
 

 

 

 

 

 

This is an author version of the contribution published on: 5 

Questa è la versione dell’autore dell’opera: 

Giulia Caron, Maura Vallaro and Giuseppe Ermondi  

The Block Relevance (BR) analysis to aid medicinal chemists to determine and interpret 

lipophilicity  

Med. Chem. Commun., 2013,4, 1376-1381 10 

DOI:  10.1039/C3MD00140G   

 

The definitive version is available at: 

La versione definitiva è disponibile alla URL: 

http://pubs.rsc.org/en/Content/ArticleLanding/2013/MD/c3md00140g#!divAbstract 15 

 

  



The Block Relevance (BR) analysis to aid medicinal chemists to 

determine and interpret lipophilicity 

Giulia Caron,
a
 Maura Vallaro

a
 and Giuseppe Ermondi*

a
 

 

A major issue related to chromatographic determination of lipophilicity is about the conversion to log P. 5 

The interconversion of lipophilicity indexes can be made only if two systems express the same balance of 

intermolecular solute/system forces. The deconvolution of intermolecular interactions is generally 

obtained by solvation parameter models. Block Relevance (BR) analysis is a new tool specifically 

designed for medicinal chemists to interpret partitioning/retention phenomena in a very practical way. 

This paper describes the application of BR analysis to literature data (ElogP) and experimentally 10 

determined chromatographic indexes on a Supelcosil TM LC-ABZ column for a series of 36 drugs. Results 

indicate that BR analysis is a solid and reliable tool that captures the main information encoded in any 

lipophilicity descriptor. 

 

Introduction 15 

The importance of lipophilicity in medicinal chemistry is widely 

known 1 in particular, to improve the efficiency of compounds 

development by minimizing the attrition rate and shortening the 

development time; and to satisfy the modern medicinal chemistry 

demands for physicochemical property determinations (e.g. 20 

lipophilicity) required for the early prediction of ADME profile 2-

6. 

As a result, there is a new interest in overcoming limitations in 

the determination and interpretation of lipophilicity data. Several 

methods are available to measure log P/log D. Nowadays most of 25 

the methods are automated, but many are still limited by 

solubility issues and detection limits. Because of these 

limitations, various chromatographic systems are very much used 

in pharma labs to determine lipophilicity 3,7-9 

A major issue related to chromatographic determination of 30 

lipophilicity is about conversion to log P3,4. In practice, if two 

systems express the same balance of intermolecular solute/system 

forces the correspondent lipophilicity indexes can be 

interconverted 2,3. It was proven, with a few exceptions, that 

systems based on RP chromatography employing chemically 35 

bonded phases are unsuitable for estimating log P for compounds 

of diverse structure 3. The reason being that the fundamental 

properties responsible for chromatographic retention tend to be 

different to those responsible for partitioning between octanol and 

water, especially the contribution from hydrogen bonding (HB) 40 

interactions. 

The deconvolution of the fundamental intermolecular interactions 

responsible for chromatographic retention and partitioning is 

generally associated with the solvation models based on 

Abraham’s solvation parameters 10,11 or similar descriptors. In 45 

short, Abraham’s equations use multilinear regressions to relate 

the lipophilicity indexes (e.g. log P, log k) to solvation 

descriptors (e.g. Vx, R2, 
H

2, 
H

2, 
H

2; see definitions in 

Annex S1, Supporting Information)12. 

Despite their great relevance in the comprehension of 50 

physicochemical events, solvation parameters suffer from a 

number of drawbacks3 that limit their application, especially in 

HT environments. In particular it is very difficult to produce 

reliable descriptors (both experimental and calculated) for the 

complex molecular structures present in proprietary libraries. 55 

VolSurf+ (VS+) is a computational procedure designed to 

describe and explore the physicochemical property space of a 

molecule starting from 3D interaction energy maps calculated 

with GRID force-field 13,14,15. The basic concept of VS+ is to 

compress the information present in 3D maps into a few 60 

quantitative numerical descriptors (82 are used most often) that 

are very simple to understand 16. Because of their non-

experimental origin, only the chemical structure of the compound 

is necessary to obtain VS+ descriptors, which are mainly applied 

to model ADME-Tox events 17. We already used these to model 65 

log P18 . Since VS+ descriptors are intercorrelated, the derived 

statistical models are often obtained with Partial Least Squares 

regression algorithms (PLS). 

Despite their statistical robustness, PLS models cannot be easily 

interpreted in mechanistic terms by medicinal chemists. To 70 

overcome this limit, some authors used VIPs plots 19. 

 
Fig. 1. BR analysis: interpretation scheme. A typical graphical output is 

shown in the center. The solutes’ properties described by the blocks are 
in circular frames. The main interactions in which any block is involved 75 

are in rectangular boxes. A color code is always associated to any block 
(green for Size, cyan for OH2 (Water), yellow for DRY, blue for N1, red for 

O and grey for Others). 
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Recently we described the Block Relevance (BR) analysis, a new 

tool that facilitates the mechanistic interpretation of Quantitative 

Structure-(Chromatographic) retention Relationships (QSSR) 

based on PLS models and VS+ descriptors 20. Briefly, the BR 5 

strategy groups the 82 VS+ descriptors in six easy-to-interpret 

blocks and graphically shows (Figure 1) the relevance of a certain 

block in the PLS model: the higher the value, the more important 

the block. 

The organization of the VS+ descriptors in blocks (blocks 10 

definition and composition are given in Table S2 and S3, 

respectively, in the Supporting Information) enables a 

straightforward understanding of the investigated phenomena 

(e.g. chromatographic retention, partitioning) because blocks 

furnish an easy mechanistic interpretation based on the nature of 15 

the interaction of the solute with the environment represented by 

some tailored probes defined by the GRID methodology 13-15. BR 

analysis is therefore an easy way to compare different systems. 

The main goal of the paper is to describe the upgraded version of 

the BR analysis and, through it, shed some light on 20 

chromatographic indexes that can replace log Poct. To reach this 

aim we firstly applied the new BR analysis to the 36 drugs 

published by Lombardo et al.2 to verify the use of ElogP 

(chromatographic descriptor) to determine log Poct (measured by 

shake-flask). Then for the same series of molecules we measured 25 

a panel of chromatographic indexes using different mobile phases 

and the same RP stationary phase (Supelcosil LC-ABZ column). 

BR analysis provided a rational approach for identifying rules to 

interconvert experimental lipophilicity indexes on the basis of the 

balance of the intermolecular interactions they express. 30 

Results and discussion 

The use of ElogP for the determination of log P to validate the 

BR analysis 

In 2000 Lombardo and coworkers published the paper about 

ElogP, an easy, fast  and accurate RP-HPLC method for the 35 

determination of log Poct for 36 neutral drugs covering a log P 

range from -0.55 to 5.40 2 (Table S1 in Supporting Information). 

The paper proved that ElogP expresses the same balance of 

intermolecular forces as the shake-flask log P data (difficult and 

long to obtain). To do that the authors used solvatochromic 40 

equations2.  

Here we decided to apply BR analysis 20 to the same set of data to 

validate our tool. BR analysis was therefore applied to a PLS 

model calculated as described below. ElogP and log P values 

were imported into VS+ as dependent variables (Y) and a relation 45 

between Y and VS+ descriptors (X) was sought using the 

standard PLS algorithm implemented in the software. Models 

validation was obtained through internal validation. Results are 

shown in Table 1. 

Table 1. Final PLS models (n = number of observations, R2 = cumulative 50 

determination coefficient, Q2 = cross-validated correlation coefficient, LV 

= number of latent variables, RMSE = root mean square of the errors). 

Model  n R2 Q2 LV RMSE Data 

log P 36 0.826 0.612 3 0.998 Lombardo et al. 2 

ElogP 36 0.806 0.635 3 0.957 Lombardo et al. 2 

log k’w 36 0.836 0.716 3 0.656 Presented here 

log k’80 28 0.865 0.583 3 0.255 Presented here 

log k’70 28 0.871 0.666 3 0.277 Presented here 

log k’60 35 0.739 0.522 3 0.468 Presented here 

log k’50 34 0.755 0.536 3 0.502 Presented here 

log k’40 29 0.737 0.357 3 0.549 Presented here 

log k’30 24 0.718 0.180 3 0.649 Presented here 

 

We are aware that some researchers in the QSAR field support 

internal validation, whereas others consider that internal 55 

validation is not a sufficient test to check the robustness of 

models, and external validation is necessary 21,22. In this case, 

since the sample size is small, and thus holding a portion of it 

back for testing would be wasteful, it was preferred to use cross-

validation (CV), with multiple rounds using different partitions 60 

(Table 1 shows Q2 for the LOO procedure, results were similar 

with different partitions). The PLS models in Table 1 showed 

R2>0.6 and Q2>0.5, and satisfied the Tropsha et al. validation 

rules. 23 To further validate PLS models we also randomized the 

order of Y values which produced unacceptable R2 and Q2 values 65 

(data not shown). 

The PLS outputs (VIPs and PLS coefficients) were then 

submitted to BR analysis to evaluate the relevance of the six 

blocks of descriptors to the model. Since in the original paper 5 

out of the 82 VS+ descriptors were inconsistently assigned to a 70 

certain block, a few changes are introduced here. The final 

composition of the six blocks (definition and color codes are 

given in Figure 1) is reported in Table S2 of the Supporting 

Information.  

BR graphical results for the Lombardo’s dataset are in Figure 2 75 

which shows a pair of plots for any lipophilicity index (log P and 

ElogP). The first indicates the relevance of the blocks to the 

model (Figures 1A and 1C for log P and ElogP, respectively). 

The second plot (Figures 1B and 1D for log P and ElogP, 

respectively) splits the contribution of any block in positive (BR 80 

(+)) and negative (BR (-)) portions. BR (+) indicates how much 

the considered block favors solutes partitioning in the octanol  



 

 

 
Fig.2 . BR analysis graphical outputs. The plot on the left (A and C) indicated the relevance of the block to the model (log P and Elog P). The second plot 

(B and D) splits the contribution of any block in positive (BR (+)) and negative (BR (-)) portions. Error bars obtained as described in the text are also 
reported. The dotted line shows the blocks significance threshold. 

(stationary) phase whereas BR (-) indicates how much the 5 

considered block favors solutes partitioning in the aqueous phase. 

A complete BR analysis includes inspection of both plots. 

Figure 2 shows that log P and ElogP show the same balance of 

intermolecular forces since blocks have similar relevance in the 

models. This finding supports the strategy of determining log P 10 

with the ElogP method and shows the reliability of BR analysis to 

obtain this information.  

Please note that the original version of BR analysis did not 

include the uncertainty associated to any block. It is essential to 

compare different PLS models and to verify systems similarity. 15 

More details about this point are reported in the Supporting 

Information Figure S1. 

Figure 2 outlines that the Size is the most important block (the 

significance and the main interactions associated to any block are 

schematized in Figure 1.). This finding indicates that as expected 20 

the larger the molecule, the higher the log Poct. The DRY block 

(yellow) is partly positive and partly negative. The positive term 

could be due to hydrophobic interactions between the probe and 

apolar regions of the molecules. The negative contribution could 

be related to the interactions occurring between the solute and the 25 

aqueous phase of the system due to dipolarity/polarizability 

properties. These interactions in first approximation could be 

related to Abraham’s H
2 solute’s properties (see Annex 1 in 

Supporting Information) and contribute to push solutes into the 

aqueous phase.  30 

The OH2 also named Water block is relevant in the opposite 

direction of the Size block. That means that the higher the ability 

of the solute to interact with water, the higher its propensity to 

have low log Poct. (please refer to Figure 1 and Annex 1 of the 

Supporting Information for clarifying the difference between 35 

Water and N1 and O blocks). 

Another finding concerns with the hydrogen bond acceptor 

properties of the solutes (in blue, roughly superposable with 

Abraham’s ): the higher the HBA, the lower the log P. 

Conversely, the hydrogen bond donor properties of the solutes (in 40 

red, roughly superimposable with Abraham’s ) have poor 

relevance here (slightly above the dotted line).  

Interestingly, all these findings are consistent with Abraham’s 

equations for log Poct 
2 (more details about the relationship 

between blocks and Abraham’s parameters are given in Annex S1 45 

of the Supporting Information). 

The Others block is the main innovation of the BR analysis since 

it is related to the 3D structure of solutes and thus no 

corresponding term could be found in any solvation equation. The 

significance of the block is related to the relative location of the 50 

polar (apolar) regions. The positive sign of the block in the 

models takes into account the observation that closely located 

polar (apolar) regions partially mask their polarity 

(hydrophobicity) 24. In Figure 3 DRDRAC was selected as an 
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example of the Others descriptors since in the final PLS models 

(Table 1) it is one of the most important (data not shown). Figure 

3 graphically shows the DRDRAC descriptor for Bifonazole and 

Clotrimazole as the area of the triangle formed by the three atoms 

DR, DR and AC (in violet). These two compounds share three 5 

phenyl rings and an imidazole ring. As a result of the different 

arrangement of these features DRDRAC is larger for Bifonazole 

(32.8Å) than for Clotrimazole (20.0Å). In other words, the phenyl 

rings in Clotrimazole cannot fully express their hydrophobicity 

and this evidence is included in the final model through the 10 

DRDRAC descriptor. 

 
Fig. 3. DRDRAC descriptor is represented for two compounds of the 
dataset, Bifonazole (on the left) and Clotrimazole (on the right). The 

vertexes of the triangle of maximum area are shown in magenta. Shortly, 15 

all the atoms of a structure are classified by VS+ as Dry (DR), H-bond 
donor (DO) and H-bond acceptor (AC); then all possible triangles made 

from triplets of atoms are generated and the corresponding area 
calculated. Finally the triangle (DRDRAC here) with the maximum area is 

retained and its area is the descriptor used in VS+. 20 

 

Analysis of lipophilicity indexes measured on a Supelcosil LC-
ABZ column 

The aim of the second part of the study is to shed light on the 

balance of the intermolecular interactions governing isocratic log 25 

k’s and extrapolated log k’w values. This information is crucial 

for establishing if log k’w need to be obtained (longer and more 

difficult to obtain than log k’ alone) to predict log P for a given 

system. 

For the same series of 36 drugs discussed above we measured a 30 

series of lipophilicity indexes (log k’80, log k’70, log k’60, log 

k’50, log k’40, log k’30 and’ log k’w where log k’ is the 

logarithm of the capacity factor k’ measured at a given organic 

solvent concentration, whereas log k‘w is the logarithm of the 

capacity factor extrapolated to a 0% concentration of the organic 35 

solvent) with a chromatographic system already described in the 

literature 25. Supelcosil LC-ABZ column is one of the most 

plausible candidates as a model for the octanol–water partition 

system25. The stationary phase is an alkylamidesiloxane-bonded, 

silica-based stationary phase with an embedded polar (amide) 40 

group close to the silica surface. 25 The system is, practically, the 

same as in ElogP apart from the presence of octanol.  

Experimental data (log k’) are reported in Table S1 in the 

Supporting Information. The log k’w values were calculated by 

extrapolation using linear regression to 100% water. Linear 45 

trends were verified for all compounds (some examples are 

shown in Figure S2 of the Supporting Information). We are aware 

that linearity was not always verified in the literature for the 

investigated system using different datasets of compounds. 25  

The correlation matrix (Figure S3 in the Supporting Information) 50 

shows large correlation coefficients among lipophilicity indexes. 

This result does not provide evidence that either log k’s or log k’w 

can be used for estimating log P. To do that the same balance of 

intermolecular interactions should be verified for the involved 

systems 3., The procedure described above to obtain and analyze 55 

PLS models was applied to verify this. The statistics of the PLS 

models are shown in Table 1. The last two models (log k’40 and 

log k’30) were discarded because of poor statistics probably 

related to a limited number of available values. Statistically 

acceptable PLS models were submitted to BR analysis as 60 

described above.  

BR graphical outputs are reported in Figure 3 and Figure S4 

(Supporting Information) and clearly prove that the balance of 

intermolecular forces varies with the amount of methanol in the 

mobile phase. In particular, the higher the amount of methanol, 65 

the lower the relevance of the size block to the model. This 

finding is in line with the observations by Pagliara et al. 26 and 

may be due to the more hydrophobic character and lower 

hydrogen-bond capacity of methanol compared to water. 

Interestingly, the variation in methanol content only poorly 70 

influences the contribution of the remaining blocks to the model, 

being the water block the most sensible out of the 5 remaining 

blocks.  

BR analysis (Figure 4) shows that log k’60 determined on a 

Supelcosil LC-ABZ column with methanol–water mobile phases 75 

is a suitable model for estimating log P of neutral compounds as 

ElogP. Conversely, the extrapolated value (log k’w) overestimates 

the contribution of the Size block and thus should not be used to 

obtain log P. This could also be related to the extrapolation 

process made with isocratic values obtained with high amount of 80 

MeOH in the mobile phase.  

Taken together these findings are of paramount relevance since 

the identification of the “best” log k to mimic log P is an open 

question in the literature where many controversial opinions are 

reported 27. In particular, the chromatographic descriptors that 85 

cannot replace log P could be good indexes per se, as already 

discussed 4 , and their potential should be highlighted by ad hoc 

informative tools as BR analysis. 

  



 

 

 
Fig. 4. BR plots with sign calculated for a series of log k’ values determined using the same column with different mobile phase composition (see text for 

details) 

 

Conclusions 5 

The Block Relevance (BR) analysis is a new tool that facilitates 

the mechanistic interpretation of Quantitative Structure-

(Chromatographic) Retention Relationships (QSSR). It is based 

on PLS models and VS+ descriptors.  

With BR analysis it is possible to establish the main 10 

intermolecular forces governing a given physicochemical system 

and thus check if a given chromatographic descriptor can be used 

as a surrogate of log P. The application of BR analysis should, 

therefore, limit coarse estimations of log P from not checked 

chromatographic indexes. 15 

BR analysis can replace solvation equations and go beyond them 

since the nature of VS+ descriptors introduces the 3rd dimension 

in the model. Moreover, these descriptors do not have any 

chemical space limitation and can be calculated for small 

molecules and peptides as well.  20 

Finally, BR analysis adopts a convenient graphical format for 

delivering outputs specifically designed for a medicinal chemistry 

audience. 

The application of BR analysis will be extended to more 

physicochemical systems,mainly to ADME-Tox topics, that often 25 

are described by the models that show good predictive abilities, 

but are poorly interpretable in mechanistic terms. This effort  is 

expected to increase the confidence of medicinal chemists in 

QSAR models and thus to improve their practical daily use. 

Methods 30 

Materials and Methods 

The dataset is represented by 36 drugs reported by Lombardo et 

al. 2 Most of the solutes were purchased directly from commercial 

sources (Sigma-Aldrich and Alfa Aesar). Benzodiazepines were 

purchased as dosage forms (aqueous solutions). All drugs were 35 



 
used as received, in all cases. Deionized water and HPLC grade 

methanol (VWR) were used throughout. 

The mobile phase consisted of 20 mM MOPS buffer at pH 7.4 

and methanol in varying proportions from 30 to 80% v/v. For all 

mobile phases, the given pH is the pH of the buffer before the 5 

addition of organic modifier. 

Samples were dissolved in methanol in a concentration range 50-

100 g/mL. The flow rate was 1 mL/min. 

Injections of pure methanol were used to determine t0, i.e., the 

dead time. 10 

The retention time (tR) were measured on a Supelcosil TM LC-

ABZ alkylamide column (Supelco, 5cmx4.6mm, 5m packing, 

120Å pore size). This phase has a unique deactivation technology 

which provides excellent reversed-phase performance for basic 

compounds, as well as those that are acidic, polar neutral, and 15 

non-polar (the ODS phase is pretreated with an electrostatic 

coating to suppress free silanophilic groups). 

Four to five isocratic log k (capacity factor k = (tR - t0)/t0) values 

were measured. The log k’w values were calculated by 

extrapolation of isocratic log ks against the mobile phase 20 

composition using linear regression. In all cases, the square of the 

correlation coefficient was > 0.99. Some examples of log k’w 

extrapolation are shown in the Supporting Information (Figure 

S2). 

A HPLC Varian ProStar instrument equipped with an 410 25 

autosampler, a PDA 335 LC Detector and Galaxie 

Chromatography Data System Version 1.9.302.952 was used. 

PLS models 

SMILES codes were submitted to VolSurf+ (version 1.0.4, 

http://www.moldiscovery.com) using default settings and four 30 

probes (OH2, DRY N1 and O probes that mimic, respectively, 

water, hydrophobic, hydrogen bond acceptor and hydrogen bond 

donor interaction of the compounds with the environment).  

PLS tools implemented in VolSurf+ were used. 

BR analysis 35 

BR analysis was performed as described elsewhere 20 . 
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