expression levels. Band optical density values are expressed as relative protein level units 

referred to the average value obtained for the mock transfected cells, and represent the mean (± s.d.) 

of n=3 independent Western blot experiments. ***P≤0.001 versus mock transfected cells. 

 

Figure 4. ROS scavenging overcomes the up-regulation of c-Jun expression/phosphorylation 

caused by KRIT1 loss. 

KRIT1
-/-

 (K
-/-

), wild-type (K
+/+

), and Lv-KRIT1 (K9/6) MEFs grown to confluence were either 

mock-treated or treated with the ROS scavenging agent N-acetylcysteine (NAC) (20 mM in 

complete medium) for 120 minutes at 37°C. Cells were then lysed and analyzed by Western 

blotting with either c-Jun (c-Jun) (A) or phospho-c-Jun (P-c-Jun) (B) antibodies. Vinculin was used 

as loading control. Notice that c-Jun expression and phosphorylation levels in KRIT1
-/-

 cells treated 

with the ROS scavenger NAC (K
-/-

 NAC) are significantly reduced as compared with untreated 

KRIT1
-/-

 cells, and close to the levels of untreated wild-type cells (K
+/+

). C) Histograms showing 

quantitative results of Western blot analysis of c-Jun and phospho-c-Jun expression levels. Band 

optical density values are expressed as relative protein level units referred to the average value 

obtained for untreated KRIT1
-/-

 (K
-/-

) cells, and represent the mean (± s.d.) of n=3 independent 

Western blot experiments. **P≤0.01 versus untreated KRIT1
-/-

 (K
-/-

) cells. 

 

Figure 5. KRIT1 over-expression prevents forced up-regulation of c-Jun induced by oxidative 

stimuli. 



KRIT1
-/-

 (K
-/-

) and wild-type (K
+/+

) MEFs and Lv-KRIT1 (K9/6) grown to confluence were either 

mock-treated or treated with H2O2 (0.1 mM in complete medium) for 60 minutes at 37°C. Cells 

were then lysed and analyzed by Western blotting with anti-c-Jun (c-Jun) and anti-KRIT1 (KRIT1) 

antibodies. Tubulin (-Tub) was used as loading control. Notice that KRIT1 overexpression 

prevents forced up-regulation of c-Jun induced by oxidative stimuli. Histograms show quantitative 

results of Western blot analysis of the relative c-Jun (B), KRIT1 (C), and P-c-Jun expression levels. 

Band optical density values are expressed as relative protein level units referred to the average 

value obtained for untreated KRIT1
-/-

 (K
-/-

) cells, and represent the mean (± s.d.) of n=3 

independent Western blot experiments. ***P≤0.001 versus untreated KRIT1
-/-

 (K
-/-

) cells. 

 

Figure 6. c-Jun expression and phosphorylation are enhanced in CCM lesions from KRIT1 

loss-of-function mutation carriers. 

Histological sections (4 µm) of paraffin-embedded CCM surgical specimens, deriving from a 

KRIT1 loss-of-function mutation carrier, were processed by a two-step immunohistochemical 

staining technique (DAKO EnVision™+ System, HRP) with c-Jun and phospho-c-Jun antibodies to 

assess c-Jun (A,B) and phospho-c-Jun (C,D) expression in peri-lesion and CCM lesion vessels. 

Notice that many endothelial cells lining the lumen (l) of CCM vessels (B,D) were positive for c-

Jun (B) and phospho-c-Jun (D), while neither c-Jun (A) nor phospho-c-Jun (C) positive staining 

was detected in peri-lesion normal vessels (A,C). Magnification: 20X. 

 

Figure 7. KRIT1 loss-of-function induces a ROS-dependent activation of JNK. 

KRIT1
-/-

 (K
-/-

) and Lv-KRIT1 (K9/6) MEFs grown to confluence were left untreated (A) or either 

mock-treated or treated with the ROS scavenging agent N-acetylcysteine (NAC) (20 mM in 

complete medium) for 120 minutes at 37°C (B). Cells were then lysed and analyzed by Western 

blotting as described in Materials and Methods. 

The phosphorylated JNK and total JNK were probed using anti-phospho-JNK (Thr183/Tyr185) 

antibody and anti-JNK antibody, and compared to the relative P-c-Jun and KRIT1 expression 

levels. Total JNK and Tubulin (-Tub) served as loading controls. 

A) Notice that JNK phosphorylation is significantly higher in K
-/-

 than in K9/6 MEFs and correlated 

with P-c-Jun levels. An inverse correlation between P-JNK and KRIT1 protein levels is also 

evident. 

B) Notice that P-JNK levels in K
-/-

 MEFs treated with the ROS scavenger NAC (K
-/-

 NAC+) are 

significantly reduced as compared with untreated K
-/-

 cells (K
-/-

 NAC-), and close to the levels of 



untreated K9/6 MEFs (K9/6 NAC-). A direct correlation between P-JNK and P-c-Jun and an 

inverse correlation between P-JNK and KRIT1 levels is also evident. 

 

Figure 8. KRIT1 loss-of-function causes the up-regulation of cycloxygenase 2 (COX-2). 

A-B) KRIT1
-/-

 (K
-/-

), wild-type (K
+/+

), and Lv-KRIT1 (K9/6) MEFs were grown to confluence 

under standard conditions and analyzed by RTqPCR (A) and Western blotting (B). 

A) RT-qPCR analysis. COX-2 mRNA expression levels were analyzed in triplicate using 

appropriate TaqMan
®
 gene expression assays (Roche), and normalized to the amounts of internal 

normalization control transcripts (18S rRNA). Results are expressed as relative mRNA level units 

referred to the average value obtained for the KRIT1
-/-

 (K
-/-

) samples, and represent the mean (± 

s.d.) of n=3 independent RT-qPCR experiments. ***P≤0.001 versus KRIT1
-/-

 (K
-/-

) cells.  

B) Representative Western blot analysis. COX-2 levels in cell lysates were analyzed by Western 

blotting with an anti-COX-2 mAb and compared to the relative P-c-Jun and KRIT1 levels. Tubulin 

(-Tub) was used as loading control. 

Notice that KRIT1 loss-of-function reproduced in KRIT1
-/-

 MEF cells (K
-/-

) caused a significant up-

regulation of COX-2 expression at both mRNA and protein levels, which was completely rescued 

by the re-expression of KRIT1 (K9/6). It is also evident COX-2 protein levels are directly and 

inversely correlated with P-c-Jun and KRIT1 protein levels, respectively. 

C) Immunohistochemical analysis of paraffin-embedded human cerebral cavernous malformations 

with anti-COX-2 antibodies. Cavernous malformation tissue was collected from a CCM1 mutation 

carrier with familial disease at the time of surgical resection under an approved institutional review 

board protocol. Notice that many endothelial cells lining the lumen (l) of CCM vessels were 

positive for COX-2. 

 

Figure 9. Schematic model representing the inverse relathionship between KRIT1 and c-Jun 

expression levels and its putative functional significance. 

See text for detail. 
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