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ABSTRACT 
Mating opportunities fluctuate in the wild and hermaphrodites have the chance of partitioning reproductive resources 

between their two sexual functions accordingly, i.e., they have a plastic sex allocation. Plasticity is usually promoted by 

environmental fluctuations butmay be affected by species-specific factors, which may be revealed by comparisons 

between related species.We testedwhether polychaeteworms of three related species of simultaneous hermaphrodites, 

Ophryotrocha diadema, Ophryotrocha adherens and Ophryotrocha gracilis, had plastic male and female allocation. We 

measured the costs of the female function and investigated whether the costs might affect the magnitude of plasticity in 

this function. To these aims, we exposed adult worms to three levels of mating opportunities and measured their female 

and male functions. In our experimental conditions, there was no adjustment in the male function, the cheapest function, 

whereas the three species differed in how they adjusted their allocation into the female function to mating opportunities. 

O. diadema and O. adherens worms exhibited highly plastic female allocation, and plasticitywas consistent across three 

measures of female function. In contrast, O. gracilis worms had a fixed female allocation, irrespective of mating 

opportunities. Additionally, when the sexual functions were relatively costly, their plasticity was greater than when they 

were relatively cheap. However, the magnitude of the plasticity did not depend solely on species-specific costs of the 

function, but also on the features of the mating system of each species.  
 
1. Introduction 
Mating opportunities vary in thewild. In separate-sex species,males respond to such variations by opportunistically and 

adaptively adjusting their sperm production, ejaculate size and/or courtship behavior (e.g. Barbosa, 2012; Candolin and 

Reynolds, 2002; Scaggiante et al., 2005; Shine et al., 2003; Wedell et al., 2002). Similarly, females adjust the number of 

matings or their brood sex-ratio to mating opportunities (e.g., Gage, 1995; Richardson and Burke, 2001; Shuker et al., 

2006).  

In simultaneous hermaphrodites, individuals invest their resources into two sexual functions at the same time, the male 

and female functions, and can respond to changes in mating opportunities by strategically expanding or reducing their 

resource allocation to one sex at the expense or in favor of the other. Sex allocation theory predicts a tradeoff between 

sex functions (Charnov, 1982; Schärer, 2009). When the size of the mating group is low, hermaphrodites are expected 

to invest fewresources into themale function (e.g., they are expected to produce just enough sperm to fertilize their 

partners' eggs) and devote their remaining resources to the female function (e.g., to egg production). As the size of the 

mating group increases, hermaphrodites should increase the amount of resources invested into themale function and 

decrease the amount invested into the female function. Empirical tests of these predictions often investigated the effect 

of the social group, rather than that of the mating group, because the latter is difficult to manipulate. By varying the size 

of the social group, itwas often found that adult hermaphrodites make plastic adjustments of their sex allocation as they 

sense a change in their social group, i.e., in mating opportunities (Brauer et al., 2007; Hart et al., 2011; Lorenzi et al., 

2005). However, the way hermaphrodites adjust their sex allocation to mating opportunities varies widely among 

species. For example, in response to variation in the size of the social group, some species showa plasticmale allocation, 

but do not change their female allocation (e.g. Tan et al., 2004 in leeches; Baeza, 2007 in shrimps; Hoch and Levinton, 

2012 in barnacles; Schärer and Ladurner, 2003 in flatworms). Conversely, other species show a plastic female 

allocation and an almost fixed male allocation (Lorenzi et al., 2005; Schleicherová et al., 2006, 2010 in polychaete 

worms). In contrast to the above animals, which mate through behavioral interactions, sessile colonial invertebrates may 

withhold female investment pending sperm reception (Hughes et al., 2002 in bryozoans). The diversity in the patterns of 

phenotypic plasticity in sex allocation could be the result of the variety of the model species used in this kind of 

research and of the experimental conditions in which plasticity in sex allocation was tested in different species and 

laboratories, but other factors may play a role too (Schärer, 2009).   

More generally, we still know very little on how phenotypic plasticity evolves, both froma theoretical and an empirical 

point of view(Auld et al., 2010). Plasticity in sex allocation is central to evolutionary studies. Indeed, plasticity in sex 

allocation is a requisite in the models which describe the evolutionary transition between hermaphroditism and 

gonochorism (e.g., Delph and Wolf, 2005) and is tested in organisms whose breeding systems are under scrutiny as 

potentially intermediate steps in this transition (Lorenzi and Sella, 2013).   

Although sex allocation plasticity involves demographic costs (Lorenzi et al., in press-a), it is not costly per se (Lorenzi 

et al., 2008). Therefore we hypothesized that it might be the relative costs of the female vs the male function that could 

influence the magnitude of phenotypic plasticity in sex allocation. We expected that plasticity in sex allocation reduced 

the risk of producing resource-consuming eggs when high mating opportunities enhanced the chances of reproducing 

via the cheaper male function. Assuming that plasticity in costly traits would help reducing the risk of wasting resources 



when the environment changes,we tested the hypothesis that plasticity should be particularly strong both in the 

relativelymore expensive sex function (i.e., the female function) and in species where the costly sex function is 

especially resource consuming (e.g. where eggs are the largest, relatively to body size). In these cases, the penalties for 

a mismatch between allocation to the costly sex function and opportunities of mating via that function should be the 

most severe. Introducing a comparative perspective, i.e. comparing species which invest relatively different amounts of 

resources in their sex functions, may help us to understand whether the costs of sex functions play a role in shaping the 

magnitude of plasticity in sex allocation. We tested plasticity in female and male allocation in three species of 

simultaneously hermaphroditic worms of the genus Ophryotrocha - Ophryotrocha diadema, Ophryotrocha adherens 

and Ophryotrocha gracilis. The three species are closely related (Dahlgren et al., 2001; Thornhill et al., 2009), have 

similar morphology and reproductive biology, and reproduce over extended time periods, but differ in the amounts of 

resources invested in the female function; they produce eggs of different sizes and have largely different egg-laying 

rates (Paavo et al., 2000; Sella and Ramella, 1999). In contrast, the three species invest small amount of resources in 

sperm by producing few, aflagellate sperm (Morrow, 2004). We then expected that O. diadema and O. adherens (which 

make the largest investment in their female function) would show larger plasticity than O. gracilis in their female 

function.We measured plasticity inmale and female allocation by exposing worms to three levels of mating 

opportunities.  

 

2. Materials and methods 
 

2.1. Common general features of the study models 

O. diadema, O. adherens and O. gracilis are small (<5 mm), transparent marine polychaete worms. Their life-cycle 

consists of a protandrous phase followed by a simultaneously hermaphroditic phase. During the protandrous 

phase,worms produce sperm. In the subsequent hermaphroditic phase, worms produce both sperm and eggs. In 

Ophryotrocha worms, gonads are very simple andmale and female gametes complete their development at each 

reproductive bout as free germ cells in the worm's coelom. Worms reproduce iteroparously for 5–13 weeks after they 

are sexually mature (Åkesson, 1976; Paavo et al., 2000; Sella, 1985). They produce aflagellate sperm (less costly than 

flagellate sperm, Morrow, 2004), in small numbers (e.g., 50 sperm per egg, Sella, 1990). Hermaphroditic Ophryotrocha 

worms are obligatorily outcrossing and mate through pseudocopulation, a very special form of external fertilization. 

During pseudocopulation, two worms stay in close contact with each other, until one worm releases eggs in a 

transparent jelly cocoon and the other releases its aflagellate sperm and deposit them on the eggs, inside the jelly 

cocoon (Paavo et al., 2000; Westheide, 1984). Because fertilization is external, there is no storage of allosperm, but 

multiple worms in the male role can fertilize the same cocoon (Lorenzi et al., in press-b). Owing to their small body size 

and their interstitial habitat, it is very difficult to study the behavioral ecology of Ophryotrocha worms in the field.  

 

2.2. O. diadema 

O. diadema worms were found in clusters of mussels growing in nutrient-rich waters of Californian harbors (Åkesson, 

1976) but they may be more widespread (Simonini et al., 2009, 2010). In pairs, each hermaphrodite lays a large cocoon 

of about 30 eggs every third day (Premoli and Sella, 1995). These worms are egg-traders and regularly alternate sexual 

roles in successive reproductive bouts when they are in groups of 2 worms (Sella, 1985). Reproductive resources are 

also largely invested in mate competition when they are in groups N2 worms. In this condition,worms compete 

formating and plastically adjust their sex allocation (Lorenzi et al., 2005; Sella and Lorenzi, 2000, 2003). They become 

significantly more aggressive towards other hermaphrodites but do not change their low sperm count, which suggest 

that the resources they spare from the female function are invested in behavioral competition for mating in the male role 

(Lorenzi et al., 2006). These adjustments occur as a response to cues that inform worms on the number of potential 

mates and/or rivals, irrespective of other density factors such as metabolite accumulation, and oxygen consumption. 

(Lorenzi et al., 2005). Indeed, these worms sense the number of potential mates through waterborne chemical cues and 

adjust their male and female allocation appropriately, whereas encounter probability has no effect on sex allocation 

(Schleicherová et al., 2006). The effect of these chemical cues is so strong that we can manipulate the sex allocation 

ofworms by simply varying the amount of cues rather than varying the number of worms in the enclosures 

(Schleicherová et al., 2010). These worms have kept plasticity in sex allocation although cultured in dense laboratory 

populations for generations (Schleicherová et al., 2013). In this experiment, we used worms of the lab culture from the 

California population.  

 

2.3. O. adherens 

O. adherens worms were collected in Hawaii, Cyprus, the Canary Islands (Paavo et al., 2000), and Sicily (Simonini et 

al., 2010). They live in nutrient-rich waters and are found in mussel clusters living in harbors (Paavo et al., 2000). In 

pairs, each hermaphrodite lays a large egg cocoon (in relation to body size) of about 70 eggs every second day (N200 

eggs per week, Paavo et al., 2000). We do not know whether these worms have a plastic sex allocation. In the 

experiment we used worms of the lab culture from the Canary Islands population.  

 

2.4. O. gracilis 



O. gracilis worms were collected in the North Sea, where few worms were found after several surveys (Reichert and 

Buchholz, 2006). Populations of these worms live in coarse sand and thereforemay be exposed to dispersion caused by 

wave action more heavily than populations of the O. diadema or O. adherens. Each paired hermaphrodite lays a small 

egg cocoon of 4–7 eggs per week. In pairs, these worms regularly alternate sexual roles in successive reproductive 

bouts (Sella et al., 1997). We do not know whether these worms have a plastic sex allocation. In the experiment we used 

worms of the lab culture from the Helgoland population. 

 

3. Experimental set-up 
 

Worms of all the three species came from laboratory populations that were started approximately 25 years ago. Same 

age, virgin, non-sibling and ovigerouswormswere tested for their allocation to eggs and sperm as soon as they reached 

sexual maturity. For O. diadema and O. adherens, the experimentwas carried out on 45 focalworms per species, for O. 

gracilis on 30 worms. These worms (hereafter, focal worms) were randomly extracted fromthe progeny of asmany pairs 

of parents, i.e.,worms in the experimentwere not siblings. As soon as they hadmature male and female functions, they 

were randomly assigned to one of the following three levels of mating opportunities for three weeks: 1) low mating 

opportunity, where each focal worm had only one mate; 2) intermediate mating opportunity, where each focal worm 

had 3 potential mates; and 3) large mating opportunity, where each focal worm had 11 potential mates. The whole 

experiment was performed in 2007 and was concluded in three months.  

In O. diadema, we identified the focal hermaphrodite in every pair or group by means of a neutral marker which 

determines either a yellow or a white coloration of ovigerous worms and their eggs (Sella and Marzona, 1983). The 

focal worms were yellow-egg worms and their mates were white-egg worms. In O. adherens and O. gracilis, we 

identified focal worms by their body size. In hermaphroditic Ophryotrocha worms, body size does not affect sex 

allocation (Lorenzi et al., 2005). Therefore, in both species we chose as focal worms individuals that were 4-

chaetigerous-segments longer than their partners. We set up 15 replicates per species and per level of mating 

opportunity. Because it was difficult to track a focal O. gracilis worm in a large group of conspecific worms, we only 

collected data from low and intermediate levels of mating opportunities for this species. 

We carried out thewhole experiment in 10-ml glass bowls placed in a temperature-controlled chamber at 20 °C. The 

worms of the three species were reared in filtered, natural sea-water with salinity 35, were fed spinach ad libitum and 

kept in the dark. We changed water in the bowls once a week. 

 

3.1. Cost of female function 

Following Schärer and Ladurner (2003),we estimated the cost of the female function as the ratio of the area of eggs laid 

to the area of the body of the laying worm, assuming that these measures are estimates of resource investment. For O. 

gracilis, we calculated this ratio from data published by Sella and Ramella (1999). For O. diadema and O. adherens 

these data were not available from the literature. Therefore, we took digital pictures of the egg cocoons and the body of 

laying worms (n = 38 for O. diadema and n = 22 for O. adherens) at magnifications of 125× with a Stereo Microscope 

with Integrated LED Illumination and HD Camera (Leica EZ4 HD). Both measures of egg area (mean value of 3 

randomly chosen eggs in each cocoon) and body area (area of the body of the laying worm) were taken in pixel using 

Paint.NET. 

 

3.2. Measure of phenotypic plasticity in female function 

For each worm, we measured the female function by measuring the following variables: 1) resource investment in eggs 

(total number of eggs laid by each focal worm ∗ (ratio between the mean egg area and the mean body area)), 2) total 

number of egg cocoons, and 3) mean time interval between egg layings. Therefore, for each worm, we had a value (raw 

value, see below) for each variable associated with the female function. To this aim, we counted the number of egg 

cocoons and eggs laid by focal worms twice a week for three weeks. After counting, we removed the egg cocoons from 

the bowls to avoid mate competition by juveniles in protandrous phase.We assigned egg maternity as follows. The egg 

cocoons spawned by O. diadema focal worms were easily distinguished from those laid by their partners because of 

their yellow egg-color. The egg cocoons spawned by O. adherens and O. gracilis focal worms were distinguished from 

those laid by their partners by noting the physiological status of focal worms at each check (i.e., whether they had 

mature eggs in their coeloms).When we had any uncertainty in assigning the maternity of eggs either to focals or to 

their mates, we excluded the case from data analysis. 

 

3.3. Measure of phenotypic plasticity in male function 

At the end of the experiment, we measured the investment in the male function (i.e. the number of sperm) across the 

three levels of mating opportunities. This measure requires a heavy manipulation of worms that cannot be done during 

experiments, as we squeeze worms gently under the microscope until sperm ooze out of their body. Since it takes O. 

diadema worm three days to replenish sperm reserves (Sella, 1990), we kept focals isolated for three days before 

measuring their sperm (thus allowing sperm replenishment in case they had fertilized eggs just before). Two blind 

observers counted the number of sperm under a phase-contrast microscope at 400× magnification. Spermcounts by the 

two observers were highly significantly correlated (Pearson correlation, r = 0.923, P b 0.0001) and we used their mean 



values in the statistical analysis. Therefore, for each worm, we had a value (raw value, see below) for the only variable 

associated with the male function. Because counting sperm in focal worms took four days, we entered the day of 

measurement as a covariate in the analysis to control for the potential effects of the isolation period on sperm number. 

 

3.4. Measure of body growth 

At the first and last check,we measured the body size of focalworms as the number of chaetigerous segments, to control 

for resource investment in body growth (as opposed to investment in reproduction) during the experiment. There is no 

size-dependent sex allocation in O. diadema (Lorenzi et al., 2005). However, the body growth of the worms during the 

experiment was used to further control for potential associations between level of mating opportunities and body size. 

 

4. Statistical analysis 

 
The three studied species differed in the number of eggs laid. Different scales create problems in data analyses aswe 

expect larger variance in traits with larger mean values. If plasticity is measured as the difference between absolute trait 

values (e.g. number of eggs), it might appear that phenotypic plasticity is larger in species which produce larger mean 

number of eggs. Standardization of data equalizes variances. Therefore, we standardized all individually-measured-trait 

values (raw data) by the speciesmean of the given trait, in order to provide a biologically more meaningful species 

comparison.We standardized (Z scores) the raw values of the four variables associated with the female and male 

functions, namely, resources invested in eggs, number of egg cocoons, interval between egg-layings and sperm numbers 

(raw value minus the species-specific mean-value divided by the speciesspecific standard deviation), after checking for 

normality. We entered these standardized values as dependent variables and species and mating opportunity as fixed 

factors in four General Linear Models (GLMs). GLMs are implementations of Univariate Analyses of Variance and are 

based on Ordinary Least Squares.We followed a model simplification procedure, removing non-significant interactions 

and then nonsignificant terms until the model contained nothing but significant terms (Crawley, 1993; Wilson and 

Hardy, 2002). The factor focal worm-marker (either an egg-color or a body-size marker), introduced in a first GLM, 

was removed after testing it had no significant effect on female investment (F1,110 = 0.335, P = 0.495). We entered 

body size (as measured at the end of the experiment) as a covariate to control for potential effects of mating 

opportunities on body size. 

We compared body growth among species and among mating opportunities using a Generalized Linear Mixed Model 

(GLMM) for repeated measures and count data (Poisson distribution, link function: log). 

Statistical analyses were performed using IBM SPSS version 20. 

 

5. Results 

 
5.1. Costs of female function 

O. diadema worms produced eggs with a mean diameter of 310.46 ± 9.79 μm (data from n = 38 egg cocoons of 38 

worms). O. adherens worms produced eggs with a mean diameter of 137.59 ± 8.22 μm (data from n = 22 egg cocoons 

of 22 worms). An egg size of 200 μm was reported for O. gracilis (Sella and Ramella, 1999). 

The resource investment in one egg (as measured by the ratio between the mean egg area and the mean body area) was 

0.0112 in O diadema, 0.0164 in O adherens and 0.0210 in O gracilis. However, these values must be related to the size 

of egg cocoons,which differs between species. In our experimental conditions, O. diadema worms produced between 5 

and 34.3 eggs per egg cocoon. Therefore, the resource investment in one egg cocoon varied between 0.056 and 0.384 in 

O. diadema. O. adherens worms produced between 10 and 52.5 eggs per egg cocoon and the resource investment in one 

egg cocoon varied between 0.164 and 0.861. O. gracilis worms produced between 3 and 8 eggs per egg cocoon and the 

resource investment in one egg cocoon varied between 0.063 and 0.168. 

 

5.2. Measures of phenotypic plasticity in female function 

The worms of the three species were differently plastic in the three variables that measured their female function. 

 

5.3. Resource investment in eggs 

O. diadema and O. adherens worms decreased their resource investment in eggs with increasing mating opportunities, 

whereas O. gracilis worms did not change it (Fig. 1A, Table 1). This is shown statistically by the significant interaction 

term species * mating opportunity (F3,106 = 6.241, P = 0.001) and graphically by the non-parallel responses to the 

opportunities for mating by worms from the three species (Fig. 1A) (the covariate body size was removed from the 

model because it was not significant). In within-species comparisons, O. diadema and O. adherens worms significantly 

adjusted their resource investment in eggs to variation in mating opportunities, whereas O. gracilis worms did not (O. 

diadema: F2,41 = 63.202, P b 0.0001; O. adherens: F2,40 = 8.863, P = 0.001; O. gracilis F1,25 = 0.415, P = 0.526). 

 

5.4. Number of egg cocoons 

The worms of the three species differed in how they adjusted the number of egg cocoons to mating opportunities 

(interaction species * mating opportunity: F3,105 = 3.721, P = 0.014; covariate body size: F1,105 = 0.768, P = 0.383) 



(Fig. 1B, Table 1). In O. gracilis worms this trait was not plastic. In within-species comparisons, O. diadema and O. 

adherens worms significantly decreased the number of egg cocoons to increasing mating opportunities, whereas O. 

gracilis worms did not (O. diadema: factor mating opportunity: F2,40 = 54.329, P b 0.0001, covariate body size: F1,40 

= 1.409, P= 0.242; O. adherens: mating opportunity F2,39 = 3.264, P = 0.049, body size: F1,39= 3.866, P= 0.056; O. 

gracilis: mating opportunity F1,24 = 0.408, P = 0.529, body size: F1,24= 0.089, P= 0.768) (Fig. 1B, Table 1). 

 

5.5. Time interval between egg-layings 

Finally,mating opportunities significantly influenced the time intervals between egg-layings (interaction species * 

mating opportunity F3,105 = 2.306, P = 0.081; mating opportunity: F2,105 = 20.815, P b 0.0001; covariate body size: 

F1,105 = 3.005, P = 0.086) (Fig. 1C, Table 1). Inwithin-species comparisons, O. diadema worms significantly increased 

these intervals asmating opportunities increased,whereas O. adherens and O. gracilis worms did not (O. diadema: factor 

mating opportunity: F2,40 = 38.374, P b 0.0001, covariate body size: F1,40 = 0.025, P = 0.874; O. adherens: mating 

opportunity F2,39 = 2.518, P = 0.094, body size: F1,39= 3.910, P= 0.055; O. gracilis: mating opportunity F1,24 = 

0.314, P = 0.580, body size: F1,24 = 0.716, P = 0.406) (Fig. 1C, Table 1). 

 

5.6. Magnitudes of plasticity in resource investment in eggs 

The magnitudes of plasticity in resource investment in eggs, number of egg cocoons and time intervals between egg-

layings (as calculated by the difference between themean value of the variable at intermediate mating opportunities and 

that at low mating opportunities) were all larger in O. diadema and O. adherens than in O. gracilis (see Fig. 1 A,B,C). 

 

5.7. Measure of phenotypic plasticity in male function 

Worms did not vary their number of sperm in response to mating opportunities and this result was consistent among 

species (interaction species * mating opportunity F3,98 = 1.819, P = 0.149; species: F2,98 = 0.441, P = 0.645; mating 

opportunity: F2,98 = 1.071, P = 0.347; covariate body size: F1,98 = 1.059, P = 0.306; covariate day of measurement: 

F1,98= 0.864, P=0.355). 
 

5.8. Body growth 

Hermaphrodites grew during the experiment, as shown by the significant differences between their body sizes at the 

beginning and at the end of the experiment (GLMM, F1,105 = 7.481, P = 0.007). However, body growth was not 

significantly different by species (F2,105 = 1.818, P = 0.167) or by mating opportunities (F2,105= 0.434, P= 0.649). 
 

6. Discussion 
Our results show that the three species differed in their sexallocation responses to mating opportunities. Both O. 

diadema and O. adherens worms plastically changed their female allocation in relation to mating opportunities and 

these changes were consistent whatever variable (resource investment in eggs, number of egg cocoons and time interval 

between egg-layings) we used in the comparison. In contrast, O. gracilis worms did not exhibit any phenotypic 

plasticity in these traits in our experimental conditions. The three species did not show any significantly plastic response 

to mating opportunities in their investment in spermnumber. This finding confirms previous results in O. diadema 

(Lorenzi et al., 2005), in which hermaphrodites adjust their behavior to mating opportunities and compete more 

aggressively asmating opportunities – and rivals on the male role – increase, while the number of sperm does not 

increase (Lorenzi et al., 2006). Similarly, some fish adjust their behavior – and not their sperm numbers – to mate 

competition (Scaggiante et al., 2005). In O. adherens and O. gracilis worms, resources might trade-off as well between 

egg production and behavioral mate competition, rather than between egg and sperm production. Indeed, pre-mating 

sexual selection might be stronger than post-mating sexual selection (Lorenzi and Sella, 2008). In support of this 

hypothesis, it is worth recalling that the Ophryotrocha species produce very few aflagellate sperm and have to deposit 

them on their partner's eggs, inside the jelly cocoon (Oug, 1990; Premoli and Sella, 1995). It is likely that worms get 

more egg fertilized if they compete to get closer to their egg-releasing partner than if they produce large number of 

immotile sperm. 

If sperm production is cheaper than egg production (Di Bona et al., 2010; Ramirez Llodra, 2002), our results may 

suggest that the selection for sex allocation plasticity might be stronger on the traitwith the largest costs. This 

hypothesis is supported by data from other hermaphroditic species. For example, the male function is largely plastic in 

barnacles where it is likely to involve relatively high costs. Barnacles fully develop their penises before every 

reproductive season varying their shapes adaptively according to environmental conditions (population density and 

wave exposure, Hoch and Levinton, 2012). In some hermaphrodites phenotypic plasticity in sex allocation is expressed 

only under starvation (e.g., Locher and Baur, 2002; Schärer et al., 2005). Resource budgets become stringent under 

starvation and penalties for sex allocation/mating opportunities mismatches cannot be paid. 

O. diadema worms strongly decreased the amount of resources they invested in the female function when the number of 

rivals increased from low to intermediate mating opportunities. These results confirm that these worms make accurate 

estimates of their social environment as they respond to changes from one to three adult conspecifics (Schleicherová et 

al., 2006, 2010). Instead, O. adherens worms processed variations between low and intermediatemating opportunities, 

but did so less accurately than O. diadema worms did. Perceptual and response abilities vary among species, as they are 



shaped by the ecology of the species (Shettleworth, 2010) and empirical data show that polychaetes exhibit some level 

of numerical acuity in evaluating social group size (Minetti et al., 2013; Schleicherová et al., 2006, 2010). 

In Ophryotrocha worms, the magnitude of phenotypic plasticity in the female function may not depend only on the 

species-specific costs of the female function. The phenotypic plasticity in female allocation may also be associated with 

the fact that worms live in intertidal communities in which density often fluctuates (Prevedelli et al., 2005; Reichert and 

Buchholz, 2006 in Ophryotrocha worms) and mating opportunities may vary accordingly. Measuring to what extent the 

densities of the natural populations of the three species are stable – using density as a proxy for mating opportunities –

would help us understand whether the magnitude of plasticity in sex allocation is a response to fluctuations in mating 

opportunities, and would possibly help explain why O. diadema worms might be more plastic than O. adherens in their 

female function,whereas O. gracilis was not plastic at all, in our experimental conditions. Such measures of population 

densities are not available, to our knowledge, possibly because the hermaphroditic Ophryotrocha populations are very 

rare (e.g. Prevedelli et al., 2005; Simonini et al., 2010). Population densities and their fluctuations are likely to 

contribute to shape the mating systems in these worms. O. diadema worms conditionally reciprocate sexual roles when 

they are in isolated pairs; they swap eggs and retaliate cheating (Sella, 1985). This mating system is a good example of 

howselection promotes cooperation (Crowley et al., 1996; Dugatkin, 2002), suggesting that these worms have been 

selected for optimizing their reproductive behavior under very low population densities. Nevertheless, they 

opportunistically adjust their sex allocation as mating opportunities increase (Lorenzi et al., 2005, this paper). Little is 

known about the mating system of O. gracilis. Although thesewormsmake egg swapping as O. diadema worms, they do 

it less regularly than O. diadema (Premoli and Sella, 1995). Finally, focused studies on the mating system of O. 

adherens worms are lacking. These hermaphrodites do not exhibit  preferences for reciprocating partners (Paavo et al., 

2000), suggesting that they are not specialized in egg swapping. Additionally, pairs of worms stay stuck to each other 

by means of specialized secretions — which might contribute to reduce mate competition in crowded populations. 

Therefore, O. adherens worms might have been selected less strongly than O. diadema worms for perceiving small 

variations in mating opportunities and adjusting their sex allocation. In summary, both the relative costs ofmale and 

female functions and species-specific characteristics of the mating system may have influenced the magnitude of 

phenotypic plasticity in sex allocation. 
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