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Abstract 5 

Cynara cardunculus L., a member of the Asteraceae family, is a diploid (2n=34) outcrossing 6 

perennial species native to the Mediterranean basin. It includes globe artichoke (var scolymus L.), 7 

which today is grown as vegetable all over the world, cultivated cardoon (var. altilis DC), locally 8 

grown in Southern European countries, and their progenitor wild cardoon (var. sylvestris Lam). The 9 

species is also a valuable source of pharmaceutical compounds, and is exploitable for the 10 

production of lignocellulosic biomass as well as oil from seed, the latter being suitable for both 11 

edible and bio-fuel end-uses.  12 

By crossing a non spiny globe artichoke genotype (female parent) with selected genotypes of the 13 

tree  botanical taxa, we generated three F1 segregating progenies from which genetic maps, based 14 

on the two-way pseudo test cross strategy, have been developed. From the globe artichoke and 15 

cultivated cardoon genetic maps a reference SSR-based consensus map was constructed, which 16 

consists of 227 loci (217 SSRs and ten SNPs) assembled into 17 major linkage groups.  To further 17 

saturate the C. cardunculus maps we recently applied NGS (next generation sequencing) 18 

technologies for mining a wide set of SNPs (single nucleotide polymorphism). Based on Illumina 19 

sequencing of gDNA RAD (restriction associated DNA) tags of three mapping parents (e.g. non 20 

spiny globe artichoke, cultivated and wild cardoon), we generated ~19.000 genomic contigs (mean 21 

312 bp) and ~17.000 SNPs (density 1/139 bp). Side by side, the transcriptome of the same mapping 22 

parents was sequenced by using a 454 platform, and raw data de novo assembled and annotated to 23 

generate the first reference transcriptome of the species (38,726 unigenes, 32.7 Mbp).  24 

The 454 reads, together with Illumina paired ends (PEs) from further eight C. cardunculus 25 

genotypes were aligned on the reference contig set, and ~195.000 SNPs were called (density 26 

1/169bp in coding regions). The two workflows led to produce a massive set of SNPs in C. 27 

cardunculus, and made possible create an extensive gene catalogue as a valuable resource for 28 

upcoming genomic and genetic studies.  29 

 30 
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 32 

 33 
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1.1 The Cynara cardunculus complex 35 

Cynara cardunculus L. is native to the Mediterranean Basin and includes three botanical taxa: the 36 

globe artichoke (var. scolymus), the cultivated cardoon (var. altilis) and the wild cardoon [var. 37 

sylvestris (Lamk) Fiori]. The three forms are fully cross-compatible with one another, and form 38 

fertile hybrids (Basnizki and Zohary 1994). Reproductive barriers separate the C. cardunculus 39 

complex from the other Cynara species (Rottenberg et al. 1996). The crosses between C. 40 

cardunculus and the wild species C. syriaca, C. algarbiensis, C. baetica and C. humilis do all 41 

produce few seeds, although the hybrids are generally sterile; the wild species are therefore 42 

regarded as members of the secondary wild gene pool of C. cardunculus (Rottenberg and Zohary 43 

2005). On both morphological (Wiklund 1992) and cytogenetic (Rottenberg et al. 1996) grounds, 44 

the closest of the wild species to the cultivated complex is C. syriaca. The monophyly and 45 

evolution of the Cynara spp. have been investigated by sequence comparisons between various ITS 46 

(internal transcribed spacer) and ETS (external transcribed spacer) regions (Robba et al. 2005; 47 

Sonnante et al. 2007) leading to the suggestion that the cardunculus complex is more differentiated 48 

and evolved than the other wild species. 49 

Molecular (Lanteri et al. 2004; Acquadro et al. 2005), cytogenetic and isozyme (Rottenberg 50 

et al. 1996) studies have confirmed that wild cardoon is the ancestor of both the domesticate globe 51 

artichoke and cultivated cardoon, which evolved independently under the influence of distinct 52 

anthropogenic selection criteria. The earliest report of the presence of C. cardunculus in Sicily and 53 

Greece dates back to Theophrastus (371–287 BCE), while in 77 CE, the Roman naturalist Pliny the 54 

Elder mentioned its use for medicinal purposes; however, little is known either of the process of 55 

domestication or the subsequent diversification of the two taxa. It has been assumed that before 56 

globe artichoke was selected, cardoon was cultivated for its fleshy stems and roots, which were 57 

considered a delicacy by the ancient Greeks and Romans (Portis et al. 2005a; Portis et al. 2005b). 58 

On the other hand, the best guess is that the globe artichoke was domesticated and transformed into 59 

the plant that we know today, most probably between 800 and 1500 CE in family or monastery 60 

gardens. Recently, by assessing the AFLP pattern of genetic diversity of a collection of Sicilian 61 

globe artichoke landraces, which have been cultivated for a number of centuries by local farmers, 62 

one landrace was identified which appears to represent an early stage of the domestication process, 63 

suggesting Sicily as one of the possible centre of globe artichoke domestication (Mauro et al. 2008). 64 

Globe artichoke contributes significantly to the Mediterranean agricultural economy, with an 65 

annual production of about 750 metric tons (MT) from over 80,000 ha of cultivated land and with 66 

an annual turnover exceeding US $ 500 million. Italy is the leading world producer (480 MT/year, 67 

FAOSTAT 2010), followed by Egypt and Spain. Globe artichoke cultivation is increasing in South 68 
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America and the United States, and more recently also in China. The prime globe artichoke product 69 

consists of the immature inflorescence (heads of capitula), which can be consumed in fresh, canned 70 

or frozen form. Each plant produces a number of capitula, the largest of which (the main capitulum) 71 

merges from the apex of the central stem, while the smaller ones are produced on lateral branches. 72 

Italy has the richest globe artichoke primary cultivated “gene pool” and harbours many 73 

distinct clonal varietal groups, best adapted to local environments. On the basis of harvest time, 74 

varietal types can be classified as early, producing heads from autumn to spring, and late, producing 75 

heads from early to late spring. On the basis of capitulum characters, cultivated germplasm has been 76 

classified into four main groups: (1) the Spinosi group, containing types with long sharp spines on 77 

bracts and leaves; (2) the Violetti group, with medium-sized, violet-coloured and less spiny heads; 78 

(3) the Romaneschi group, with spherical or subspherical non-spiny heads; (4) the Catanesi group, 79 

with relatively small, elongated and non-spiny heads. The classification based on head is in 80 

consistent agreement with the one obtained by assessing the AFLP genetic variation in a wide 81 

collection of 84 varietal types grown worldwide, indicating that the cultivated morphotypes play an 82 

important role in determining variation within the cultivated globe artichoke germplasm (Lanteri et 83 

al. 2004). Although in recent years some seed (achenes)-propagated varieties have been introduced, 84 

but vegetative propagation, by means of basal and lateral offshoots (either semi-dormant or actively 85 

growing), or stump pieces, has been adopted for centuries, and it is still largely prevalent in most of 86 

the varietal types and local landraces. Due to the limited selection adopted by farmers on the mother 87 

plants used for vegetative propagation, as well as mutations occurred over time, the populations at 88 

present in cultivation are multiclonal and characterized by a wide range of within population genetic 89 

variation (Lanteri et al. 2001; Portis et al. 2005c). 90 

The cultivated cardoon (C. cardunculus var. altilis DC) is usually raised from seed and 91 

handled as annual crop; its cultivation is much less widespread than that of the globe artichoke and 92 

the crop remains of regional importance in Spain, Italy and the south of France, where it is used in 93 

traditional dishes. The edible parts of the plant are the fleshy stems which are typically collected in 94 

late autumn-early winter and often, before collection are tied together, wrapped in straw, and/or 95 

buried for about three weeks in order to accentuate the flavour. A study based on SSR and AFLP 96 

profiling of the most widely grown Italian and Spanish local varieties showed that they form two 97 

separate gene-pools and that a considerable level of within variety variation is present (Portis et al. 98 

2005b). 99 

The wild cardoon is a robust thistle distributed over the west and central part of the 100 

Mediterranean basin (Portugal to west Turkey) as well as Canary Islands; in post Columbian time it 101 

colonized some part of the New World and has spread as a weed in Argentina and California 102 
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(Marushia and Holt 2006). Its flowers have been used for centuries in the Iberian Peninsula for 103 

manufacturing of ovine and caprine milk cheese (Sousa and Malcata 1996; Barbagallo et al. 2007) 104 

and its small and thorny capitula are sometimes sold in local markets in Sicily (Ierna and 105 

Mauromicale 2010).  106 

 107 

1.2 Uses of globe artichoke and cardoon other than for human food 108 

C. cardunculus has long been known to represent a valuable source of biopharmaceutical 109 

compounds (Slanina et al. 1993; Wagenbreth 1996; Sevcikova et al. 2002; Wang et al. 2003). Roots 110 

and rhizomes, used also for brew or infusion, provide a source of inulin, a demonstrated enhancer of 111 

the human intestinal flora, while leaves and heads represent 112 

113 

C. cardunculus extracts influence glucose and lipid metabolism 114 

(Blumenthal et al. 2000) and were reported to be effective in increasing the feeling of satiety in 115 

overweight subjects (Rondanelli et al. 2011); in various pharmacological test systems it has been 116 

demonstrated that they (i) protect proteins lipids and DNA from oxidative damage from free 117 

radicals (Gebhardt 1997; Brown and Rice-Evans 1998; Perez-Garcia et al. 2000), (ii) inhibit 118 

cholesterol biosynthesis and contribute to the prevention of atherosclerosis and other vascular 119 

disorders (Kraft 1997; Brown and Rice-Evans 1998; Gebhardt 1998; Pittlern and Ernst 1998; 120 

Matsui et al. 2006; Bundy et al. 2008). Furthermore, it has been demonstrated that C. cardunculus 121 

extracts inhibit HIV integrase, a key player in HIV replication and its insertion into host DNA 122 

(McDougall et al. 1998; Slanina et al. 2001), possess apoptotic properties (Miccadei et al. 2008) and 123 

exert antibacterial activity (Martino et al. 1999). 124 

The composition of the globe artichoke phenolic fraction includes four mono-caffeoylquinic 125 

isomers, six dicaffeoylquinic isomers, six flavonoid glycosides, and at least seven anthocyanins 126 

(Lattanzio et al. 2009). The genes involved in the biosynthesis of the mono-caffeoylquinic acid 127 

(chlorogenic acid) have been identified as well as their regulation under UV-C stress (Comino et al. 128 

2007, 2009; De Paolis et al. 2008; Moglia et al. 2009; Menin et al. 2010; Sonnante et al. 2010). 129 

Conversely, the biosynthetic pathway leading to di-caffeoylquinic acids is a matter of debate 130 

(Villegas and Kojima 1986; Hoffmann et al. 2003; Niggeweg et al. 2004). 131 

The characteristic bitterness of both globe artichoke and cultivated cardoon is mainly due to 132 

the presence of sesquiterpene lactones (STLs), of which the two major representatives are 133 

cynaropicrin and, at lower concentration, grosheimin and its derivatives (Schneider and Thiele 134 

1974; Cravotto et al. 2005). Cynaropicrin, like many sesquiterpenes lactones, has various medicinal 135 

activities (Shimoda et al. 2003; Cho et al. 2004; Schinor et al. 2004; Emendorfer et al. 2005; Ishida 136 
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et al. 2010) among which cytotoxicity against several types of cancer cells (Yasukawa et al. 2010). 137 

In globe artichoke a germacrene A synthase, involved in the first step of STLs biosynthesis, has 138 

been recently isolated, functionally characterized and mapped (Menin et al. 2012). 139 

C. cardunculus has great potential as a source of renewable energy, thanks to its 
140 

productivity of lignocellulosic biomass. The caloric value of the three C. cardunculus taxa is 
141 

analogous, however cultivated cardoon has the highest biomass yield, which can reach up to ~ 
142 

19t/ha dry matter with an energy value ~ 17 MJ/kg (Angelini et al. 2009; Ierna and Mauromicale 
143 

2010; Portis et al. 2010; Ierna et al. 2012). The species has been also identified as a candidate for 
144 

the production of seed oil which is suitable for both comestible and bio-fuel end-uses. Seed yield in 
145 

cardoon is about 2 t/ha and up to 0.8 t/ha in globe artichoke (at 5% w/v moisture), from about 25 to 
146 

30% of which is oil of good alimentary quality (Foti et al. 1999) due to its high and well balanced 
147 

content of oleic and linoleic acids, its low content of free acids, peroxides, saturated and linoleic 
148 

acids and a favourable α-tocopherol content (Maccarone et al. 1999), while the seed material left 
149 

after oil extraction can be used as a component of animal feed.  
150 

 151 

1.3 Linkage analyses: state of the art 152 

The genome organization of C. cardunculus (2n=2x=34; haploid genome size ~1.08 Gbp), 153 

unlike other species belonging to the Asteraceae family (e.g. sunflower, lettuce and chicory), 154 

remains largely unexplored. The species is an out-breeder, and is characteristically highly 155 

heterozygous. Its marked level of inbreeding depression inhibits the use of backcross, F2 or 156 

recombinant inbred populations for mapping purposes. As haploid induction - via either 157 

androgenesis or gynogenesis - has not yet been achieved (Motzo and Deidda 1993; Chatelet et al. 158 

2005; Stamigna et al. 2005), no possibility is presently available to generate doubled haploid 159 

populations. Thus, genetic mapping in the species has relied on a double pseudo-testcross approach 160 

(Grattapaglia and Sederoff 1994), in which segregating F1 progeny are derived from a cross 161 

between two heterozygous individuals. 162 

The first genetic maps of C. cardunculus were provided by Lanteri et al. (2006), and based 163 

on a cross between two genotypes of globe artichoke, namely the varietal types ‘Romanesco C3’ (a 164 

late-maturing non-spiny type used as female) and ‘Spinoso di Palermo’ (an early-maturing spiny 165 

type used as male). This population was genotyped using a number of PCR-based marker platforms, 166 

resulting in a ~1300 cM female map consisting of 204 loci, divided into 18 linkage groups (LGs), 167 

and a ~1200 cM male map comprising 180 loci and 17 LGs. The two maps shared 78 loci, which 168 

allowed for the alignment of 16 of the LGs. The maps have since been extended by the inclusion of 169 

three genes involved in the synthesis of caffeoylquinic acid (Comino et al. 2009; Moglia et al. 2009) 170 
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and a number of microsatellite loci, of which 19 were represented in both maps (Acquadro et al. 171 

2009).  172 

New maps have lately been generated from a set of F1 progeny involving the cross between 173 

the same female parent as previously (‘Romanesco C3’) and the cultivated cardoon genotype 174 

‘Altilis 41’ (Portis et al. 2009a). The cultivated cardoon map comprised 177 loci, subdivided into 17 175 

LGs and spanning just over 1000 cM, while the globe artichoke one featured 326 loci arranged into 176 

20 LGs, spanning ~1500 cM with a mean inter-marker distance of ~ 4.5 cM. A set of 84 loci shared 177 

between this ‘Romanesco C3’ map and the previously developed one (Lanteri et al. 2006) allowed 178 

for map alignment and the definition of 17 homologous LGs, corresponding to the haploid 179 

chromosome number of the species. Later on, the maps have been integrated with the inclusion of 180 

all the genes involved in the synthesis of caffeoylquinic acids known in the species (Menin et al. 181 

2010).  182 

Since more markers were needed to saturate the maps, a further wide set of SSR markers 183 

was developed from ESTs (expressed sequence tags) of globe artichoke, made available by the 184 

Composite Genome Project (CGP; http://compgenomics.ucdavis.edu/). Using a custom 185 

bioinformatic pipeline, 36,321 ESTs were assembled into 19,055 unigenes (6,621 contigs and 186 

12,434 singletons), annotated, and mined for perfect SSRs. Over 4,000 potential EST-SSR loci, 187 

lying within some 3,300 genes (one SSR per 3.6 kbp) have been identified, and PCR primers for the 188 

amplification of more than 2,000 of these have been designed. In a test of a sample of 300 of these 189 

assays, over half proved to be informative between the parents of the available mapping populations 190 

(Scaglione et al. 2009). As a result, a large number of these EST-SSR loci have been integrated into 191 

the globe artichoke and cultivated cardoon maps (Portis et al. 2012) and, more recently, exploited 192 

for genetic mapping in a population obtained by crossing globe artichoke with wild cardoon 193 

(Sonnante et al. 2011). The integration of 139 EST-SSR loci has significantly improved the 194 

resolution and accuracy of the ‘Romanesco C3’ and ‘Altilis 41’ maps. The female map was built 195 

with 473 loci spanning 1.544 cM with a mean inter-marker distance of 3.4 cM, corresponding to a 196 

3.8% increase in length over the earlier map, but in a ~ 28% decrease in the mean inter-marker 197 

distance. The male map consisted of 273 loci spanning 1486 cM, with a mean inter-marker distance 198 

of 5.4 cM, representing a marked increase in both length (+42%) and number of loci (+50%), 199 

together with a minor decrease in the mean inter-marker distance (-5%). The two maps shared 66 200 

codominant loci (64 SSRs and two SNPs), which allowed for the alignment of all the ‘Romanesco 201 

C3’ with the ‘Altilis 41’ LGs. Following alignment a consensus linkage map based exclusively on 202 

microsatellite and SNP markers (as depicted in Figure 1) was constructed (Portis et al. 2009b). The 203 

consensus map is shown in Figure 2; it comprised 227 loci (217 SSRs and ten SNPs targeting genes 204 
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involved in the synthesis of caffeoylquinic acids) arranged into 20 LGs (LOD threshold > 6.0). The 205 

consensus map length was 1068.0 cM, with a mean inter-marker spacing of 5.2 cM . The length of 206 

LGs varied from 4.0 to 113.7 cM (mean 62.8 cM), with the largest LG containing 36 loci. Lowering 207 

the LOD threshold to 5.0 resulted in the merging of three pairs of LG, thereby reducing the overall 208 

number to 17, corresponding to the haploid chromosome complement of the species. The majority 209 

of the LGs contained a mixture of ‘Romanesco C3’, ‘Altilis 41’ and shared co-dominant markers, 210 

with only four (LG_9, 13, 14 and 7) carrying shared loci and markers only present in the 211 

‘Romanesco C3' map. 212 

Putative functions have been deduced for SSR markers derived from ESTs using homology 213 

searches with public protein databases. Annotation of mapped loci was performed via BlastX search 214 

as well as InterPro scan and GO categorisation made it possible to tag some biological functions. A 215 

set of 17 EST-SSR markers were annotated with GO terms involved in the ‘response to stimulus’ 216 

(Table 1), five and eight of which were derived from transcripts related to response to cold and salt 217 

stress, respectively. As an example, the marker CyEM-42, developed from the contig 218 

CL4773Contig1 (Scaglione et al. 2009) and mapped on LG_12 of the SSR-based consensus map, 219 

showed high aminoacidic similarity (81%) with the protein kinase PBS1 of Arabidopsis. To 220 

consider reliable orthology, a reciprocal tblastx analysis against the whole EST collection currently 221 

available for C. cardunculus was performed, and no better alignment than that of contig CL4773 222 

was detected. PBS1 was found to work as R gene against the bacterial pathogen Pseudomonas 223 

syringae, where its cleavage, operated by the pathogens’ effector AvrPphB, triggers the signalling 224 

cascade, generating the host response (Shao et al. 2002). Pseudomonas spp. together with other 225 

endophytic bacteria may affect globe artichoke plants both in field and during micropropagation 226 

(Penalver et al. 1994) and the CyEM-42 may be likely considered a reliable marker for tagging a 227 

bacterial resistance trait in the species. On the whole, these EST-SSR markers may be defined as 228 

functional markers with the potential to target polymorphisms in gene responsible for traits of 229 

interest; they can be also particularly useful for constructing comparative framework maps with 230 

other Asteraceae, giving the possibility to amplify ortholog genes and provide anchor loci. 231 

This SSR-based consensus map of C. cardunculus is based on a robust marker platform of 232 

SSRs and a few gene-based SNP loci. It is expected that the further positioning of markers within 233 

target regions will provide key tools for marker-assisted breeding programs as well as the necessary 234 

framework to exploit mapping data obtained from diverse populations. At present, ~ 200 of the loci 235 

on the consensus map (about 88%) are sited within genic sequence, presenting some opportunity to 236 

identify candidate genes for particular traits within the species. 237 

 238 
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1.4 SNP mining 239 

The first set of SNP (single nucleotide polymorphism) markers available for the species has been 240 

developed on genes involved in the synthesis of caffeoylquinic acid, as above reported. The allelic 241 

forms of globe artichoke acyltransferases HCT, HQT (Comino et al. 2007; Comino et al. 2009) and 242 

the hydroxylase C3’H (Moglia et al. 2009), were analysed in the two globe artichoke parental 243 

genotypes (‘Romanesco C3’ and ‘Spinoso di Palermo’) of the first genetic maps (Lanteri et al. 244 

2006) and SNPs were identified. SNP genotyping of the F1 progeny was carried out with the tetra-245 

primers ARMS-PCR method (Ye et al. 2001; Chiapparino et al. 2004). A further SNP set has been 246 

later on developed by Menin et al. (2010) on three acyltransferases and on the C4H, 4CL and 247 

MYB12 genes, identified by an in silico scan of the globe artichoke unigene set assembled by 248 

Scaglione et al. (2009). Gene homologues were re-sequenced in the parental genotypes (globe 249 

artichoke ‘Romanesco C3’ and cultivated cardoon ‘Altilis 41’) of the genetic maps developed by 250 

Portis et al. (2009a) and genes successfully mapped. 251 

Recent advances in next-generation DNA sequencing technologies have made possible the 252 

development of high-throughput SNP genotyping platforms, that allow for the simultaneous 253 

interrogation of thousands of SNPs. Such resources have the potential to facilitate the rapid 254 

development of high-density genetic maps, and to enable genome-wide association studies as well 255 

as molecular breeding approaches in a variety of taxa (Bachlava et al. 2012). Thousands of SNPs 256 

have been recently developed in C. cardunculus by Next-Generation Sequencing (NGS) technology 257 

using two complementary approaches (Figure 3):  258 

1) genomic RAD (Restriction-site Associated DNA) tag sequencing (Miller et al. 2007) in 259 

combination with the Illumina Genome Analyzer sequencing device (Baird et al. 2008) of three 260 

genotypes (globe artichoke, cultivated cardoon and wild cardoon) that were crossed for developing 261 

F1 mapping populations (Scaglione et al. 2012a);  262 

2) transcriptome sequencing, via 454 and Illumina technologies, of the same three genotypes 263 

plus eight, five of which were globe artichoke, two cultivated and one wild cardoon (Scaglione et 264 

al. 2012b). Alongside, a functional characterisation and annotation of the obtained sequence set was 265 

performed. These SNPs represent a one-stop resource to produce a dense C. cardunculus genetic 266 

map via high-throughput genotyping technologies.  267 

 268 

1.4.1 Genomic SNP mining  269 

The recently developed restriction-site associated DNA (RAD) approach (Box 1) has been 270 

combined with the Illumina DNA sequencing platform to enable the rapid and mass discovery of 271 

SNP markers. Three genomic RAD libraries were obtained from the three C. cardunculus genotypes 272 
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belonging to the three taxa of the species and parents of two mapping populations. The first 273 

mapping population is an F1 progeny involving the cross between globe artichoke (‘Romanesco 274 

C3’, female parent) and cultivated cardoon (genotype ‘Altilis 41’) (Portis et al. 2009a). The second 275 

one is an F1 progeny involving the cross between the same female parent as previously and the wild 276 

cardoon (genotype ‘Creta4’) (Lanteri et al. 2011). 277 

 278 

1.4.1.1 RAD tag sequencing and de novo assembly 279 

The RAD-seq exercise produced 9.7 million reads (19.4 million Pair End - PE), equivalent to ~ 1 280 

Gbp of sequence. The distribution of reads was uneven across the three DNA samples, with 1.2 281 

million reads achieved for globe artichoke, 2.6 million for cultivated cardoon and 5.9 million for 282 

wild cardoon; the latter, being the largest set, was chosen as the basis for de novo contigs assembly. 283 

The assembly procedure created 19,061 reference genomic contigs, spanning 6.11 Mbp (with N50 = 284 

321 bp and a mean a contig length of 312 bp). The GC content was ~ 37.4% which is similar to that 285 

of many dicots species (Jaillon et al. 2007) and represents the first survey on the base composition 286 

of the C. cardunculus genome.  287 

 288 

1.4.1.2 RAD tag annotation 289 

The contig sequences characterisation was conducted using the BlastX algorithm and it resulted in 290 

the annotation of 5,335 contigs (28.0%). Regardless of the genome-wide RAD sampling, a 291 

noteworthy part of the annotated sequences might be represented by coding regions, since a 292 

methylation-sensitive enzyme (PstI) was used to produce the RAD-tag libraries (Palmer et al. 293 

2003), although the rather short length of the RAD contigs made difficult to distinguish between 294 

putative genes and pseudogenes. Enzyme codes were retrieved for 1,327 contigs, defining a unique 295 

set of 313 putative enzymatic activities, which were mapped onto KEGG reference pathways 296 

(http://www.genome.jp/kegg/). The remaining portion of the contig set (72%) was not attributed to 297 

any known sequence, likely due to the RAD contigs shortness.  298 

The transposable DNA element footprints detected, using RepeatMasker software (v3.2.9; 299 

http://www.repeatmasker.org) implemented with the RMBlast algorithm, and adopting the 300 

Viridiplantae repeats as reference, accounted for a 0.2% of the sequence, while 1.2% of the 301 

sequences derived from LTR retroelements, including Ty/Copia-like (0.8%) and Gypsy-like (0.2%). 302 

This quantification of transposable element abundance could have been underestimated, but these 303 

data represents a useful snapshot of relative abundance of each different mobile element class in C. 304 

cardunculus. 305 

 306 
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1.4.1.3 SNP calling 307 

The PE sequences generated for each mapping parent were aligned using the reference contig set as 308 

a scaffold. In total, ~ 33,000 sequence variants were detected, including 1,520 short indels, 309 

distributed over 12,068 contigs. The overall SNP frequency was estimated to be 5.6 per 1,000 310 

nucleotides, a level which is almost equal to that found in the non-coding regions of the V. vinifera 311 

genome (5.5 per 1,000 nucleotides; Velasco et al. 2007) and very similar to that observed in Citrus 312 

spp. ESTs (6.1 per 1,000 nucleotides; Jiang et al. 2010). A subset of ~ 17,400 SNPs was obtained 313 

considering allelic variant which were informative for both mapping populations (16,727 SNPs, and 314 

723 1-2nt indels) distributed over 7,478 contigs. 315 

Since C. cardunculus is highly heterozygous, SNPs were categorized as intra- or inter-316 

varietal, where the former also represents the heterozygous state of the analysed genotype. The two 317 

types were not exclusive, therefore heterozygous SNPs present in one sample could be found in 318 

both heterozygous or homozygous states in other genotypes. The number of heterozygous SNP loci 319 

was 1,235 in the globe artichoke, 2,868 in the cultivated cardoon and 5,069 in the wild cardoon 320 

mapping parents (Figure 4). Heterozygous SNPs are of key importance for mapping studies since 321 

for the linkage analysis a two-way pseudo-testcross approach, based on a segregant F1 progeny, was 322 

adopted. In this sense, a key parameter for the successful isolation of such useful SNP markers was 323 

the sequencing coverage.  324 

 325 

1.4.2 Transcriptomic SNP mining  326 

A total of eleven C. cardunculus EST libraries were produced and after the normalisation 327 

procedures, they were separately sequenced. Three libraries, deriving from the three mapping 328 

parents (Table 2), were sequenced with the 454 Titanium (Roche) to produce a reference 329 

transcriptome. Eight libraries, set up from five globe artichoke accessions, two cultivated cardoon 330 

and one wild cardoon genotypes (Table 3), were sequenced using the Illumina GAIIx platform, in 331 

order to highly increase the total SNP calling amount. 332 

 333 

1.4.2.1 EST sequencing and de novo assembly 334 

The outcome of 454-based cDNA sequencing of the three mapping parents generated some 1.7 M 335 

reads of overall length 695 Mb, which were reduced to 692 Mb after a post-sequencing filtering. 336 

The mean read length was equal to 392 bp (Table 2). cDNA libraries of other eight genotypes 337 

(Table 3) were sequenced using a GAIIx platform (Illumina) producing 6.9 Gbp of raw data (46.4 338 

M paired-end reads) with a mean of 5.8 M reads per accession. The data set was reduced to 6.7 Gbp 339 

following the removal of adaptor sequences and other contaminants, and it was further reduced to 340 



 12 

6.2 Gbp after quality trimming. For the de novo assembly process only the 454 reads were 341 

considered, while the Illumina data were simply adopted to increase the efficiency of the SNP 342 

mining process. 343 

The assembly of 454 reads was achieved by a two-tier approach using the MIRA assembler 344 

ver.3.2.0 (Chevreux et al. 2004). In a first step, each individual sample was assembled 345 

independently. The process generated 37,622 contigs for ‘Romanesco C3’, 40,130 contigs for 346 

‘Altilis 41’, and 42,837 contigs for ‘Creta 4’ with N50 contig lengths of 834 bp, 761 bp and 772 bp, 347 

and mean coverage levels of  7.31, 8.45 and 9.17X, respectively. For the ‘Romanesco C3’ 348 

assembly, a subset of 11,276 contigs resulted from the incorporation of a prior set of 28,641 Sanger 349 

ESTs (www.ncbi.nlm.nih.gov/dbEST). Then, after contaminant removal by BLASTX analysis, the 350 

three datasets were merged into a set of 38,726 contigs. This “reference” assembly spanned 32.7 351 

Mbp and had a GC content of 42.1%. The mean contig length was 844.3 bp (N50: 951 bp). 352 

A second assembly phase was carried out by merging at least two taxon-derived contigs 353 

from the first phase, and 20,469 contigs were generated. They consisted of a subset with a mean 354 

length of 1054 bp, while 5,375, 6,669 and 6,213 remained as single taxon-derived contigs of var. 355 

scolymus, var. altilis and var. sylvestris, respectively. 356 

 357 

1.4.2.3 Sequence analysis and functional annotation 358 

The sequence reads were assembled into 38,726 reference transcripts, which were successfully 359 

annotated, using the Blast2GO pipeline, by gene ontology terms via Blast and InterPro analyses. 360 

Enzymes were tagged on KEGG's reference pathways (www.genome.jp/kegg/), including primary 361 

and secondary metabolisms. On the whole, 16,419 enzyme codes were retrieved (12,449 transcripts) 362 

and subsequently mapped onto KEGG’s pathways. The sample of C. cardunculus enzymes 363 

consisted of 1,133 unique enzyme codes distributed across 147 pathways. To provide an example, 364 

by analyzing the whole transcriptome complement, a subset of 71 enzymatic activities involved in 365 

phenylpropanoid synthesis were identified; 21 of these were annotated at varying levels of 366 

redundancy in the core phenylpropanoid pathway (KEGG’s map: 00940), in which the synthesis of 367 

caffeoylquinic and di-caffeoylquinic acids (CQAs and dCQAs) takes place (Figure 5). 368 

Transcriptional factor function was assigned to 1,398 transcripts, scattered across 67 369 

families, while 316 sequences were tagged as candidate Resistance Gene Analogs (RGAs). Each 370 

sequence was scanned for the presence of recognition sites for known plant miRNAs. In total, target 371 

annealing sites for 302 miRNAs were located in 1,043 transcripts, which mainly belong to the 372 
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categories: “defense response” and “programmed cell death/apoptosis”, “reproduction”, 373 

“development of anatomical structure”, “photosynthesis”, “transmembrane receptor activity” and 374 

“transcription factor activity”. The 454-based assembly included non-nuclear transcripts. The C. 375 

cardunculus chloroplast genes identification was based on similarity to those of lettuce and 376 

sunflower (Timme et al. 2007) leading to the categorization of 137 contigs, of which 80 were 377 

putatively assigned the chloroplast genome. Similarly, the grapevine (Vitis vinifera) mitochondrial 378 

genes (Goremykin et al. 2009) aided in the identification of 52 C. cardunculus contigs, which were 379 

putatively attributed to the mitochondrial genome. 380 

To estimate the transcriptome representation and its gene-level redundancy (e.g. splicing 381 

variants), two different approaches were adopted. Using the A. thaliana gene content, the 454 382 

sequencing output was predicted to be assembled in a total of 29.3 Mbp, distributed in 24,064 383 

unigenes (average length of 1,216 bp) which covered 96% of the transcriptome. Alternatively, the 384 

final contig set (38,000) was clustered by collapsing gene variants (e.g. alternative splicing), which 385 

generated a set of 29,830 unigenes that represents a bona fide estimation of the gene content of C. 386 

cardunculus. Data suggest that 23% of splicing variants could be present in the transcriptome 387 

assembly. 388 

 389 

1.4.2.4 Read mapping and SNP calling 390 

About 1.5 M of the 454-derived reads were aligned to the reference contig set (38,726 contigs). 391 

This number was reduced to ~ 1.0 M by removing those that showed more than one unique 392 

alignment, thereby lowering the risk of false SNP calls due to misalignment of paralog-derived 393 

reads or to redundancy resulting from splicing variants. The same procedure was repeated for the 394 

Illumina-derived reads, producing an alignment of ~ 60 M paired ends. Resolving paired ends 395 

reduced this to a set of ~ 21 M reads.  396 

 397 

 398 

An assembly based on about 35 M sequences was generated by merging the 454 and Illumina 399 

sequence datasets, resulting in a median reference transcriptome coverage of 96X with 26,990 400 

reference contigs containing at least 20 mapped reads. Reliable SNPs (Bayesian probability >95%) 401 

were detected at 195,400 sites across the set of 11 accessions. The average SNP frequency was 402 

calculated at one per 167 bp, with a mean of five per contig. Each SNP site was interrogated by 403 

scoring for the presence of at least one accession-specific sequence. Sequence information was 404 

available from an average of nine accessions per SNP site, and a core subset of 57,125 SNPs 405 

showed coverage from all the samples. The merging of the Illumina-derived reads (eight 406 
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accessions) with 454-generated reads substantially increased the number of parent-specific SNPs 407 

that were identified (Figure 6). 408 

SNP frequency in the C. cardunculus transcriptome appears to be comparable to that found 409 

in the heterozygous grapevine whole genome sequence (Velasco et al. 2007) and among Citrus ssp. 410 

ESTs (Jiang et al. 2010). Overall, SNPs were most frequent in 3’-UTR (one per 126 bp), followed 411 

by the CDS (one per 169 bp), and the 5’-UTR (one per 265 bp). Within the UTRs, the frequency 412 

also matched that obtained in tomato expressed sequence (Jimenez-Gomez and Maloof 2009), while 413 

it was markedly different to that present in the coding region (~ 2 per kb). This discrepancy may 414 

reflect either the greater tolerance by the heterozygous state of non-synonymous substitutions, or 415 

merely is an ascertainment bias due to the analysis of a larger germplasm panel which also included 416 

accessions of a wild relative. 417 

In C. cardunculus, as previously pointed out, the presence of intra-accession allelic variation 418 

is of particular interest. As expected by their shallower coverage, the 454-derived sequences 419 

produced a somewhat lower frequency of SNPs with successful heterozygous SNP calling (Figure 420 

7). ‘Altilis 41’ was relatively the least heterozygous of the accessions (17,570 loci), as has been 421 

observed previously (Portis et al. 2005b; Portis et al. 2009a), while ‘Romanesco Zorzi’ was the 422 

most heterozygous (43,387 loci), followed by ‘Violetto di Chioggia’ (41,824 loci). ‘Imperial Star’ 423 

had the lowest ratio of heterozygous variants among globe artichoke genotypes (13.5%), which 424 

likely reflects its development from crosses among less genetically differentiated genotypes. 425 

 426 

1.4.3 Conclusions 427 

The second generation technologies provide high sequencing throughputs at significantly reduced 428 

costs if compared to Sanger. These platforms are currently employed for large-scale SNP discovery 429 

projects and, for medium-scale projects, they have been frequently applied in combination with 430 

reduced-complexity libraries, targeting genomic subsets.  431 

One such method, aimed at decreasing the sample complexity, is to build up a genomic library, with 432 

a reduced locus representation including only a subset of sequences generated by restriction 433 

enzymes, which cut at frequent intervals throughout the genome. The generation of an SNP set can 434 

be achieved through the deep-sequencing of such libraries and the comparison between allelic 435 

variants can identify thousands of SNPs.  436 

The recent RAD (Baird et al. 2008) approach is focused on the targeting of a discrete 437 

number of genomic regions adjacent to specific restriction sites, and it can effectively reduce the 438 

number of the fragments to be sequenced in a given complex genome. This strategy (see Box 1) 439 

represents a promising experimental scheme in term of costs and technical simplicity and, so far, 440 



 15 

has been successfully adopted for SNP discovery in many plant and animal species (Davey et al. 441 

2011). 442 

An alternative approach is to focus onto the transcriptome deep-sequencing, which reduces 443 

the representation of low information-content repetitive sequences in species possessing a large 444 

genome and/or without a finished genome sequencing project. An EST library can lead to identify a 445 

large number of genetic loci and targeting SNPs in coding sequences. This kind of library represents 446 

a one-stop resource useful for many downstream applications and to address many biological 447 

questions in plant science. It can aid the identification of genes underlying phenotypes of interest 448 

through the development of expression arrays or provide thousands of loci as a source of potential 449 

markers for QTL mapping applications and population genomic studies. 450 

The two experimental workflows led to produce a massive set of SNPs in C. cardunculus, and 451 

made possible create an extensive gene catalogue, as a valuable resource for upcoming genomic and 452 

genetic studies. Both approaches have proven to be efficient for SNP mining, although 453 

characterized by peculiarities and limitations which deserve to be considered in view of specific 454 

research targets. In C. cardunculus the EST sequencing approach generated a set of reference 455 

coding sequences spanning 32.7 Mbps, establishing a ‘general gene catalog’ of 38,726 as bona fide 456 

representation of the transcriptome. In contrast the RAD-tag sequencing approach permitted to 457 

sequence 6.0 Mbps separated in lesser and shorter number of contigs (~ 19,000; 28% of which were 458 

annotated as CDS-like). The number of SNPs was higher for EST than for RAD-tag approach 459 

(195,000 vs. 34,000); nevertheless, the SNP frequency observed in the two pipelines were 460 

somewhat comparable (5.9 vs. 5.6 per 1,000 nt). The RAD-tags data revealed to be extremely 461 

informative to preliminary survey the repetitive DNA component of the C. cardunculus genome, 462 

and allowed us to make some inferences regarding the contribution of DNA methylation in 463 

inhibiting its expansion (Scaglione et al. 2012a). 464 

From the standpoint of costs, RAD technology was attempted with a great technical 465 

simplicity and a low cost/time expense. The cDNA library setting up was indeed more complex for 466 

both the need of standardization/normalisation procedures and some extra enzymatic steps required, 467 

however, side by side, its sequencing output provided a better picture of the globe artichoke coding 468 

genome. Bearing in mind a future in which the globe artichoke genome will be completely 469 

sequenced and publicly available, the genomic RAD approach may represent one of the most 470 

feasible and cheap strategy for accomplishing affordable targeted re-sequencing projects. It is also 471 

likely that the increasingly lowering of sequencing costs will make the scientific community to 472 

converge towards new approaches of ‘genotyping-by-sequencing’. This scheme proceeds to explore 473 
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all the nucleotidic positions of a genome in a single experiment, and will permit an integration of 474 

mapping and sequencing steps, likely bypassing many costly physical mapping procedures.  475 

The combination of two NGS platforms (454 FLX Titanium - Roche and GAIIx - Illumina) 476 

for the extensive characterization of the genome and transcriptome of C. cardunculus, has proven to 477 

be a highly reliable tools for SNP discovery. Overall, the availability of such a large number of 478 

sequence-based markers, in a format allowing for high-throughput genotyping, offers opportunities 479 

to developed a high-density genetic map and association mapping studies aimed at correlating 480 

molecular polymorphisms with variation in phenotypic traits, as well as for molecular breeding 481 

approaches in a species which has multiple end-uses such as food, nutraceuticals and bioenergy. 482 

The high number of mined SNPs represents also an excellent resource for evolutionary genetic 483 

studies in cultivated forms and their wild relative as well as for comparative genetic mapping 484 

studies aimed at understanding patterns of genome rearrangement between C. cardunculus and 485 

related species.  486 

 487 
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BOX 1 

RADseq (Restriction-site Associated DNA sequencing) 
An efficient approach for SNP discovery, is RAD “Restriction-site Associated DNA” (Miller et al. 2007), coupled with NGS 
technologies (Baird et al. 2008), which has been recently termed as RADseq (Davey et al. 2011). At least 20 papers have 
been recently published in both animals (snails, moths and salmon, sturgeon, butterflies, beetles and worms) and plants 
(ryegrass, oaks, lolium, eggplant and globe artichoke). A detail review is available at the wiki RAD-sequencing page 
(University of Edinburgh; https://www.wiki.ed.ac.uk/display/RADSequencing). 

The strategy requires the enzymatic digestion of a genome with at least one restriction enzyme and the sequencing 
of the resulting fragments through an Illumina Genome Analyzer. The fragments from one sample are ligated to a 
modified Illumina adapter containing a unique identifying sequence (Molecular IDentifier, or MID). A list of the available 
primers can be found at the above-cited wiki RAD-sequencing section. The fragments from many samples (e.g. a mapping 
population) can consequently be pooled together and sequenced on a single lane. The resulting reads can be segregated 
using the MID present at the start of each read. By sequencing simultaneously all the individuals of a population of 
interest, and by comparing the tags, thousand of SNPs at different genetic loci can be identified in a single experiment. 

The protocol is depicted in the figure reported below. A) Genomic DNA is digested with a restriction enzyme and a 
barcoded P1 adapter is ligated to the fragments. The P1 adapter contains a forward amplification primer site, an Illumina 
sequencing primer site, and a barcode for sample identification. Adapter-ligated fragments are pooled (if multiplexing), 
sheared, size-selected (e.g. 300-800 bp) and ligated to a second adapter (P2). The P2 adapter is a divergent “Y” adapter, 
containing the reverse complement of the P2 reverse-amplification primer site, preventing amplification of genomic 
fragments lacking a P1 adapter. B) The samples are analysed on an Illumina Genome Analyzer IIx following the paired ends 
(2x 54 bp, or more) genomic DNA sequencing protocol. The generated sequences are then sorted according to their 
multiplex identifier tag (barcode). C) The sequences are de novo assembled using a bioinformatics DNA assembler (e.g.: 
Velvet). Assembled LongRead® contigs can be generated by a set of algorithms developed at Floragenex Inc. (Oregon, 
USA).  
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GO ID Term N° of loci EST-SSR loci 

GO:0050896 response to stimulus 17 CyEM-008, -030, -42, -054, -057, -070, -072, -093, -120, 

-135, -145, -150, -152, -218, -229, -259, -266 

GO:0009628 response to abiotic stress 13 CyEM -008, -030, -054, -070, -093, -120, -135, -145, -

150, -152, -218, -229, -259 

GO:0042221 response to chemical stimulus 4 CyEM -093, -218, -229, -266 

GO:0006950 response to abiotic stress 15 CyEM -008, -030, -054, -057, -070, -072, -093, -120, -

135, -145, -150, -152, -229, -259, -266 

GO:0009266 response to temperature stress 5 CyEM -008, -054, -093, -145, -150  

GO:0006970 response to osmotic stress 8 CyEM -030, -070, -093, -120, -135, -152, -229, -259 

GO:0010033 response to organic substance 3 CyEM -093, -229, -266 

GO:0009409 response to cold stress 5 CyEM -008, -054, -093, -145, -150 

GO:0009651 response to salt stress 8 CyEM -030, -070, -093, -120, -135, -152, -229, -259 

 

Table 1: CyEM (Cynara Expressed Microsatellites) markers with Gene Ontology annotation for stimuli 

response-related terms. 
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# Genotype 
C. cardunculus 

taxon 

Sequencing results Assembly results 

Raw reads 
Total 

(Mbp) 

Mean length 

(bp) 

Contigs 

 

Mean length/N50 

(bp) 

1 ‘Romanesco C3’ var. scolymus 0.43 M 184 421 37,622 834/723.8 

2 ‘Altilis 41’ var. altilis 0.61 M 246 402 40,130 761/699.9 

3 ‘Creta 4’ var. sylvestris 0.69 M 263 377 42,837 772/688.5 

Total   1.74 M 693 392 38,726* 951/844.3* 

 

Table 2. 454-derived sequencing and assembly. The output statistics were calculated 

following the removal of contaminating and adaptor sequences. Data are intended after 

quality filtering and sequence clipping. *Asterisks indicate results obtained by merging the 

three independent assemblies (see Figure 3). 
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# Genotype 
C. cardunculus 

taxon 

Raw 

reads 

First mates 

(Mbp) 

Paired mates 

(Mbp) 

4 ‘Romanesco Zorzi’ var. scolymus 6.6M 458 408 

5 ‘Violetto di Chioggia’ var. scolymus 6.6M 470 420 

6 ‘Violetto Pugliese’ var. scolymus 5.2M 367 331 

7 ‘Spinoso Sardo’ var. scolymus 6.7M 474 424 

8 ‘Imperial Star’ var. scolymus 6.4M 459 415 

9 ‘Blanco de Peralta’ var. altilis 4.8M 340 305 

10 ‘Gobbo di Nizza’ var. altilis 5.6M 380 341 

11 ‘Sylvestris_LOT23’ var. sylvestris 4.6M 322 287 

Total   46.5M 3,271 2,931 

 

Table 3. GAIIx (Illumina)-derived sequencing. A total of 46.5 M raw reads were 

generated in two GAIIx lanes and 6.7 Gbp were retained after removing adaptor and 

contaminating sequences. The windowed quality clipping routine produced a final dataset 

of 6.2 Gbp. A higher number of bases were obtained for single ends, because 84 

sequencing cycles were used instead of the 76 used for the paired ends. 
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Figure 1: Examples of alignment and consensus LG construction. Alignment of the ‘Romanesco C3’ (yellow) and the ‘Altilis 41’ (blue) LGs based on common 

markers (A). SSR-based consensus LGs (green) construction (B). 'r-' and 'a-' indicate markers segregating only in, respectively, ‘Romanesco C3’ and ‘Altilis 41’. 

Marker nomenclature is the one reported in Portis et al. (2009) and Scaglione et al. (2009). 
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Figure 2: The SSR-based consensus map of C. cardunculus. Marker names are shown to the right of each LG, with map distances (in cM) to the left. 'r-' and 'a-' 

indicate markers segregating only in, respectively, ‘Romanesco C3’ and ‘Altilis 41’. Segments shaded in red indicate where a pair of LGs has merged as a result 

of reducing the stringency to LOD 5. Marker nomenclature is the one reported in Portis et al. (2009) and Scaglione et al. (2009). 
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Figure 3. SNP mining workflow in Cynara cardunculus.  
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Figure 4: Proportion of heterozygous SNPs across the three mapping parents.  
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Figure 5: C. cardunculus phenylpropanoid enzymatic activities (coloured) mapped on KEGG (map: 00940). 
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Figure 6: Combined calling of SNPs. The number of calls based solely 

on the 454-derived reads is shown in blue, and the combined SNP 

discovery based on both the 454- and the Illumina-based sequence in red. 

“Exclusively homozygous” and “exclusively heterozygous” refer to 

allelic variants present in only one of the three 454-sequenced libraries.  
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Figure 7: The allelic state at SNP loci. Bars indicate the total number of SNP 

loci in the homozygous or heterozygous state (or missing) for each accession. 

Each bar's colour identifies the C. cardunculus taxa (green = sylvestris, orange 

= altilis, yellow = scolymus). White dots identify the three accessions 

sequenced using 454 technology. 

 


