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Abstract 

Aims: In serpentinitic areas non-endemic plants suffer from the serpentine syndrome, due to high 

Ni and Mg concentrations, low nutrients and Ca/Mg ratio. We evaluated the environment-soil-

vegetation relationships in a xeric inner-alpine area (NW Italy), where the inhibited pedogenesis 

should enhance parent material influences on vegetation. 

Methods: Site conditions, topsoil properties, plant associations and species on and off 

serpentinitewere statistically associated (51 sites). 

Results: Serpentine soils had higher Mg and Ni concentrations, but did not differ from non-

serpentine ones in nutrient contents. The 15 vegetation clusters often showed substrate specificity. 

Two components of the Canonical Analysis of Principal Coordinates, respectively related to Mg 

and to Ni and heat load, identified serpentine vegetation. Random Forests showed that several 

species were positively correlated with Ni and/or Ca/Mg or Mg, some were negatively associated 

with high Ni, Mg excessaffected only few species. Considering only serpentine sites, nutrients and 

microclimate were most important. 

Conclusions: Ni excess most often precludes the presence of plant species on serpentinite, while an 

exclusion due to Mg is rarer. Endemic species are mostly adapted to both factors. Nutrient scarcity 

was not specific of serpentine soils in the considered environment. Considering only serpentine 

sites, nutrient and microclimatic gradients drove vegetation variability. 
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Introduction 

Serpentiniteisa metamorphic rock mainly composed of Mg silicates (serpentine minerals, with 

accessory chlorites, talc, and sometimes olivine and pyroxenes), and often includes magnetites and 
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chromites. Serpentinite weathering originates soils (normally called “serpentine soils”) typically 

characterized by chemical and physical properties thatreduce plant productivity and create stress 

and toxicity to non-adapted species, the so called “serpentine syndrome”(Jenny 1980). Several 

factors are thought to be responsible of the serpentine syndrome (Alexander et al. 2007),such as a 

low Ca:Mg ratio caused by the high amounts of Mg released from the parent material and abundant 

heavy metals (Ni, Cr, Co). In addition, soils often have low macronutrient (N, P, K) 

concentrationsboth because of their paucity in the rock and of the presence of sparse vegetation. 

Susceptibility to drought and erosion often characterizes serpentine soils too, because of dark 

colour, coarse soil texture, rockiness and shallow soil depth (Brooks 1987).  

Although vegetation growing on these soils is typically sparse and stunted, plant diversity is often 

high with abundant endemic taxa (e.g. Kruckeberg 1984). Some of these species hyperaccumulate 

metals(commonly Nickel) and Ni concentrations in their tissues may be more than 1000 mg kg-1 on 

the dry weight (Van der Ent et al. 2012).Many serpentine endemic species in Europe are known Ni 

hyperaccumulators(e.g. Brooks and Radford 1978) and often they have a narrow geographical 

distribution, such as Alyssum argenteum(Cecchi et al. 2010),which is a perennial Brassicaceae 

endemic to serpentine rocky outcrops in the Western Alps. It growsat low altitude on south-facing 

slopes, from Val Chisone in the south to Aosta Valley in the north (Pignatti 1992). 

The role of thefactors involved in the distribution and competitive capacity of serpentinite endemic 

plants, and of metal hyperaccumulators in particular, has always attracted the curiosity of 

ecologists, biologists and soil scientists (Roberts and Proctor 1992). The relative importance of each 

factor of the serpentine syndrome greatly variesdepending on local climate, plant community 

(Proctor and Nagy 1991) and single species (Lazarus et al. 2011). In particular, the role of heavy 

metals in influencing serpentine vegetation is unclear. Brady et al. (2005) in their review reported 

that the serpentine syndrome is mostly associated with low Ca/Mg ratio and with high Mg contents; 

adaptative traits to high Ni (e.g., hyperaccumulation or, more often, exclusion) are rarer 

phenomena, evidencing low Ni ecological impacts. Some works pointed out that tolerance to high 

Ni is readily achieved, reducing its ecological effect on plant communities (e.g.,Proctor 1997). 

Conversely, other authors have reported that Ni has strong negative effects on plant cover (Lee 

1992; Chardot et al. 2007) or on biodiversity (Batianoff and Singh 2001), while it is positively 

correlated with the number of endemic taxa (Batianoff and Singh 2001).Typically, the workson 

serpentine ecology explore the edaphic gradients between dry and nutrient-poor barrens and more 

favourableforestedsites (e.g. Chiarucci 2004, Carter et al. 1987), or the environmental gradients 

causing vegetation differences within serpentine habitats (Tsiripidis et al. 2010). Common results 

are that soils in open rocky outcrops or taluses (i.e. serpentine barrens) are nutrient-poor(Chiarucci 

2004) and are characterized by a high Mg/Ca molar ratio (e.g. Carter et al.1987). As a 



demonstration of low Ni impact on plant life, Ni availability is often higher under the better 

developed and structured communities (Chiarucci 2004, Tsiripidis et al. 2010) because of 

enhancedacidification under forest vegetation. 

Few works, instead, consider edaphic gradients and their effects on vegetation patterns on 

serpentinite and on nearby, analogous non-serpentinite habitats (i.e. comparing barren or forested 

sites on and off serpentinite). In some of these cases,such asin humid, high-altitude subalpine 

(boreal) forest and alpine habitats, serpentine endemic species or plant communities were well 

correlated with high levels of available Ni, while the Ca/Mg ratio or the nutrient contentsdid not 

explain vegetation variability caused by substrate: different nutrient contents and element cycling 

characterizeddifferently developed soils, both on and off serpentine (D'Amico and Previtali 2012). 

Element mobility through the profile is high in humid environments, because of both leaching and 

biocycling; in particular Ca biocycling is enhanced in serpentine-rich soils (Bonifacio et al. 2013), 

hence effectively decreasing the effect of the Ca/Mg ratio on vegetation. The effect of soil 

development is thus superimposed on that of the parent material in humid areas, and the final soil 

characteristics may diverge from those of poorly weathered and poorly leached soils. On the 

contrary, xeric climates inhibit element leaching from soils, which are typically less developed, thus 

the ecological effect of the edaphic components of the serpentine syndrome on vegetation should be 

enhanced, allowing a better evaluation of the soil-vegetation relationships.  

Our hypothesis was that soil development and the consequent divergence of chemical properties 

from those of the parent material may mask the relationships between soil and vegetation, 

particularly when highly mobile nutrients or metalswith high affinity to organic matter are 

concerned. The purpose of this study was thus to investigate soil-vegetation relationships on 

serpentinite in xeric, low altitude habitats in the Western Alps, where element leaching and 

pedogenesis should be inhibited.To reach this aim, we selected soils from a xeric inner alpine area, 

both on serpentine and non-serpentine parent materials, evaluated that all soils have a comparable 

poor development degree and then assessed the relationships between vegetation and those soil 

properties which are considered the most important in the serpentine syndrome, such as 

macronutrient availability, Ca:Mg molar ratio, heavy metal availability and rockiness, making use 

of both well-known statistical tools and recently proposed methods for data treatment. The 

statistical approach can help to disentangle the respective importance of different factors in soil-

vegetation relationships thanks to permutation methods, although direct cause-effect relationships 

can only be evaluated by lab or field experiments. 

 

 



Materials and methods 

Study area 

The central part of the Aosta Valley (RegioneAutonoma Valle d’Aosta), characterized by yearly 

average precipitation below 750mm, was considered in our study. This region is located in the 

north-western Italian Alps, close to the French (in the west) and the Swiss border (in the north) 

(Figure 1). The climate is primarily related to topography: the central part of the region is 

surrounded by high mountain ranges and it is characterized by rain-shadow effects in every season 

giving rise to continental, xeric, inner-alpine climate (Mercalli 2003).In the considered xeric area, 

winter temperatures are between 2° and -5°C, with the lowest values in the valley floors (because of 

thermal inversions) and at high altitude, while summer temperatures are between 21°C and 10°C 

(decreasing with altitude). In the lowest parts of south-facing slopes the average temperature is 

always above 1°C. The average rainfall is below 600-700 mmy-1, and can be as low as 485 mm y-1 

in the Aosta area. Spring and autumn months have the highest rainfallamounts, while winter and 

summer minima are typical;the average rainfall of July is below 40 mm (Mercalli 2003).Water 

scarcity is a strong ecological constraint, particularly on south-facing slopes, where steppe 

vegetation (dominated by Bromus erectus, Festucavalesiaca, Stipapennata and 

Teucriumchamaedrys) with only scattered trees (Quercuspubescens, Pinussylvestris and Castanea 

sativa) is the natural vegetation type at the montane (sub-boreal) phytoclimatic level. Dense 

Castanea sativa, Pinussylvestris and Quercuspubescens forests cover the cooler north-facing slopes 

at the same altitude.Thus, a xericity gradient can be observed within the xeric area. In the driest part 

of the region, steppe vegetation is found up to 2400 m a.s.l., where steppe species mingle with 

alpine ones, adapted to low temperatures and short growing seasons.  

Several rock complexes are found in the Aosta Valley: serpentinite, mafic rocks and calcschists, 

included in the PiedmonteseOphiolite Complex, are common in the eastern sector, while the 

western part is dominated by calcschists and gneiss.Pleistocene glaciers covered large portions of 

the area until 12,000-15,000 years BP, and mixed glacial till, with a calcareous matrix, is 

widespread. 

 

Field data collection, soil sampling and analysis 

51sites (soil profiles associated with vegetation surveys) were selectedaccording to the average 

annual rainfall (below 750 mm), among 384 previously observed sites scattered around the whole 

region, representative of the typical inner-alpine environments. In each site, plant species (identified 

according to Pignatti 1992) were recordedin homogeneous square areas of 16 m2, visually 

estimating the cover (%)of each species.  



At each site, the following data werealso collected: altitude, slope steepness, aspect, surface 

rockiness, bare soil,and tree cover (calculated as % area on a 100 m2 surface). Surface rockiness, 

bare soil and tree cover were determined by visual area estimation. Aspect and slope steepness were 

combined into the heat load factor, a proxy of potential solar radiation and potential 

evapotranspiration (McCune and Leon 2002). Rainfall data were collected from 12 regional weather 

stations located close to the sampling sitesand the average annual rainfall was included among 

environmental parameters. 

Soil pits were dug at each site, down to the C or R horizon (parent material) and the soil profile was 

examined to assess soil development and pedogenic processes. The soils found in the inner-alpine, 

xeric area were usually weakly developedRegosols, Leptosols or, rarely, slightly more evolved 

Cambisols, Phaeozems and Calcisols (IUSS Working Group 2006). Samples were collected from 

allgenetic horizons, but only A horizons were considered in this study. 

The soil samples were air dried, sieved to 2 mm and analyzed according to the USDA methods (Soil 

Survey Staff 2004). The pH was determined potentiometrically in water extracts (1:2.5 w/w). 

Exchangeable Ca, Mg, Kand Ni (Caex, Mgex, Kex, Niex) were determined after exchange with NH4-

acetate at pH 7.0. The acid-extractable element concentrations (CaT, MgT, NiT) were determined 

after HCl-HNO3 hot acid digestion). In all extracts, the elements were analysed by Atomic 

Absorption Spectrophotometry (AAS, Perkin Elmer, Analyst 400, Waltham, MA, USA). The total 

C and N concentrations were evaluated by dry combustion with an elemental analyser (CE 

Instruments NA2100, Rodano,Italy). The carbonate content was measured by volumetric analysis of 

the carbon dioxide liberated by a 6 M HCl solution. The Organic Carbon (OC) was then calculated 

as the difference between total C measured by dry combustion and carbonate-C. Available P (POlsen) 

was determined byextraction with NaHCO3with P detection by molybdatecolorimetry. 

Rock fragments>5mm were cleaned withsodium hexametaphosphate, sorted according to the 

lithology and weighted to semi-quantitatively characterize the soil parent material. The frequency 

distribution of serpentinite clasts in the soils was clearly bimodal: no serpentinite clasts, 21 samples; 

10%, 20%, 30% and 50%, 1 sample each; 60%, 3 samples; 70% 1 sample; 80%, 2 samples; 90%, 3 

samples and 100%, 17samples. 

 

Data analysis 

Statistical analysis were carried out using either SPSS for Windows version 17.0 or R2.15.1 

software (R Foundation for Statistical Software, Institute for Statistics and Mathematics, Vienna, 

Austria).  

Based on thebimodal distribution of serpentine content in the parent material, we decided to split 

soil profiles into two groups depending on whether the parent material was dominated by 



serpentinites (>= 60% of serpentinitic clasts by weight) or not.To verify whether clear thresholds 

existed or if a chemical/ecological gradient was instead present, we also performed additional 

analyses considering different abundance of serpentine coarse fragments.The differences in soil 

properties were evaluated by a one-way analysis of variance (ANOVA), using lithology as 

independent variable. The homogeneity of variance was checked by the Levene test and the 

variables showing significant differences (i.e. CaCO3, MgT, CaT/MgT,NiT, Caex/Mgex, Mgex, 

Caex/Mgex, Niex, POlsen) were log-natural transformed for analysis. The correlation between variables 

was evaluated using the Pearson's coefficient (two-tailed), after a visual inspection of the data to 

verify that the dependence relationship was linear. In case of non linearity, Spearmann’s correlation 

coefficient was instead used. 

The numerical elaborations regarding vegetation and soil-vegetation relationships were performed 

excluding tree species, which are mostly correlated with climatic and pedoclimatic site properties. 

Vegetation types were classified using Cluster Analysis (CA), selecting average linkage as 

agglomeration criteria owing to its highcophenetic correlation value. The best dissimilarity 

algorithm (Bray-Curtis) was selected according to the function rankindex in the Vegan package 

(Oksanen et al. 2011), which correlates the species data with a given gradient (in this case, soil-

environmental properties) using many dissimilarity algorithms. To facilitate the ecological 

interpretation of the clusters, common indicator species (Legendre and Legendre 1998) for each 

cluster were obtained with the help of the indval function, included in the labdsvpackage. Cluster 

stability was assessed through the “bootstrap” noise-adding and subsetting methods(Hennig 2007): 

if the resulting ClusterwiseJaccard meanis below 0.5, the cluster is considered “dissolved” and not 

significant, while it is regarded as “stable” and significant if the value is above 0.75.The number of 

clusters to be considered during the following analysis was chosen based on the ratio between the 

total number of clusters and the number of stable ones and according to their ecological 

significance.The bootstrap method was applied to a variable number of clusters (2-18). 

A correlation analysis was performed on the soil-environmental properties, to detectcollinearities 

(R2 above 0.75) and select a subset of independent variables to be used in the following 

elaborations. The selected variables were altitude, surface rockiness, bare soil, N, C/N ratio, 

available P, molar Caex/Mgexratio, Mgex,Kex,Niex,CaCO3, tree cover,heat load and average yearly 

rainfall. Caex, pH and C were omitted as strongly collinear with, respectively, CaCO3 and Ca/Mg, 

and N. Altitude, N, P, Kex, Caex, Mgex and Niex were log-transformed prior to analysis. 

We used constrained analysis of principal coordinates (CAP, function capscale, included in the 

vegan R-package), based on the Bray–Curtis distance, to determine the most influential 

environmental variables involved in the plant community composition (Anderson & Willis 2003). 

This multivariate technique offers anappropriate way to apply canonical constraints using a flexible 



choice ofdissimilarity measures. The significance tests for each variablewere computed using the 

marginal testingmethod included. In order to detect the ranking of importance of pedo-

environmental factors involved in soil-vegetation relationships, we applied a stepwise analysis on 

the CAP (function ordistep), which shows how much the model is improved wheneach variable is 

added, with random permutations. 

We used the Random Forests (RF) (Breiman 2001), included in the RandomForest R library (Liaw 

and Wiener 2002), to detect the important factors involved in the presence/absence of the species 

growing in more than 10% of the study sites. RF is an improvement of the Classification Tree 

method (CART), which shows the optimal distribution ranges of plant species (Vayssiéres et al. 

2000). RF is a more robust method than most normally used in ecological niche modelling (Evans 

and Cushman 2009), and does not need further accuracy estimates (Cutler et al. 2007).The 

importance of predictive (soil-environmental) variables is estimated by looking at how much the 

misclassification error (the out of bag error) increases when each variable is permuted while the 

others are left unchanged. The increase of the error is proportional to the importance of each 

predictive variable. After checking the optimal number of trees (ntree) reducing the out of bag error 

to a minimum, we modified the ntree in the RF from 500 to 3000. The optimal number of randomly 

selected variables(mtry) to be used in each step of the bootstrap process was also checked for each 

species. 

Positive or negative interactions between predictive variables and plant species were checked using 

generalized linear models (Guisan et al. 1998, glmfunction, family binomial), using only the 

important variables for each considered species.  

In order to check if soil-vegetation patterns were substrate-specific or generic for the whole xeric 

area in Valle d'Aosta, we performed the analyses described above also on the subset of sites with a 

serpentinite content in the parent material ≥ 60%. This subset was called “serpentine-dominated 

soils” through the text. 

 

 

Results 

Soils 

The A horizons of both serpentine-dominated and non-serpentine soils showed a wide pH range 

(from 4.4-4.8 to above 8, Table 1) and often had carbonates. Calcium carbonate enrichment in 

surface soils was common, up to 160 g kg-1, and precipitation of secondary carbonates was often 

observed in subsurface horizons, mainly in soils derived from non-serpentine parent materials but 

sometimes also on serpentinic ones.The elemental composition was well related with the parent 

material: serpentine-dominated soils hadsignificantly higher MgT and NiT,and a significantly lower 



CaT/MgT ratio (Table 1) than soils formed on other rock types.CaTand the CaT/MgT ratio were, 

however, relatively high and values up to 1.5 were found. The specificity of the parent material was 

retained also in the available pools of elements: Niex and Mgex were significantly higher on 

serpentinite, while Caex did not differ (Table2). The molar Caex/Mgex ratio was often above 1 also 

on serpentinite, but it was still significantly lower than on other substrates. While the exchangeable 

contents of both Mg and Ni were significantly correlated to their total concentration (rP=0.415 and 

0.778, respectively, p<0.01),Caex and CaT were not (p=0.158). Tree cover was uncorrelated with all 

substrate-related edaphic factors and with parent material lithologies. 

As expected, all significant differences were also present when a higher threshold was chosen for 

serpentine-dominated soils and significant differences (p<0.01) in carbonate contents and pH 

appeared (lower on serpentinitic soils)when almost pure serpentinite was selected as a threshold 

(e.g. ≥ 80% serpentinitic clasts).  

Both NiexandNiTwere well correlated with the other typical properties of serpentinitic soil, i.e. MgT 

(r=0.862 and 0.656 in the case of total and exchangeable Ni contents, respectively, p<0.01), Mgex 

(r=0.678 and 0.416, p<0.01), the total Ca to Mg ratio (r=-0.477and r=-0.398, p<0.01), as well as the 

Caex/Mgex ratio(r=-0.488 and -0.398, p<0.01). No correlation was instead present between Ni and 

Ca. When the statistical analysis was performedonly on the serpentine-dominated soils subset 

(≥60% serpentine clasts),all significantcorrelation were retained in the case of NiT, while they 

became less significant (p<0.05) and the one with Mgex disappeared in the case of Niex. The 

concentrations of organic C, N, P and Kwerenot related to the parent material and better linked to 

land use. Some grassland soils were in fact particularly rich in nutrients,while forest habitats 

influenced the C/N ratio. Available P was dependent on the amounts of organic matter (rP=0.472, 

p<0.01), and negatively associated withbare soil(rP=-0.296, p<0.05)and heat load (rP=-0.529, 

p<0.01). These two variables were also correlated to each other (rP=0.307, p<0.05). 

Considering only serpentine dominated soils, rainfall negatively influenced pH values (rP=-0.751, 

p<0.01) and CaCO3, while it was positively associated with the C/N ratio (rP =0.591, p<0.01). The 

C/N ratio was no more related with tree coverand organic carbon was significantly correlated with 

all nutrients and exchangeable elements (Caex, Mgex, N, K and P). Niex was not correlated with any 

soil or environmental property. All correlations were retained when higher thresholds for 

serpentine-dominated soils were selected. A large variance of chemical properties characterized 

therefore also pure serpentinite soils. 

 

 



Vegetation 

Plant communities weregrouped into 15 ecologically meaningful clusters (Figure2a). The full list of 

species associated with the vegetation clusters, and their indicator values are reported in the 

electronic annex. TheJaccard index was often slightly below 0.75 (electronic annex 1), probably 

because of the presence of some widespread species such as Teucrium chamaedrys and Bromus 

erectus.The first hierarchical cluster subdivisions identified clusters mainly characterised by the 

dominance of serpentinites (single-site clusters 1, 11, 9 and a group including small serpentine 

clusters 2, 3, 5 and non-serpentine clusters 12 and 13) and a group of mixed large clusters.  

Xerophilous prairies or steppe formations, with scarce or absent tree or shrub cover (Figure 3a), 

mostly on southward slopes (Figure 3b) at different altitudes (Figure 3c), were represented by 

cluster 14 and cluster 8 (differentiated by a higher shrub cover, mainly Juniperus communis, and by 

past agricultural activities, such as terraces or surface rock removal in cluster 8). These formations 

occurred both on serpentinite and on non-serpentinite parent material (Figure 3d). Quite similar 

steppicgrasslands, on stable serpentinite talus slopes at different altitudes (Figure 3d and 3c), were 

included in cluster 2. Cluster 10 consisted of xerophilous understory communities of montane (sub-

boreal) Pinus sylvestris forests (Figure 3a). The most important indicator species of this type of 

community was Carexhumilis (electronic annex 1), but many steppe or prairie species grew despite 

the weak solar radiation. Understory communities of similar forest habitats were also represented by 

cluster 3, on serpentinite (Figure 3d), often on northward aspects; ferns were characteristic and 

some were serpentine endemics (i.e., Asplenium cuneifolium).Cluster 4included the understory 

vegetation of low altitude Quercuspubescens,Pinussylvestrisand Castaneasativaopen forests, with 

high heat load (Figure 3b) and low tree cover, growing both on calcschists and serpentinite 

(included in the same cluster even if clearly differentiated by the presence of Alyssum argenteumon 

serpentinite).Rocky outcrops were included in cluster 5 (on serpentinite, characterized by 

A.argenteum), cluster 7 (never on serpentinite), and 13, on different substrates, at higher altitudes 

(Figure 3).Caryophyllaceae often characterized serpentine vegetation, particularly on rocky 

outcrops or talus slopes (e.g., Minuartia laricifolia and Cerastium arvense).Among the endemic 

ultramafic species, the hyperaccumulator Alyssum argenteum was common in low altitude open 

forests and serpentinite rocky outcrops, but it was also found in montanePinussylvestrisforests and 

open steppe communities (electronic annex 1). 

Considering only serpentine sites (Figure 2b), 9 clusters were obtained:4 single-site clusters, a large 

one (11 sites, including common xerophilous serpentine communities (the main indicator species 

was Alyssum argenteum), another dominated by thick Pinus sylvestris forests (4 sites) devoid of 

endemic species, and other smaller ones separating respectively scree slopes, thick Scots pineforests 



with ferns, rocky outcrops. No cluster separated pure serpentine sites from those having between 

60% and 90% serpentinite in the soil coarsefragment fraction. 

 

Soil-vegetation relationships: serpentine and non-serpentine sites 

The CAP analysis evidenced that plant communities werewell associated with both environmental 

and soil properties. CAP1 was negativelyassociated withMgex, CAP2 positively with tree cover and 

rainfall, CAP3 increased with high available Ni and low heat load (Table 3). If CAP2 identified 

forest habitats, CAP4was negatively correlated to rainfall and C/N ratio, separating therefore the 

most steppic grasslands from the most humid forests.The least fertile sites, with low Ca/Mg ratio 

and available P,were associated to the highest values of CAP5. The space identified by CAP1 and 

CAP3 well described the clusters previously found and allowed to separate serpentine adapted 

associationsfrom those that were not present on this parent material (Figure 4). In fact, many sites 

ofcluster 4 werewell associated with negative CAP1 values (high Mg levels). Similar associations 

with high Mg levels were observed for most sites belonging to clusters 5, 9 and 15. On the contrary, 

clusters 1, 8, 10 and 13 appeared mostly negatively associated with soil Mg. The correlation of 

plant communities with soil Ni was masked by the opposite correlation with heat load: sites 

apparently well correlated with high or low soil Ni actually were often characterized by, 

respectively, low or high heat load values. Clusters 1, 5, 10, 13 were mostly associated with high 

values of CAP3 (high Ni and/or low HL), while clusters 14, 6 and 9 were mostly associated with 

low values of this axis. The space identified by positive values of CAP1 and negative CAP3 values 

comprised only non-serpentine sites. The stepwise analysis indicated that the CAPSCALE 

performance was strongly dependent on Ni, Ca/Mg ratio, elevation, heat load and tree cover, which 

were thus the most important variables associated with vegetation gradients in the study area (Table 

3). 

The factors associated with the presence of common species, as well as the separate ecological 

effect of heat load and Ni,couldbe evidenced by the RF analysis. Taking into account the soil 

properties that allowed to distinguish between fertility conditions of serpentine and non-serpentine 

soils, i.e.Niex, Mgex and Caex/Mgex(Table 2), the RF rankings (Table 4)showed that some species 

were well associated to serpentine conditions, such ashigh Niex,lowCaex/Mgex or highMgex values, 

while some others were negatively correlatedto substrate-derived soil properties. In particular, 

Alyssumargenteum, Alyssoidesutriculataand Cerastiumarvensewere very well correlated with both 

high Ni and Mg contentsor Ca/Mg ratio.A good association with serpentine soils was shown also by 

Biscutella laevigata, well correlated with high Niex and low values of Caex, while a good association 

with high Niex levels without any effect of exchangeable basic cations was observed for 

Minuartialaricifoliaand Sedum montanum(well correlatedalso to elevated Caex concentrations). 



Some species were correlated to high Mgex levels and/or low Caex/Mgex ratios without any 

relationships with Ni contents: Armeriaarenaria, Anthyllisvulnerarias.l. andStachysrecta.  

Negative association with high Niex contents was observed on many species: Achilleamillefolium, 

Alyssum alyssoides, Berberis vulgaris,Carexhalleriana, Festucavalesiaca, Fumanaericoides, 

Helianthemumnummularium and Koeleriavallesiana. High Mgex contentswere negatively correlated 

only withEuphorbia cyparissiasand Teucrium chamaedrys. The explanatory power of all the 

considered edaphic and environmental variables was extremely low for some common species, such 

asDianthus carthusianorum,Dianthus sylvaticus, Potentillaneumanniana (negative correlation with 

high Niex), Carexhumilis and Sempervivumarachnoideum (negative association with high Mgex). 

Available P never helped in explaining species distribution and the effect of Kex was also limited: 

Anthyllisvulneraria was indeed the only species markedly associated to the K-richest sites.  

 

Soil-vegetation relationships: serpentine sites 

The CAP analysis evidenced that serpentine plant communities were strongly dependent on climatic 

factors (rainfall and heat load), which influenced also the few "important" factors retained after the 

variable selection based on intercorrelation and variance inflating factors (Table 5). In particular, 

CAP1 identified a Mg gradient associated with an inverse rainfall one, CAP2 represented a CaCO3- 

heat load gradient, CAP3 was well correlated with negative heat load and with positive CaCO3, P 

and C/N, making it not easily interpretable; CAP4 was influenced by highP and Mgex, CAP5 by 

C/N and Mg, CAP6 by rainfall. Niex was excluded as its influence on the overall model fitting was 

negligible. 

RF rankings (Table 6) for presence-absence species data showed a generalized, strong decrease in 

Niex importance compared with the complete data set: only Alyssoides utriculata and Cerastium 

arvense kept their positive correlation with high Niex, whileno species were negatively associated 

with it. Mgexwas a rather important factor in explaining the presence/absence of many species: the 

positive correlation obtained when analyzing the whole data set were retained also in this reduced 

set (Alyssum argenteum, Cerastiumarvense and Stachys recta), while a positive association 

withHelianthemum nummularium and Berberis vulgaris and a negative one with Minuartia 

laricifolia appeared. The negative associations between Caex and Alyssum argenteum and Biscutella 

laevigata were retained. On serpentine soils, Festucavalesiaca, Galiumlucidum, 

Helianthemumnummularium, Teucrium chamaedrys had negative relationships with Caex; the first 

two species, in particular, had positive correlations with Caex on the complete data set. P became an 

important factor for many species growing on serpentine soils; this nutrient was never important 

when considering the complete data set. 

 



 

Discussion 

Pedogenesis in xeric soils in mountain habitats 

In this work we wanted toevaluate soil-plant relationships in serpentinic areas,taking into 

consideration the effect that soil development has on element concentration and, more generally, on 

soil chemical properties.We therefore maximized the possibilities to detect differences by selecting 

a xeric environment, where no marked element movements should have occurred. Both the lack of 

carbonate dissolution in A horizons and CaCO3 precipitation in deeper ones confirmed the 

pedogenic trends of xeric environments. The high acidity observed in the surface horizons of some 

serpentinitic soils is common also in other dry environments, such as Mediterranean Italy 

(Bonifacio et al. 1997) and California (e.g. Lee et al. 2004) and in the study area it was related to 

the presence of organic matter (rS=-0.591, p<0.01, n=20, i.e. excluding the soils where pH was 

buffered by carbonates), thus more linked to the acidifying capacity of organic matter than to 

leaching. The differences between parent materials were well visible in the total element 

concentrations, and also partially retained in the available forms. The MgT and NiT concentrations 

were high on serpentinite, although with a very high variance, but CaTand the CaT/MgT ratio were 

much higher than normal in ultramafic soils: in fact, the CaT/MgTratio usually variesbetween 0.01 

and 0.1 (Brooks 1987). The high ratio we found in the study area may be related to the presence of 

carbonate inclusions or to aeolian additions. Aeolian inputs in the Alps are common and arise both 

from Saharan dusts (Goudie and Middleton 2001) and from shorter range intra-alpine sources 

(Küfmann 2002). However, the lack of correlation between CaT and Caex suggests a decoupling of 

Ca availability from direct weathering of the parent material,and indicates that processes affecting 

only available forms, such as biocycling, likely played an important role. Calcium indeed is one of 

the elements that undergo important nutrient uplift and biocycling (Blum et al. 2008), which are 

particularly enhanced on serpentinitic soils due to element deficiency (Bonifacio et al. 2013). 

Biocycling may thus contribute to increase the Ca available pool in surface horizons, eliminating 

the differences between parent materials and decreasing therefore the effects that Ca deficiencies 

have on vegetation. Serpentinitic soils were characterized by much higher 

availableNiconcentrations than non-serpentinitic ones, even at high pH values and in the presence 

of carbonates. High Niex contents were observed elsewhere in weakly developed soils, and were 

related to the incipient weathering of Ni-rich primary minerals (Carter et al. 1987). The Niex 

contents and the lack of correlation between Niex and pH values were similar to those found in 

extremely acidic subalpine or weakly developed alpine soils on serpentinite in nearby valleys 

(D’Amico and Previtali 2012), where it was leached more efficiently from the most acidic soils; in 

humid subalpine and alpine serpentine soils, Niex was well correlated with organic carbon, while in 



these xeric soils Niex and C were not associated, suggesting that the metal affinity to organic matter 

is not sufficient to fully explain Ni availability. 

The concentration of organic carbon and of N, P and K, whose availability in forest soils is mainly 

linked to the turnover of organic matter (Lal et al. 2007), was not related to the parent material. 

Therefore, nutrient scarcity is not a specific feature of serpentine soils in Alpine environments. The 

negative correlations between available P and bare soil or heat load suggested that nutrient scarcity 

was more linked to the limitation to vegetation productivity of the hottest and driest areas, where 

drought stress associated with topographic position is frequent. The correlations between P, bare 

soiland heat load were retained also amidst serpentine habitats, confirming the poor primary 

productivity and the slow nutrient biocycling in the most xeric habitats. Vegetation development on 

serpentinitic outcrops in Tuscany (Chiarucci 2004) was also inhibited by topographic positions, 

causing heat and drought stress. In xeric environments of the western Alps, however, this drought 

stress was not dependent on the substrate lithology and thus could not be considered part of the 

serpentine syndrome. 

 

The effect of serpentinite soils on vegetation: different approaches, different results 

The effect that parent material has on vegetation development was well depicted by cluster analysis, 

although mainly the smallest clusters showed substrate specificity, while most of the largest ones 

embraced sites on different substrates. In most cases, single site and small clusters identified 

serpentine plant communities, pointing to a marked heterogeneity among serpentine vegetation. 

Such high local diversification of serpentine plant communities is common to other serpentine 

habitats, such as dry areas in the American Pacific Northwest (del Moral 1972) or dry subtropical 

South African mountains (Reddy et al. 2009).Some of these small clusters included serpentine-

endemic species, such as Aethionemathomasianum, Notholaenamarantae and Asplenium 

cuneifolium, or serpentine-adapted species (Silene vulgaris with peculiar morphological 

characteristics including small stature, thickened and purple leaves, which may represent a unique 

serpentine ecotype, as described in D’Amico and Previtali 2012). 

The Canonical Analysis of Principal Coordinates allowed to better evidence the relationships 

between site and soil characteristics and vegetation clusters, although the proportion of inertia 

explained by the model was rather low (28.02%). This was probably due to the typical disorder of 

ecological systems hypothesized by other authors (e.g. Chiarucci et al. 2001 and Tsiripidis et al. 

2010), associated with a weak differentiation in species composition and to the spatial distribution 

of some species in a complex mountain area; many xerophilous species were actually confined to 

small parts of the study area, probably because of Pleistocene glaciations history rather than of 

present environmental conditions. We cannot exclude however that the omission of other 



environmental properties, such as winter snow depth, human disturbances, localized grazing, fire 

history, etc., which may deeply influence vegetation composition (Guisan et al. 1998, Tsiripidis et 

al. 2010), might have contributed to the low inertia explained. Although the analysis was useful in 

showing how both substrate (Mgex and Niex in particular), and land use-related (C/N and P) 

chemical properties were important for plant community distribution, the effects that Ni has on 

species and community distribution was partially masked by the opposite effect of heat load, and 

therefore a definitive result was obtained only using RF. 

A good association with serpentine soils was shown by several species, some of which are well 

known on serpentinite in various areas. Biscutella laevigatawas well associated with high Ni and 

low values of exchangeable Ca also in nearby humid alpine valleys (D’Amico and Previtali 

2012).Many species belonging to the Cerastium genus seem well adapted to serpentine soils in 

Mediterranean (Marsili et al. 2009) and in boreal habitats, where they showed adaptation to high 

concentrations of both Ni and Mg (Nyberg Berglund et al. 2004).Adaptation to serpentine 

conditions is reported also for MinuartiaandStachys genera: endemic subspecies of 

Minuartialaricifolia and Stachys recta grow in Mediterranean Italian ophiolitic outcrops, but they 

have not been recorded in serpentine soils on the Alps (Pignatti 1992). Both species (M. laricifolia 

and S. recta) in the study area are well associated with serpentine edaphic properties, respectively to 

high Niex and high Mgex values. The presence of these species was correlated with, respectively, 

Niex and Mgex also considering only serpentine soils.The adaptation of hyperaccumulator species 

was also well depicted.Considering all substrate lithologies, the presence of high concentrations of 

exchangeable Ni and Mg seems a favourable factor involved in the distribution of Alyssum 

argenteum in the xeric inner-alpine environment in the north-western Italian Alps. In fact, this 

species confirmed its selectivity for serpentinitic areas, but even if it typically grows in steppe or 

rocky outcrops (Pignatti 1992), it was able to thrive also under forest vegetation, although with 

smaller cover values. The localized inclusions of carbonates or allochtonous materials causing 

enrichment in exchangeable Ca did not inhibit the growth of this serpentine endemic Ni-

hyperaccumulator species. Adaptation has been shown in other European serpentine areas for 

different Alyssum species: in particular, Gabbrielli et al. (1989) demonstrated a positive effect of 

high soil Ni on the metabolic efficiency of Alyssum bertolonii in Mediterranean Italy. Alyssoides 

utriculata, most common on serpentinite but growing also on non-serpentinic soil in the study area, 

has been sometimes observed hyperaccumulating Ni on particularly Ni-rich serpentinic substrates in 

North-western Italy (Roccotiello et al. 2010).High Mg was negatively associated only 

withEuphorbia cyparissias andTeucrium chamaedrys. Thus, high available Mg does not appear to 

be an important limiting factor for vegetation in the study area, when comparable poorly developed 

soils both on serpentine and on other parent materials are considered.The effect of Ni on species 



distribution was more marked than that of Mg based on the number of species that were negatively 

correlated with high Ni. The RF was extremely powerful in disentangling the respective importance 

of different factors, while taking into account the full set of soil and environmental properties, but 

the results were confirmed when only the typical factors of the serpentine syndrome were taken into 

account. The results are also visible observing the differences in the most important soil properties 

in the sites where the same species grow (Figure 5 and electronic annex 2). The ratios between the 

average values of Niex, Mgex and Caex/Mgex in the sites where the species were present or absent are 

reported in Figure 5 (distribution data in electronic annex 2) and clearly show a great discriminating 

ability of Niex with respect to both Mgex and the Ca to Mg ratio. Niex therefore seems the most 

important factor of the serpentine syndrome characteristics in shaping vegetation distribution on and 

off serpentinite in xeric inner-Alpine environment. 

However, when only serpentine-dominated sites were considered, the main ecological gradients 

were mostly related with microclimatic features, nutrients (whose cycling and bioaccumulation are 

related with xericity gradients) and Mgex. Niex, able to characterize serpentine soils as a whole 

despite its large concentration variability, disappeared from the important edaphic factors 

explaining both vegetation community distribution and species presence/absence. These results are 

similar to the ones obtained by many studies performed in many serpentine environments in the 

world, and appeared with a threshold of serpentinite abundance in the parent material of 60%. 

Above 60% serpentinite, significant differences were found between Ni, Mg and Ca/Mg compared 

to soils with less than 60% serpentinite, serpentine endemics appeared and their frequency remained 

more or less stable above the threshold, indicating that relatively low amounts of serpentine may 

deeply influence soil and vegetation properties, without any measurable gradient at higher contents. 

The differences between the two approaches to the study of the relationships between soil properties 

and vegetation in serpentinitic soils are therefore striking. Nutrient deficiencies were not specific of 

serpentinitic areas in the Alpine environment we have studied, and neither were the harsh site 

conditions depicted by e.g. heat load or rockiness. Ni therefore was probably the most important 

single edaphic factor in differentiating serpentine vegetation from non-serpentine. Its primary 

importance is verified by the strong decrease in model performances when this element was 

excluded from the analysis. Within the serpentinitic sites, many species which were negatively 

correlated with high Ni disappeared or became extremely rare, and the presence of the remaining 

ones was mainly associated to particularsite conditions, such as bare soil or low tree cover 

(Helianthemumnummularium, Festucavalesiaca, Koeleriavallesiana, Potentillaneumanniana) or 

thick tree cover with large amounts of exchangeable Mg in the soil (Berberis vulgaris). Other 

fertility factors became more important for species presence, such as macronutrient and Ca 



abundance, which were not correlated to Ni availability when the serpentine-dominated subset was 

considered.  

 

Conclusions 

Soils developed in xeric, inner-alpine climates in the Alps underwentno important base and metal 

leaching,thus serpentine soils werestill particularly rich in total and exchangeable Ni and Mg. Even 

though the Ca/Mg ratio was lower than on non-serpentine soils, the values werenever excessively 

low, thanks to Ca bioaccumulation and carbonate inclusions.N, P, K scarcity characterizedbarren 

soils on every substrates, and didnot characterize serpentine soils in particular, being associated 

with south-facing aspects, steep slopes and high heat load.Plant communities on serpentinite had a 

higher heterogeneity than non-serpentinite ones, thanks to the presence of severalendemics, and 

differences in vegetation between serpentine and non-serpentine sites were correlated with Mg and 

Ni.Ni excess most often precluded the presence of plant species, while an exclusion due to Mg is 

rarer. Endemic species were instead mostly adapted to both factors.  

When only serpentine-dominated areas were considered, vegetation variability was mostly linked 

with nutrient concentration gradients and microclimatic features.  

Different approaches to the study of the "serpentine syndrome" thus lead to differently comparable 

results, in particular on the role of Ni as a driver for vegetation pattern. Nickel availability 

discriminated between serpentinitic and non serpentinitic areas, while climate and small variations 

in nutrient cycling and availability predominated at the high Ni background of serpentine soils. 
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Table 1:Differences in pH, carbonates and total element contents in soils developed on different 

parent material 

 Parent material N Mean Standard deviation Min Max P* 

CaCO3 (g kg-1) Serpentinites 26 15.5 36.3 0.0 160.0 0.206 

 Others 25 38.1 52.3 0.0 146.6   

pH Serpentinites 26 6.68 1.06 4.40 8.10 0.242 

 Others 25 7.02 0.99 4.79 8.50   

CaT (g kg-1) Serpentinites 23 16.75 19.85 1.00 85.52 0.243 

 Others 21 23.29 16.44 4.41 58.60   

MgT(g kg-1) Serpentinites 23 57.51 25.60 19.29 128.00 0.000 

 Others 21 20.44 13.46 7.47 59.00   

CaT/MgT Serpentinites 23 0.37 0.40 0.01 1.52 0.000 

 Others 21 1.43 1.28 0.31 4.90   

NiT (g kg-1) Serpentinites 24 0.76 0.47 0.10 1.66 0.000 

 Others 21 0.17 0.15 0.03 0.62   

 

*P probability of equality of mean (one-wayAnova) 

  



Table 2:Differences in C, C to N ratio and contents of exchangeable elements in soils developed on 

different parent material 

 Parent material N Mean Standard deviation Min max P* 

C(g kg-1) Serpentinites 26 46.2 48.7 9.4 218.0 0.426 

 Others 25 37.5 25.1 8.3 101.3  

C/N Serpentinites 26 16.1 7.6 9.0 49.0 0.346 

 Others 25 14.5 4.2 9.1 24.1  

Caex(cmolc kg-1) Serpentinites 26 12.36 16.40 1.86 87.33 0.755 

 Others 25 13.58 10.66 0.62 39.49  

Mgex(cmolc kg-1) Serpentinites 26 2.86 2.36 0.76 8.80 0.010 

 Others 25 1.36 1.53 0.22 7.64  

Caex/Mgex Serpentinites 26 5.86 5.50 0.53 19.32 0.007 

 Others 25 15.98 15.18 0.83 50.63  

Kex(cmolc kg-1) Serpentinites 26 0.19 0.13 0.06 0.48 0.855 

 Others 25 0.20 0.15 0.04 0.69  

Niex(cmolc kg-1) Serpentinites 26 0.031 0.028 0.002 0.109 0.000 

 Others 25 0.002 0.002 0.000 0.006  

POlsen (mg kg-1) Serpentinites 26 5.69 5.25 0.87 27.83 0.299 

 Others 25 4.50 2.35 1.93 12.07  

*P probability of equality of mean (one-wayAnova) 

 

  



Table 3: Biplotscores for the most significant canonical axes of the Canonical Analysis of Principal 

Coordinates (CAP). *: ranking of importance derived from the stepwise analysis; Caex/Mgex ratio, 

Niex, elevation, tree cover and heat load were equally the most important (ranking 1), followed by 

rainfall (6) etc. 

 

 
Ranking* 

CAP1 CAP2 CAP3 CAP4 CAP5 

  Biplot scores for constraining variables 

CaCO3 9 0.07 0.13 0.17 0.14 -0.07 

N 13 -0.09 0.01 0.16 -0.08 -0.18 

C/N 8 0.09 0.09 0.11 -0.66 -0.34 

Mgex 11 -0.55 0.10 0.18 0.33 0.28 

Caex/Mgex 1 -0.07 -0.01 -0.06 0.33 -0.45 

Kex 12 0.08 0.13 0.09 -0.05 -0.06 

Niex 1 -0.21 0.02 0.62 -0.31 0.18 

POlsen 7 -0.16 0.24 0.32 -0.06 -0.42 

       

Elevation 1 0.25 -0.02 0.11 -0.20 0.31 

Rainfall 6 0.15 0.44 0.16 -0.66 0.07 

Tree cover 1 0.10 0.85 -0.03 0.04 -0.22 

Bare soil 14 -0.14 -0.04 -0.07 0.14 0.08 

Surface rockiness 10 -0.28 -0.15 0.07 -0.19 0.36 

Heat load 1 -0.29 -0.06 -0.54 -0.20 0.13 

 

 



Table 4: Random Forest rankings of the main environmental and edaphic factors- The numbers represent positive/negative correlation on an arbitrary 

scale (1-7) of decreasing importance of the factor in the presence/absence of the species. Only species growing in 10% or more of the sampling plots 

were considered 

 

 pH CaCO3 C N C/N Caex Mgex Caex/Mgex Kex Niex POlsen Elevation Rainfall Tree 

cover 
Bare 

soil 
Surface 

rockiness 
Heat 

load 
Achilleamillefolium      2+    4-    1-  3- 5+ 

Allium sphaerocephalon   4+ 1+  3+        2-   5+ 

Alyssoidesutriculata 5+  4+ 3-    2- 6+ 1+        
Alyssum alyssoides      3+  4+  2-    5-  1+  
Alyssum argenteum      3- 2+   1+  4-     5+ 

Anthyllisvulneraria  6+     5+ 3- 1+   2+     4+ 

Armeriaarenaria    5+   3+ 2-      4-   1- 

Artemisia campestris   3- 4-        5-  1-   2- 

Aspleniumtrichomanes   1+ 2-  3+   4- 5+      6+ 7- 

Berberis vulgaris          2-   3-    1- 

Biscutellalaevigata      2-   4+ 1+  3+      
Bromus erectus    2+ 4-        5- 1-   3+ 

Carexhalleriana     2-   4-  1-   5+ 3-    
Carexhumilis 4+ 2-    6+ 5-     3-  1+    
Cerastiumarvense      4- 1+ 2-  3+  7+ 5-    6+ 

Dianthus carthusianorum  3- 5+       2-    4+  1+  
Dianthus sylvaticus          1-      2+  
Euphorbia cyparissias  7+  4+ 5-  2- 3+  6+  1+      
Festucavalesiaca  3+   6+ 4+    2-    1-   5- 

Festucavaria 3- 5-       2+    4+    1- 

Fumanaericoides 2+ 5+  6-    4+  1-       3+ 

Galiumlucidum    2+ 5+ 3+  4-         1+ 

Helianthemumnummularium  2+        4-     1+  3+ 

Hieraciummurorumaggr. 2-            3+ 1+   4- 

Koeleriavallesiana          2-  3- 5- 1- 4+   
Lactucaperennis 5+  1-         2-  3- 4+   
Minuartialaricifolia     3+     2+   1+     
Potentillaneumanniana 3- 2-      7-  6-  5-  1- 4+   



Sedum album  2+   4-    3-       1+  
Sedum montanum   5- 1-  4+   3- 2+        
Sempervivumarachnoideum      2- 7-     4+  1- 6+ 3+ 5- 

Sempervivumtectorum  3- 6-  4-   5+     2+ 1-    
Stachys recta    3- 4-  2+       1-    
Stipapennata  5+ 3- 4- 2-         1-    
Teucrium chamaedrys 5+  6-    3+ 1+     2-    4+ 

Verbascumlychnitis         4+     2- 1+  3- 

 



 

Table 5: Biplotscores for the most significant canonical axes of the Canonical Analysis of Principal 

Coordinates (CAP) for serpentine dominated sites (serpentine >= 60% in the parent material). *: 

ranking of importance derived from the stepwise analysis. 

 

 
Ranking* 

CAP1 CAP2 CAP3 CAP4 CAP5 CAP6 

   Biplot scores for constraining variables 

Mg 1 0.70 -0.12 0.19 0.47 -0.45 0.19 

C/N 6 -0.36 -0.09 0.53 0.20 0.68 0.28 

CaCO3 2 -0.07 0.67 0.55 -0.31 -0.06 -0.38 

P 5 -0.22 -0.45 0.43 0.56 -0.35 -0.37 

        

Heat Load 3 -0.05 0.74 -0.65 -0.09 -0.04 0.11 

Rainfall 4 -0.74 -0.03 0.16 0.26 0.03 0.60 



 

Table 6: Random Forest rankings of the main environmental and edaphic factors on serpentine sites.The numbers represent positive/negative 

correlation on an arbitrary scale (1-7) of decreasing importance of the factor in the presence/absence of the species. Given the smaller number of 

samples, only species growing in 25% or more of the sampling plots were considered 

 

 pH CaCO3 C N C/N Caex Mgex Caex/Mgex Kex Niex POlsen Elevation Rainfall Tree 

cover 
Bare 

soil 
Surface 

rockiness 
Heat 

load 
Alyssoidesutriculata   4- 3-  5+  1-  2+        
Alyssum argenteum  4-    1- 3+     2- 5-     
Artemisia campestris   3+ 4-   2+       1-    
Aspleniumtrichomanes   4- 3+     1-  2+       
Berberis vulgaris       1+       2+    
Biscutellalaevigata 4-  3-   2+  5-    1+      
Bromus erectus  6+         3+  2- 5- 4- 1-  
Carexhumilis 5+ 2-    3-   4-     1+    
Cerastiumarvense       1+   2+   3-     
Festucavalesiaca      1-        2-    
Festucavaria           1+      2- 
Galiumlucidum   5+   3-     2-   4-   1+ 
Helianthemumnummularium  3+    1- 2+        4+   
Koeleriavallesiana              1-    
Minuartialaricifolia    2+   1-      3+     
Potentillaneumanniana      4+     1- 3-  5- 2+   
Sedum album  2-              1+  
Sedum montanum                1+  
Sempervivumarachnoideum           4+   2- 1+  3+ 
Sempervivumtectorum     2-      1-   3-    
Stachys recta       1+     2-      
Teucriumchamaedris 5+     3-  4+   1-      2+ 

 

 



 

Fig. 1: the study area in the central part of the Valle d’Aosta region. The area characterized by 

inner-alpine xeric climate is roughly markedby a dotted line; soil and vegetation sampling sites are 

represented by triangles (several overlaps due to scale); serpentine outcrops are evidenced by 

shaded areas 

 



Fig. 2: cluster dendrograms of the total vegetation relevèes (a) and of serpentine-dominated sites 

(b), (hierarchical clustering, based on Bray-Curtis distance algorithm and on average linkage 

method).The first number in the parenthesis indicates the number of sites in each cluster, the second 

one the number of serpentine-dominated clusters. 

 

Fig. 3: tree cover (%), heat load, altitude (m) and serpentinite content (%) in the soil parent material 

characterizing the 15 vegetation clusters. 



 

Fig. 4: CAP scatterplots of xerophilous vegetation; the combination of axis 1 (CAP1) and 3 (CAP3) 

is shown, as most representative of serpentine habitats. Sites are represented by cluster numbers 

andserpentinite-dominated sites are indicated by a black dot. The following abbreviations have been 

used: SR = surface rockiness; ALT = altitude; HL = heat load; BS = bare soil. 

 

Fig. 5: Ratios between mean values of serpentine syndrome factors (Niex, Mgex and Mgex/Caex) in 

the areas where the same species was absent or present; given the negative correlation values 

between Ca/Mg and Ni, the Mgex/Caex ratio is shown, in order to make the rankings of importance 

easier to be compared. The species shown are those having a rank of positive or negative 

correlations with the same serpentine factors in Table 3. 
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Plant communities (from cluster analysis) and their specific composition. The column “const” indicates the fraction of samples in each cluster all species occurs in. The indicator  

species (Legendre and Legendre 1997) of the cluster are also shown (IndVal). The number of sites included in each cluster is shown, as well as the Jaccard cluster stability index 

(Hennig 2007). The Jaccard stability and species Indicator values are not shown for single-site clusters. 
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Median, mean values of Niex, Mgex and Caex/Mgex ratio, and their 25% and 75% quartiles, in the soils where some common species grow (Present) or not (Absent). Only the species 

associated with these serpentine-typical soil properties are shown (obtained from the Random Forest elaborations on the complete data set). The 25% and 75% quartiles of variables 

showing strong discriminating power between presence or absence of the species are underlined.  

  Niex Mgex Caex/Mgex 

  Median-mean 
25%-75% 

quartile 
Median-mean 

25%-75% 

quartile 
Median-mean 

25%-75% 

quartile 

Achillea 

millefolium 

Present 0.63-2.50 0.01-4.5 1.85-1.91 1.29-2.67 4.27-10.29 3.39-8.23 

Absent 1.56-16.23 0.66-11.38 1.34-2.17 0.78-2.57 4.77-10.31 2.15-15.22 

Alyssoides 

utriculata 

Present 23.38-52.52 5.26-94.28 2.60-3.46 1.32-5.46 1.22-6.46 0.65-2.97 

Absent 1.34-9.12 0.60-5.72 1.36-2.00 0.78-2.63 5.27-10.79 2.76-15.13 

Alyssum 

alyssoides 

Present 0.06-3.54 0.00-1.38 0.95-1.00 0.62-1.05 16.22-16.30 9.53-21.44 

Absent 1.63-15.001 0.65-8.71 1.44-2.24 0.78-2.67 4.27-9.69 2.15-13.38 

Alyssum 

argenteum 

Present 6.31-22.57 4.41-18.13 2.62-3.43 1.88-4.36 3.38-5.71 1.71-5.41 

Absent 0.84-9.63 0.23-1.58 0.95-1.48 0.72-1.52 6.68-12.60 2.76-17.53 

Anthyllis 

vulneraria s.l. 

Present 8.56-25.18 2.71-14.37 1.30-3.46 0.94-6.14 2.21-2.28 1.44-2.96 

Absent 1.34-12.53 0.47-5.72 1.40-2.00 0.76-2.57 5.60-11.31 2.75-15.35 

Armeria 

arenaria 

Present 7.50-9.11 0.42-14.48 2.67-4.21 1.65-7.20 2.04-9.00 1.38-3.51 

Absent 1.38-14.66 0.64-6.76 1.29-1.82 0.77-2.32 5.57-10.50 2.64-15.16 

Berberis 

vulgaris 

Present 1.00-3.67 0.04-4.22 1.38-2.40 0.80-2.47 3.95-11.71 5.47-18.85 

Absent 2.50-19.07 0.73-11.59 1.41-2.00 0.78-2.57 5.17-9.60 2.32-13.00 

Biscutella 

laevigata 

Present 18.25-53.55 13.81-92.72 1.99-2.76 1.09-2.62 1.46-1.68 0.65-2.11 

Absent 1.18-9.00 0.15-4.98 1.36-2.05 0.76-2.57 5.60-11.38 3.08-15.35 

Carex 

halleriana 

Present 0.57-0.69 0.01-1.31 1.41-1.40 0.90-1.59 6.49-7.25 2.62-11.59 

Absent 2.69-15.60 0.64-9.29 1.38-2.22 0.78-2.60 4.52-10.69 2.24-15.35 

Carex humilis 
Present 1.42-4.94 0.80-4.22 1.36-1.55 1.03-1.77 11.73-13.84 3.56-18.30 

Absent 2.38-18.44 0.37-9.92 1.53-2.42 0.76-2.81 3.54-8.54 2.15-8.72 

Cerasium 

arvense 

Present 11.38-11.68 0.99-19.75 2.16-4.10 0.95-7.64 3.32-3.25 0.51-3.63 

Absent 1.3-14.39 0.35-4.94 1.34-1.73 0.78-2.47 5.63-11.72 2.34-15.73 

Dianthus 

carthusianorum 

Present 0.50-34.58 0.03-4.82 1.65-2.60 1.09-2.49 11.18-14.35 3.50-23.29 

Absent 1.63-10.87 0.66-8.20 1.39-2.06 0.77-2.57 4.48-9.70 2.21-13.62 

Dianthus 

sylvaticus 

Present 1.47-3.77 1.10-1.61 1.20-2.15 0.87-1.52 3.54-5.81 2.54-8.13 

Absent 1.65-15.21 0.37-8.90 1.40-2.12 0.78-2.60 4.66-10.87 2.24-15.35 

Euphorbia 

cyparissias 

Present 1.27-3.97 0.65-3.75 0.76-0.94 0.58-0.95 8.45-13.81 3.94-16.40 

Absent 1.63-15.93 0.50-6.71 1.54-2.36 0.94-2.67 4.26-9.61 2.13-15.09 

Festuca 

valesiaca 

Present 0.64-5.82 0.31-7.80 1.12-2.06 0.72-2.60 5.88-11.88 3.57-15.76 

Absent 1.18-18.71 0.95-18.85 1.42-2.16 0.92-2.55 3.45-9.38 2.14-14.66 

Fumana 

ericoides 

Present 0.38-0.88 0.00-1.03 1.04-1.03 0.72-1.30 20.38-20.58 14.04-28.12 

Absent 1.81-15.57 0.64-9.29 1.48-2.62 0.78-2.67 3.78-9.02 2.15-11.73 

Helianthemum 

nummularium 

Present 0.99-3.98 0.17-2.66 1.03-2.11 0.66-2.11 8.45-12.53 1.30-17.20 

Absent 4.38-21.33 0.80-12.63 1.54-2.14 0.95-2.62 3.63-8.66 2.14-9.70 

Koeleria 

vallesiana 

Present 0.74-4.24 0.02-4.22 1.54-1.99 0.69-2.57 5.91-12.32 3.40-20.13 

Absent 3.73-20.61 0.91-11.89 1.31-2.22 0.83-2.52 4.10-8.92 2.10-11.45 

Minuartia 

laricifolia 

Present 12.25-55.31 6.45-65.06 0.94-2.07 0.85-2.83 2.38-6.80 1.88-9.55 

Absent 1.27-7.78 0.44-5.03 1.41-2.14 0.77-2.52 4.77-10.83 2.61-14.48 

Potentilla 

neumanniana 

Present 0.28-5.07 0.00-6.91 1.59-2.08 0.98-2.65 4.52-11.21 2.29-7.96 

Absent 1.47-18.37 0.80-9.92 1.24-2.15 0.78-2.24 4.52-9.85 2.33-15.12 

Sedum 

montanum 

Present 2.69-24.05 0.66-18.13 1.59-1.92 1.09-2.47 5.20-9.59 3.33-13.80 

Absent 1.29-5.40 0.46-7.73 1.26-2.20 0.78-2.67 4.21-10.56 2.24-14.17 

Sempervivum 

arachnoideum 

Present 1.50-13.69 0.21-1.22 1.25-1.48 0.67-1.84 4.36-8.91 2.29-8.94 

Absent 1.43-14.03 0.59-8.48 1.40-2.35 0.78-2.68 4.52-10.80 2.33-15.12 

Stachys recta 
Present 1.38-5.83 0.26-5.13 1.64-3.21 0.58-5.55 3.45-8.96 2.04-9.53 

Absent 1.56-16.65 0.65-9.44 1.34-1.78 0.78-2.16 4.77-10.73 2.89-15.09 

Teucrium 

chamaedrys 

Present 1.27-15.47 0.38-4.38 1.29-1.61 0.78-1.65 9.53-16.76 4.26-21.44 

Absent 4.50-12.16 0.81-11.38 1.90-2.73 0.78-3.76 3.15-6.29 1.62-5.57 

Verbascum 

lychnitis 

Pres 4.24-6.30 0.51-8.41 1.81-3.63 0.79-6.68 3.42-8.04 1.78-5.50 

Abs 1.47-14.89 0.59-6.66 1.40-1.94 0.78-2.50 4.66-10.59 2.32-15.12 
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