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Introduction 

Micropapillary carcinomas (MPCs) are a histological special type of breast cancer accounting for 
up to 7% of all invasive breast carcinomas1. These tumours display a unique growth pattern 
featuring clusters of tumour cells displaying inverted polarity immersed in a spongy stroma, and 
often display extensive vascular invasion 1. Microarray-based comparative genomic hybridization 
(aCGH) analysis carried out by our group has revealed that pure and mixed MPCs are remarkably 
similar at the genetic level 2 and harbour a constellation of genetic aberrations that is distinct from 
that of grade- and oestrogen receptor (ER)-matched invasive carcinomas of no special type (IC-
NSTs, also known as invasive ductal carcinomas of no special type) 2, 3. Our genomic analysis, 
however, did not identify any specific genomic aberration that may explain the distinctive 
morphology and clinical behaviour of MPCs. 

Some histological special types of breast cancer have been shown to be underpinned by highly 
recurrent fusion genes or somatic mutations (reviewed in refs 4 and 5). For instance, adenoid cystic 
carcinomas and secretory carcinomas of the breast have been shown to be characterized by 
recurrent specific chromosomal translocations that lead to the formation of the recurrent fusion 
genes MYB–NFIB 6 and ETV6–NTRK3 7, respectively, while lobular carcinomas are underpinned by 
E-cadherin loss of function 4, 8, 9. 

mailto:reisfilj@mskcc.org
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Massively parallel sequencing studies are providing a comprehensive characterization of the 
repertoire of mutations and fusion genes in different types of cancer 10-16. In breast cancer, RNA-
sequencing studies have identified a panoply of expressed fusion genes 12-14, 17, although the 
majority of these appear to exist at very low prevalence or represent private events (ie identified 
only in the index case) 12, 17, 18. It is currently believed that most of these fusion genes may be mere 
passenger events 12, 19. Recently, however, RNA sequencing has identified two classes of recurrent 
gene rearrangements in IC-NSTs, involving genes encoding microtubule-associated serine-
threonine kinase (MAST) and members of the Notch family 17. Furthermore, the presence of a 
chromosomal rearrangement resulting in the formation of a potentially functionally relevant 
MAGI3–AKT3 chimeric protein has been described in a subset of breast cancers 15. 

Given the previous identification of pathognomonic fusion genes and somatic mutations in 
histological special types of breast cancer and the recent identification of recurrent expressed fusion 
genes in breast cancer, the aims of this study were to determine (i) if MPCs harbour recurrent 
mutations affecting 273 genes, either recurrently mutated in breast cancer or DNA repair-related, or 
(ii) if MPCs are underpinned by highly-recurrent expressed fusion genes. Furthermore, we sought to 
determine the biological significance of selected fusion genes identified in MPCs in vitro. 

Materials and methods 

Tumour samples 

The study design is illustrated in Supplementary Figure 1 and power calculations are described in 
the Supplementary methods. In brief, two cohorts of MPCs were analysed: 16 formalin-fixed, 
paraffin-embedded (FFPE) MPCs (Table 1), five of which had matched frozen material, and 14 
additional FFPE MPCs, employed as a validation cohort. In addition, control groups of 16 IC-NSTs 
and 14 IC-NSTs grade- and ER-matched to the two series of MPCs were employed. Finally, an 
additional 48 grade 3 IC-NSTs were retrieved from the authors' institutions and surveyed for the 
presence of specific fusion transcripts (Supplementary methods and Supplementary Table 1). This 
study was approved by the authors' local research ethics committees. 



 
 

Figure 1. Microarray-based comparative genomic hybridization frequency plots and RNA-sequencing circos plots of 
micropapillary carcinomas of the breast. (A) Frequency plot of copy number gains and losses in 16 micropapillary 
carcinomas of the breast. The proportion of tumours in which each bacterial artificial chromosome (BAC) clone is 
gained (green bars) or lost (red bars) is plotted (y-axis) for each BAC clone according to its genomic position (x-axis). 
(B) Frequency plot of amplifications in 16 micropapillary carcinomas of the breast. The proportion of tumours in which 
each BAC clone is amplified (green bars) is plotted (y-axis) for each BAC clone according to its genomic position (x-
axis). The red dashed line indicates the threshold for recurrent events. (C) High-confidence validated expressed fusion 
genes are plotted in purple and high-confidence non-validated fusions in grey, linking the genomic locus of each partner 
of the fusion genes. Genome plots, based on the 32K aCGH data, are plotted in the inner circle (green, copy number 
gains; red, copy number losses; black, no copy number changes). MPC, micropapillary carcinoma of the breast. 
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Table 1. Main cohort of 16 microdissected MPCs subjected to microarray-based comparative genomic hybridization 
and Sequenom MassARRAY OncoCarta analysis. Five of the cases were subjected to RNA massively parallel 
sequencing due to the availability of a frozen specimen 

Sample Pure/mixed Specimen 
type 

Grade ER PR HER2 RNA-seq Mutationa 

1. ER, oestrogen receptor; FFPE, formalin-fixed, paraffin-embedded; NP, not performed; PR, progesterone 
receptor; RNA-seq, paired-end massively parallel mRNA sequencing; Y, yes. 

2. a 

Mutations in the hotspot regions of 19 genes assessed by the Sequenom OncoCarta v1.0. 

MPC10 Pure Frozen 3 Positive Positive Negative Y None 

MPC08 Pure Frozen 2 Positive Positive Negative Y None 

MPC70 Pure Frozen 2 Positive Positive Negative Y None 

MPC72 Pure Frozen 3 Positive Negative Negative Y None 

MPC71 Pure Frozen 3 Positive Positive Positive Y None 

MPC37 Mixed Frozen 3 Positive Positive Negative NP None 

MPC06 Pure FFPE 2 Positive Positive Negative NP None 

MPC11 Pure FFPE 2 Positive Positive Negative NP None 

MPC02 Pure FFPE 2 Positive Positive Negative NP None 

MPC04 Pure FFPE 3 Positive Negative Negative NP None 

MPC01 Pure FFPE 2 Positive Positive Negative NP None 

MPC23 Pure FFPE 3 Positive Negative Negative NP None 

MPC25 Mixed FFPE 2 Positive Positive Negative NP PIK3CA H1047R 

MPC45 Mixed FFPE 3 Positive Positive Positive NP None 

MPC38 Mixed FFPE 3 Positive Positive Negative NP None 

MPC53 Mixed FFPE 3 Negative Negative Positive NP None 

 

Immunohistochemistry 

Representative sections of each case were subjected to immunohistochemical assessment using 
antibodies against epithelial membrane antigen, ER, progesterone receptor (PR), and HER2 as 
previously described 2, 3 and were reviewed by at least two pathologists (CM, AS, and/or JSR-F), 
using previously defined scoring systems and cut-offs 2, 3, 20 (Supplementary methods and 
Supplementary Table 2). 

Microdissection, DNA extraction, and RNA extraction 

Representative 8-µm-thick sections of the MPCs and IC-NSTs were subjected to microdissection 
with a sterile needle under a stereomicroscope (Olympus SZ61, Tokyo, Japan) to ensure a 
percentage of tumour cells greater than 90%, as previously described 3, 21. DNA extraction, 

http://onlinelibrary.wiley.com.offcampus.dam.unito.it/doi/10.1002/path.4325/full#path4325-note-0004
http://onlinelibrary.wiley.com.offcampus.dam.unito.it/doi/10.1002/path.4325/full#path4325-bib-0002
http://onlinelibrary.wiley.com.offcampus.dam.unito.it/doi/10.1002/path.4325/full#path4325-bib-0002
http://onlinelibrary.wiley.com.offcampus.dam.unito.it/doi/10.1002/path.4325/full#path4325-bib-0003
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quantification, and quality control assessment were performed as previously described 3, 21 
(Supplementary methods). From eight of the 16 MPCs microdissected, adjacent normal breast 
tissue was successfully microdissected. 

Microarray comparative genomic hybridization (aCGH) 

Sixteen MPCs and 16 grade-, ER-, and HER2-matched IC-NSTs were subjected to aCGH analysis 
using a platform that comprised �32 000 BAC clones tiled across the genome 22. This platform has 
been shown to be as robust as, and to have comparable resolution to high-density oligonucleotide 
arrays 23-25. DNA labelling, array hybridization, image acquisition, and data analysis were 
performed as previously described 3, 22, 26, 27 (Supplementary methods). Data, the analysis history, 
script, and code are available at http://rock.icr.ac.uk/collaborations/Mackay/Micropapillary. 

Mutation screening and validation 

Sixteen MPCs and 16 grade-, ER-, and HER2-matched IC-NSTs were subjected to hotspot mutation 
screening of 19 known cancer genes using the OncoCarta Panel v 1.0 (Sequenom, San Diego, CA, 
USA) and validated using Sanger sequencing as previously described 22, 27. For eight of these cases, 
sufficient DNA from tumour and normal breast was available for targeted capture massively 
parallel sequencing analysis using a bait library targeting 273 genes either recurrently mutated in 
breast cancer or DNA repair-related genes as previously described 2, 28-35 (Supplementary methods 
and Supplementary Table 3). 

Paired-end massively parallel RNA sequencing 

Five pure frozen MPCs were subjected to mRNA massively parallel sequencing, which was 
performed according to the standard Illumina mRNA paired-end library protocol (Illumina Inc, San 
Diego, CA, USA) as previously described 36. Paired-end sequencing was performed using 2 × 54 bp 
cycles on the Genome Analyser IIx (Illumina; Supplementary methods). Data were aligned to the 
genome and transcriptome using Bowtie 37. Mate-pairs supporting novel chimeric transcripts were 
identified using ChimeraScan version 4.0.3.0 as previously described 17, 37. High-confidence 
chimeric transcripts were nominated subsequent to further filtering to remove multi-mapping reads 
and to exclude false-positive nominations 37. 

Reverse-transcription PCR (RT-PCR), PCR, and Sanger sequencing validation 

Nominated fusion genes were validated in five index cases by RT-PCR and Sanger sequencing as 
previously described 18 (Supplementary methods). Validated in-frame and out-of-frame fusion 
genes with recurrent partners found in independent datasets 12, 15-17 were screened at the cDNA level 
in an independent cohort of MPCs (n=14), grade- and ER-matched IC-NSTs (n=14), and grade 3 
IC-NSTs (n=48) using RT-PCR or quantitative real-time PCR (qRT-PCR; Supplementary 
methods). 

Constructs for functional analyses 

The SLC2A1–FAF1 and BCAS4–AURKA fusion open reading frames (ORFs) were PCR-amplified 
from the index tumour (MPC10) and cloned into a mammalian expression vector pCMVentry, with 
a C-terminal DDK tag (OriGene, Rockville, MD, USA). Full-length expression constructs of FAF1, 

http://onlinelibrary.wiley.com.offcampus.dam.unito.it/doi/10.1002/path.4325/full#path4325-bib-0003
http://rock.icr.ac.uk/collaborations/Mackay/Micropapillary
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AURKA, and RAE1 with DDK tags were obtained from OriGene. Expression of the fusion and wild-
type protein constructs was detected with the anti-DDK monoclonal antibody 4C5 (Origene) by 
western blotting of 20 µg of whole cell protein lysate as previously described [38]. Sequences of the 
ORFs are available at http://rock.icr.ac.uk/collaborations/Mackay/Micropapillary. 

Cell line models 

The ER-positive breast cancer cell lines, MCF7, BT474, T47D, and ZR75.1, whose phenotypic 
characteristics and patterns of copy number aberrations are consistent with those of the MPCs 
(Supplementary Table 4), and 12 HER2-amplified cell lines (JIMT1, UACC812, UACC893, 
VP229, SKBR3, ZR75.30, HCC1569, HCC1954, MDA-MB-453, MDA-MB-361, SUM225, and 
SUM190) were included in this study. The sources, growth conditions, and authentication methods 
are described in the Supplementary methods. 

Functional assessment of in-frame fusion genes 

Cloned SLC2A1-FAF1 and BCAS4-AURKA fusions, full-length 3′ partner gene constructs or empty 
vectors were transfected into four ER-positive breast cancer cell lines (MCF7, BT474, T47D, and 
ZR75.1) using Lipofectamine 2000 (Invitrogen, Carlsbad, CA, USA). Antibiotic selection was 
performed as previously described 38, and cell populations were assessed every 24 h, for 9 days, 
using the CellTiter-Glo® cell viability assay (Promega, Madison, WI, USA) 38, with each reading 
normalized to day 1 to determine the fold change (Supplementary methods). 

Functional assessment of out-of-frame fusion genes 

Short-interfering RNA (siRNA) silencing of CDK12 was performed as previously described 38, 39. 
Briefly, MCF7, T47D, and SUM149 breast cancer cells were transfected with siGENOME 
SMARTpools (each containing four distinct siRNAs targeting each gene), a non-targeting negative 
control siRNA (siCON), and a positive control siRNA targeting PLK1 (siCDK12: M-004031-03; 
siControl: D-001206-14; siPLK1: M-003290-01; Fermentas, Germany). Transfection mixes 
contained 50 nm siRNA in a final volume of 100 µl, together with Lipofectamine RNAiMAX 
reagent (Invitrogen). CDK12 silencing was confirmed at the protein level by western blotting using 
an anti-CDK12 antibody (ab37914; Abcam, Cambridge, MA, USA). 

Long-term survival assay 

Long-term 14-day survival assays were performed using six-well plates in triplicate as previously 
described 38, 39. The sulforhodamine B (SRB) (Sigma) assay was employed as readout as described 
previously 38, 39 (Supplementary methods). The PARP inhibitor BMN673 was a kind gift from 
BioMarin Pharmaceuticals (San Rafael, CA, USA), and olaparib (AZD2281/KU0058948) was 
obtained from SelleckBio (Munich, Germany). 

Analysis of RAD51 foci formation 

Nuclear RAD51 and phospho-γ-H2AX foci were visualized and quantified as previously described 
38, 39 and used as surrogate markers for induction of DNA double-strand breaks (DSBs) and 
competent homologous recombination (HR) DNA repair, respectively (Supplementary methods). 

http://onlinelibrary.wiley.com.offcampus.dam.unito.it/doi/10.1002/path.4325/full#path4325-bib-0038
http://rock.icr.ac.uk/collaborations/Mackay/Micropapillary


  7

 

Statistical analyses 

The statistical analysis methods employed are described in the Supplementary methods. 

Results 

The landscape of gene copy number aberrations and somatic mutations in MPCs 

Genome-wide aCGH profiling of 16 MPCs revealed extensive changes in the genome, ranging from 
10.4% to 54.3% of BACs showing either gains or losses (mean: 28.5%; median: 28.9%). Consistent 
with the results of our previous studies 2, 3, 40, the most frequent recurrent changes included gains of 
1q, 8q, 17q, and 20q, and losses of 1p 8p, 13q, 16q, and 22q (Figure 1 and Supplementary Table 5). 
The majority of MPCs (10/16 cases; 62.5%) showed high-level gain of the whole arm of 
chromosome 8q, regardless of histological grade, as previously reported 3. Recurrent (n >1) focal (< 
2 Mb) amplifications containing known genes were identified on chromosomes 1p34.3–p34.2, 
8p12–p11.21, 17q11.1–q21.2, and 20q13.13–q13.2 (Supplementary Table 5). 

To determine whether MPCs would be underpinned by a pathognomonic somatic mutation, eight 
samples were subjected to targeted massively parallel sequencing comprising 273 genes, and 16 
samples were subjected to Sequenom mutation profiling using the OncoCarta panel 22, 27. We 
identified recurrent mutations affecting genes of the mitogen-activated protein kinase family 
(MAP3K1 in three cases, and MAP2K6 and MAP3K4 in one case each) and recurrent splice-site 
mutations of NBPF10 (n=2) (Table 2). A significant enrichment in genes mutated in luminal B 
breast cancers was observed in the constellation of mutations found in MPCs; out of the 119 genes 
most frequently mutated (ie�≥�4 cases – 3.5%) in luminal B IC-NSTs from The Cancer Genome 

Atlas (TCGA) study 16, TP53 (W53*), PIK3CA (H1047R), CSMD2 (R3608S), MAP3K1 (insertions 
and deletions in three cases), ATRX (P667T), HMCN1 (A537G), MLL2 (A946E), SPEN 
(ESS2280A), and ZFHX4 (A2896S) were mutated in MPC samples (representation factor=2.3; 
hypergeometric test p value<0.01; Table 2). Sequenom analysis confirmed the results of the 
massively parallel sequencing analysis; of the hotspot mutations included in the OncoCarta panel, 
the PIK3CA H1047R mutation was identified in the MPC reported to have this mutation by 
massively parallel sequencing (MPC25). This mutation was also validated by Sanger sequencing 
(Supplementary Figure 2). In addition, MAP3K1, MAP3K4, PIK3CA, NBPF10, CECR2, and 
CSMD2, which were mutated in the MPCs analysed here, were also shown to be mutated in at least 
one of the four cases of pure and mixed MPC included in the TCGA study 
(http://www.cbioportal.org/public-portal/study.do?cancer_study_id=brca_tcga_pub, assessed on 3 
December 2013). Taken together, our results suggest that MPCs are not driven by a pathognomonic 
mutation affecting any of the 273 genes included in our targeted capture massively parallel 
sequencing panel, and that genes mutated in luminal B IC-NSTs are also mutated in MPCs. 

http://www.cbioportal.org/public-portal/study.do?cancer_study_id=brca_tcga_pub
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Table 2. Somatic mutations identified by massively parallel sequencing in eight micropapillary carcinomas of the breast 

Gene Mutation Mutation type MAF Depth Tumour sample 

AGFG2 A443T Non-synonymous 
coding 

35.70% 366 MPC02T 

AKT1 E17K Non-synonymous 
coding 

31.70% 253 MPC06T 

APC R2714L Non-synonymous 
coding 

4.80% 156 MPC25T 

ATRX P667T Non-synonymous 
coding 

9.43% 156 MPC37T 

CDC25B R137W Non-synonymous 
coding 

18.49% 799 MPC53T 

CHD4 N789I Non-synonymous 
coding 

6.90% 284 MPC06T 

CSMD2 R3608S Non-synonymous 
coding 

5.81% 149 MPC25T 

CUBN N3576K Non-synonymous 
coding 

7.46% 204 MPC37T 

DCHS2 R434S Non-synonymous 
coding 

10.42% 147 MPC37T 

DOCK11 H833D Non-synonymous 
coding 

30.80% 132 MPC08T 

DST P5601Q Non-synonymous 
coding 

7.81% 130 MPC10T 

FBN1 P83S Non-synonymous 
coding 

16.00% 273 MPC53T 

FOXA1 Y259D Non-synonymous 
coding 

23.80% 179 MPC06T 

FOXA1 P248S Non-synonymous 
coding 

10.30% 246 MPC06T 

GPR98 L3724F Non-synonymous 
coding 

23.74% 330 MPC53T 

HMCN1 A537G Non-synonymous 
coding 

13.60% 76 MPC10T 

MAP1A S604* Stop gained 38.70% 47 MPC10T 

MAP2K6 S35P Non-synonymous 
coding 

18.40% 273 MPC53T 

MAP3K4 G743R Non-synonymous 
coding 

29.90% 459 MPC53T 

MLL2 A946E Non-synonymous 
coding 

6.10% 207 MPC08T 

MST1L W378G Non-synonymous 
coding 

23.28% 354 MPC25T 

PIK3CA H1047R Non-synonymous 
coding 

64.80% 111 MPC25T 

RBBP8 R805L Non-synonymous 
coding 

4.40% 216 MPC08T 

NBPF10 – Splice site donor 37.50% 43 MPC02T 

NBPF10 – Splice site donor 28.10% 50 MPC25T 

SHROOM4 P769S Non-synonymous 
coding 

21.05% 398 MPC53T 

SRCAP V2835M Non-synonymous 
coding 

20.59% 137 MPC37T 

TP53 W53* Stop gained 55.30% 647 MPC53T 
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ZFHX4 A2896S Non-synonymous 
coding 

6.20% 237 MPC08T 

MAP3K1 R271fs Indel–frameshift–
exon 

31.58% 312 MPC02T 

MAP3K1 K1037fs Indel – frameshift 40.00% 168 MPC02T 

 L1491LQP Indel–codon 
insertion 

32.14% 263 MPC06T 

ATN1 Q488QQ Indel–codon 
insertion 

26.67% 88 MPC10T 

SPEN ESS2280A Indel–codon 
change and 
deletion 

34.62% 91 MPC11T 

MAP3K1 T918fs Indel–frameshift 26.21% 183 MPC25T 

MAP3K1 F884fs Indel–frameshift 37.50% 147 MPC25T 

 

MAF, mutant allelic frequency; –, splice site. 

Identification of expressed fusion transcripts in MPCs 

RNA sequencing of five frozen MPCs resulted in a total amount of sequencing per sample of 1.33–
1.92 Gb per lane, median 1.37 Gb per lane (Supplementary Table 6). Fusion transcript detection 
using ChimeraScan [37] identified 18 high-confidence chimeric transcripts in four MPCs (MPC10, 
MPC08, MPC71, and MPC72; Figure 1 and Table 3). In MPCs harbouring expressed fusion genes, 
the number of nominated high-confidence chimeras ranged from 11 in MPC10 to one in MPC72. 
MPC70 had no nominated high-confidence chimeric transcripts; no differences in the total number 
of aligned reads were found between cases that expressed fusion genes and those that did not (data 
not shown). Nominated chimeric transcripts were subsequently validated in each index case by RT-
PCR and Sanger sequencing (Figure 2), of which eight of the 17 fusions were validated (Table 3). 
qRT-PCR was used to confirm expression of in-frame fusion genes (Supplementary Figure 3). One 
or both of the partner genes involved in seven of the eight fusion genes were amplified as defined 
by aCGH analysis (Figure 1 and Table 3). Of the eight validated fusions, two were predicted to be 
in-frame (SLC2A1–FAF1 and BCAS4–AURKA) and were both present in a single tumour (ie 
MPC10; Figure 2 and Supplementary Figure 3). Both of these fusions were found to map to 
breakpoints of amplification (Table 3). 

Table 3. Identification of expressed chimeric transcripts in five micropapillary breast 
carcinomas 

Sampl
e ID 

Gene 5′ Gene 3′ Mapping 5′ Mapping 3′ Tota
l 
read
s 

Spannin
g reads 

In 
fram
e 

Validate
d 

Copy 
numbe
r 5′ 

Copy 
numbe
r 3′ 

MPC1
0 

ELMO2 RAE1 chr20:450147
62 

chr20:559437
60 

25 14 No Y Gain Amp 

MPC1
0 

BCAS4 AURKA chr20:494114
66 

chr20:549444
44 

24 1 Yes Y Gain Amp 

MPC1
0 

SLC2A1 FAF1 chr1:4342430
4 

chr1:5090693
4 

12 5 Yes Y Amp Gain 

MPC1
0 

TSEN54 UNC84A chr17:735126
08 

chr7:934970 7 0 No N Gain Gain 

MPC1
0 

CD46 USH2A chr1:2079254
01 

chr1:2157962
35 

6 1 No Y Amp Gain 

http://onlinelibrary.wiley.com.offcampus.dam.unito.it/doi/10.1002/path.4325/full#path4325-bib-0037
http://onlinelibrary.wiley.com.offcampus.dam.unito.it/doi/10.1002/path.4325/full#path4325-fig-0001
http://onlinelibrary.wiley.com.offcampus.dam.unito.it/doi/10.1002/path.4325/full#path4325-tbl-0003
http://onlinelibrary.wiley.com.offcampus.dam.unito.it/doi/10.1002/path.4325/full#path4325-fig-0002
http://onlinelibrary.wiley.com.offcampus.dam.unito.it/doi/10.1002/path.4325/full#path4325-tbl-0003
http://onlinelibrary.wiley.com.offcampus.dam.unito.it/doi/10.1002/path.4325/full#path4325-fig-0001
http://onlinelibrary.wiley.com.offcampus.dam.unito.it/doi/10.1002/path.4325/full#path4325-tbl-0003
http://onlinelibrary.wiley.com.offcampus.dam.unito.it/doi/10.1002/path.4325/full#path4325-fig-0002
http://onlinelibrary.wiley.com.offcampus.dam.unito.it/doi/10.1002/path.4325/full#path4325-tbl-0003


MPC7
1 

LASP1 CDK12 chr17:370261
11 

chr17:376468
09 

5 4 No Y Amp Amp 

MPC1
0 

DENND1
C 

SURF1 chr19:647030
5 

chr9:1362186
65 

4 0 Yes N No 
change 

No 
change 

MPC1
0 

UBE2V1 SULF2 chr20:487132
08 

chr20:462861
50 

4 1 No Y Amp Amp 

MPC0
8 

BC01886
0 

CDK5RAP
3 

chr1:566461 chr17:460525
24 

3 1 No N No 
change 

No 
change 

MPC1
0 

LRRC6 HPRG1 chr8:1335844
47 

chr8:1335727
44 

3 0 No N Amp Amp 

MPC0
8 

PDLIM5 TCEB1 chr4:9537303
7 

chr8:7485863
3 

3 3 No N No 
change 

Amp 

MPC0
8 

TSPAN14 DYDC2 chr10:822140
37 

chr10:821264
43 

3 1 No N Amp No 
change 

MPC1
0 

IFI44L IFI44 chr1:7908608
7 

chr1:7911547
6 

2 0 No N Loss Loss 

MPC1
0 

MRPL21 BX640963 chr11:686608
70 

chr2:6968641
3 

2 0 No N No 
change 

No 
change 

MPC1
0 

SYNGAP
1 

RALY chr6:3338784
6 

chr20:326648
33 

2 0 No N Gain Gain 

MPC7
2 

MUC1 C1orf86 chr1:1551615
01 

chr1:2115916 2 0 No N Gain Loss 

MPC7
1 

CYB5B CALB2 chr16:694584
97 

chr16:714166
21 

2 2 No Y No 
change 

No 
change 

MPC7
1 

NSF C17orf57 chr17:446680
37 

chr17:454387
43 

2 2 No Y Amp No 
change 

5′, 5′ partner gene; 3′, 3′ partner gene; total reads, total number of reads supporting the nominated 
fusion; spanning reads, number of reads spanning the fusion junction. 
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Figure 2. Structure of validated high-confidence fusion genes in micropapillary carcinomas. Sanger sequencing validation of 
functionally assessed fusion genes in the index cases of micropapillary carcinomas (MPCs) (BCAS4–AURKA and SLC2A1–FAF1 
in MPC10 and LASP1-CDK12 in MPC71). (A) Haematoxylin and eosin (H&E) and epithelial membrane antigen (EMA) staining of 
representative areas of the MPCs harbouring the BCAS4–AURKA, SLC2A1–FAF1, and LASP1–CDK12 fusion genes (10× original 
magnification). (B) Schematic representation of nominated fusion transcripts. Fusion junctions with respective exon numbers are 
shown, while paler colours indicate 3′ and 5′ UTRs. (C) cDNA level sequence chromatograms spanning the junction (dotted line) of 
the fusion transcript. 

RT-PCR analysis of a series of 14 independent MPCs and 62 IC-NSTs (Supplementary Table 1 and 
Supplementary Figure 4) revealed no additional case harbouring these fusion transcripts. Of 
interest, however, both SLC2A1–FAF1 and BCAS4–AURKA fusion genes were found to be 
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present in the lymph-node metastasis of the index case MPC10 (Supplementary Figure 3). We next 
sought to determine whether one or both partner genes of all validated chimeric transcripts would 
be involved in fusion genes in other breast cancers. Publicly available next-generation sequencing 
breast cancer datasets (n�=�185) [12, 15-17, 41-43] were interrogated and revealed that BCAS4 is 
the 5′ partner gene in the validated fusion BCAS4–BCAS3 in MCF7 cells [13, 17] and that FAF1 is 
involved in a DNA rearrangement in an ER-negative/HER2-negative primary breast cancer. None 
of the other genes of these in-frame fusions were found to be involved in previously reported fusion 
genes in breast cancers. Of the out-of-frame validated chimeras, we identified recurrent expressed 
chimeric transcripts involving CDK12 (2.7%) and RAE1 (1%), and DNA rearrangements involving 
C17ORF57 (0.5%), NSF (0.5%), USH2A (0.5%), and LASP1 (1%) from unselected breast cancers 
in external datasets [12, 15-17, 41-43] (Supplementary Table 7). 

Assessment of the biological relevance of selected fusion genes identified in MPCs 

Given that SLC2A1–FAF1 and BCAS4–AURKA fusion genes were present in both the primary 
tumour and lymph node metastasis of MPC10, we hypothesized that, albeit restricted to a single 
case, these fusion genes could constitute driver events. Therefore, the chimeric transcript and each 
partner gene were transiently expressed in four ER-positive/HER2-negative breast cancer cell lines, 
including MCF7, which is reported to recapitulate many of the phenotypic characteristics of MPCs 
[44]. Forced expression of SLC2A1–FAF1 caused a significant increase in cell proliferation 
compared with the empty vector control (as measured by fold change in cell viability on day 9 in 
each cell line; Figure 3A) in two out of four cancer cell lines (ie MCF7 and BT474, p�<�0.05, 
one-way ANOVA). Forced expression of full-length FAF1 had a similar effect only in MCF7 and 
BT474 cells (Figure 3A). BCAS4–AURKA forced expression caused a significant increase in cell 
proliferation, compared with the empty vector, in one cell line (MCF7, p�<�0.05, one-way 
ANOVA). Again, forced expression of the 3′ partner, AURKA, recapitulated these results only in 
MCF7 (Figure 3B). These data suggest that some private, or low-frequency, fusion genes may 
provide a selective advantage, which may also be dependent on the phenotype and genetic make-up 
of the cell harbouring them (Figure 3C). 

http://onlinelibrary.wiley.com.offcampus.dam.unito.it/doi/10.1002/path.4325/full#path4325-bib-0012
http://onlinelibrary.wiley.com.offcampus.dam.unito.it/doi/10.1002/path.4325/full#path4325-bib-0013
http://onlinelibrary.wiley.com.offcampus.dam.unito.it/doi/10.1002/path.4325/full#path4325-bib-0012
http://onlinelibrary.wiley.com.offcampus.dam.unito.it/doi/10.1002/path.4325/full#path4325-bib-0044
http://onlinelibrary.wiley.com.offcampus.dam.unito.it/doi/10.1002/path.4325/full#path4325-fig-0003
http://onlinelibrary.wiley.com.offcampus.dam.unito.it/doi/10.1002/path.4325/full#path4325-fig-0003
http://onlinelibrary.wiley.com.offcampus.dam.unito.it/doi/10.1002/path.4325/full#path4325-fig-0003
http://onlinelibrary.wiley.com.offcampus.dam.unito.it/doi/10.1002/path.4325/full#path4325-fig-0003


 

Figure 3. Functional assessment of in-frame expressed fusion genes. To determine the biological significance of the in-
frame fusion genes identified in MPCs, forced expression of each fusion gene (SLC2A1–FAF1, A and BCAS4–
AURKA, B), the 3′ partner gene, and an empty vector was performed in a panel of breast cancer cell lines. The fold 
change in cell population (y-axis) is plotted against growth time (days, x-axis). Red, solid black, and dashed black lines 
denote growth curves following transfection with fusion gene constructs (ie SLC2A1–FAF1 or BCAS4–AURKA), full-
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length 3′ partner genes (ie FAF1 or AURKA), and empty vector (pCMV), respectively. Western blotting using anti-
DDK antibody was employed to confirm exogenous expression of cDNA constructs following transfection in MCF7 
cells (A and B). In A and B, statistically significant differences are highlighted with an asterisk. (C) A matrix 
illustrating the pathological phenotype and aberrations affecting endogenous fusion gene partners in the cell lines 
employed, where dark blue squares represent positivity in a marker, light blue squares represent negativity in a marker, 

green squares denote amplification of a gene, and red denotes rearrangement of a gene. 

Out-of-frame fusion genes may provide a selective advantage to cancer cells harbouring them by 
disrupting the expression of genes with tumour suppressor roles 45, 46. Given that CDK12 maps to 
the smallest region of amplification of the HER2 amplicon, and recurrent fusions were identified in 
13% (6/47) HER2-amplified tumours (Supplementary Table 7), we hypothesized that disruptions 
involving CDK12 were due to a copy number breakpoint within the amplicon. By mining aCGH 
and matched gene expression data from HER2-amplified cells lines 47, we identified 7/14 HER2-
amplified cells where a breakpoint within the HER2 amplicon mapped to CDK12 (Supplementary 
Table 4). A significant reduction in CDK12 mRNA expression was observed in these cell lines 
relative to HER2-amplified breast cancer cell lines that did not harbour a breakpoint involving 
CDK12 (Figure 4A; p=0.0360, t-test). Assessment of CDK12 protein expression in this panel of 
cells revealed a significantly lower level of protein expression (p=0.0438, t-test; Figure 4B), with 
MDA-MB-453 showing no detectable levels of CDK12 protein expression. CDK12 has recently 
been reported to be involved in the maintenance of genomic stability through regulation of genes 
involved in the DNA damage response pathway including BRCA1, ATR, FANCI, and FANCD2, and 
cells devoid of CDK12 have been reported to be sensitive to DNA-damaging agents 48. To 
determine whether HER2-amplified cells with breakpoints in CDK12 were sensitive to PARP 
inhibitors, we investigated the sensitivity of HER2-amplified and ER-positive breast cancer cell 
lines to BMN673 (Figure 4C) and olaparib (Supplementary Figure 5). Although there was no 
difference in sensitivity comparing the SF50 to cell lines with and without CDK12 disruption 
(p=0.207, BMN673 and p=0.375, olaparib, t-test), MDA-MB-453 cells that are null for CDK12 
expression were sensitive to both BMN673 and olaparib. Silencing of CDK12 mediated by siRNA 
in ER-positive cell lines MCF7 and T47D resulted in increased sensitivity to the PARP inhibitor 
BMN673 (Figure 4D). Furthermore, the ability to elicit RAD51 foci formation upon treatment with 
ionizing radiation or the PARP inhibitor BMN673 was diminished upon CDK12 silencing (Figure 
4E and Supplementary Figure 6). Reconstitution of wild-type CDK12 in MDA-MB-453 CDK12 
null cells rendered cells more resistant to both BMN673 (Figure 4F) and olaparib (Supplementary 
Figure 5). 

http://onlinelibrary.wiley.com.offcampus.dam.unito.it/doi/10.1002/path.4325/full#path4325-fig-0004
http://onlinelibrary.wiley.com.offcampus.dam.unito.it/doi/10.1002/path.4325/full#path4325-fig-0004
http://onlinelibrary.wiley.com.offcampus.dam.unito.it/doi/10.1002/path.4325/full#path4325-fig-0004
http://onlinelibrary.wiley.com.offcampus.dam.unito.it/doi/10.1002/path.4325/full#path4325-fig-0004
http://onlinelibrary.wiley.com.offcampus.dam.unito.it/doi/10.1002/path.4325/full#path4325-fig-0004
http://onlinelibrary.wiley.com.offcampus.dam.unito.it/doi/10.1002/path.4325/full#path4325-fig-0004


 
 

Figure 4. Disruption of CDK12 leads to PARP inhibitor sensitivity. (A) mRNA expression of CDK12 in HER2-
amplified cell lines with a breakpoint spanning the CDK12 locus shows significantly lower levels of CDK12 mRNA 
compared with cells without a breakpoint spanning CDK12. (B) Western blot analysis of endogenous CDK12 in a panel 
of HER2-amplified cell lines relative to β-actin loading control. BT474 (blue) was employed as a loading control for 
normalization of the results of the western blot. Note that MDA-MB-453 shows no CDK12 expression (red), and 
relative quantification of CDK12 protein expression relative to β-actin, showing a significantly lower level of 
expression in cell lines with a breakpoint spanning CDK12 than those without (p = 0.0438, t-test). (C) Log10 SF50 of 
HER2-amplified cell lines to the PARP inhibitor BMN673. SUM149 in blue as a positive control, given that this cell 
line harbours a BRCA1 mutation. (D) CDK12 silencing results in increased sensitivity to BMN673 in T47D and MCF7 
ER-positive breast cancer cells. The BRCA1 mutant SUM149 cells displayed no increase in sensitivity upon CDK12 
silencing, suggesting that the PARP inhibitor sensitivity caused by silencing of this gene results from impaired 
homologous recombination DNA repair. Western blot showing expression of CDK12 in T47D, MCF7, and SUM149 
cells relative to β-actin loading control. (E) Percentage of cells with RAD51 positive foci normalized to phospho-γ-
H2AX foci formation without treatment (Ctrl), 6 h after 10 Gy (IR) of irradiation, and with 1 mm BMN673 for 24 h 
(PARPi), with (red) and without (grey) CDK12 silencing. (F) Reconstitution of full-length CDK12 (blue) and empty 
vector (p.CMV) (black) in MDA-MB-453 cells treated with BMN673. Western blot showing expression of CDK12 in 
MDA-MB-453 cells transfected with full-length CDK12. 

Taken together, our results demonstrate that MPCs do not harbour highly-recurrent fusion genes; 
however, some of the in-frame private fusion genes identified in this study have a biological impact 
that is likely to be context-dependent and may be part of a convergent phenotype. Loss of CDK12 
due to breakpoints in the HER2 amplicon results in sensitivity to PARP inhibitors, suggesting that 
some out-of-frame fusion genes may represent bona fide loss-of-function genomic events, and 
potentially targetable somatic genetic aberrations. 

Discussion 
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In this analysis of breast MPCs, not only have we confirmed the patterns of gene copy number 
aberrations previously reported by our group 2, 3 in this special type of breast cancer, but we have 
also provided direct evidence to rule out two potential mechanisms that result in breast cancers 
displaying a micropapillary phenotype: (i) pathognomonic mutations in genes recurrently mutated 
in breast cancer and DNA repair-related genes and (ii) highly-recurrent expressed fusion genes. In 
fact, our analysis revealed recurrent mutations affecting MAPK genes. In addition, mutations 
affecting genes often mutated in luminal B IC-NSTs have also been found in individual MPC 
samples (Table 2). This finding confirms our previous observation that MPCs have a constellation 
of genetic aberrations similar to those of luminal B breast cancers 2, 3 and rules out the possibility 
that the MPC phenotype is driven by pathognomonic mutations affecting any of the 273 recurrently 
mutated breast cancer and DNA repair-related genes included in the targeted capture sequencing 
platform employed (Supplementary Table 3) and in the Sequenom OncoCarta panel. Furthermore, 
paired-end massively parallel RNA-sequencing revealed that although fusion genes are present in a 
proportion of MPCs, these constitute private genetic events (ie restricted to the index case) and 
often map to regions of amplification. 

Two of the in-frame expressed fusion genes identified in this study, SLC2A1–FAF1 and BCAS4–
AURKA, were present both in the primary tumour MPC10 and in the corresponding synchronous 
lymph-node metastasis (MPC10LND). Although this observation may merely indicate that these 
fusion genes were present in the modal clonal population of MPCs, it is possible that their 
maintenance in the metastatic deposit was due to a selective advantage conferred by the expression 
of the chimeric fusion genes. To test whether these fusion genes would confer a growth/survival 
advantage, we forced the expression of the chimeric fusion transcripts and each 3′ partner in four 
ER-positive, HER2-negative breast cancer cell lines. Similar to driver fusion genes identified by 
RNA sequencing analysis of breast cancer 17, ectopic overexpression of these in-frame fusion genes 
resulted in increased proliferation of multiple breast cancer cell lines, which was similar to the 
effect of the ectopic expression of the 3′ partner genes. It should be noted, however, that different 
ER-positive breast cancer cell lines responded differently to the forced expression of the fusion 
genes SLC2A1–FAF1 and BCAS4–AURKA, and their wild-type fusion gene partners (Figure 3). 
The SLC2A1–FAF1 fusion involves a promoter swap of the major glucose transporter SLC2A1 
exon 1 fused to exons 13–16 of FAF1. FAF1 (FAS associate factor 1) encodes for a protein that 
binds to FAS antigen and initiates apoptosis; its down-regulation may contribute to tumourigenesis, 
through the regulation of apoptosis and NFκB activity, as well as in ubiquitination and proteasomal 
degradation 49. The fusion gene found in MPC10 contains the ubiquitin association and ubiquitin-
like regulatory X domain 49. The BCAS4–AURKA fusion gene results in the preservation of the 
AURKA kinase domain being driven by the promoter sequences of BCAS4. The loci of BCAS4 
and AURKA (ie 20q13) are amplified in MPC10 and in MCF7 cells. AURKA encodes for Aurora 
Kinase A, a serine-threonine kinase mainly involved in centrosome duplication, mitotic entry, and 
spindle assembly 50. Although AURKA gene amplification is a common genetic aberration in breast 
cancer 16, its role as a therapeutic target for breast cancers harbouring amplification of this locus 
remains to be fully established. Taken together, these findings suggest that some private fusion 
genes may provide a growth/survival advantage to cancer cells and that this advantage is context-
dependent and may be the product of epistatic interactions. 

http://onlinelibrary.wiley.com.offcampus.dam.unito.it/doi/10.1002/path.4325/full#path4325-tbl-0002
http://onlinelibrary.wiley.com.offcampus.dam.unito.it/doi/10.1002/path.4325/full#path4325-bib-0002
http://onlinelibrary.wiley.com.offcampus.dam.unito.it/doi/10.1002/path.4325/full#path4325-fig-0003


  16

Some of the partner genes of the validated chimeric transcripts found in the present study were 
shown to be involved in other somatic rearrangements in breast cancers. CDK12, LASP1, RAE1, 
C17orf57, NSF, and USH2A were partners of out-of-frame, but not in-frame, fusion genes here and 
in other massively parallel sequencing analyses of breast cancers 12, 15-17, 41-43 (Supplementary Table 
7). It is plausible that these out-of-frame rearrangements result in loss of function of one or both 
partners involved. Re-analysis of publicly available data revealed that CDK12 may constitute a 
tumour suppresser gene as it is recurrently targeted not only by DNA rearrangements in breast 
(2.6% of unselected breast cancers; 13% of HER2-amplified breast cancers) and 1/17 (5%) HER2-
amplified gastric cancers 51, but also by nonsense mutations in 1.5% of triple-negative breast 
cancers 43. Consistent with this notion, CDK12 has been shown to be related to DNA repair, given 
that it plays a role in the regulation of transcription. In addition, depletion of CDK12 results in 
decreased expression of predominantly long genes with high numbers of exons, in particular DNA 
damage response genes, including BRCA1, ATR, FANCI, and FANCD2. CDK12-deficient cells 
display spontaneous DNA damage and are sensitive to a variety of DNA-damaging agents 48. Here 
we have demonstrated that RNA-interference-mediated silencing of CDK12 in ER-positive cell 
lines resulted in increased sensitivity to PARP inhibition and a reduction in the ability to form 
RAD51 foci in the nucleus upon DNA damage through irradiation or PARP inhibition. 
Furthermore, MDA-MB-453 cells, which lack CDK12, displayed sensitivity to PARP inhibition, 
which was rescued upon re-expression of full-length CDK12. These observations suggest that the 
subset of HER2-amplified breast cancers harbouring a disruption of CDK12 through somatic 
rearrangements may benefit from treatment with PARP inhibitors, and provide a molecular 
rationale for the testing of these agents in HER2-positive disease. 

This study has several limitations. First, the small number of cases subjected to mRNA sequencing 
could have resulted in a type II/β-error in the search of a highly-recurrent pathognomonic event; 
however, by the sequencing of five samples we should have been able to identify a recurrent event 
(ie with a prevalence similar to FOXL2 mutations in granulosa cell tumours of the ovary 52) with 
97% statistical power. Second, although cell lines constitutively harbouring the in-frame fusion 
genes identified in primary MPCs were not available, our results demonstrate that forced expression 
of SLC2A1–FAF1 and BCAS4–AURKA results in increased growth/survival in multiple breast 
cancer cells. 

In conclusion, our findings demonstrate that the MPC phenotype in breast cancers is neither driven 
by pathognomonic mutations affecting the 273 recurrently mutated breast cancer and DNA repair-
related genes tested in this study, nor is it underpinned by a highly-recurrent pathognomonic 
expressed fusion gene. Although the fusion genes identified in this study were private events, we 
have provided circumstantial evidence to suggest that at least some private in-frame expressed 
fusion genes may also be driver events and impact on cancer cell proliferation. Finally, some of the 
out-of-frame CDK12 rearrangements in HER2-positive breast cancers were shown to lead to a 
potential loss of function and provide a rationale for treating a subset of HER2-amplified patients 
with PARP inhibitors. 
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