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1. Introduction 

The role of hydrogen bond acidity, i.e., the ability of chemicals to act as hydrogen bond donors (HBD), is a 

crucial element in pharmaceutical sciences and medicinal chemistry. For instance, the counts of hydrogen 

bond donor and acceptor groups are part of the Ro5 parameters (Lipinski et al., 1997) used to predict drug-

like properties and permeability; moreover, HBD count is a parameter in the CNS Multi-Parameter 

Optimization score (Wager et al., 2010).  

Generally speaking, HBD groups are often important for increasing the binding to biological targets and 

water solubility. On the other hand they decrease membrane permeability and serve as a recognition 

feature for P-glycoprotein (P-gp), the efflux pump that excludes molecules from the brain. 

The determination of hydrogen bond acidity is also important to determine the lipophilicity of drugs 

estimated from chromatographic measurements (Pallicer et al., 2012). 

It has been shown that the difference between two log P values (log P) obtained in different biphasic 

systems for example octanol/water and alkane/water (log Poct-alk = log Poct – log Palk), is informative of the 

solutes HBD properties (Abraham et al., 2010b) and thus useful in the prediction of drugs human fate (Liu 

et al., 2011). The recent interest for the application of log Poct-alk in the drug discovery process stimulated 

the research for the design and implementation of tools for its prediction (Caron and Ermondi, 

2005)(Toulmin et al., 2008)(Kenny et al., 2013).  

Unfortunately the experimental determination of log Poct-alk is strongly limited by the low alkane solubility 

of many compounds. To overcome this difficulty, toluene was proposed to replace alkanes (Zissimov et al., 

2002)(Shalaeva et al., 2013) in lipophilicity measurements. The general idea is that log Ptol provides 

information similar to log Palk but it is easier to assess experimentally. Indeed toluene has a better ability to 

solubilize organic compounds and still has a low alkane-like dieletric constant (), i.e., 2.38 (toluene) vs 2.02 

(cyclohexane). According to these evidences log Poct-tol is expected to be a convenient surrogate of 

log Poct-alk for the determination of solutes HBD properties. 

Here we use the Block Relevance (BR) analysis to describe the factorization of log Poct-tol in its main 

components. BR analysis is a new tool that enables the mechanistic interpretation of PLS models (Ermondi 
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and Caron, 2012)(Caron and Ermondi, 2013). Also, we report about a BR analysis based comparison of 

log Poct-tol and log Poct-alk.  

In this study, we collected from the literature more than 200 experimental log Ptol values along with their 

corresponding log Poct values. The dataset was processed using a purposely-built in-house software to 

remove molecules that are potentially able to form IMHBs. On the remaining structures the log Poct-tol 

(= log Poct - log Ptol) have been calculated and correlated with 82 VolSurf+ (VS+) descriptors through a PLS 

model. Finally the BR analysis has been used to group the 82 VS+ descriptors in six easy-to-interpret blocks 

and to graphically show the relevance of a certain block in the PLS model.  

 

2. Methods 

The log Ptol values used in this work have been retrieved from three different sources (Stephens et al., 

2011) (Abraham et al., 2010a) (Box et al., 2012). Data obtained using DMSO as a cosolvent were discarded. 

In fact, it has been reported (Shalaeva et al., 2013) a small but systematic deviation in log Ptol values when 

DMSO is present. Log Poct were also retrieved from literature, most from Abraham and coworkers (Abraham 

et al., 1994). log Poct-tol were calculated as the difference log Poct – log Ptol. The complete list of data can be 

found in Supporting Information (Table S1). 

An in-house software was used to identify compounds with propensity to form intramolecular hydrogen 

bonds (IMHB) according to the topologies proposed by Kuhn and coworkers (Kuhn et al., 2010).  

VS+ models were built by submitting the SMILES codes of the compounds to VS+ (version 1.0.7, 

http://www.moldiscovery.com) using default settings and four probes (OH2, DRY N1 and O probes that 

mimic respectively water, hydrophobic, HBA and HBD properties of the environment). PCA and PLS tools 

implemented in VS+ were used.  

BR analysis was performed as described elsewhere (Ermondi and Caron, 2012)(Caron and Ermondi, 2013). 

Processing was done on a two 8 cores Xeon E5 at 3.3GHz CPUs and 128GB of RAM. 

http://www.moldiscovery.com/
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3. Results and discussion 

3.1. Dataset overview 

We collected data for the log Ptol, log Poct and log Poct-tol values over 222 compounds. All the log Ps are 

referred to pH conditions of suppression of dissociation. These values span 6.5, 9.3 and 5.8 log P unities, 

respectively.  

When VS+ processes the data, it associates each compound to the lipophilicity value of an “average” 

conformer built internally by an ad-hoc algorithm. In general terms this is a correct protocol because one 

can assume that the “average” conformer represents all conformers energetically accessible. However this 

assumption no longer holds when the molecule under study has strong propensity to form IMHBs since the 

molecule is then forced into a specific conformation. This latter could show a very different profile of 

VolSurf+ descriptors from the conformers without IMHBs. 

To exemplify the influence of IMHB on Volsurf+ descriptors we selected ephedrine. Figure 1 shows two 

conformers of the drug. The conformer on the left forms IMHB, the reverse is true for the conformer on the 

right. The relative Boltzmann distribution of the two conformers can only be assessed by high level 

calculations which are beyond the scope of this study. Figure 1 shows the envelope which is accessible to, 

and interacts attractively with the DRY probe at -0.8 kcal/mol. The volume of the envelope corresponds to 

the descriptor D4. D4 values (9.25 and 2.125) vary considerably between the two conformers and thus the 

use of an  “average” conformer is not advisable. Therefore, to produce a robust and unambiguous PLS 

model, we discarded 18 molecules showing topologies that are potentially able to form IMHBs. The 

compounds selected for removal are: 2,4-dinitrophenol, 2-nitroaniline, 2-nitrophenol, 8-hydroxyquinoline, 

atropine, desipramine, diclofenac, ephedrine, flumequine, fluoxetine, lidocaine, metoprolol, penbutolol, 

propranolol, quinine, salicylic acid, Sudan I (Z-form), and tramadol.  

 

Insert Figure 1 
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The PCA analysis shows a good data dispersion (three PCs explain about 70% of the variance). More details 

are given in the Supporting Information (Annex S1). 

3.2. PLS models 

Experimental log Poct-tol values were imported into VS+ as response variables (Y) and a relation between Y 

and the 82 VS+ descriptors (X) was sought using the PLS algorithm implemented in the software. The same 

procedure was applied to log Poct and log Ptol for comparative purposes. The validation of the models was 

performed by means of an internal validation procedure (more details below in 3.2). Satisfactory statistical 

results have been obtained on all the models and reported in Table 1. 

 

Insert Table 1 

 

Correlations between calculated vs experimental values are shown in the Supporting Information (Fig. S1). 

As desired, slopes are close to 1 and intercepts close to 0. The lower quality of log Poct-tol PLS model 

compared to log P models is probably related to the indirect determination of the descriptor.  

The automatic identification of outliers is an open question in statistics and several excellent tests exist that 

deal with the problem (e.g., Grubbs’ test and Rout method). In this work we chose to manually analyze 

deviant compounds. In our log Poct-tol model a few compounds are potential outliers, most of them 

showing the same behavior also in log P models (e.g., biphenyl). Since these compunds have very high 

experimental log P values (> 3) some of the variance can be explained by detection limits affecting the 

accuracy of the experimental measurements obtained by shake-flask. Some others compounds show 

chemical substructures not well parametrised by VS+ descriptors (e.g., phenazopyridine). The exclusion of 

these compounds from the model does not produce significant improvement in the statistics (data not 

shown) and thus we prefer to retain them in the model. 

We are aware (Ermondi and Caron, 2012) that some researchers in the QSAR field support internal 

validation, whereas others consider it as not sufficient for assessing the robustness of models and instead 

require an external validation (Wold and Sjostrom, 2001). In this study to obtain a correct estimation of the 
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real predictive ability of the model a Random Groups (RG) approach was used. The compounds in the data 

set were assigned in a random way to 4 groups, each one containing an equal (or nearly equal) number of 

objects. Then models were built keeping one of these groups out of the analysis until all of the objects were 

kept out once. The formation of the groups and the validation was repeated 20 times. Table 1 shows Q2 for 

the RG procedure. Since all PLS models show R2>0.6 and Q2>0.5, they satisfy the Tropsha et al.’s validation 

rules. (Tropsha et al., 2003)  

To further validate PLS models we finally tested the methodology on a dataset with a randomized Y order. 

As sought, the experiment produced unacceptable R2 and Q2 values (data not shown). 

3.3. BR analysis 

The mechanistic interpretation of a PLS model is generally obtained through the Variable Importance in the 

Projection (VIP) plot. A VIP plot displays VIP values as columns sorted in descending order with confidence 

intervals derived from jack-knifing. VIPs values are regarded as valuable tools in interpreting PLS models 

since they are able to take into account both the correlations with the target variable Y as well as the 

correlations within the X descriptors. However VIP plots (Supporting Information Fig. S2) are often hard to 

be interpreted. To overcome this problem we extended the VIPs analysis with the BR analysis, a recent 

methodology introduced in (Ermondi and Caron, 2012)(Caron and Ermondi, 2013). 

BR analysis mandates the organization of the VS+ descriptors into six blocks (namely, Size, Water, DRY, N1, 

O and Others, definitions and more details in Table 2) which enables a straightforward understanding of 

the investigated phenomena (e.g., partitioning in the considered biphasic system). Indeed blocks provide an 

easy mechanistic interpretation based on the nature of the interaction of the solute with the environment 

represented by some tailored probes defined by the GRID methodology (Goodford, 1985)(Boobbyer et al., 

1989)(Wade and Goodford, 1993). In practice one can apply to the BR analysis a mechanistic reasoning and 

easily compare different log P systems. 

 

Insert Table 2 
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Graphical results of BR analysis are shown in Figure 2 which reports a pair of plots for each lipophilicity 

index (2A-B for log Poct, 2C-D for log Ptol and 2E-F for log Poct-tol, respectively). Plots on the left indicate the 

relevance of each block in the model. Plots on the right split the contribution of each block into positive (BR 

(+)) and negative (BR (-)) components. BR (+) indicates how much the considered block favors solutes 

partitioning in the first phase whereas BR (-) indicates how much the considered block favors solutes 

partitioning in the second phase. A complete BR analysis includes inspection of both plots. 

 

Insert Figure 2 

 

For the sake of clarity we firstly discuss log Poct. Figure 2A shows that Size is the most important block for 

this well-known molecular descriptor (about 32% of the weight of all blocks). Figure 2B indicates that the 

larger the molecule, the higher its partitioning in the octanol phase and thus the higher its log Poct. The 

whole profile of intermolecular interactions is in line with BR plots obtained on different datasets (Caron 

and Ermondi, 2013). 

BR plots for log Ptol are shown in Figure 2C and 2D. We notice a remarkable difference of these profiles with 

respect to log Poct results revealing a more balanced contribution of Size, Water, DRY and O blocks (21%, 

20%, 19% and 20%, respectively). The O block (solutes HBD properties, see Table 2) contribution varies 

considerably in log Poct and log Ptol experiments: it is highly significant in Fig. 2C and favors the partitioning 

in the aqueous phase (as it is reported as mostly negative in Fig. 2D). These findings reflect the remarkable 

differences of toluene and octanol in their physico-chemical properties. 

BR plots for log Poct-tol are shown in Figure 2E-F and as expected are significantly different from those 

obtained for log Ps. The main block is the O block (Fig. 2E) that is positive in sign and represents about the 

40% of the weight of all blocks. The two remaining polar blocks (Water and N1) are significant but less 

important (17% and 14%). Interestingly the Size and DRY blocks are not significant, confirming that the 

contribution of hydrophobicity to log Poct-tol is negligible.  
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Very recently, Shalaeva and coworkers used log Poct-tol to distinguish compounds able to form IMHB 

(samples) from those with similar structure but unable to do that (controls) (Shalaeva et al., 2013). Here we 

prove that log Poct-tol mainly depends on the HBD properties of the solutes (see above) and thus support 

the application of log Poct-tol in the intramolecular hydrogen bonding interpretation scheme. In fact a 

sample with strong propensity to form IMHB is expected to have lower exposure of HBD groups than its 

control. This results in a positive difference in log Poct-tol between the control and the sample, as predicted 

for compound belonging to category I by Shalaeva et al. (Shalaeva et al., 2013). 

 

3.4. log Poct-tol vs log Poct-alk 

As mentioned in the Introduction, log Poct-alk is generally considered a valuable descriptor for HBD 

properties of solutes that has however a limited applicability due to the poor experimental accessibility of 

log Palk. 

In a previous work, we used VS+ descriptors to build a PLS model on log Palk values (Caron and Ermondi, 

2005). In that study we built a dataset of 152 molecules and calculated the corresponding log Poct-alk 

values. In the following we report about how these results compare with log Poct-tol (204) results described 

in this paper.  

For the same reasons that led us to discard compounds from the log Poct-tol  dataset (i.e., their propensity 

to form IMHBs), we had to discard 18 compounds from the log Poct-alk dataset leaving us with 134 

structures. Specifically we removed: 2-hydroxybenzoicacid, 2-nitroaniline, 2-nitrophenol, atenolol, 

carazolol, desipramine, diclofenac, ephedrine, flumequine, fluoxetine, lidocaine, metoprolol, penbutolol, 

phenazopyridine, propranolol, quinine, tramadol and warfarin.  

The projection of the 134 compounds belonging to the log Poct-alk dataset (empty circles) on the 2D PCA 

scores plot of the 204 molecule belonging to the log Poct-tol dataset (full circles) is shown in Figure 3A. It 

shows that the two datasets cover similar chemical space regions. This result encouraged us to compare 

log Poct-alk and log Poct-tol BR analysis plots.  
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Insert Figure 3 

 

Figure 3B emphasizes that log Poct-tol depends to an higher degree on solutes HBD than log Poct-alk. In fact, 

the O block (solutes HBD properties) only represents about 20% of the weight of all blocks in the model 

based on log Poct-alk  values,  while it represent about 40% of the weights in the log Poct-tol based model 

(see Section 3.3).  

4. Conclusions 

In this paper we showed that log Poct-tol strongly depends on HBD of solutes. This was proven with a 

recently developed computational tool based on VS+ descriptors and PLS algorithm, i.e., the Block 

Relevance analysis. Our findings support the use of log Poct-tol as a molecular descriptor for the 

determination of the solutes HBD properties in drug discovery. In particular this study supports the recently 

published IMHB interpretation scheme (Shalaeva et al., 2013) that uses log Poct-tol as a tool to distinguish 

compounds based on their propensity to form IMHBs. 

 

Acknowledgements 

This work has been supported by Ateneo Compagnia di San Paolo-2012-Call 2, LIMPET project. 

  



11 
 

References 

Abraham, M.H., Chadha, H.S., Whiting, G.S., Mitchell, R.C., 1994. Hydrogen bonding. 32. An analysis of 
water-octanol and water-alkane partitioning and the Dlog P parameter of Seiler, J. Pharm Sci. 83, 
1085-100. 

Abraham, M.H., Acree, W.E., Leo, A.J., Hoekman, D., Cavanaugh, J.E., 2010a. Water – Solvent Partition 
Coefficients and D Log P Values as Predictors for Blood – Brain Distribution; Application of the Akaike 
Information Criterion, J. Pharm. Sci., 99, 2492–2501. 

Abraham, M.H., Smith, R.E., Luchtefeld, R.O.N., Boorem, A.J., Luo, R., Acree, W.E, 2010b. Prediction of 
Solubility of Drugs and Other Compounds in Organic Solvents. J Pharm Sci., 99, 1500-15. 

Boobbyer, D.N.A., Goodford, P.J., Mcwhinnie, P.M., Wade, R.C., 1989. New hydrogen-bond potentials for 
use in determining energetically favorable binding sites on molecules of known structure, J. Med. 
Chem. 32, 1083–1094. 

Box, K.J., Comer, J., Ruiz, R., Mole, J., Frake, L., 2012. Determination of hydrogen bonding properties using 
log P measurements in different solvent-water systems, in: 2012 AAPS Annual Meeting and 
Exposition. Poster N°M1044. 

Caron, G., Ermondi, G., 2005. Calculating virtual log P in the alkane/water system (log P(N)(alk)) and its 
derived parameters delta log P(N)(oct-alk) and log D(pH)(alk). J. Med. Chem. 48, 3269–79. 

Caron, G., Vallaro, M., Ermondi, G., 2013. The Block Relevance (BR) analysis to aid medicinal chemists to 
determine and interpret lipophilicity. Med.Chem.Comm. doi:10.1039/c3md00140g. 

Ermondi, G., Caron, G., 2012. Molecular interaction fields based descriptors to interpret and compare 
chromatographic indexes. J. Chromatogr. A 1252, 84–9. 

Goodford, P.J., A, 1985. computational procedure for determining energetically favorable binding sites on 
biologically important macromolecules, J. Med. Chem. 28, 849–857. 

Kenny, P.W., Montanari, C., Prokopczyk, I.M., 2013. ClogPalk: a method for predicting alkane/water 
partition coefficient. Journal of computer-aided molecular design J. Comput. Aided Mol. Des. 27, 389–
402. 

Kuhn, B., Mohr, P., Stahl, M., 2010. Intramolecular hydrogen bonding in medicinal chemistry. J. Med. Chem. 
53, 2601–11. 

Lipinski, C.A., Lombardo, F., Dominy, B.W., Feeney, P.J., 2001. Experimental and computational approaches 
to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. 
Rev. 23, 3–25. 

Liu, X., Testa, B., Fahr, A., 2011. Lipophilicity and its relationship with passive drug permeation. Pharm.Res. 
28, 962–77. 

Pallicer, J.M., Pascual, R., Port, A., Rosés, M., Ràfols, C., Bosch, E., 2012. The contribution of the hydrogen 
bond acidity on the lipophilicity of drugs estimated from chromatographic measurements. Eur. J. 
Pharm. Sci. 48, 484–493. 

http://www.ncbi.nlm.nih.gov/pubmed/7983591
http://www.ncbi.nlm.nih.gov/pubmed/19774653


12 
 

Shalaeva, M., Caron, G., Abramov, Y.A., O’Connell, T.N., Plummer, M.S., Yalamanchi, G., Farley, K.A., Goetz, 
G.H., Philippe, L., Shapiro, M.J., 2013. Integrating intramolecular hydrogen bonding (IMHB) 
considerations in drug discovery using ΔlogP as a tool. J.Med.Chem. 56, 4870−4879. 

Stephens, T.W., Loera, M., Quay, A.N., Chou, V., Shen, C., Wilson, A., Acree, W.E., Abraham, M.H., 2011. 
Correlation of Solute Transfer Into Toluene and Ethylbenzene from Water and from the Gas Phase 
Based on the Abraham Model. The Open Thermodynamics Journal, 5, 104-121. 

Toulmin, A., Wood, J.M., Kenny, P.W., 2008. Toward prediction of alkane/water partition coefficients. 
J.Med.Chem. 51, 3720–30. 

Tropsha, A., Gramatica, P., Gombar, V.K., 2003. The Importance of Being Earnest : Validation is the Absolute 
Essential for Successful Application and Interpretation of QSPR Models. QSAR Comb. Sci. 22, 69–77. 

Wade, R.C., Goodford, P.J., 1993. Further development of hydrogen bond functions for use in determining 
energetically favorable binding sites on molecules of known structure. 2. Ligand probe groups with the 
ability to form more than two hydrogen bonds. J. Med. Chem 36, 148–156. 

Wager, T.T., Hou, X., Verhoest, P.R., Villalobos, A., 2010. Moving beyond rules: the development of a 
central nervous system multiparameter optimization (CNS MPO) approach to enable alignment of 
druglike properties. ACS Chem Neurosci 1, 435–49. 

Wold, S., Sjostrom, M., Eriksson, L. 2001. PLS-regression : a basic tool of chemometrics . Chemometr. Intell. 
Lab. 58, 109–130 

Zissimos, A.M., Abraham, M.H., Barker, M.C., Box, K.J., Tam, K.Y., 2002. Calculation of Abraham descriptors 
from solvent–water partition coefficients in four different systems; evaluation of different methods of 
calculation. J. Chem. Soc., Perkin Trans. 2, 470-477. 

  



13 
 

Figure 1. Ephedrine: MIFs generated by the DRY probe at −0.8 kcal/mol in the presence (left) and in the 

absence (right) of IMHBs. The volume of the envelope corresponds to the descriptor D4. D4 values are 9.25 

and 2.125, respectively. 
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Figure 2. BR analysis graphical outputs. A color code is associated to each block: green for Size, cyan for OH2 

(Water), yellow for DRY, blue for N1, red for O and grey for Others. Subfigures A and B reports results 

about log Poct; subfigures C and D reports about log Ptol; subfigures E and F reports about log Poct-tol. Plot on 

the left (A, C and E) indicate the relevance of the block in the model. Plot on the right (B, D and F) splits the 

contribution of each block in positive (BR (+)) and negative (BR (-)) components. The dotted line shows the 

blocks significance threshold. 
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Figure 3. log Poct-alk data analysis: A) The projection of the 134 compounds belonging to the log Poct-alk 

dataset (empty circles) on the 2D PCA scores plot of the 204 molecule belonging to the log Poct-tol dataset 

(full circles); B) BR analysis graphical output for log Poct-alk 
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Table 1. PLS models (N = number of observations, R2 = cumulative determination coefficient, Q2(RG) = cross-

validated correlation coefficient (see text for details), LV = number of latent variables, RMSE = root mean 

square of the errors). 

System  N R
2
 Q

2
(RG) LV RMSE 

logPoct-tol 82 204 0.74 0.56 5 0.62 

log Poct 82 204 0.80 0.68 5 0.76 

log Ptol 82 204 0.85 0.75 5 0.92 

 

  



17 
 

Table 2. Block definition. A color code is associated to each block: green for Size, cyan for OH2 (Water), 

yellow for DRY, blue for N1, red for O, and grey for Others. 

 
 

 

Block Definition  Color code 

Size descriptors that characterize the size and shape of the solute green 

OH2 

(Water) 
descriptors that express the solute’s interaction with water molecules (= 

with the GRID OH2 probe) 
light blue 

N1* descriptors that describe the solute’s ability to form hydrogen bond 

interactions with the GRID N1 probe (that mimics the system); roughly 

superposable with Abraham’s 

 

blue 

O* descriptors expressing the solute’s ability to form hydrogen bond 

interactions with the GRID O probe (that mimics the system); roughly 

superposable with Abraham’s 

 

red 

DRY descriptors describing the solute’s propensity of the solute to participate 

in hydrophobic (= with the GRID probe DRY) interactions  
yellow 

Others descriptors mainly describing the imbalance between hydrophilic and 

hydrophobic regions  
grey 
 

 * For the sake of clarity, to identify hydrogen bonding (HB) interactions, 

i.e., Hydrogen Bond Acceptor capability (HBA) and Hydrogen Bond 

Donor capability (HBD), we refer to the probe’s properties and not to 

the solute (see following scheme). 

 
 

 


