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Abstract

We prove the existence of multiple solutions for some systems of second
order ODEs with Dirichlet boundary conditions. Such systems are obtained
by coupling scalar ODEs with different growth conditions. The proof relies
on a global continuation technique.
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1. Introduction

This paper deals with the existence of multiple solutions to some classes
of systems of second order ordinary differential equations of the type

x′′ + γ(t, x) = 0, x = (x1, . . . , xd) ∈ R
d, t ∈ [0, T ], (1.1)

together with Dirichlet boundary conditions

x(0) = x(T ) = 0. (1.2)
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In (1.1), γ = (γ1, . . . , γd) : [0, T ] × R
d → R

d is a continuous function. Inci-
dentally notice that, since we are not assuming γ(t, x) = ∇xΓ(t, x), system
(1.1) is not in general Hamiltonian and cannot be treated in a variational
framework.

We are interested in situations in which the components γi(t, x) of the
vector field γ(t, x) have a different behavior. For instance, systems which
will be covered by our results are

{

x′′
1 + x3

1 = p(t, x1, x2)

x′′
2 − x3

2 = r(t, x1, x2),
(1.3)

with p, r bounded, and

{

x′′
1 + q(t, x1, x2)(βx1 + (α− β) arctan(x1)) = 0

x′′
2 + µx2 = r(t, x1, x2),

(1.4)

with µ 6=
(

jπ

T

)2
for every j = 1, 2, . . . (that is, µ is not an eigenvalue of

the differential operator x2 7→ −x′′
2 with Dirichlet boundary conditions on

[0, T ]) and r bounded, q positive, bounded and bounded away from zero and
α, β > 0 with |β − α| large enough.

The common feature of systems (1.3) and (1.4) is that the equation for
x1(t) has (for any fixed continuous function x2(t)) a large number of solutions,
which can be distinguished through their nodal behavior. More precisely, the
first equation in (1.3) is superlinear in x1 and possesses infinitely many so-
lutions, with an arbitrarily large number of zeros in [0, T ), while the first
equation in (1.4) is asymptotically linear for x1 near zero and near infin-
ity, thus having a finite number (larger and larger as the quantity β − α
increases) of solutions. These results are nowadays well known (see, among
many others, [9, 18] for the superlinear case and [8, 16] for the asymptotically
linear one). On the other hand, the equation for x2(t) (both in (1.3) and in
(1.4), and for any fixed continuous function x1(t)) is also solvable, but no
multiplicity is in general available and the nodal properties of the solution
found cannot be described. Such existence results can be established via
topological degree theory, proving suitable a priori-bounds and showing that
the associated global Leray-Schauder degree is equal to ±1 (see, for instance,
[13, 17]).
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The main aim of the present paper is to show that corresponding results
can be obtained for systems like (1.3) and (1.4), which couple (in suitable
weak ways, via the terms p, q, r) such different scenarios. Multiple solutions
(infinitely many for (1.3) and a finite number for (1.4)) will be detected
and distinguished via the nodal properties of the component x1(t) (more in
general, in case of system (1.1), of the components giving rise to multiplicity).
To this aim, a global continuation technique in the framework of Leray-
Schauder degree theory, introduced in [4] and developed in some subsequent
papers [6, 14], will be used.

We point out that the plan of extending multiplicity results valid for
scalar second order ODEs to weakly coupled second order systems has been
already initiated in previous papers (see [3, 7, 15] for superlinear systems and
[2] for asymptotically linear ones). However, to the best of our knowledge,
this natural idea of coupling equations with different growth assumptions
has not been developed yet. In particular, we think that the main novelty
of our result is the coupling of equations with a large number of solutions
with equations for which multiplicity is not available. From the point of
view of the proof, this requires a slight variant in the continuation technique,
matching the evaluation of some local degrees (for the components xi giving
rise to the multiplicity of solutions) with global ones (for the components xj

for which only existence can be proved).

The plan of the paper is the following. In Section 2, we state the main
result, Theorem 2.1, together with some comments. For simplicity, we have
chosen to deal with a system in R

3, with a superlinear behavior in its first
component, an asymptotically linear behavior (at zero and at infinity) in its
second component, and global a priori-bounds for its third one. This case
should show the main idea of the paper, keeping the notation at a reasonable
level. In Remark 2.2, we briefly discuss how to extend the result to systems
with more degrees of freedom. The final part of the Section is devoted to a
concise description of the global continuation technique which is used in the
proof. In Section 3, we prove the technical estimates from which Theorem
2.1 follows.

Notation. We denote by C1
0([0, T ];R

d) (C1
0([0, T ]) if d = 1) the Banach

space of all functions x : [0, T ] → R
d of class C1 such that x(0) = x(T ) = 0,

endowed with the norm

‖x‖ = sup
t∈[0,T ]

√

|x(t)|2 + |x′(t)|2.
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Here | · | stands for the Euclidean norm of an n-dimensional vector.

2. Statement of the main result

We consider the following system of ODEs











u′′ + f(u) = p(t, u, v, w)

v′′ + q(t, u, v, w)g(v) = 0

w′′ + h(t, u, v, w) = 0,

(u, v, w) ∈ R
3, t ∈ [0, T ], (2.1)

where all the functions considered are continuous on their variables and real-
valued. We are interested in the existence of solutions to (2.1) satisfying
Dirichlet boundary conditions

u(0) = u(T ) = 0, v(0) = v(T ) = 0, w(0) = w(T ) = 0. (2.2)

The set of assumptions which we are going to consider on system (2.1) is
the following:

(Hu) the function f : R → R is superlinear at infinity, i.e.

lim
|u|→+∞

f(u)

u
= +∞; (2.3)

the function p : [0, T ] × R
3 → R is bounded as a function of (u, v),

precisely, for every M > 0 there exists pmax(M) > 0 such that

|p(t, u, v, w)| ≤ pmax(M), for every t ∈ [0, T ], (u, v) ∈ R
2, |w| ≤ M ;

(Hv) the function g : R → R is asymptotically linear at zero and at infinity,
i.e. g(0) = 0 and there exist g0, g∞ > 0 such that

lim
v→0

g(v)

v
= g0, lim

|v|→+∞

g(v)

v
= g∞;

the function q : [0, T ]×R
3 → R is positive, bounded and bounded away

from zero, that is to say, there exist qmin, qmax > 0 such that

qmin ≤ q(t, u, v, w) ≤ qmax, for every t ∈ [0, T ], (u, v, w) ∈ R
3;
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(Hw) there exist R∗ > 0 and h̃ : [0, T ]×R
3× [0, 1] → R with h̃(t, u, v, w, 1) =

h(t, u, v, w) and

h̃(t, u, v, w, 0) = µw, for µ 6=
(

jπ

T

)2 ∀j ∈ N0,

such that for every λ ∈ [0, 1], for every u, v ∈ C1
0([0, T ]) and for every

w ∈ C1
0([0, T ]) solving w′′+ h̃(t, u, v, w, λ) = 0, it holds that ‖w‖ ≤ R∗.

We recall that typical situations in which (Hw) is satisfied are the sublin-
ear case

h(t, u, v, w) = k(w) + r(t, u, v, w),

with k(w)w < 0 for |w| large and r bounded (with homotopy given by
h̃(t, u, v, w, λ) = λh(t, u, v, w)), and the non-resonant case

h(t, u, v, w) = µw + r(t, u, v, w),

with µ 6=
(

jπ

T

)2
for any j ∈ N0 and r bounded (with homotopy given by

h̃(t, u, v, w, λ) = µw + λr(t, u, v, λ)). It is also worth noticing that whenever
one is able to find explicitly the constant R∗ bounding ‖w‖, then it is enough
to verify the assumptions in (Hu) and (Hv) for |w| ≤ R∗. This will be clear
from the proof.

We are now in position to state the main result of the paper.

Theorem 2.1. Assume (Hu), (Hv), (Hw). Then there exists n∗ ∈ N0 such
that, for every (nu, nv) ∈ N

2 with

nu ≥ n∗, nv ∈
(

T

π

√
qmax g0,

T

π

√
qmin g∞

)

,

(if any), there exist 4 solutions (u, v, w) to the boundary value problem (2.1)-
(2.2) such that u(t) has exactly nu zeros on and v(t) has exactly nv zeros
on [0, T ) . Precisely, such solutions can be distinguished via the signs of the
initial derivatives u′(0), v′(0), according to the four possibilities u′(0), v′(0) >
0, u′(0), v′(0) < 0, v′(0) < 0 < u′(0) and u′(0) < 0 < v′(0).

Notice that solutions (u, v, w) are distinguished by means of the number of
zeros of the components u and v; in general, due to the very mild assumptions
on the function h in the equation satisfied by w, we cannot expect to be able
to describe the oscillating properties of w.
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Remark 2.1. We can rewrite the condition for the integer nv in term of the
spectrum of the linear differential operator v 7→ −v′′ with Dirichlet bound-

ary conditions on [0, T ]. Precisely, denoting by λj =
(

jπ

T

)2
(j ∈ N0) the

eigenvalues and by σ = {λj}j∈N0
the spectrum, we are assuming

(qmax g0, qmin g∞) ∩ σ 6= ∅. (2.4)

Then, if j∗1 , j
∗
2 are, respectively, the smallest and the largest integer number

such that
qmax g0 < λj∗

1
≤ λj∗

2
< qmin g∞,

the conditions for nv writes as j∗1 ≤ nv ≤ j∗2 . The symmetric condition
(qmax g∞, qmin g0) ∩ σ 6= ∅ could be considered, as well.

It is worth noticing that, if (2.4) is not satisfied, one can construct solu-
tions to (2.1)-(2.2) of the type (u, 0, w), with the same nodal information for
u as in Theorem 2.1.

Remark 2.2. Variants of Theorem 2.1 can be obtained. For instance, one
can consider a slightly different system, where the first equation in (2.1) is
replaced by

u′′ + q1(t, u, v, w)f(u) = 0,

with f satisfying (2.3) and f(0) = 0, and q1 fulfilling the same assumptions
as q in hypothesis (Hv). In this case, suitable conditions on the behavior of
f near zero can lead to precise estimates for the number n∗ appearing in the
statement of the theorem. For instance, if f(u)/u → 0 for u → 0, then it is
possible to show (argue as in Proposition 3.3, but for the u-components of
solutions) that n∗ = 1, that is, we can obtain solutions (u, v, w) with u(t) > 0
for t ∈ ]0, T [ .

Another variant can be obtained by dealing with classes of systems in
which only two of the three equations of (2.1) are present, namely, systems
in (u, w) (compare with (1.3)), in (v, w) (see (1.4)) or in (u, v) (with, of
course, the corresponding assumptions (Hu), (Hv) and (Hw) satisfied). In
each case, the statement of the result has to be modified accordingly, giving
respectively: two families of solutions (u, w), with nodal information on the
component u; two families of solutions (v, w), with nodal information on v;
four families of solutions (u, v) with nodal characterization for both u and v.
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Finally, one could consider systems in higher dimension, like











u′′
i + fi(ui) = pi(t, u, v, w)

v′′j + qj(t, u, v, w)gj(v) = 0

w′′
k + hk(t, u, v, w) = 0,

with u = (u1, . . . , udu) ∈ R
du , v = (v1, . . . , vdv) ∈ R

dv , w = (w1, . . . , wdw) ∈
R

dw and the functions fi, pi, qj, gj and hk satisfying assumptions like the
ones in (Hu), (Hv) and (Hw) of Theorem 2.1 (which corresponds to the case
du = dv = dw = 1). Indeed, the equations for ui give rise to a weakly-
coupled superlinear system [3, 15] and the ones for vj to a weakly-coupled
asymptotically linear (at zero and at infinity) system [2]. In this case, 2(du+dv)

solutions, with nodal information on the components ui, vj, can be provided.
The proof of this result follows the same line of the one for Theorem 2.1.

Remark 2.3. We point out that, in a standard manner, multiple periodic so-
lutions of (2.1) can be provided when the system exhibits suitable symmetry
conditions. Precisely, if we assume that all the functions involved are defined
for t ∈ R, with 2T -periodicity in time, and satisfy, for every (t, u, v, w) ∈ R

4,

f(u) = −f(−u), g(v) = −g(−v),

p(t, u, v, w) = −p(−t,−u,−v,−w), h(t, u, v, w) = −h(−t,−u,−v,−w),

q(t, u, v, w) = q(−t,−u,−v,−w),

then it is easy to see that each solution (u, v, w) of (2.1)-(2.2) can be ex-
tended to an odd 2T -periodic solution of the system.

In the absence of symmetry conditions, one could likely obtain (by arguing
as in [5]) an existence result for T -periodic solutions to (2.1), while multi-
plicity cannot be in general obtained if (2.1) is not of Hamiltonian type. We
remark that results proving the existence of multiple periodic solutions (with
nodal characterization) to weakly coupled (Hamiltonian) systems of second
order ODEs have appeared only very recently (see [1, 12]), but the arguments
therein do not seem to be well suited to deal with systems like (2.1).

The proof of Theorem 2.1 follows from the application of a continuation
theorem given in [3] (on the lines of [4, 6, 14]) for an abstract equation of the
form

x = N (x, λ), (2.5)
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where X is a Banach space and N : X × [0, 1] −→ X is a completely contin-
uous operator. It is standard to prove that (2.12) can be written in the form
(2.5), for a suitable choice of N , with X = {x = (u, v, w) ∈ C1([0, T ],R3) :
x(0) = x(T ) = 0}.

For the statement of the continuation theorem, we shall consider two open
sets A and B such that A ⊂ Ā ⊂ B ⊂ B̄ and (B̄ \A) ⊂ X. Let Σ be the set
of the solutions of (2.5), i.e.

Σ = {(x, λ) ∈ X × [0, 1] : x = N (x, λ)}

and, for any subset D ⊂ X× [0, 1], let us denote the section of D at λ ∈ [0, 1]
by Dλ = {x ∈ X : (x, λ) ∈ D}; we also set Nλ = N (·, λ). We have the
following:

Theorem 2.2. (Th. 3.4 in [3]) Let k : Σ ∩ (B̄ \ A) −→ N
2 be a continuous

function; suppose that there exists n ∈ N
2 satisfying the following conditions:

n /∈ k(∂(B̄ \ A)) (2.6)

and
k−1(n) is bounded. (2.7)

Then, for an open set Un
0 such that (k−1(n))0 ⊂ Un

0 ⊂ Un
0 ⊂ (B̄ \ A)0 and

Σ0 ∩ Un
0 = (k−1(n))0, the Leray-Schauder degree deg(I −N0, U

n
0 ) is defined.

If
deg(I −N0, U

n
0 ) 6= 0, (2.8)

then there is a continuum Cn ⊂ Σ ∩ (B \ Ā) whose projection on the λ-
component covers [0, 1] and such that k(x, λ) = n for every (x, λ) ∈ Cn. In
particular there exists at least one x̃ ∈ (B \ Ā)1 such that

x̃ = N (x̃, 1) and k(x̃, 1) = n.

We point out that [3, Th. 3.4] actually dealt with the case k : Σ ∩
(B̄ \ A) −→−→ N

3 (having in mind the application to a weakly coupled
superlinear system, with k taking into account the number of zeros of each
component of a solution). However, the proof remains the same here, since
only the discreteness of the codomain of the functional k matters. In our
case, k(x) ∈ N

2 will take into account the number of zeros of u and v only,
for x = (u, v, w). For a proof of Theorem 2.2, we refer to [14].
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In order to apply Theorem 2.2 we need to define a suitable homotopy; to
this aim, let h̃ be the function given in (Hw) and let us define, for λ ∈ [0, 1],

f̃(u, λ) = λf(u) + (1− λ)u3, (2.9)

(for technical reasons, we will assume henceforth that f(u)u > 0 for every
u 6= 0; this is not restrictive, since it can by achieved by modifying f in a
compact neighborhood of u = 0 and adding a corresponding bounded term
to the function p) and

g̃(t, u, v, w, λ) = λq(t, u, v, w)g(v) + (1− λ)ĝ(v), (2.10)

where ĝ : R → R is a continuous function such that ĝ(v)v > 0 for v 6= 0 and

lim
v→0

ĝ(v)

v
= qmax g0, lim

|v|→+∞

ĝ(v)

v
= qmin g∞. (2.11)

For every λ ∈ [0, 1] we then consider the system















u′′ + f̃(u, λ) = λp(t, u, v, w)

v′′ + g̃(t, u, v, w, λ) = 0

w′′ + h̃(t, u, v, w, λ) = 0,

(2.12)

Of course, system (2.12) for λ = 1 just coincides with system (2.1), while for
λ = 0 it reduces to the autonomous uncoupled system











u′′ + u3 = 0

v′′ + ĝ(v) = 0

w′′ + µw = 0,

(2.13)

For this system, it is possible to construct suitable open sets Un
0 such that

the degree condition (2.8) is fulfilled (the precise definition will be given in
Section 3 - see (3.14) - along the proof of the main result).

3. Qualitative properties of the solutions and proof of the result

We start this Section with the introduction of the so-called elastic proper-
ties for the components u and v of the solutions to system (2.12) (see Lemma
3.1 and Lemma 3.2).
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The proof of these properties is based on the following version of Gron-
wall’s lemma: if e : I → R is a function of class C1 (where I ⊂ R is
an interval) and L > 0 a constant such that |e′(t)| ≤ Le(t), then e(t) ≤
e(t0) exp(L|t − t0|) for every t, t0 ∈ I. This fact is an easy consequence of
the monotonicity of the function e1(t) = e(t)/ exp(L|t − t0|)); indeed, e1 is
non-increasing for t > t0 and non-decreasing for t < t0.

Lemma 3.1. For every R > 0 and µ > 0, there exists ρ(R, µ) ≥ R such
that, for every (u, v, w, λ) ∈ Σ,

min
t∈[0,T ]

(µ2u(t)2 + u′(t)2) ≤ R2 =⇒ max
t∈[0,T ]

(µ2u(t)2 + u′(t)2) ≤ ρ(R, µ)2. (3.1)

Proof. Let us set F̃ (x, λ) =
∫ x

0
f̃(u, λ) du. In view of (Hu), F̃ (x, λ) → +∞

for |x| → +∞, uniformly in λ ∈ [0, 1]; moreover, F̃ (x, λ) > 0 for x 6= 0. We
define the function

E(x, y, λ) =
1

2
y2 + F̃ (x, λ) +

1

2
pmax(R

∗)2;

we have E(x, y, λ) → +∞ for x2 + y2 → +∞, uniformly in λ ∈ [0, 1]. For
(u, v, w, λ) ∈ Σ, let us take t0, t1 ∈ [0, T ] such that

µ2u(t0)
2 + u′(t0)

2 = R2, µ2u(t1)
2 + u′(t1)

2 = max
t∈[0,T ]

(µ2u(t)2 + u′(t)2) > R2

(otherwise, one could take ρ(R, µ) = R). For e(t) = E(u(t), u′(t), λ) (it is
not necessary to emphasize the dependence on λ), one has, in view of (Hu)
and (Hw)

|e′(t)| = |u′(t)(u′′(t) + f̃(u(t), λ))| = |λu′(t)p(t, u(t), v(t), w(t))|
≤ 1

2
u′(t)2 +

1

2
pmax(R

∗)2 ≤ e(t).

Hence Gronwall’s lemma yields

e(t1) ≤ L(R, µ) exp(T ), for L(R, µ) = max{E(x, y, λ) : λ ∈ [0, 1], µ2x2+y2 = R2}.

The thesis now follows choosing ρ(R, µ) > 0 such that E(λ, x, y) > L(R, µ) exp(T )
for λ ∈ [0, 1] and µ2x2 + y2 > ρ(R, µ)2. �
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Lemma 3.2. For every R > 0 and µ > 0, there exist σ(R, µ), τ(R, µ) with
0 < τ(R, µ) ≤ R ≤ σ(R, µ) such that, for every (u, v, w, λ) ∈ Σ,

min
t∈[0,T ]

(µ2v(t)2 + v′(t)2) ≤ R2 =⇒ max
t∈[0,T ]

(µ2v(t)2 + v′(t)2) ≤ σ(R, µ)2 (3.2)

and

max
t∈[0,T ]

(µ2v(t)2 + v′(t)2) > R2 =⇒ min
t∈[0,T ]

(µ2v(t)2 + v′(t)2) > τ(R, µ)2. (3.3)

Proof. The proof of the first assertion is similar to the one of Lemma 3.1,
but even simpler. Indeed, consider the function

E(x, y) =
1

2

(

y2 + µ2x2
)

and, as before, take t0, t1 ∈ [0, T ] such that

µ2v(t0)
2 + v′(t0)

2 = R2, µ2v(t1)
2 + v′(t1)

2 = max
t∈[0,T ]

(µ2v(t)2 + v′(t)2) > R2.

For e(t) = E(v(t), v′(t)), one has, in view of (Hv)

|e′(t)| = |v′(t)(v′′(t) + µ2v(t))| = |v′(t)(µ2v(t)− g̃(λ, u(t), v(t), w(t)))|

≤ Lµ|v′(t)v(t)| ≤
Lµ

2

(

v′(t)2 + v(t)2
)

= Lµ max(1, µ2)e(t)

where Lµ > µ2 is a constant such that |g̃(λ, u, v, w)| ≤ (Lµ − µ2)|v|. Hence
Gronwall’s lemma yields

e(t1) ≤
R2

2
exp(Lµ max(1, µ2)T ),

giving the explicit estimate σ(R, µ) = R exp(Lµ max(1, µ2)T/2).
At this point, the proof of the second assertion follows with the choice

τ(R, µ) = R exp(−Lµ max(1, µ2)T/2). Indeed, if by contradiction

min
t∈[0,T ]

(µ2v(t)2 + v′(t)2) ≤ R exp(−Lµ max(1, µ2)T/2),

then the first part of the proof shows that maxt∈[0,T ](µ
2v(t)2 + v′(t)2) ≤ R.

�
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Now, let us concentrate on the oscillating behaviour of the solutions of
(2.12); to this aim, for every β ∈ C1

0([0, T ]), we denote by n(β) the number
of zeros of β in [0, T ). We recall that if β ∈ C2 and has only simple zeros,
than n(β) (is finite and) can be evaluated via the integral formula (given in
[10], see also [11])

n(β) =
ν

π

∫ T

0

β′(t)2 − β(t)β′′(t)

ν2β(t)2 + β′(t)2
dt, ∀ ν > 0. (3.4)

We will estimate the number of zeros of the components u and v of solutions
(u, v, w, λ) of (2.12).

3.1. The oscillating properties of the u-component of solutions

Let us first observe that we cannot ensure that for every (u, v, w, λ) ∈ Σ
the function u has finitely many zeros in [0, T ]. However, this is certainly
true for solutions such that u has sufficiently large initial values. Indeed, an
application of Lemma 3.1 with µ = 1 proves that there exists u∗

0 ≥ 1 such
that for every (u, v, w, λ) ∈ Σ we have

|u′(0)| ≥ u∗
0 =⇒ u(t)2 + u′(t)2 ≥ 1, ∀ t ∈ [0, T ];

as a consequence, if |u′(0)| ≥ u∗
0 the number n(u) is well defined. Moreover,

we are able to prove some bounds on this number; the first one is an upper
estimate:

Proposition 3.1. There exists n∗ ∈ N such that for every (u, v, w, λ) ∈ Σ
we have

|u′(0)| = u∗
0 =⇒ n(u) ≤ n∗ − 1. (3.5)

Proof. Let us consider a nontrivial solution (u, v, w, λ) ∈ Σ such that
|u′(0)| = u∗

0; from Lemma 3.1 we deduce that there exists ρ0 := ρ(u∗
0, 1)

such that
u(t)2 + u′(t)2 ≤ ρ20, ∀ t ∈ [0, T ].

On the other hand, by the choice of u∗
0 we also have

u(t)2 + u′(t)2 ≥ 1, ∀ t ∈ [0, T ].
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Using (3.4) with ν = 1 and recalling (2.9), we obtain

n(u) ≤ 1

π

∫ T

0

u(t)[f̃(u(t), λ)− λp(t, u(t), v(t), w(t))] + u′(t)2

u(t)2 + u′(t)2
dt

≤ T

π

(

ρ0(Cρ0 + ρ30 + pmax(R
∗)) + ρ20

)

,

where
Cρ0 = max

|ξ|≤ρ0
|f(ξ)|

and pmax(R
∗) is as in assumption (Hu). �

Now, let us prove that the u-component of solutions of (2.12) has an
arbitrarily large number of zeros for sufficiently large initial values:

Proposition 3.2. For every n ≥ n∗ there exists u∗
∞,n > 0 such that for every

(u, v, w, λ) ∈ Σ we have

|u′(0)| ≥ u∗
∞,n =⇒ n(u) > n. (3.6)

Proof. Let us observe that assumption (Hu) and (2.9) imply that

lim
|u|→+∞

f̃(u, λ)− λp(t, u, v, w)

u
= +∞,

uniformly in (t, v, w, λ) ∈ [0, T ] × R × [−R∗, R∗] × [0, 1]. As a consequence,
for every n ≥ n∗ there exists Kn > 0 such that

u(f̃(u, λ)− λp(t, u, v, w)) > 4π2n2u2 −Kn, (3.7)

for every (t, u, v, w, λ) ∈ [0, T ] × R × R × [−R∗, R∗] × [0, 1]. Now, from an
application of Lemma 3.1 with µ = 2πn we deduce that there exists u∗

∞,n > 0
such that for every (u, v, w, λ) ∈ Σ with |u′(0)| ≥ u∗

∞,n we have

4π2n2u(t)2 + u′(t)2 ≥ 2Kn, ∀ t ∈ [0, T ]. (3.8)

Assume now that (u, v, w, λ) ∈ Σ is such that |u′(0)| ≥ u∗
∞,n; hence, from
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(3.4) with ν = 2πn/T and from (3.7) and (3.8) we obtain

n(u) ≥ 2πn

Tπ

∫ T

0

u(t)[f̃(u(t), λ)− λp(t, u(t), v(t), w(t))] + u′(t)2

4π2n2u(t)2 + u′(t)2
dt

>
2n

T

∫ T

0

4π2n2u(t)2 + u′(t)2 −Kn

4π2n2u(t)2 + u′(t)2
dt

=
2n

T

(

T −
∫ T

0

Kn

4π2n2u(t)2 + u′(t)2
dt

)

≥ 2n

T

(

T −
∫ T

0

1

2
dt

)

= n.

�

3.2. The oscillating properties of the v-component of solutions
In this Subsection we study the rotating behaviour of the v-component

of nontrivial solutions of (2.12); let us first observe that (3.3) of Lemma 3.2
shows that for every solution (u, v, w, λ) of (2.12) with v 6≡ 0 it holds

v(t)2 + v′(t)2 > 0, ∀ t ∈ [0, T ].

Hence, for every solution (u, v, w, λ) of (2.12) with v 6≡ 0 the number n(v) is
finite. We are able to estimate this number, using the asymptotic assump-
tions on g given in (Hv):

Proposition 3.3. For every ǫ1 > 0 there exists v∗0 > 0 such that for every
(u, v, w, λ) ∈ Σ we have

|v′(0)| ≤ v∗0 =⇒ n(v) ≤ T

π

√
qmax g0 + ǫ1. (3.9)

Proof. Let us observe that assumption (Hv) and (2.10) and (2.11) imply
that for every ǫ1 > 0 there exists v∗0 > 0 such that

vg̃(t, u, v, w, λ) ≤ (qmax g0 + ǫ1)v
2, (3.10)

for every (t, u, v, w, λ) ∈ [0, T ] × R × R × [−R∗, R∗] × [0, 1] with |v| ≤ v∗0.
Assume now that (u, v, w, λ) ∈ Σ is such that |v′(0)| ≤ v∗0; hence, from (3.4)
with ν =

√
qmax g0 + ǫ1 and from (3.10) we obtain

n(v) ≤
√
qmax g0 + ǫ1

π

∫ T

0

v(t)g̃(t, u(t), v(t), w(t), λ) + v′(t)2

(qmax g0 + ǫ1)v(t)2 + v′(t)2
dt

≤
√
qmax g0 + ǫ1

π

∫ T

0

dt =
T

π

√
qmax g0 + ǫ1.
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Proposition 3.4. For every ǫ2 > 0 and ǫ3 > 0 there exists v∗∞ > 0 such that
for every (u, v, w, λ) ∈ Σ we have

|v′(0)| ≥ v∗∞ =⇒ n(v) ≥ (1− ǫ3)
T

π

√
qmin g∞ − ǫ2. (3.11)

Proof. We first observe that assumption (Hv) and (2.10) and (2.11) imply
that for every ǫ2 > 0 there exists M > 0 such that

vg̃(t, u, v, w, λ) ≥ (qmin g∞ − ǫ2)v
2 −M, (3.12)

for every (t, u, v, w, λ) ∈ [0, T ] × R × R × [−R∗, R∗] × [0, 1]. Now, for every
ǫ3 > 0, from an application of Lemma 3.2 with µ =

√
qmin g∞ − ǫ2 we deduce

that there exists v∗∞ > 0 such that for every (u, v, w, λ) ∈ Σ with |v′(0)| ≥ u∗
∞

we have

(qmin g∞ − ǫ2)v(t)
2 + v′(t)2 ≥ M

ǫ3
, ∀ t ∈ [0, T ]. (3.13)

The proof continues now as the one of Proposition 3.6 using formula (3.4)
with ν =

√
qmin g∞ − ǫ2. �

3.3. Proof of the result

Let us fix (nu, nv) ∈ N
2 such that nu ≥ n∗, with n∗ as in Proposition 3.1,

and

nv ∈
(

T

π

√
qmax g0,

T

π

√
qmin g∞

)

.

Let us fix ǫi > 0 (i = 1, 2, 3) such that

T

π

√
qmaxg0 + ǫ1 < nv <

T

π
(1− ǫ3)

√
qming∞ − ǫ2.

Let us consider u∗
0, u

∗
∞,nu

, v∗0, v
∗
∞ as in Propositions 3.1, 3.2, 3.3 and 3.4 and let

R∗ > 0 be as in assumption (Hw); we apply Theorem 2.2 with n = (nu, nv),

B = {(u, v, w, λ) ∈ X × [0, 1] : u′(0) < u∗
∞,nu

, v′(0) < v∗∞, ||w|| < R∗ + 1}

and
A = {(u, v, w, λ) ∈ X × [0, 1] : u′(0) > u∗

0, v′(0) > v∗0}.
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We also set C = B \ A and define

k(u, v, w, λ) = (n(u), n(v)), ∀ (u, v, w, λ) ∈ Σ ∩ C.

The continuity of k follows from the integral formula (3.4) (indeed, when
used for u, v with (u, v, w, λ) ∈ Σ, the term involving the second derivative
can be always expressed in terms of continuous functions of (u, v, w, λ)).
From assumption (Hw) and Propositions 3.1, 3.2, 3.3 and 3.4 is is easy to see
that the set

{(u, v, w, λ) ∈ Σ ∩ (∂C) : k(u, v, w, λ) = (nu, nv)}
is empty; as a consequence, (2.6) is satisfied. Now, an application of Lemma
3.1 and Lemma 3.2 proves that

||u|| ≤ ρ(u∗
∞,nu

, 1), ||v|| ≤ σ(v∗∞, 1)

when (u, v, w, λ) ∈ Σ∩C; on the other hand, by definition we obviously have
||w|| ≤ R∗ + 1 when (u, v, w, λ) ∈ Σ ∩ C. This is sufficient to conclude that
(2.7) is fulfilled.

Finally, we have to check the validity of (2.8). For λ = 0 the prob-
lem is uncoupled, so that we can write N0(u, v, w) = (N u

0 (u),N v
0 ,Nw

0 (w)).
Accordingly, we define the open set Un

0 as a product

Un
0 = Unu

0 × Unv

0 × BR∗+1, (3.14)

whereBR∗+1 denotes the open ball of radiusR∗+1 in C1
0([0, T ]) and Unu

0 , Unv

0 ⊂
C1

0([0, T ]) are open sets constructed as in [4, 6, 14] (using well-known argu-
ments based on the use of time-maps associated with autonomous second
order equations), such that the “local” degrees deg(I − N u

0 , U
nu

0 ), deg(I −
N v

0 , U
nv

0 ) are different from zero. An elementary property of the Leray-
Schauder degree gives

deg(I −N0, U
n
0 ) = deg(I −N u

0 , U
nu

0 ) deg(I −N v
0 , U

nv

0 ) deg(I −Nw
0 , BR∗+1)

which is different from zero as well, since the “global” degree deg(I−Nw
0 , BR∗+1)

equals 1 or −1 (see [13, 17]).
Hence, all the assumptions of Theorem 2.2 are fulfilled and we deduce

the existence of a solution (u, v, w) of (2.1) such that n(u) = nu, n(v) = nv

and u′(0) > 0, v′(0) > 0.
A straightforward modification of the definition of the sets A and B leads

to the proof of the existence of the solutions (u, v, w) of (2.1) with n(u) = nu,
n(v) = nv and the different signs of the initial derivates of u and v.
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