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Abstract: Degradation of the extracellular matrix is an important feature of embryonic development, morphogenesis, 

angiogenesis, tissue repair and remodeling. It is precisely regulated under physiological conditions, but when 

dysregulated it becomes a cause of many diseases, including atherosclerosis, osteoarthritis, diabetic vascular 

complications, and neurodegeneration. Various types of proteinases are implicated in extracellular matrix degradation, 

but the major enzymes are considered to be metalloproteinases such as matrix metalloproteinases (MMPs) and 

disintegrin and metalloproteinase domain (ADAMs) that include ADAMs with a thrombospondin domain (ADAMTS). 

This review discusses involvement of the major metalloproteinases in some age-related chronic diseases, and examines 

what is currently known about the beneficial effects of their inhibitors, used as new therapeutic strategies for treating or 

preventing the development and progression of these diseases.  
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1. INTRODUCTION  

Metalloproteinases are a large family of important endopeptidases, which include matrixins (matrix 

metalloproteinases, or MMPs) and adamalysins (a disintegrin and metalloproteinase domain, or ADAMs) [1, 2]. 

The subunits of ADAMs, which are transmembrane proteases, comprise a catalytic domain at the end of the 

extracellular extension, which comprises three domains: a disintegrin, a cysteine-rich domain, and a number of 

epidermal growth factor repeats. The cytoplasmic tail attached to the epidermal growth factor domain protrudes through 

the membrane, and signals cell-surface events to the cytoplasm [3]. The catalytic domain contains a typical zinc-binding 

consensus motif; for example, in the case of ADAM-10, HEXGHXXGXXHD. 

As the name “ADAM” indicates, the disintegrin or integrin-binding domain binds these molecules to the 

membrane integrins, and the metalloproteinase domain provides the protease function [4]. Thus ADAMs are important 

in events at the cell surface, because they attach to integrins on the cell surface and carry out metalloproteinase 

functions. Their primary functions are cleavage of extracellular matrix (ECM) molecules and of the extracellular 

domains of many cell-surface membrane proteins, a process known as “ectodomain shedding” [4-6]. Shedding of the 

tumor necrosis factor-  (TNF- ) receptor, and of interleukin-6 (IL-6), L-selectin, and syndecans, has also been shown 

to be a function of ADAMs [7]. They are also important in intracellular signaling and cell adhesion [8]. ADAMs are 

thus implicated in cell proliferation, migration, differentiation, and survival [9]. Of the more than 30 members of this 

family, only ADAM-10, -15, and -17 have been characterized in vascular cells [10]. ADAM-10 has also been identified 

in distinct areas of the human brain [11, 12] and peripheral structures [13, 14] (Table 1). ADAMs with a 

thrombospondin domain (ADAMTS) form another group of metalloproteinases. ADAMTS-4 and ADAMTS-5 have 

been shown to degrade aggrecan, a proteoglycan of joint cartilage ECM, and to be involved in spinal cord injury [15, 

16]. These enzymes are regulated at multiple levels, through control of gene expression, mRNA splicing, and protein 

processing, as well as through regulation of the expression of various naturally-occurring inhibitors.  

With regard to MMPs, there are at least 25 mammalian MMPs, 14 of which have been characterized in 

vascular cells. Although mammalian MMPs have overlapping specificities for structural ECM components, they are 

classified into five groups, by differences in their primary structure and substrate specificity. These groups are: 

interstitial collagenases, gelatinases, stromelysins/matrilysins, membrane-type MMPs (MT-MMPs), and others MMPs. 

Further, they are assigned MMP numbers, and some members also have trivial names (Table 2). MMPs are extracellular 

proteins, but recent studies have reported that MMP-1 [17], MMP-2 [18] and MMP-11 [19] are intracellular, and may 

act on intracellular proteins. Moreover, most MMPs are expressed as inactive, latent proforms, although MMP-11, -21, 

-23, and -27, and the MT-MMPs, have a furin recognition sequence before the catalytic domain, and are therefore likely 

to be activated intracellularly and secreted as active enzymes [20, 21]. 

The protein structure of MMPs follows a basic pattern. A typical MMP consists of a propeptide of about 80 

amino acids at the N-terminal, which is attached to a signal peptide, a catalytic metalloproteinase domain of about 170 

amino acids, a linker peptide of variable length (also called the “hinge region”) and a hemopexin domain of about 200 

amino acids, which may be attached to a transmembrane domain. Exceptions to this are MMP-7, MMP-26 and MMP-

23; these MMPs lack the linker peptide and the hemopexin domain, and MMP-23 has a unique cysteine-rich domain 

and an immunoglobulin-like domain after the metalloproteinase domain. The two gelatinases, MMP-2 and MMP-9, 

have three repeats of a fibronectin type II motif in the metalloproteinase domain. Further, MMPs have a zinc binding 

motif - HEXXHXXGXXH - in the catalytic domain, and a “cysteine switch” motif - PRCGXPD - in the propeptide: the 

three histidines in the zinc binding motif, and the cysteine in the propeptide, coordinate with the catalytic zinc ion. This 

Cys-Zn
2+

 coordination keeps proMMPs inactive, preventing catalysis of the zinc atom by water-molecule binding. The 



catalytic domain also contains a conserved methionine, forming a “Met-turn” situated eight residues after the zinc 

binding motif, whose role is to support the structure around the catalytic zinc. The zinc binding motif and the “Met-

turn” are also conserved in ADAM family members [20, 21]. 

Traditionally, MMPs are thought to play a central role in degrading and remodeling ECM components, 

including fibronectin, laminin, proteoglycans and collagen [21-23]. In recent years, however, findings from several 

research groups have established that MMPs cleave a wide range of extracellular and bioactive ECM and non-ECM 

substrates, and that they regulate the activity of these proteins [24, 25]. The established functions of MMPs include 

releasing cytokines and growth factors from the cell membrane or ECM, cleaving growth factor receptors from the cell 

surface, activating proforms of cytokines (e.g. TNF-  and IL-1 ), activating death receptors at cell membranes, 

shedding cell adhesion molecules, and activating other MMPs and MMP inhibitors, as well as other signaling molecules 

[24-28]. They are also involved in regeneration, myelin formation, angiogenesis, and axonal growth [29]. The ability of 

MMPs to modify the structural integrity of tissues is thus essential for certain physiological and pathological processes: 

MMPs are potent controllers of physiological processes (cell migration, proliferation, differentiation, growth and 

development) and of pathological processes (tissue remodeling in response to injury, inflammatory processes, 

neovascularization, cancer progression, apoptosis, etc.) [21, 30]. In this context, and in brief, MMPs are important in 

normal development, remodeling, wound healing, and also in a wide variety of pathological processes, including the 

spread of metastatic cancer cells, arthritic destruction of joints, cardiovascular and neurodegenerative diseases, diabetes 

mellitus, and lung diseases. In these latter pathological processes, which are characterized by an inflammatory response, 

the abnormal expression and activation of these proteases lead to ECM breakdown. 

As cited above, MMPs are secreted as latent enzymes and require activation, which is tightly regulated so as to 

prevent tissue damage. The activities of most MMPs are very weak or negligible in normal steady-state tissues, but 

rapidly increase in response to inflammatory and oxidative stimuli. Their activity can be regulated at four levels: 

induction of MMP genes, vesicle trafficking and secretion, activation of latent proforms, and complexing with specific 

endogenous tissue inhibitors of metalloproteinases (TIMPs). Activation of MMPs is, thus, an important regulatory step 

in MMP activity. 

MMPs are synthesized as pre-proenzymes, but during translation the signal peptide is removed, generating 

proMMPs; thus most MMPs are secreted from the cell in the form of proMMPs. MMPs may be stored intracellularly in 

vesicles, or secreted directly into the intracellular space. The presence of a proteinase-susceptible “bait” region in the 

propeptide allows tissue and plasma proteinases or opportunistic bacterial proteinases to activate proMMPs. A small 

number of MMPs, including the membrane-bound MT-MMPs, are proteolytically activated inside the cell by furin 

proteases, but most MMPs are activated in the extracellular space. Besides proteolytic cleavage, a change in 

configuration of the propeptide region can activate the enzymes. The proMMPs thus possess a furin-like proprotein 

convertase recognition sequence, RX[K/R]R, at the end of the propeptide, and are likely to be activated intracellularly 

and then secreted or cell-surface-bound as active enzymes. ProMMPs can also be activated by oxidants, such as reactive 

oxygen species (ROS) and nitric oxide (NO) [31] by reacting with the cysteine of the “cysteine switch” in the 

propeptide, and this activation process takes place under inflammatory and oxidative conditions [32]. Moreover, they 

can be activated by lysosomal proteases [20], by urokinase type plasminogen activators [33], by angiotensin [34] or by 

hyperglycemia [35]. In addition, control of the inducible MMP genes can occur at the promoter region, which contains 

binding sites for transcription factors such as activator protein-1 (AP-1), nuclear factor- B (NF- B), and polyoma 

enhancer A binding protein-3 (PEA-3); in turn, these are responsive to free radicals, protein kinases, and cytokines, 



suggesting that these genes may be induced during inflammation [36, 37]. Activated MMPs can also activate other 

MMPs, in a stepwise activation cascade [20, 30, 38, 39]. 

Thus MMP activities are regulated by two major types of endogenous inhibitors: 2-macroglobulin and TIMPs. 

Human 2-macroglobulin is a plasma glycoprotein of 725 kDa that inhibits most proteinases by entrapping the 

proteinase within the macroglobulin, after proteolysis of the bait region of the inhibitor; the complex is rapidly cleared 

by low density lipoprotein (LDL) receptor-related protein-1-mediated endocytosis. MMP activities in the fluid phase are 

primarily regulated by 2-macroglobulin. MMP-1 reacts with 2-macroglobulin more readily than with TIMPs [40]. 

TIMPs are potent and selective tissue inhibitors of MMPs, consisting of 184-194 amino acids [21, 41]. They 

are subdivided into an N-terminal and a C-terminal subdomain. Each domain contains three conserved disulfide bonds, 

and the N-terminal domain folds as an independent unit with MMP inhibitory activity. The N-terminal cysteine is 

particularly important for inhibition, since its free -amino group and carbonyl function displace the catalytic water 

molecule from the essential Zn
2+

 ion at the MMP active site. There are at least four members of the TIMP family 

(TIMP-1, -2, -3, and -4) that are often secreted by the same cells that secrete MMPs; their expression is closely 

regulated during embryonic development and tissue remodeling [30, 42]. The four members of the TIMP family have 

many similarities and overlapping specificities, but their biochemical properties and local expression patterns are 

distinctive [41]. TIMP-1, -2, and -4 are secreted in soluble form, while TIMP-3 is associated with the ECM. Moreover, 

their activity is stimulated by platelet-derived growth factor (PDGF) and tumor growth factor  (TGF ) and is regulated 

by several cytokines. TIMPs form tight inhibitory 1:1 complexes with MMPs [42]. These interactions are generally 

rather non-selective, meaning that TIMPs inhibit all MMPs, at least to some extent; however, certain TIMPs have 

weaker or stronger inhibitory effects on specific proteinases [42]. TIMP-1 mainly inhibits MMP-9 as well as MMP-3, 

while it only weakly inhibits MMP-14 (MT1-MMP), MMP-16 (MT3-MMP), MMP-18 (MT5-MMP) and MMP-19; 

TIMP-2 inhibits MMP-2 and, paradoxically, at low concentrations contributes to activating proMMP-2. TIMP-3 is the 

only TIMP bound to the ECM and cell surface. TIMP-3 inhibits several membrane-bound molecules with sheddase 

functions, such as MMP-3, MMP-7, and MMP-14. ADAMs also contain an MMP-like catalytic domain, which in some 

cases remains catalytically active. In general, TIMPs do not bind or inhibit the catalytic site of ADAMs, although 

TIMP-3 inhibits ADAM-10 and ADAM-17, and TIMP-1 inhibits ADAM-10 [43]. TIMP-4 is chiefly localized in 

vascular tissue [21]. 

Several other proteins have been reported to inhibit selected members of the MMP family, although the 

inhibition mechanism of these protein is still unclear: the secreted form of amyloid  precursor protein (APP) inhibits 

MMP-2 [44]; a C-terminal fragment of procollagen C-proteinase enhancer protein inhibits MMP-2 [45], and RECK 

(reversion-inducing cysteine-rich protein with kazal motifs), a GPI-anchored glycoprotein that suppresses angiogenesis, 

inhibits MMP-2, MMP-9 and MMP-14 [41, 46]. Moreover, MMP expression is determined at a transcriptional level by 

various cytokines and growth factors [47]. In a number of tissue types, some cytokines and growth factors, including 

IL-1, TNF-  and PDGF, stimulate MMP expression, while others are inhibitory, e.g. TGF . 

The balance between production, activation, and inhibition of metalloproteinases is critical in maintaining 

ECM integrity. When proteolytic activity is greater than inhibition caused by TIMPs or other inhibitors, ECM 

breakdown occurs. Conversely, if inhibitors are too strongly expressed and proteolysis is restricted, there is a build up 

of ECM proteins, with fibrosis. 

 

2. METALLOPROTEINASES IN AGE-RELATED DISEASES 

2. 1. Metalloproteinases in Atherosclerosis  



 Uncontrolled ECM remodeling of the myocardium and vasculature, by MMPs and other proteolytic enzymes, 

are features of cardiovascular disorders such as atherosclerosis, stroke, stenosis, left ventricular hypertrophy, heart 

failure, and aneurysm [20, 48-51]. 

 A number of MMP gene polymorphisms have also been shown to contribute to inter-individual susceptibility 

and outcome of these cardiovascular disorders. Genetic polymorphisms may, for example, affect MMP expression 

levels by conferring protection or propensity to vulnerable plaques [52-54]. Moreover, studies using MMP gene 

knockout mice have indicated that MMP-2 and MMP-9 play key roles in cardiac rupture after myocardial infarction 

[55, 56]. A critical role of MMP-2 and MMP-9 has also been demonstrated in the development of abdominal aortic 

aneurysm, using MMP gene deletion mice [57]. MMPs, in particular MMP-1 and MMP-2, might also be involved in 

triggering acute coronary syndrome, via their ability to promote platelet activation and aggregation [58, 59]. Finally, 

Timp-3 deficiency in mice disrupts matrix homeostasis, and causes spontaneous left ventricular dilation, cardiomyocyte 

hypertrophy, and contractile dysfunction [60]. 

 With regard to the multifactorial disease atherosclerosis, it is characterized by the development of 

atherosclerotic plaques in susceptible sites of the arterial wall. It is initiated by cholesterol-rich lipid retention and 

accumulation, oxidation, and modification, which combine to provoke chronic inflammation. Atherosclerotic plaque 

growth, due to lipid accumulation, smooth muscle cells (SMCs) proliferation, and matrix synthesis, may in turn narrow 

the arterial lumen and ultimately causing stenosis or thrombosis [61]. The final clinical outcome depends on whether a 

plaque becomes unstable, leading to acute disruption of the surface and exposure of the thrombogenic core to luminal 

blood flow [62]. In this context, our understanding of the pathogenesis of atherosclerotic lesions has improved 

dramatically, helping to clarify the mechanisms of plaque formation and the differences between stable and unstable 

plaque morphology [63-66]. In particular, it has now been established that inflammation is a key feature in all stages of 

the disease, especially in plaque destabilization, which leads to plaque rupture [67]. Alongside the inflammatory 

response, which triggers activation of macrophage-derived MMPs, also apoptosis of vascular cells, especially that of 

macrophages and SMCs, contributes to plaque destabilization [68, 69]. 

 A variety of intrinsic and extrinsic factors predispones an atherosclerotic plaque to instability and acute 

disruption. Intrinsic factors characterizing a plaque as vulnerable are: a large lipid core, increased inflammatory-cell 

infiltration (particularly by monocytes/macrophages), content of foam cells and of T lymphocytes, and reduced collagen 

and vascular SMCs content associated with increased matrix proteolysis. Extrinsic features include increased blood 

pressure, hemodynamic shear stress, and vasospam [62, 70-74]. Plaque rupture tends to occur at the shoulder region, 

which is  associated with cap thinning and macrophage infiltration [75]; the shoulder region is also the area of the 

plaque exposed to the greatest shear stress [74]. Macrophages control many of the inflammatory processes within the 

plaque, and are the principal cells responsible for the production of MMPs [49]. MMPs are the predominant proteolytic 

enzymes, thought to participate in weakening the connective tissue matrix in the intima, leading to plaque rupture and 

acute thrombosis [76, 77]. Of note, human peripheral blood monocytes express MMP-8, -9, -14 and -19, TIMP-1 and 

TIMP-2 constitutively, but activated macrophages and foam cells express high levels of several MMPs, in response to 

adhesion and pro-inflammatory mediators, either directly, through mitogen-activated protein kinase (MAPK) activation 

and the NF- B pathway, or indirectly, with prostaglandin E2 (PGE2) involvement [78, 79]. The upregulation of MMP 

secretion by differentiated macrophages can be stimulated by contact with endothelial cells (ECs) [80] and by adhesion 

to matrix components, such as collagen [81]. Contact-mediated upregulation of MMPs seems therefore to be the first 

stage of MMP induction in activated macrophages. Intracellular accumulation of lipids, typical of foam cells, thus 

increases MMP expression in macrophages [82, 83] and, in turn, foam cells produce ROS that trigger the transformation 



of pro-MMP into active MMP. Several pro-atherogenic cytokines and growth factors, including IL-1 , TNF- , 

macrophage colony-stimulating factor (M-CSF) and PDGF respectively, as well as other inflammatory mediators 

increase macrophage MMP expression [78, 84]. Moreover, immune cells might upregulate MMPs in activated 

macrophages, including MMP-1, -3, -8 and -11, and MMPs co-localize with CD40 expression in atherosclerotic plaques 

[85-88]. Moreover, it has been demonstrated that MMP secretion can be induced by both innate immune system, 

through action on Toll-like receptors, and the acquired immune system, through actions of interferon  and a variety of 

interleukins (mainly IL-1, -4, -10, and -13) [78]. IL-8 can for example release a local imbalance between MMPs and 

TIMPs by inhibition of TIMP-1 expression in macrophages [89]. 

 Besides macrophages, which release mainly MMP-1, -3, -8, -9, -11, -12, and -14, as well as TIMPs, other 

vascular cells produce and secrete various MMPs [20, 49]. The principal MMPs produced by vascular SMCs are MMP-

1, -2, -3, -8, -9, and -14. MMP-2, rather than MMP-9, is constitutively expressed in vascular SMCs, but both MMP-2 

activation and MMP-9 induction are rapidly triggered by vascular injury [90, 91]. Both inflammatory and immune 

activation of MMPs are also reported for SMCs. MMP-1, -3, and -9 are inducible by inflammatory cytokines and 

growth factors [92-94] as well as by immune cells [88, 95]. Atherosclerotic plaque resident T lynphocytes may also be a 

direct source of MMP-1, -2, -3, -9 [96, 97]. Mast cells, such as SMCs and ECs, constitutively secrete MMP-2 and 

upregulate MMP-9 secretion, in response to inflammatory stimuli. MMP-9 induction occurs both through cell-contact-

dependent mechanisms with activated T cells, and through autocrine TNF-  secretion [98]. Moreover, inflammatory 

cytokines and growth factors produced by activated macrophages induce expression of MMPs in ECs, including MMP-

1, -3, -2, -3, -7, -8, -9, -10, -11, -13, -14, -15, and -16 [99-101]. Ligation of CD40, expressed by ECs, thus upregulates 

MMP-1, -3, and -9 and increases activation of MMP-2 [102]. Oxidized LDLs also upregulate MMP-1 in human 

vascular ECs and human coronary artery ECs, whereas they downregulate TIMP-1 [103]. In addition, ECs express co-

activators of MMPs, including urokinase plasminogen activator receptor, tissue plasminogen activator, CD44, and 

RECK, as well as TIMPs [101]. Furthermore, adventitial fibroblasts produce MMP-1, -3, and -9, while several MMPs 

have been identified in platelets, including MMP-1, -2, -3, -9, and -14, as well as TIMP-1, -2 and -4, which can 

modulate platelet activation and aggregation [104]. It has been reported that thrombin, which is produced in large 

quantities during plaque rupture, leads to MMP-2 activation and that, in turn, MMP-2 may increase platelet activation, 

leading to further activation of thrombin and to secondary MMP-2 activation, in a feedback mechanism [104, 105]. It 

has also been shown that oxidized LDLs stimulate MMP-9 and MMP-14 release by macrophages and SMCs [106, 107] 

and increase MMP-1 expression in ECs [108]. In this context, the mechanism responsible for expression and activation 

of vascular-cell-derived MMPs seems to involve both inflammatory and immune upregulation, as well as oxidative 

stress. 

 The implications of MMP overactivity on atherosclerotic plaque destabilization have been confirmed in 

apolipoprotein E (ApoE) knockout mice, by overexpressing individual MMP genes or by deleting TIMPs [77, 109, 

110]. In the same type of mice, macrophage overexpression of active MMP-9 was found to induce acute plaque 

disruption, without significantly affecting lesion size or macrophage content [111]. Another study showed that 

overexpression of MMP-9 had no effect on the size of early carotid lesions, but disrupted advanced lesions, especially 

those caused by hypercholesterolemia [112]. It thus appears that MMP-1 overexpression in macrophages reduces 

atherosclerotic progression in ApoE deficient mice, by reducing the amount of collagenous matrix accumulation [113]. 

Studies in ApoE knockout mice with deleted MMP genes have illustrated that MMPs play a dual role in fibrous cup 

formation and plaque destabilization. Deletion of MMP-13 collagen deposition and greater plaque stability [114, 115]. 

Conversely, MMP-2 deletion lowered plaque stability in the aortic root, probably due to MMP-2’s ability to aid the 



migration of vascular SMCs and to build the fibrous cup [116]. Mmp-3 deficiency produces more stable atherosclerotic 

plaques and increases plaque size [117]; in the aorta of Mmp-9 deficient mice, though, plaque size was reduced, as were 

macrophage content and elastin degradation [118]. Moreover, increased plaque size, macrophage content and buried 

fibrous layers were observed in the brachiocephalic artery of ApoE/Mmp-3, ApoE/Mmp-7, and ApoE/Mmp-9 double 

knockout mice [119]. Recruitment of vascular SMCs was also reduced in plaques of both Mmp-3 and Mmp-9 deficient 

mice, which is consistent with impaired intimal thickening in these mice [120]. Conversely, MMP-7 deletion increased 

SMC proliferation in the plaques of ApoE knockout mice [119], consistent with the involvement of MMP-7 in vascular 

SMC apoptosis [121]. With regard to MMP-12, its deletion caused more stable lesions in the brachiocephalic artery 

[119] and reduced elastin degradation in the aortic arch [118]. MMP-12 deletion also decreased foam cells apoptosis 

and reduced calcification into plaques [122]. Conversely, MMP-12 overexpression has also been shown to increase 

plaque size and inflammation in rabbits [123]. In addition, deletion of MMP-8 reduced inflammation and aortic 

atherosclerosis [124] while deletion of MMP-13 or MMP-14 had little effect on vascular SMC or macrophage content 

but, contributed to plaque stability by increasing collagen content [115, 125]. 

 Degradation of ECM by MMPs exerts an influence at various stages of atherosclerotic plaque development 

[126]. In the initial stages of atherosclerosis after vascular injury, matrix degradation, presumably induced by MMP 

dysregulation (mainly MMP-2 and MMP-9), is thought to be combined with changes in permeability, macrophages 

activation and increased SMC migration [20, 49, 127]. For example, monocytes and T-lymphocytes adhering to ECs 

respectively enhance production of MMP-9 and that of MMP-2 [128, 129]. This enhancement is associated with EC 

basement membrane degradation, and penetration of the intima by monocytes and T-lymphocytes, leading to enhanced 

EC permeability [80, 100]. Moreover, MMP-2 and MMP-9 initially, and MMP-14 subsequently, promote the migration 

and proliferation of vascular SMCs, which could increase fibrous cup thickness and promote stability [127, 130, 131]. 

MMP-3 has also recently been implicated in this process, via its ability to stimulate MMP-9 activation [120]. Induction 

of MMPs in vascular SMCs, by a combination of inflammatory cytokines and growth factors, may be the key to matrix 

remodeling [94]. The regulatory mechanisms by which matrix remodeling can control the SMC cycle, involving growth 

factors and kinases, and by which it can also regulate plaque stabilization, has been studied in detail [132]. Conversely, 

MMP-7 mediated cadherin cleavage leads apoptosis of vascular SMCs, with possible decreased intima formation [121]. 

Large amounts of ECM are deposited in the fibrous cup during atherosclerotic plaque development, which provides its 

structural integrity and stability, while MMP secretion by vascular cells promotes macrophage invasion, thereby 

increasing plaque inflammation [133, 134]. During atherosclerotic plaque progression, ECs, vascular SMCs, and foam-

cell macrophages secrete a variety of cytokines that perpetuate the recruitment and activation of inflammatory cells, 

which in turn attract modified vascular SMCs to the neointima [135]. In later atherosclerosis stages, an excess of MMPs 

versus inhibitors significantly contributes to ECM degradation, rendering the plaque more prone to rupture. Numbers of 

MMP-1, -2, -3, -7, -9, -12 and -14 positive macrophages, and of SMCs in the plaque increase in parallel with plaque 

progression [82, 126, 136]. The various different proteolytic enzymes have mainly been observed at the shoulder region 

of the plaque, where types I and III collagen are degraded; the cells playing the central role in this process are 

macrophages. Many MMPs (MMP-1, -2, -3, -7, -8, -9, -11, -12, -13, -14, and -16) are thus detectable in the 

macrophage-rich shoulder region of highly inflamed atheromatous plaques. MMP-7 and MMP-12, however, are 

detected in a greater concentration in macrophages close to the necrotic core [20, 96, 137, 138]. Co-localization of 

cleaved collagen with collagenases MMP-1, -8, and -13 suggests these enzymes are active [88, 139]. Interestingly, it 

has been observed that cells isolated from human plaques overexpress MMP-1 and MMP-3, caused by activation of 

Toll-like receptor 2 [140]. Moreover, isolated foam cells from cholesterol-fed rabbits induce expression of MMP-1, -3, -



12 and -14 [83, 141, 142]. However, a study carried out in endarterectomy biopsies showed that increased MMP-2 was 

mainly associated with SMCs and plaque stability, while MMP-8 and MMP-9 were associated with the presence of 

macrophages, and unstable plaques prone to rupture [138]. Increased MMP expression has also been observed after 

coronary angioplasty, suggesting that MMP expression may be involved in the formation of restenotic lesions [143]. It 

has also been reported that increased TIMP-1 levels are consistently present in human atherosclerotic plaques, where 

they are mainly found in areas of calcification [144] and that increased circulating levels of TIMP-1 are related to stable 

coronary, carotid and peripheral artery atherosclerosis [145, 146]. Of note, it has been shown that only pro-MMP-2, 

MMP-14, TIMP-1 and TIMP-2 are constitutively found in normal arteries; no activity was detected by in situ 

zymography [20]. 

 Angiogenesis in the adventitia underlying plaques, and within the plaque itself, is another feature of the 

pathogenesis of atherosclerosis; it is associated with plaque progression and destabilization. The angiogenetic fibroblast 

growth factors (FGFs) promote EC migration and upregulation of MMP-1, -2, -3, -7, -9, -10, -11, and -13 [147, 148] 

whereas vascular endothelial growth factor (VEGF) induce MMP-2 expression [149]. Thrombin also displays pro-

angiogenetic effects, by up-regulating MMP-1 and MMP-3 [150] and by enhancing MMP-2 activation via MMP-14 

[151]. 

 Endothelial erosion is another process associated with plaque rupture that occurs in highly stenotic and fibrotic 

plaques. It has been suggested that overproduction of MMPs (principally of MMP-2 and MMP-9) from inflamed or 

otherwise dysfunctional ECs weakens their interaction with their underlying basement membrane, thereby causing 

erosion. Moreover, low average shear stress and disturbed flow are also associated with endothelial dysfunction and 

erosion [101]. 

 Of the various MMPs, MMP-9 has recently been the focus of growing interest in connection with human 

illnesses, including cardiovascular disorders associated to atherosclerosis [152]. It has then been found that 

polymorphisms of the MMP-9 gene are linked to atherosclerosis and to complicated coronary lesions [153-155]. 

Moreover, deficiency of Mmp-9 reduces the formation of atherosclerotic lesions in ApoE-deficient mice [118]: MMP-9 

is the enzyme most specifically associated with atherosclerotic plaque instability and rupture. However, MMP-9 is not 

only important for ECM degradation; it also plays a role in ECM organization [129, 156]. 

 Upregulation of intraplaque MMP-9 leads to increased plaque hemorrhage and rupture in mouse models [111, 

112]. MMP-9 has also been found to be highly expressed in unstable human plaques [157, 158],
 
whereas TIMP-1 and 

TIMP-2 levels remained unchanged, and there was a significant increase in the MMP-9/TIMP-1 ratio [157]. In humans, 

analysis of coronary atherectomy specimens found higher levels of active intraplaque MMP-9 in patients with unstable 

angina (i.e. unstable coronary plaques) compared to patients with stable angina (i.e. stable coronary plaques) [159]: 

MMP-9 has been detected in the vulnerable shoulder region, and in areas of foam-cell formation in atherosclerotic 

plaques [78]. Moreover, raised levels of MMP-9 and MMP-2 in the coronary arteries carrying the culprit lesion, add 

further evidence to show the role of these enzymes in plaque rupture, and in the precipitation of an acute vascular event 

[160]. A significant increase in MMP-9 immunopositivity has also been demonstrated in atherosclerotic lesions of the 

aorta and carotid artery of rabbits fed a high-cholesterol diet [161]. Increased plasma levels of circulating MMP-9, as 

well as MMP-2, also correlate with the clinical symptoms of plaque instability and rupture in the coronary and cerebral 

circulation [162, 163] as well as being found in patients affected by myocardial infarction [164, 165], suggesting that 

MMP-9 may be useful as a biomarker for acute coronary syndrome [166, 167]. 

 As several studies have also reported, oxidized LDL have been demonstrated to induce expression and activity 

of MMP-9, and to decrease its endogenous inhibitor, TIMP-1, in human macrophages and ECs [106, 168-170]. A causal 



association between oxidized LDL autoantibodies and serum MMP-9 levels in vivo has also been demonstrated [171]. 

Oxysterols, which are cholesterol oxidation products, are present in considerable amounts in oxidized LDL, and appear 

to be implicated in the pathogenesis of atherosclerosis [172-175]. In this context, several studies have shown that, in 

cells of the macrophage lineage, oxysterols can initiate specific signal transduction pathways, which are relevant to the 

development of atherosclerosis [176-179]. A recent study has demonstrated that an oxysterol mixture, of composition 

similar to that found in advanced human carotid plaques [173], can significantly contribute to destabilizing the fibrotic 

plaque, by increasing expression and activity of MMP-9, without interfering with expression and synthesis of TIMP-1 

or TIMP-2. The consequent net imbalance of the MMP-9/TIMP-1,-2 ratio would in this case then trigger an excessive 

proteolytic ECM degradation within the advanced lesion, and contribute to plaque instability and likely rupture [180]. 

 

2.1.1. Inhibition of Metalloproteinases as Therapeutic Strategies for Atherosclerosis 

 Although MMP involvement in atherosclerotic pathology and in other vascular diseases goes beyond simple 

excessive matrix degradation, MMP inhibition may be of therapeutic benefit [101, 181]. Several physiological 

mediators are present in the vasculature, where they suppress MMP secretion in normal tissues, and in conditions of 

injury and inflammation. The athero-protective agent NO, produced by ECs, might inhibit MMP-9 production from 

vascular SMCs [182]. The anti-inflammatory cytokine TGF  inhibits induction of MMP-1, -3, -7, although 

paradoxically it upregulates MMP-13 [183], and it may upregulate TIMP-3 [93]. Moreover, interferon-  and/or -  

inhibit the induction of MMP-1, -3, -9, and -13, thereby presumably reducing the contribution of immune mechanisms 

to MMP induction in SMCs and in macrophages [85, 95]. 

 Furthermore, recent data have shown that treatment with a low-molecular-weight heparin decreases the levels 

of MMP-9 in patients with abdominal aortic aneurysm [184]. Again, angiotensin converting enzyme inhibitors (ACEIs) 

and angiotensin II receptor blockers (AIIRBs) reduce the raised circulating MMP-9 levels in patients with stable 

coronary artery disease [185], and the levels of this enzyme are also reduced by ACEI captopril in patients with acute 

myocardial infarction [186]. Further, since MMP activity may be induced by ROS, antioxidant therapy can be useful to 

modulate MMPs, including MMP-9, as has been demonstrate in a hypercholesterolemic rabbit model [187]. 

 Targeting specific cytokines or signaling pathways that are involved in mediating MMP upregulation could 

thus reduce MMP activity in atherosclerotic plaques. For example, inhibition of the CD40 ligand stabilizes plaques in 

mice, possibly due in part to effects on MMPs [188]. The MMP pathway can also be interrupted by targeting the 

inflammatory response. One specific target is PGE2: reducing PGE2 synthesis, for example with indomethacin or other 

anti-inflammatory drugs, can contribute to reducing MMP synthesis [189, 190]. Because PGE2 production is involved 

in MMP transcription, antagonists at the PGE2 receptor could also be useful in stabilizing plaques [191, 192]. Aspirin 

and other cyclooxygenase inhibitors also inhibit MMP production by monocytes [78], although cyclooxygenase 

independent pathways of MMP production may reduce the beneficial impact of these compounds in man [79]. In 

addition, MMP-1, -3 and -14 are expressed via NF- B, therefore inhibition of this transcription factor might reduce 

expression of these MMPs [83]. 

 Taken together, these findings show that there is a clear potential for the application of TIMPs as endogenous 

inhibitors [193] through gene therapy [41]. It has been demonstrated that adenovirus-mediated gene transfer aimed at 

overexpressing TIMPs can reduce MMP activity, intimal thickening, and plaque destabilization in various models. For 

example, overexpression of TIMP-1 in a mouse model of atherosclerosis caused a reduction in the lesion and 

macrophage content at the aortic root [194]. Another study examined whether short-term overexpression of TIMP-1 or 

TIMP-2 would attenuate atherosclerotic plaque development and instability, in ApoE knockout mice fed a high-fat diet. 



Analysis of brachiocephalic artery plaques showed that overexpression of TIMP-2, but not TIMP-1 infection, resulted 

in marked reduction in lesion area compared with control animals. TIMP-2 significantly reduced migration and 

apoptosis of macrophages and foam cells, inhibiting atherosclerotic plaque development and destabilization, whereas 

TIMP-1 failed to exert similar effects [133]. Moreover, a recombinant TIMP-1 has been shown to reduce the activity of 

MMP-1, -2, -9, and -3 in the shoulder and core regions of the plaque [101]. Finally, overexpression of TIMP-3 

markedly reduced neointima formation both in vitro and in vivo, by promoting cell apoptosis [195, 196]. 

 Furthermore, several observations suggest that statins, which are potent lipid-lowering drugs, may exert their 

beneficial effects on the arterial wall in part by means of their effects on the inflammatory response and on MMP and 

TIMP production. In particular, statins contribute to increasing plaque stability by inhibiting MMP secretion [197]. 

Statins have been reported to prevent atherosclerosis progression and coronary events, by inhibiting expression and 

secretion of MMP-1, -2, -3, and -9, in macrophages and SMCs in vitro, and in rabbit and human atherosclerotic lesions 

[198-201]. Cerivastatin also suppresses macrophage growth and reduces MMP-1, -3, and -9 expression in rabbits, while 

conserving the collagen [202]. Treatment with pravastatin before carotid endarterectomy reduced plaque lipid content, 

inflammation, MMP activity and cell death, also increasing the collagen content [200]. Statins are also known to exert 

anti-inflammatory and cardioprotective effects in ApoE knockout mice [203]. In addition, statin treatment has been 

shown to cause a significant reduction of C reactive protein (CRP) circulating levels, which are correlated to the 

severity of atherosclerosis [204, 205]. 

 Another strategy considers antibody-based inhibitors of MMPs. MMP-2 neutralizing antibodies have shown 

protective activity in hearts exposed to pro-inflammatory cytokines or ischemia/reperfusion injury. MMP-14 blocking 

antibodies have also been proposed as targets [206]. Alternatively, synthetic MMP inhibitors have been developed and 

tested. Synthetic MMP inhibitors are potent Zn
2+

-chelating mimickers of collagen, and the majority of them are broad-

spectrum inhibitors that suppress the activity of a large number of different MMPs [207]. More than 50 synthetic MMP 

inhibitors have to date been considered for possible clinical development [101]. Among synthetic MMP inhibitors are 

the hydroxamic acid derived inhibitors, such as BB-94 (batimastat), BB1101, BB-2293, BB-2516 (marimastat), and 

CPD-845 (CT-1746) [208]. Batimastat and marimastat are competitive MMP-inhibitors but, despite the promising 

results obtained with both inhibitors, their lack of oral bioavailability has precluded their long-term use; marimastat had 

better oral bioavailability [209] than batimastat [210]. Moreover, non-selective MMP inhibitors [211] or more selective 

MMP inhibitors, including pyrimidine-2,4,6-trione derivative Ro-28-2653, inhibit MMP-2, -9, and -14, reducing BBB 

breakdown in rat models of stroke [212]. Likewise, Ro-28-3555 (trocade) is a selective inhibitor of MMP-1 [213] and 

IW449 is a selective inhibitor of MMP-2 [208]. Other synthetic inhibitors include PD166793, OPB-3206 [214], 

BAY12-9566, AG-3340, KBR-7785, KBR-8301, GM-6001 (ilomastat or gelardin) metastat and AE-941 (neovastat) 

[215]. Moreover, 1,10-phenanthroline is a small organic coumpound inhibiting a broad range of MMPs. The selective 

MMP-12 inhibitor (RXP470.1) was used to treat established plaques in ApoE knockout mice; it blocked plaque 

enlargement, decreased lipid core formation, improved the ratio of SMCs to macrophages, and also reduced 

macrophage apoptosis, calcification and medial elastin breaks [122]. Further, a highly-selective inhibitor of MMP-13 

also inhibited collagenolysis, thus preserving the collagen content in plaques [216] to a very similar degree as has been 

observed to occur in both mice transgenic for a collagenase-resistant mutant of mouse collagen I [114] and Mmp-13 

knockout mice [115]. 

 The tetracycline antibiotic doxycycline is also a broad-spectrum MMP inhibitor, reducing both synthesis and 

activity of MMPs [217, 218]. Its main mode of action is by binding to the active zinc site, resulting in conformational 

change in the enzyme structure with loss of activity. Clinical trials using doxycycline showed a significant reduction in 



MMP-1 levels in carotid endarterectomy samples [219] and of plasma MMP-9 levels in patients with coronary artery 

disease [220]. Again doxycycline, appeared to be well-tolerated in another clinical trial for the treatment of abdominal 

aortic aneurysms [221, 222]. However, in all these clinical trials, the clinical benefit was low or remains to be 

demonstrated. Doxycycline increased SMC adhesion and reduced SMC migration; moreover, it limited the 

reorganization of fibrillar collagen matrices [217]. Doxycycline and the MMP inhibitors Ro-31-4724 and Ro-31-7467 

have also been shown to reduce SMC proliferation in vivo [223] and to promote SMC apoptosis [224]. 

 Because angiogenesis within plaques is associated with plaque progression and vulnerability [225] and because 

MMPs participate in this feature of atherosclerosis, they might be another target for therapy. It has been reported that 

marimastat inhibits angiogenesis in both collagen and fibrin matrices, by inhibiting MMP expression [149]. 

 

2.2. Metalloproteinases and Diabetic Vascular Complications 

 Type 2 diabetes mellitus is a frequent vascular risk in cardiovascular events, including atherosclerosis, and also 

in microvascular complications [226]. Considerable evidence points to a role for MMPs and TIMPs in the 

atherosclerotic process; however, the relationship between MMPs/TIMPs and diabetic angiopathy is less well defined. 

It is probable that atherosclerosis and diabetes mellitus share common pathways of MMP synthesis and plaque 

destabilization, including inflammatory pathways and molecules. However, recent in vitro and in vivo studies have 

demonstrated that hyperglycemia, either directly, or indirectly via oxidative stress or advanced glycation end-products 

(AGEs) regulates MMP’s expression and activity. Disruption of the ECM may enhance monocyte and vascular SMC 

migration, which may aggravate atherosclerosis in diabetes mellitus.  

 The exposure of ECs, macrophages, and SMCs to high concentrations of glucose induces dysregulation of the 

MMP/TIMP balance. High glucose concentrations have been demonstrated to induce expression of MMP-2 in arterial 

vasculature in vivo [227] and in cultured vascular SMCs [228]. In addition, hyperglycemia induces expression of MMP-

1 and MMP-2 in ECs, and expression of MMP-9 in macrophages, decreasing expression of MMP-3 but having no effect 

on TIMP-1 expression [35]. Another study has found MMP-2 and MMP-9 expression not to be affected, but in a high-

glucose environment their activity increased in ECs from umbilical cords [229]. Interestingly, it has also been shown 

that the effects of hyperglycemia on MMP-2 activity were further enhanced in vascular SMCs that were exposed to 

intermittent, rather than constant, high-glucose concentrations, more closely resembling a pathophysiological condition 

[230]. Moreover, increased synthesis of active and latent forms of MMP-2 and MMP-9 was observed in aortic 

specimens and blood samples from diabetic rats, as well as in cultured ECs, but not in vascular SMCs or macrophages 

[231]. It was subsequently shown that incubation with plasma LDL from patients with type 2 diabetes significantly 

increases expression of MMP-9 in monocytes [232]. It has also been suggested that high glucose levels might 

upregulate transcriptional factors, such as AP-1, or growth factors, such as TGF , which in turn enhance MMP gene 

transcription [233,234]. 

 MMP gene transcription may also be regulated by oxidative stress, through several mechanisms such as 

alteration of NO synthase activity, and AGE formation [235], as well as by genetic polymorphism [236]. There is 

increasing evidence to suggest that AGEs, and the interrelationship with their receptors (RAGEs), influence several 

signaling pathways, which are involved in vascular dysfunction [237]. AGEs are usually localized on the surface of 

macrophages and bind to the ECM. It has been demonstrated that matrix-glycation products increase monocyte 

infiltration, especially in the shoulder regions of plaques, and that they stimulate macrophages to release cytokines, thus 

accelerating the inflammatory response [238, 239]. In the shoulder region, there is thus an accumulation of 

macrophages, which contain the majority of RAGEs; the overexpression of RAGEs, which sustains inflammation, 



triggers vascular SMCs and macrophages to produce MMP-2 and MMP-9 [238]. The preponderance of macrophages 

coincides with reduced collagen content and with MMP-2 and MMP-9 overexpression in human diabetic plaques [238]. 

 The MMP/TIMP system may interfere with the subcellular insulin signaling pathways. Imbalance of the 

insulin signaling cascades may be involved in the atherosclerosis-promoting effect of insulin resistance, possibly by 

promoting MMP-2 and MMP-9 overexpression and compromising the expression of TIMP-3 [240]. Conversely, it has 

been shown that, in healthy subjects, insulin infusion acutely suppresses plasma levels of MMP-9 and VEGF levels. 

VEGF is known to contribute to proliferative retinopathy, as well as to plaque evolution and rupture [241]. Thus, insulin 

might act to prevent atherosclerosis and diabetic complications through its anti-proteolytic and anti-angiogenetic 

properties. High glucose levels, acting via the AGE/RAGE interaction and altered insulin signaling, thus provide a 

stimulus to inflammation and ECM degradation within atherosclerotic plaques.  

 High circulating levels of MMP-2, -8 and -9 have been found in patients with diabetes [242-244] and 

peripheral arterial disease [245] or acute coronary syndrome [246], while TIMP-1 levels are reported to be lower in 

diabetic patients than in non-diabetic subjects [247], although other studies have found normal levels of MMP-1, -3, -9 

and TIMP-1 in diabetic patients [248, 249]. 

 Apart from the role of MMPs in diabetic macrovascular complications, such as atherosclerosis, MMPs seem to 

play a key role in the development of the diabetic microvascular complications known as microangiopathies, which 

include diabetic retinopathy, diabetic nephropathy, and diabetic peripheral neuropathy.  

 Although normal retinas express MMP-1 and TIMP-2, retinas from diabetic patients show above-normal 

concentrations of activated MMP-1, -2, -3 and -9, as well as of TIMP-1, -2, and -3 [250, 251]. These processes may 

contribute to retinal neovascularization. High concentrations of MMP-8, -9, and -14 have also been found in the urine of 

patients with diabetic nephropathy [252], leading to investigation of the expression of MMP in diabetic kidneys and 

mesangial cells. Accumulation of ECM within the glomerulus contributes to diabetic renal dysfunction, and the amount 

and composition of mesangial matrix in diabetic nephropathy reflects the imbalance between synthesis and degradation 

of the ECM [253]. Additionally, hyperglycemia reduces MMP expression whereas it accelerates TIMP expression, 

consequently suppressing ECM degradation, leading to the accumulation of matrix components in the glomerular 

mesangium [254]. Moreover, it has been observed that the increased AGE formation within glomeruli renders the ECM 

less susceptible to degradation, by reducing MMP activity, and thus playing a role in the pathogenesis of diabetic 

nephropathy [255]. Interestingly, alongside their direct role in ECM turnover, MMPs have been demonstrated to release 

or activate various growth factors that have been associated with renal hypertrophy, tubular cell proliferation, and renal 

fibrosis, and which contribute to development of the renal abnormalities characteristic of diabetic nephropathy [256].  

 

2.2.1. Inhibition of Metalloproteinases as Therapeutic Strategies for Diabetic Vascular Complications 

 There is increasing interest in the influence of anti-diabetic drugs on the MMPs/TIMPs balance. Rosiglitazone, 

a thiazolidinedione, reduces circulating levels of MMP-9, IL-6, white blood cells and other inflammatory markers in 

type 2 diabetes [257, 258], subsequently reducing neointimal hyperplasia [259]. Moreover, gliclazide reduces oxidized 

LDL-mediated MMP-9 expression in human aortic ECs in vitro [168] and pioglitazone, compared with placebo, 

significantly decreases plasma MMP-9 levels in diabetic patients with coronary artery disease [260]. Thiazolidinediones 

may also influence MMP-1 expression in vascular ECs [261].  

It has also been reported that both ACEIs and AIIRBs exert beneficial effects by preventing or slowing the progression 

of diabetic nephropathy, favoring, for example, MMP-2 activity [262]. In addition, it has been shown that diabetic 

patients benefit from statin treatment [263-265]. In this context, it is speculated that statins may exert their beneficial 



effects in diabetic patients through a similar mechanism to that occuring in atherosclerosis: they appear to protect from 

diabetic complications by decreasing lipid levels, lipid oxidation, inflammation, MMP expression, and cell death, and 

by increasing the TIMP and collagen content of human atherosclerotic plaques, thus contributing to their stability. 

Statins may also act by reducing vascular SMC migration and proliferation [266], and exerting an inhibitory action on 

MMP-1, -3, and -9 secretion from the same cells [267]. Statin treatment also causes significant suppression of MMP 

activity and significant activation of TIMPs (MMP-2 and TIMP-2, respectively) preventing, for example, glomerular 

ECM accumulation [268, 269]. Statins are also reported to possess anti-inflammatory action: in particular they reduce 

the serum concentrations of CRP, which is considered to be a marker of vascular risk [270-272]. These drugs can also 

improve renal function and, of note, they lower serum urate concentrations, which can influence MMP activity [273-

275]. 

 Peroxisome proliferator activator receptors (PPARs) are nuclear receptors that regulate fatty acid oxidation, 

adipocyte differentiation, and insulin sensitivity, as well as atherosclerosis pathogenesis; PPAR ligands are thus another 

compound that is used in the treatment of diabetes mellitus. The thiazolidinediones, which are insulin-sensitizing drugs, 

are PPAR  activators, while fibric acid derivatives (fibrates) have lipid-lowering properties, and activate PPAR  [276]. 

There is evidence suggesting that both a PPAR  activator (fenofibrate) and a PPAR  activator (rosiglitazone) inhibit 

MMP-9 expression in vascular SMCs and in monocytes/macrophages [277, 278]. Fibrates may also decrease plasma 

levels of inflammatory markers (e.g. CRP) that, in turn, influence MMP expression [279, 280]. Based on these findings, 

it has been suggested that the fibrate-plus-statin combination could be a promising therapeutic strategy for diabetic 

atherosclerosis [281]. 

 

2.3. Metalloproteinases and Neurodegenerative Diseases 

An increasing body of evidence points to the critical role of inflammation in the neurodegenerative process. 

During neuroinflammation, molecular cascades occur whose goal is to remove damaged cells and prepare the brain for 

repair, but the overactivated and/or chronically activated state of the microglia contributes to neuronal death and 

dysfunction. Microglia can be activated by MMPs as well as by amyloid  (A ) and -synuclein [282, 283]. 

MMPs and ADAMs are important in acute and chronic neuroinflammation, and recent studies have linked their 

actions to neurodegenerative disorders that are often associated with vascular cognitive impairment, such as 

Alzheimer’s and Parkinson’s diseases [23, 284-286].  

Several key MMPs and ADAMs have been implicated in neuroinflammation: MMP-2, MMP-3, MMP-9, 

MMP-14, ADAM-9, ADAM-10, and ADAM-17. However, with regard to ADAM functions in the brain, they are also 

implicated in cell survival, proliferation, differentiation, and migration, as well as in axonal growth and myelination. 

Brain cells express both constitutive and inducible MMPs in response to cellular stress [7]. For example, 

MMP-2 is a constitutively expressed molecule that is normally present in brain tissue and in the cerebrospinal fluid 

(CSF). MMP-9 is normally expressed in brain tissue at low levels, but is markedly upregulated by various inflammatory 

stimuli (e.g. cytokines and growth factors) in many brain disorders; conversely, MMP-9 is not present in the CSF 

[7,23].  

The initial phases of neuroinflammation are characterized by activation of constitutive proteases that begin the 

process of disassembling the ECM, opening the blood-brain barrier (BBB), preventing normal cell signaling, and 

initiating cell death by apoptosis [287].  

In the active form, MMPs play a number of important roles in normal development, but they are highly 

destructive in case of inflammation of the central nervous system (CNS). These enzymes, indeed, increase the 



permeability of the BBB by attacking the ECM, basal lamina, and tight junctions proteins in ECs; this increased 

permeability is a feature of the acute neuroinflammatory response, and allows cells to enter the CNS, contributing to 

white-matter damage. When matrix proteins around the neurons are degraded, there is loss of contact and cell death by 

anoikis [32]. Proteolysis of the matrix protein of blood vessels and brain cells by MMPs, in particular by the 

constitutive MMP-2, and subsequently by the inducible MMP-1, -3, and -9, increases the risk of cerebral edema, 

hemorrhage, and cell death [288]: it has been shown that MMP-2, -3, and -9 increase permeability of the BBB [287, 

289-292] leading to the infiltration of inflammatory cells, such as neutrophils, which play an important role in 

neuroinflammation [293]. Loss of oxygen and energy substrates releases glutamate into the extracellular space, 

initiating molecular events in the injured cells that might result in loss of membrane integrity and necrosis. Inhibitors of 

MMPs can reduce damage to the BBB, and thus reduce cerebral edema and hemorrhage [290]. Mmp-9 or Mmp-3 

knockout mice were also found to have reduced infarct size and significantly less BBB damage and neutrophil 

infiltration [289, 293, 294]. Direct injection of TNF-  into the rat brain results in a dramatic increase in the expression 

and activation of MMP-9 and MMP-3, which is associated with a significant opening of the BBB. Microglia and 

neurons surrounding the injection site are the major cellular sources of MMP-3 and MMP-9, through cycloxygenase-

derived product involvement, following intracerebral TNF-  administration [295, 296]. Moreover, in the brain, 

microglia and astrocytes are major sources of many pro-inflammatory cytokines, and of other mediators that stimulate 

increased MMP production [297, 298]. Secondly, MMPs are involved in tissue repair, driving angiogenetic and 

neurogenetic processes [299, 300] and in the end ECM remodeling occurs, with impenetrable scar tissue formation that 

blocks re-growth and re-projection of axons. 

However, much has been learned about the function of the MMPs in the brain, by using cell cultures such as 

neurons, ECs, astrocytes and microglia. The two major inducible MMPs that have been identified in the 

neuroinflammatory response are MMP-3 and MMP-9. Rat brain ECs stimulated with lipopolysaccharide (LPS) showed 

induction of MMP-9 [301]; cultured rat astrocytes stimulated with LPS, IL-1 , TNF- , or bradykinin secreted normal 

MMP-2, while expression and activity of MMP-9 was upregulated [302-305]. Other studies have further demonstrated 

that several external stimuli can upregulate MMP-9 expression, via the MAPK/AP-1 pathway, in different cell types 

[306-308]. Expression of MMP-9 can also be induced by oxidized LDL in rat brain astrocytes, through the MAPK-

extracellular signal-regulated kinase kinase (MEK)1/2, and the phosphatidyl inositide 3 (PI3)/Akt-c-Jun N-terminal 

kinase (JNK)1/2 signaling pathways, leading to AP-1 activation [309]. This data implies that oxidized LDL might play 

a crucial role in the development of brain injuries and CNS diseases. Oxidized LDL, indeed, has been reported to 

exhibit a wide range of biological activities, including alteration of neuronal apoptosis, capillary homeostasis, and 

modulation of inflammatory protein activity in various brain cells [310-312]. Moreover, astrocytes also release MMP-1 

when stimulated with IL-1 , and MMP-1 has been shown to be toxic to human neurons in culture [313]. In addition, 

incubation of this cell type with the 1-40 fragment of A  induced MMP-9 and MMP-3 production, suggesting that 

MMPs may be involved in amyloid processing in AD [314]. Stimulated astrocytes might also be induced to produce the 

inactive form of MMP-9, thus failing to produce its active form; however, cultures of microglia and astrocytes 

stimulated with LPS have been shown to produce the active form of MMP-9 and MMP-3 [303, 315, 316]. This 

evidence stresses that the microglia are necessary for activation of the proMMP-9, possibly through MMP-3 or free 

radical production [315]. It has also been suggested that the effects of LPS on the MMPs expression are due in part to 

the formation of pro-inflammatory cytokines. TNF-  and IL-1  produce a significant increase in the production of 

MMP-3 and MMP-9 in cultured astrocytes and microglia [302, 317]. In LPS-stimulated astrocytes, smaller increases of 

MMP-10, -12, and -13 were also seen [318]. 



Of note, a number of immunohistochemistry studies, conducted in human autopsy brain tissue from patients 

with various pathologic conditions, or in animal models, have identified the cell types expressing the MMPs in the 

brain. In patients with multiple sclerosis and cerebral infarction, antibodies to MMP-9 were localized in blood vessels 

and neutrophils, but in more chronic lesions, MMP-2 and MMP-7 were the prominent enzymes found in the 

inflammatory cells. Astrocytes around the infarctions immunostained positive for MMP-2 [319]. Furthermore, in the 

progressive form of dementia, due to atherosclerosis of the blood vessels with demyelination of the white matter, tissue 

macrophages stained for MMP-3 in regions of damaged white matter [320]. There is some evidence to indicate a role 

for MMP-3 in neurodegeneration, because it plays a critical role as an intercellular signaling molecule that modulates 

neuroinflammatory responses [321-323].  

In neuronal cells, MMP-3 expression is increased in response to cell stress, and the active MMP-3 participates 

in apoptotic signaling [324] and triggers microglia activation and production of pro-inflammatory cytokines [321] 

triggering the formation of ROS [322, 323]. Active MMP-3 may also induce microglial activation near the site where 

apoptosis occurs, to promote clearance of apoptotic cells [321]. Despite these data, the exact molecular mechanisms 

through which active MMP-3 activates microglia cells are still not clear. In this connection, it has been shown that 

MMP-3 deficient mice display a significant reduction in microglia activation following the in vivo administration of the 

neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) [322]. This would appear to indicate that, in the 

extracellular space, MMP-3 triggers the microglia to produce pro-inflammatory and cytotoxic molecules, which in turn 

contribute to neuronal damage and to the removal of damaged neurons by phagocytosis. In addition, MMP-3 produced 

by the activated microglia can be released into the extracellular matrix, further exacerbating the neuroinflammatory 

process [324]. In contrast, overexpression of TIMP-1 results in the attenuation of apoptosis in neuronal cells, along with 

the suppression of MMP-3 activity [325]. TIMP-1 is also neuroprotective, both against excitotoxic neuronal death [326] 

and against traumatic and ischemic brain injury in mice [327]. In an animal model of temporary ischemia-reperfusion, 

MMP-3 was mainly seen in the neurons and microglia, while MMP-9 was present in the neurons. After 3 weeks of 

reperfusion, the principal MMP present was MMP-2, in astrocytes [315]. 

In this connection, evidence is emerging that MMPs and ADAMs play roles in neurodegenerative diseases, 

including in the damage to white matter in patients with vascular cognitive impairment, in degradation of amyloid 

peptides in AD, and in apoptosis of dopaminergic neurons in PD. 

 

a) Vascular cognitive impairment 

In vascular cognitive impairment, MMPs are induced by hypoxic hypoperfusion in the white matter [328]. The 

brain tissues of patients with vascular cognitive impairment express hypoxia-inducible factor 1  (HIF1 ). HIF1  

increases during hypoxia or ischemia and, because hypoxia seems to play a crucial part in vascular cognitive 

impairment, an understanding of the role of HIF1  is important. 

The increase in HIF1  leads to the expression of many genes implicated in injury and repair [329]. HIF1  can 

activate furin, an intracellular convertase that activates several enzymes involved in injury, including the MMPs; these 

increase permeability of the BBB and demyelination in the white matter, as well as elevating vasoconstriction, with 

subsequent marked hypoxia [330, 331]. Conversely, HIF1  can stimulate the expression of genes involved in repair, 

such as VEGF and TGF  [332, 333]. It has also been observed that patients with vascular cognitive impairment have 

increased expression of MMPs in the white matter, particularly around blood vessels in regions with loss of myelin. 

Gliotic regions have reactive astrocytes that overexpress MMP-2; macrophages around damaged blood vessels are 

immunopositive for MMP-3 [320]. The MMPs might damage blood vessels, disrupting the BBB, and thus activating 



microglia and recruiting macrophages that contribute to white-matter injury. Demyelination of white matter might also 

occur, through MMP-mediated mechanisms, mainly by MMP-2, MMP-3 and MMP-9 [320, 330, 334]. Moreover, 

patients with vascular cognitive impairment have high concentrations of MMP-9 in the CSF [335]. Patients with 

vascular cognitive impairment also have increased levels of endothelin-1 in the white matter, where it is highly 

expressed by MMP-2 [336, 337]; endothelin-1 is a strong vasoconstrictor that may compromise blood flow to the deep 

white matter [338]. 

 

b) Parkinson’s Disease 

Parkinson’s disease (PD), a progressive neurodegenerative disorder, is characterized by the selective loss of 

dopaminergic neurons in the substantia nigra, and degeneration of projecting nerve fibers in the striatum, leading to 

extrapyramidal motor dysfunction, which is associated with microglia activation [339]. MMPs have been implicated in 

the death of dopaminergic neurons; in particular, various experimental models have linked increased MMP-3 levels 

with PD. An animal model of PD showed an increase in MMP-3 immunoreactivity in the substantia nigra region [340, 

341]. It has also been shown that, in vitro, apoptotic dopaminergic neurons release MMP-3, which acts as a microglia-

activating molecule. This evidence suggest that, in addition to ECM degradation, MMP-3 is a signaling molecule in the 

neuronal apoptotic process, mediating the interaction between apoptotic neurons and microglia, and consequently 

causing neuroinflammation [321]. The activated microglia release pro-inflammatory cytokines, including TNF- , which 

directly induce neuronal death, contributing to neuronal degeneration. It has also been suggested that, in addition to the 

extracellularly-triggered apoptotic mechanisms, MMP-3 might also act intracellularly in apoptotic signaling in the 

dopaminergic neurons [342]. Furthermore, MMP-3 may play an important role in the pathophysiology of PD, by 

contributing to the generation of the toxic -synuclein aggregates [340, 343]. 

Finally, MMP-3 mediates BBB disruption, which would allow infiltration of blood immune cells such as 

neutrophils to the damaged region [293]. Indeed, BBB leakage has been observed in PD patients [344] as well as in 

animal models of PD [345, 346]. Interestingly, the substantia nigra region is reportedly more prone to BBB disruption 

and neutrophil infiltration than is the cortical region [347]. 

 

c) Alzheimer’s Disease 

Alzheimer’s disease (AD), the most common form of dementia, is characterized by the progressive loss of 

neurons and synapses, and by extracellular deposits of Aβ in the form of senile plaques, A  deposits in the cerebral 

blood vessels, and intracellular inclusions of hyperphosphorylated tau in the form of neurofibrillary tangles (NFT) [348, 

349]. Several mechanisms contribute to AD development and progression, and deposition of improperly processed 

amyloid is thought to be a major factor in its pathophysiology. Amyloid precursor protein (APP) comprises a 

transmembrane and an extracellular component, and is degraded into various fragments by the secretases. The 

physiological pathway results in the cleavage of APP by -secretase, which produce a soluble fragment (sAPP ) that 

can be broken down for clearance, and a membrane-bound COOH terminal fragment (CTF). Both -secretase and -

secretase act together to produce an ectodomain derivative (sAPP ) and Aβ peptides (Aβ1-40 and Aβ1-42) that can 

aggregate to form insoluble dimmers, oligomers, and subsequently fibrils, which are deposited extracellularly and 

intracellularly, forming senile plaques [350, 351]. Both MMPs and ADAMs have been implicated in APP shedding 

[352]. 



Three members of the ADAM family have been shown to act as an -secretase: ADAM-9, ADAM-10, and 

ADAM-17; these enzymes cleave APP into the soluble sAPP  for clearance [353, 354]. ADAM-17 also activates TNF-

, which induces cell death, contributing to neurodegeneration [355]. 

Overexpression of ADAM-9 has been reported to increase sAPP  release, although mice lacking ADAM-9 

revealed no difference in the production of the -secretase cleavage product of APP [356]. The impact of ADAM-9 on 

sporadic AD [357] might therefore rely on a more indirect mechanism: ADAM-9 has been shown to proteolytically 

process ADAM-10 [358-360]. Unlike ADAM-9, ADAM-10 was found to have constitutive and regulated -secretase 

activity [354, 361]. 

With regard to ADAM-10, it has also been observed, in an AD mouse model in which the animals were 

crossbred with ADAM-10 transgenic mice, that plaque pathology was greatly attenuated, production of -secretase was 

enhanced, and subsequently also that of sAPP  [361]. Furthermore, these mice had increased learning and memory 

potential [361, 362], which might correlate with the observed enhanced cholinergic and glutamatergic synaptogenesis 

[363]. Conversely, mice with a dominant negative mutant of ADAM-10 had lowered sAPP  levels, accompanied by an 

enhanced number of plaques [361] and learning deficiencies [364]. In addition, axonal guidance is conveyed by 

ADAM-10, as has been shown for retinal and peripheral axons [365, 366], and this enzyme regulates axon withdrawal 

by ephrin cleavage [367, 368]. However, it remains a matter of controversy whether there is a substantial decline of 

neuronal ADAM-10 in ageing or in the pathological context. 

Experiments performed with ADAM-17-deficient cells indicated a participation of ADAM-17 in the regulated 

[369, 370] and the constitutive -secretase pathways [371, 372]. Although there is no evidence that ADAM-17 acts as 

an in vivo APP-sheddase in transgenic mice, ADAM-17-positive neurons are found to co-localize with amyloid plaques 

in AD brains, supporting its role as an -secretase [373]. 

In the CNS, MMPs are produced by astrocytes, microglia, neurons, ECs, oligodendrocytes and leukocytes 

[301, 374, 375]. Elevated levels of MMPs have been reported in the cortex and hippocampus of AD patients compare 

with controls [376]. Several studies have suggested that MMPs, like ADAMs, participate in the formation and clearance 

of Aβ [377, 378]. It has been shown that MMPs, such as MMP-2, -3, and -9, are induced endogenously by the toxic 

amyloid fragments (Aβ1-40 and Aβ1-42) in astrocytes, microglia, mixed hippocampal neurons, and blood vessels [379-

381]. Moreover, it has been demonstrated that the upregulation of MMP-9, expressed by SK-N-SH cells in the presence 

of Aβ1-40, is mediated by 3 1 and 2 1 integrin receptors, and that MMP-9 can directly process APP, by interacting on 

the cell surface with -secretase-like activity, increasing sAPP  release and substantially reducing levels of secreted Aβ 

peptides [382]. These findings indicate that MMP-9 might act as a neuroprotective mechanism whereby the shedding of 

APP to soluble fragments precludes the formation of aggregating A  peptides. In addition, metal-mediated activation of 

MAPKs resulted in upregulated MMP-2 and MMP-3 activity, in turn leading to enhanced cleavage of extracellular Aβ, 

and preventing its accumulation [383-385]. 

In the area around the amyloid plaques, the microglia are activated and contribute to neuronal death by 

releasing inflammatory molecules [386]; elevated production of MMPs in the brain tissue of AD patients is part of the 

inflammatory response. It has been shown that expression of MMP-2, -3 and -9 is increased in astrocytes around 

amyloid plaques compared with areas without Aβ deposition [377]. MMP-3, for example, has been detected around 

senile plaques, in the grey matter and in the interstitium between myelinated axons and astrocytes in the white matter of 

AD patients [387]. MMP-3 is also significantly elevated in the plasma and CSF of AD patients [388]. More recently, 

the CSF of cognitively-healthy individuals with risk markers for future AD has been found to have higher MMP-3 



levels and a higher MMP-3/TIMP-1 ratio than healthy individuals without risk markers [389]. Furthermore, in 

postmortem AD brain tissue, MMP-9 has been found expressed in hippocampal neurons around the amyloid plaques, 

and in the NFT and vascular wall [289, 390]; it has been suggested that MMPs are synthesized in response to A , and 

that their activation degrades the peptide in vivo, reducing its aggregation [390]. Moreover, plasma concentrations of 

MMP-9 are increased in AD patients, and it has been suggested that this may be due to ECs releasing the enzyme in 

response to circulating A  [391]. Conversely, MMP-9 concentrations are not increased in the CSF [335]. Active MMP-

9 has been reported to degrade synthetic Aβ1-40 in vitro, acting directly at the -secretase cleaving site [390], and also to 

cleave extracellular and fibrillar Aβ through BBB [377, 380]. In this connection, Mmp-2 and Mmp-9 knockout mice had 

higher levels of Aβ in the brain tissue than wild-type mice, and treatment with the MMP inhibitor GM-6001 increased 

Aβ in the transgenic mice, overexpressing the Swedish variant of APP (mutations at positions 670 and 671) [377]. 

Besides MMP-9, increased expression of MMP-3 has also been detected in hippocampal neurons, around amyloid 

plaques in the cortex, and in the interstitium of white matter [387]. It has also been suggested that MMP-14, -16, and -

18 might play important roles in regulating APP function, inducing cleavage and shedding of the APP ectodomain when 

co-expressed with APP adaptor protein Fe65 [352]. 

 

2.3.1. Therapeutic Strategies for Inhibiting Metalloproteinases in Neurodegenerative Diseases 

 Currently, no therapy is available clinically that delays the neurodegenerative process itself, and therefore the 

development of selective inhibitors and/or other therapeutic strategies against the proteolytic enzyme actions, together 

with a knowledge of their side-effects, will be of great interest to contrast the progression of neurodegenerative 

diseases. 

 In vascular cognitive impairment, treatment with a drug that blocks MMPs, such as minocycline, might be 

useful to decrease white-matter damage. The possible use of MMP inhibitors in treating neurodegenerative diseases 

such as AD and PD is even more speculative. Regarding AD, the role of MMPs and ADAMs is complex because of 

their dual function, in breaking-down amyloid to form A , and in clearance of the peptide from the brain. MMP 

inhibitors could thus interfere with A  clearance. With regard to PD, the use of MMP inhibitors might be promising, 

since death of dopaminergic neurons appears to be stimulated when activated microglia release MMP.  

 The major synthetic MMP inhibitors are based on a hydroxamate structure [392]. These compounds interfere 

with the action of the zinc catalytic domain in the MMP molecule; however, the use of these inhibitors in clinical trials 

gave controversial results. More encouraging results have been obtained with other inhibitors, in terms of reducing BBB 

damage, infarct size, and cell death, in animal models of CNS diseases [23]. For example, TIMP-2 blocked the MMP-2-

induced BBB opening in MMP-induced brain injury [393]. Damage to the BBB was blocked with hydroxamate 

treatment [394-396]. BB-94 blocked BBB opening after intracerebral injection of TNF- , and BB-1101 was effective in 

LPS-induced BBB injury [295, 397] as well as in BBB opening after stroke, in the rat brain [398]. In addition, GM-

6001 reduced BBB injury and improved the outcome [394, 399]. Moreover, a highly-specific thiirane gelatinase 

inhibitor of MMP-9, namely SB-3CT, rescues laminin from proteolysis, and protects neurons from apoptosis, in 

cerebral ischemia [400]. MMP inhibitors can also protect the brain from hemorrhagic complications of alteplase, a 

recombinant tissue plasminogen activator, by reducing BBB permeability and preventing alteplase from entering the 

brain and activating MMPs [401, 402]. Although there are MMP inhibitors that are selective for MMP-2 and MMP-9 

[403], most available MMP inhibitors are broad-spectrum drugs [207]. Indeed, although MMP-3 is thought to 

contribute to neurodegeneration via multiple mechanisms, development of selective inhibitors for this proteolytic 

enzyme has been difficult, because the MMP family members share many structural characteristics. Pyrone-based 



inhibitors with potency against MMP-3 and selectivity for MMP-1, -2 and -3 have been studied [404]; because MMP-3 

prefers a more acidic environment than other MMPs, more acidic inhibitors, such as the carboxylates, have also been 

shown specific for MMP-3 [405]. 

 However, the problem with these inhibitors, especially if used for long-term therapy, is that as side-effects they 

might block important functions, for example remodeling the ECM, leading to excessive fibrosis, and in particular 

causing joint stiffness [406]. Short-term use of MMP inhibitors may be less controversial in neurological disorders, 

particularly for treating cerebrovascular diseases. In addition, most non-peptidic MMP inhibitors reported thus far 

contain hydroxamic acid, carboxylic acids, phosphonates or thiols, and may not easily cross the BBB. Moreover, the 

most commonly used MMP inhibitors have poor solubility, and further studies are needed to improve delivery systems; 

the development of selective MMP inhibitors, with high BBB penetration rates and good solubility, would be of great 

benefit. 

 Alternatively, because MMP-3 gene expression is induced to a dramatic extent in response to cellular stress, 

while it is very low in basal conditions, it should be possible to suppress its upregulation without altering basal levels. 

In this connection, modification of MMP-3 gene expression could be a promising novel approach to providing 

neuroprotection. Tetracycline derivatives that penetrate the BBB, such as doxycycline and minocycline, downregulate 

the MMP-3 expression induced by cell stress, cytokines and other stimuli, with subsequent attenuation of 

neuroinflammation and apoptosis of dopaminergic neurons, both in vitro and in vivo [407-411]. Other compounds, such 

as ghrelin (an endogenous ligand for growth hormone secretagogue receptor 1a), exendin-4 (analog of glucagon-like 

peptide-1) or glycitein (a bacterial metabolite of the isoflavone glycitin) have also been found to attenuate MMP-3 

expression, as well as loss of nigrostriatal dopaminergic neurons and hippocampal neurons [412-415]. 

 Furthermore, because of its involvement in the non-amyloidogenic processing of APP, ADAM-10 

overexpression or activation in the brain might be beneficial for the treatment of neurodegenerative diseases, in 

particular AD. In ADAM-10 overexpressing mice it has been shown that cortical synaptogenesis is enhanced [363]; in 

AD model mice, long-term potentiation deficiency is rescued [361], and learning, as well as memory, is positively 

influenced by ADAM-10 [362]. ADAM-10 activity can be enhanced, for example, by cholesterol depletion [416, 417] 

or by statin application [416]. Various results obtained from Adam-10 transgenic mice have suggested that increasing 

ADAM-10 activity might be a valuable alternative to other strategies for treating AD, such as inhibiting - or -

secretase, or immunization. However, -secretase activation must be moderate in extent, and needs to be closely 

monitored, since overexpression of ADAM-10 in the brain might affect homeostasis of the entire organism [354]. 

Again, also in this case, the crucial question is whether there are any side-effects connected with enhanced ADAM-10 

activity in the brain or in peripheral tissues.  

 

2.4. Metalloproteinases and Osteoarthritis  

 Osteoarthritis (OA) is a chronic degenerative joint disease that causes disability in the elderly, in the form of 

pain, stiffness and loss of function in articulating joints. OA is characterized by changes in the anatomy of load-bearing 

joints, which lead to degradation of the articular cartilage by proteolytic enzymes, inflammation of the synovium 

(synovitis), changes to subchondral bone, and growth of new bone and cartilage (osteophytes) at the joint edge [418-

420]. The primary causes of OA are mechanical factors such as joint injury and obesity, with other risk factors, 

including age (associated intraarticular crystal deposition, muscle weakness and peripheral neuropathy), gender, and 

genetics, contributing to disease development and progression [418, 421, 422]. 



 In OA, degradation of ECM molecules, which are synthetized and catabolized by chondrocytes, exceeds their 

synthesis, resulting in a net decrease in the amount of cartilage matrix, and eventually leading to total or partial erosion 

of the cartilage. Among the articular cartilage components, aggrecan and collagen are the main molecules that are 

slowly degraded. Aggrecan is a large proteoglycan, containing numerous chondroitin sulphate and keratin sulphate 

glycosaminoglycan moieties, which are important for the molecular function since they draw water into the cartilage 

matrix, giving it the ability to withstand compressive deformation during joint articulation. Degradation of aggrecan is 

an important manifestation of OA [15]. The depletion of aggrecan from articular cartilage is confirmed by the release of 

aggrecan catabolites into the synovial fluid [423]. Along with aggrecan breakdown, degradation of collagen, in 

particular of type II collagen, which provides strength to the tissue, is also a central feature of OA [424, 425]. Aggregan 

is lost in the initial phases of the disease, while collagen is lost at the later stages. 

 Molecules mediating matrix degradation, including MMPs and ADAMTSs, are upregulated in OA 

chondrocytes [426, 427]. Studies on transgenic mice have confirmed the central role of ADAMTS-4 and ADAMTS-5 in 

aggrecan degradation, and that of the collagenolytic MMP-13 in collagen degradation [16].  

 Although ADAMTS-1, -8, -9, -15, -16 and -18 can degrade aggrecan in vitro [428-431] ADAMTS-5 is the 

most active “aggrecanase” in vitro, followed by ADAMTS-4 [432]. ADAMTS-4 and ADAMTS-5 are thus considered 

to be the major enzymes responsible for pathological cleavage of aggrecan at the Glu
373

-Ala
374

 bound in the 

interglobular domain [433-435]. Of note, studies in synovial cells suggest that ADAMTS-5 is constitutively expressed, 

whereas ADAMTS-4 is only induced by pro-inflammatory cytokines [436, 437]. 

 The pathological importance of ADAMTS-5 in the development of OA was demonstrated by the finding that 

Adamts-5 knockout mice develop less severe cartilage damage, both in a murine surgical model of OA, and in an 

antigen-induced arthritis model [438, 439]. In comparison, Adamts-4 knockout mice did not show any significant 

suppression of aggrecanase activity in an arthritic model [440], indicating that ADAMTS-5 is the primary aggrecanase, 

at least in mice. Conversely, the role of ADAMTS-4 as aggrecanase appears more evident in humans [441, 442]. It has 

then been observed that ADAMTS-4 mRNA is induced in chondrocytes by IL-1 [443], while Adamts-4/Adamts-5 

double knockout mice are protected from cartilage degradation by IL-1, but not by retinoic acid, suggesting that other 

aggrecans apart from ADAMTS-4 and -5 are capable of retinoic acid-induced cartilage breakdown, at least in animal 

models [444]. In addition, suppressing ADAMTS-4 and/or ADAMTS-5 in human cartilage explants, via transfection of 

these ADAMTSs by siRNAs, significantly decreased aggrecan release and catabolism induced by a combination of IL- 

1 , TNF-  and oncostatin M [441]. 

 MMPs normally present in articular cartilage and bone, such as MMP-1, -2, -3, -7, -8, -9 and -13, are also 

thought to be capable of degrading cartilage components, primarily type II collagen. For example, fibrillar collagens, 

which are highly stable molecules, can be degraded by the collagenolytic MMP-1, -8, -13 and -14 and by cathepsin K. 

However, MMP-13 is thought to be the primary collagenase in OA, with its expression increased in OA cartilage [424, 

445, 446], whereas Mmp-13 knockout mice were protected by MMP-13 collagen degradation in a surgical OA model 

[447]. MMP-13 is also up-regulated during chondrocyte terminal differentiation, and deficiency of Mmp-13 results in 

impaired endochondral ossification [448, 449]. 

 However, in addition to ADAMTS-4 and -5 and MMP-13, expression of various other proteolytic enzymes 

(i.e. MMPs, ADAMs and ADAMTSs) has been reported to increase in OA. ADAM-8, for example, has been suggested 

to contribute to OA pathogenesis, by cleaving fibronectin, generating fragments that stimulate further cartilage 

catabolism [450]. MMP-3 is, then, the most abundantly secreted enzyme in OA cartilage, and it is known to induce 

activation of other MMPs, such as MMP-1 and MMP-13, raising the possibility that it may contribute to OA by 



activating latent collagenases [436]. It has also been suggested that MMP-3 promotes collagenase activation, and either 

direct or indirect MMP-mediated aggrecan cleavage [451]. Higher levels of MMP-3 have, indeed, been found in the 

synovial fluid and serum of OA patients, compared with normal individuals [452, 453]. Expression of MMP-1 and 

MMP-8 as well as MMP-13 was also detected by immunostaining in the superficial zone of OA cartilage [454].  

 Fragmentation of aggrecan, type II collagen, fibronectin and hyaluronan reveals cryptic epitopes, which also 

stimulate proteolytic enzymes including MMPs and ADAMTSs. Proteolytic fragments also stimulate the release of NO, 

chemokines and cytokines [455]. Of note, it has been observed that human chondrocytes cultured with intact 

monomeric type II collagen induced expression of MMP-1, -3, -13, -14, as well as that of IL-1 , IL-6, and IL-8 [456]. 

Similarly, collagen fragments generated during arthritis may influence matrix turnover. A fragment of type II collagen 

has been reported to upregulate levels of MMP-2, -3, -9 and -13 in bovine chondrocyte explants [457] and in human 

chondrocytes [458]. These results may suggest that type II collagen causes sequential activation of MMPs and cytokines 

during cartilage damage. 

 It is increasingly accepted that inflammation plays a role in OA pathogenesis [459-463]. Inflammatory cells, 

cytokines and growth factors that are not normally present in the cartilage matrix are found in OA patients [437, 464]. 

Inflammatory cytokines, for example, can increase chondrocyte expression of ADAMTS-4 and ADAMTS-5, leading to 

cartilage damage [465]. The cytokine IL-1 is suggested to be a principal mediator of joint damage in OA. Chondrocytes 

from OA cartilage display high levels of IL-1  and IL-1 , but are also more sensitive to IL-1. Moreover, IL-1 has the 

ability to stimulate chondrocytes to degrade both aggrecan and collagen. In cultured chondrocytes or cartilage explants, 

ADAMTS-4 has been shown to be induced following stimulation with IL-1, TNF-  or TGF  [441, 443, 466, 467] 

whereas ADAMTS-5 was upregulated by IL-1  in an immortalized human chondrocyte cell line [468]. Using a model 

of cultured human synovial cells from digested OA synovium, it was observed that ADAMTS-4 gene expression is 

dependent on TNF- , and that IL-1 is produced by the synovial macrophages, whereas the level of ADAMTS-5 is not 

significantly change by either of the two pro-inflammatory cytokines [437]. In contrast, monocytes from wild-type 

mice, but not those from Il-1 deficient mice, upregulated ADAMTS-5 mRNA in chondrocytes, without affecting 

ADAMTS-4. This data suggest that murine ADAMTS-4 is unresponsive to IL-1 [469]. The role of NF- B in regulating 

ADAMTS gene expression has recently been clarified: ADAMTS-4, but not ADAMTS-5, has several NF- B binding 

sites. Of note, it has also been reported that IL-1 and TNF-  increase ADAMTS-4 expression in a NF- B dependent 

manner [470]. 

 Moreover, IL-1  is known to stimulate expression of MMPs, for example MMP-1 and -13, in OA cartilage 

[436,471]. The role of IL-1, together with TNF- , in matrix degradation has been clarified [471]. Of note, when IL-1 is 

combined with TNF-  and the two are injected simultaneously, there is enhanced cartilage destruction, which exceeds 

the effects observed with either cytokine alone [472]. The combination of IL-1 and oncostatin M also upregulates 

matrix-degrading proteinases in cartilage [473]. In addition to inducing the synthesis of MMPs and other proteinases by 

chondrocytes, IL-1 and TNF-  increase the synthesis of PGE2, by stimulating expression or activity of COX-2, 

microsomal PGE synthase-1, and soluble phospholipase A2 (PLA2); they also upregulate NO production via inducible 

NO synthetase (iNOS), contributing to the inflammatory response [474]. Il-1  knockout mice showed protection against 

OA induced by destabilization of the medial meniscus [475]. Further, IL-17 and -18 are also thought to play a role in 

cartilage catabolism [476]. Osteoarthritic chondrocytes also overexpress TGF , which has dual effects: it can be 

protective as well as deleterious for articular cartilage. This dual effect can be explained by the fact that TGF  can 

signal via different receptors and related the Smad signaling routes [477]. Importantly, signaling via anaplastic 



lymphoma kinase (ALK)1, but not that via ALK5, stimulates MMP-13 expression by chondrocytes. In cartilage of 

aging mice, and in experimental OA models, it has been found that the ALK1/ALK5 ratio is significantly increased, 

favoring TGF  signaling via the Smad1/5/8 (ALK1) route, and augmenting changes in chondrocyte differentiation and 

MMP-13 expression [478]. Moreover, in human OA cartilage there is a significant correlation between ALK1 and 

MMP-13 expression [477]. Chemokines have also been reported to play a role in OA [479, 480]; expression of 

chemokine receptors has been demonstrated in OA chondrocytes [481] and synovial cells [482]. 

 MMPs are strongly inhibited by all four of the mammalian TIMPs [483] but, conversely, ADAMTS-4 and 

ADAMTS-5 are effectively inhibited only by TIMP-3 [484-486]. As TIMP-3 can inhibit MMPs and ADAMTSs, it is 

considered to be a central inhibitor of cartilage degradation. The addition of TIMP-3 blocks cartilage degradation in 

explant cultures [487]. The key role played by TIMP-3 in cartilage protection has been confirmed by the finding that 

Timp-3 knockout mice develop increased cartilage degradation upon aging [488] and display increased cartilage 

damage in an antigen-induced arthritis model [489]. In addition, TIMP-3 protein levels are reduced in human OA 

cartilage [490]. With regard to the other TIMPs, unlike their action on MMPs, TIMP-1 has been shown to partially 

inhibit glycosaminoglycan release from human cartilage, whereas TIMP-2 has no effect on cartilage components [465, 

484]; the level of TIMP-4 is decreased in OA cartilage [446]. 

 

2.4.1. Therapeutic Strategies for Inhibiting Metalloproteinases in Osteoarthritis 

 OA remains a disease with insufficient disease-modifying treatments. With an increasing number of people 

suffering from the disease, the identification of novel therapeutic targets is a priority. 

 The routine therapies to moderate OA clinically are intraarticular injection of hyaluronic acid, which has the 

ability to aggregate aggrecan, or of steroids, or oral administration of anti-inflammatory molecules. These conventional 

OA therapeutics, however, do not inhibit the underlying tissue catabolism, and thus they allow the disease to progress 

into irreversible ECM loss and chronic disability.  

 Since the central role of aggrecanases (e.g. ADAMTS-4 and -5) and collagenases (e.g. MMP-13) in cartilage 

degradation has now been verified by studies on transgenic mice, identification of the key role played by these 

proteinases is now of importance for the successful development of specific inhibitors to be used as therapeutic agents 

in OA. It has been reported that blocking aggrecanase cleavage in the interglobular domain of aggrecan diminishes 

aggrecan loss and cartilage erosion in knockin mice, in surgically-induced OA and also in a model of inflammatory 

arthritis, and the procedure also appeared to stimulate cartilage repair following acute inflammation [435]. 

 The design of small molecule inhibitors or protein antagonist inhibitors, to block the increase catabolism of 

matrix components in OA, is thus an area of considerable interest for the pharmaceutical industry. New inhibition 

strategies using small molecules inhibitors and TIMPs, engineered to increase their inhibitory specificity, or using new 

reagents such as ribozymes and siRNAs, which repress expression of specific enzymes, are thus now under 

consideration [491]. However, disappointing results from clinical trials with small molecule inhibitors have highlighted 

the critical importance of inhibitor specificity, and the need to better identify the individual enzymes responsible for 

joint destruction. The potential side-effects of inhibiting these enzymes, which are expressed in a number of tissue, are 

also still unclear. However, among agents targeting aggrecanase inhibitors, -amino hydroxamate has been discovered 

to be a potent and selective aggrecanase inhibitor [492]; in subsequent attempts to optimize the potency and 

pharmacokinetic profile of this inhibitor, anti-succinate hydroxamates containing cyclic P1 substituents were identified 

[493]. Other potential selective synthetic inhibitors of ADAMTS-5, as well as of ADAMST-4, have been investigated, 

e.g. a series of 5-((1H-pyrazol-4-yl)methylene)-2-thioxothiazolidin-4-one [494, 495]. 



 Studies on mice with specific gene ablations have also identified a network of factors and cellular signals that 

regulate MMP-13 and ADAMTS expression in chondrocytes [16]. Given that many pathways can stimulate an increase 

in proteinase expression, the development of inhibitors targeting the effector proteinases, and their use in combination, 

may block cartilage damage more effectively than therapies targeting a single activating factor. For example, it has been 

reported that the OA process is driven by loss of the Smad2/3 block on differentiation in articular chondrocytes, leading 

to progression of chondrocyte differentiation and an autolytic phenotype. In the early stages of OA, some chondrocytes 

will have progressed in their differentiation to an OA chondrocytes phenotype, triggered by a loss of the Smad2/3 

block; others will still be in a quiescent, healthy state of differentiation [477]. The latter cells could be targets for 

therapy, to block further progression of the OA process: blocking the progression of chondrocyte differentiation will 

block further expansion of the OA process in the remaining healthy cartilage; compounds specifically stimulating the 

Smad2/3 route could be developed as a therapeutic strategy [496, 497]. An alternative therapy could be stimulation of 

one of the other Smad2/3 routes in chondrocytes. In this connection, signaling via the activin ALK4 and ALK7 

receptors leads to activation of the Smad2/3 pathway [498]. These receptors could be potential targets to enhance 

Smad2/3 signaling in chondrocytes in OA. Alternatively, ALK1, which is involved in vessel formation, or the 

Smad1/5/8 pathway, which is associated with the activity of ALK1, ALK2, ALK3 and ALK6, could be blocked in 

chondrocytes (for example with kinase inhibitors) with subsequent blocking of aberrant chondrocyte differentiation 

[477]. These possible therapeutic strategies, however, might trigger side-effects in other tissues: stimulation of Smad2/3 

pathway using TGF  mimetics, or of the ALK4/7 pathway, might result in excessive induction of fibrosis; blocking 

ALK1 might reduce blood vessel formation; general inhibition of the Smad1/5/8 pathway might interfere with bone 

metabolism [477]. 

 Furthermore, ADAMTS-4 is induced by IL-1 and TNF- , and depends on the NF- B [470, 499, 500], and it 

has been reported that treatment of bovine cartilage explants with small-molecule I B kinase inhibitor leads to the 

prevention of IL-1-induced aggrecan degradation. These data suggest that aggrecan degradation occurs in a NF- B 

dependent manner [501]. Conversely, ADAMTS-5 has been found to be NF- B independent and to lack B elements 

on its promoter [500]. The differential regulation of ADAMTS-4 and ADAMTS-5 could thus have important 

implications for the development of disease-modifying OA drugs [502]. 

 In addition, a more complete knowledge of the pathways and receptors used by endogenous matrix molecules 

in concert with cytokines and chemokines [455] may improve future possibilities for developing new therapeutic 

strategies for OA. 

 

3. CONCLUSIONS 

Metalloproteinases are a large family of enzymes that have been implicated in the pathophysiology of several 

chronic diseases related to aging, including atherosclerosis, type 2 diabetes mellitus, neurodegenerative diseases, and 

osteoarthritis (Figure 1). They thus represent potential therapeutic targets. In order to develop therapeutic strategies 

against the action of these proteolytic enzymes, it is fundamental to understand the regulation of and roles played by 

MMPs, ADAMs and ADAMTSs, and their endogenous inhibitors, especially of TIMPs, in all phases of the 

pathogenesis of these age-related diseases. More research is thus needed to clarify the effects of MMPs, not only on 

ECM degradation, but also on cell types involved in the pathogenesis of these diseases.  

The design of agents that may treat or prevent the excessive degradation of ECM components, induced by 

MMP dysregulation, or the effects of MMPs on cells is now an area of considerable interest for the pharmaceutical 

industry. However, the use of broad spectrum synthetic inhibitors of MMPs, or of other exogenous therapeutic agents, 



has not always replicated the effects of TIMPs in preclinical models and in clinical trials, possibly due to their side-

effects, but also because these proteolytic enzymes possess reparative as well as pathogenetic properties. In this 

connection, the emphasis is therefore shifting to the development of MMP-modulating agents of restricted specificity. 

Despite this new impetus for developing more beneficial therapeutic strategies, more scientific studies are essential to 

improve our knowledge of protease function, thus helping to identify targets for targeted pharmacology therapy. 

 

ACKNOWLEDGMENTS  

The authors thank the Italian Ministry of University (Prin 2009), the CRT Foundation, Turin, and the 

University of Turin, Italy, for supporting this work. 

 

 

REFERENCES 

[1] Swarnakar S, Mishra A, Chaudhuri SR. The gelatinases and their inhibitors: the structure-activity relationships. EXS 

2012; 103: 57-82. 

[2] Weber S, Saftig P. Ectodomain shedding and ADAMs in development. Development 2012; 139: 3693-709. 

[3] Yong VW. Metalloproteinases: mediators of pathology and regeneration in the CNS. Nat Rev Neurosci 2005; 6: 

931-44. 

[4] Kheradmand F, Werb Z. Shedding light on sheddases: role in growth and development. Bioessays 2002; 24: 8-12. 

[5] Schlöndorff J, Blobel CP. Metalloprotease-disintegrins: modular proteins capable of promoting cell-cell interactions 

and triggering signals by protein-ectodomain shedding. J Cell Sci 1999; 112: 3603-17. 

[6] Seals DF, Courtneidge SA. The ADAMs family of metalloproteases: multidomain proteins with multiple functions. 

Genes Dev 2003; 17: 7-30. 

[7] Yong VW, Power C, Forsyth P, Edwards DR. Metalloproteinases in biology and pathology of the nervous system. 

Nat Rev Neurosci 2001; 2: 502-11. 

[8] Blobel CP. Remarkable roles of proteolysis on and beyond the cell surface. Curr Opin Cell Biol 2000; 12: 606-12. 

[9] Alfandari D, McCusker C, Cousin H. ADAM function in embryogenesis. Semin Cell Dev Biol 2009; 20: 153-63. 

[10] Dreymueller D, Pruessmeyer J, Groth E, Ludwig A. The role of ADAM-mediated shedding in vascular biology. 

Eur J Cell Biol 2012; 91: 472-85. 

[11] Marcinkiewicz M, Seidah NG. Coordinated expression of beta-amyloid precursor protein and the putative beta-

secretase BACE and alpha-secretase ADAM10 in mouse and human brain. J Neurochem 2000; 75: 2133-43. 

[12] Kärkkäinen I, Rybnikova E, Pelto-Huikko M, Huovila AP. Metalloprotease-disintegrin (ADAM) genes are widely 

and differentially expressed in the adult CNS. Mol Cell Neurosci 2000; 15: 547-60. 

[13] Dallas DJ, Genever PG, Patton AJ, Millichip MI, McKie N, Skerry TM. Localization of ADAM10 and Notch 

receptors in bone. Bone 1999; 25: 9-15. 

[14] McKie N, Edwards T, Dallas DJ. Expression of members of a novel membrane linked metalloproteinase family 

(ADAM) in human articular chondrocytes. Biochem Biophys Res Commun 1997; 230: 335-9. 

[15] Huang K, Wu LD. Aggrecanase and aggrecan degradation in osteoarthritis: a review. J Int Med Res 2008; 36: 

1149-60. 

[16] Troeberg L, Nagase H. Proteases involved in cartilage matrix degradation in osteoarthritis. Biochim Biophys Acta 

2012; 1824: 133-45. 



[17] Limb GA, Matter K, Murphy G et al. Matrix metalloproteinase-1 associates with intracellular organelles and 

confers resistance to lamin A/C degradation during apoptosis. Am J Pathol 2005; 166: 1555-63. 

[18] Kwan JA, Schulze CJ, Wang W et al. Matrix metalloproteinase-2 (MMP-2) is present in the nucleus of cardiac 

myocytes and is capable of cleaving poly (ADP-ribose) polymerase (PARP) in vitro. FASEB J 2004; 18: 690-2. 

[19] Luo D, Mari B, Stoll I, Anglard P. Alternative splicing and promoter usage generates an intracellular stromelysin 3 

isoform directly translated as an active matrix metalloproteinase. J Biol Chem 2002; 277: 25527-36. 

[20] Newby AC. Dual role of matrix metalloproteinases (matrixins) in intimal thickening and atherosclerotic plaque 

rupture. Physiol Rev 2005; 85: 1-31. 

[21] Nagase H, Visse R, Murphy G. Structure and function of matrix metalloproteinases and TIMPs. Cardiovasc Res 

2006; 69: 562-73. 

[22] Sternlicht MD, Werb Z. How matrix metalloproteinases regulate cell behavior. Annu Rev Cell Dev Biol 2001; 17: 

463-516. 

[23] Rosenberg GA. Matrix metalloproteinases in neuroinflammation. Glia 2002; 39: 279-91. 

[24] Mott JD, Werb Z. Regulation of matrix biology by matrix metalloproteinases. Curr Opin Cell Biol 2004; 16: 558-

64. 

[25] Parks WC, Wilson CL, López-Boado YS. Matrix metalloproteinases as modulators of inflammation and innate 

immunity. Nat Rev Immunol 2004; 4: 617-29. 

[26] Egeblad M, Werb Z. New functions for the matrix metalloproteinases in cancer progression. Nat Rev Cancer 2002; 

2: 161-74. 

[27] Cauwe B, Van den Steen PE, Opdenakker G. The biochemical, biological, and pathological kaleidoscope of cell 

surface substrates processed by matrix metalloproteinases. Crit Rev Biochem Mol Biol 2007; 42: 113-85. 

[28] Vargová V, Pytliak M, Mechírová V. Matrix metalloproteinases. EXS 2012; 103: 1-33. 

[29] Agrawal SM, Lau L, Yong VW. MMPs in the central nervous system: where the good guys go bad. Semin Cell 

Dev Biol 2008; 19: 42-51. 

[30] Visse R, Nagase H. Matrix metalloproteinases and tissue inhibitors of metalloproteinases: structure, function, and 

biochemistry. Circ Res 2003; 92: 827-39. 

[31] Rajagopalan S, Meng XP, Ramasamy S, Harrison DG, Galis ZS. Reactive oxygen species produced by 

macrophage-derived foam cells regulate the activity of vascular matrix metalloproteinases in vitro. Implications for 

atherosclerotic plaque stability. J Clin Invest 1996; 98: 2572-9. 

[32] Gu Z, Kaul M, Yan B et al. S-nitrosylation of matrix metalloproteinases: signaling pathway to neuronal cell death. 

Science 2002; 297: 1186-90. 

[33] Carmeliet P, Moons L, Herbert JM et al. Urokinase but not tissue plasminogen activator mediates arterial 

neointima formation in mice. Circ Res 1997; 81: 829-39. 

[34] Browatzki M, Larsen D, Pfeiffer CA et al. Angiotensin II stimulates matrix metalloproteinase secretion in human 

vascular smooth muscle cells via nuclear factor-kappaB and activator protein 1 in a redox-sensitive manner. J Vasc Res 

2005; 42: 415-23. 

[35] Death AK, Fisher EJ, McGrath KC, Yue DK. High glucose alters matrix metalloproteinase expression in two key 

vascular cells: potential impact on atherosclerosis in diabetes. Atherosclerosis 2003; 168: 263-9. 

[36] Nelson AR, Fingleton B, Rothenberg ML, Matrisian LM. Matrix metalloproteinases: biologic activity and clinical 

implications. J Clin Oncol 2000; 18: 1135-49. 



[37] Chakraborti S, Mandal M, Das S, Mandal A, Chakraborti T. Regulation of matrix metalloproteinases: an overview. 

Mol Cell Biochem 2003; 253: 269-85. 

[38] Schmidt R, Bültmann A, Ungerer M et al. Extracellular matrix metalloproteinase inducer regulates matrix 

metalloproteinase activity in cardiovascular cells: implications in acute myocardial infarction. Circulation 2006; 113: 

834-41. 

[39] Yoon YW, Kwon HM, Hwang KC et al. Upstream regulation of matrix metalloproteinase by EMMPRIN; 

extracellular matrix metalloproteinase inducer in advanced atherosclerotic plaque. Atherosclerosis 2005; 180: 37-44. 

[40] Cawston TE, Mercer E. Preferential binding of collagenase to alpha 2-macroglobulin in the presence of the tissue 

inhibitor of metalloproteinases. FEBS Lett 1986; 209: 9-12. 

[41] Baker AH, Edwards DR, Murphy G. Metalloproteinase inhibitors: biological actions and therapeutic opportunities. 

J Cell Sci 2002; 115: 3719-27. 

[42] Brew K, Dinakarpandian D, Nagase H. Tissue inhibitors of metalloproteinases: evolution, structure and function. 

Biochim Biophys Acta 2000; 1477: 267-83. 

[43] Amour A, Slocombe PM, Webster A et al. TNF-alpha converting enzyme (TACE) is inhibited by TIMP-3. FEBS 

Lett 1998; 435: 39-44. 

[44] Higashi S, Miyazaki K. Identification of a region of beta-amyloid precursor protein essential for its gelatinase A 

inhibitory activity. J Biol Chem 2003; 278: 14020-8. 

[45] Mott JD, Thomas CL, Rosenbach MT, Takahara K, Greenspan DS, Banda MJ. Post-translational proteolytic 

processing of procollagen C-terminal proteinase enhancer releases a metalloproteinase inhibitor. J Biol Chem 2000; 

275: 1384-90. 

[46] Oh J, Takahashi R, Kondo S et al. The membrane-anchored MMP inhibitor RECK is a key regulator of 

extracellular matrix integrity and angiogenesis. Cell 2001; 107: 789-800. 

[47] Mauviel A. Cytokine regulation of metalloproteinase gene expression. J Cell Biochem 1993; 53: 288-95. 

[48] Spinale FG. Matrix metalloproteinases: regulation and dysregulation in the failing heart. Circ Res 2002; 90: 520-

30. 

[49] Newby AC. Metalloproteinases and vulnerable atherosclerotic plaques. Trends Cardiovasc Med 2007; 17: 253-8. 

[50] Raffetto JD, Khalil RA. Matrix metalloproteinases and their inhibitors in vascular remodeling and vascular disease. 

Biochem Pharmacol 2008; 75: 346-59. 

[51] Busti C, Falcinelli E, Momi S, Gresele P. Matrix metalloproteinases and peripheral arterial disease. Intern Emerg 

Med 2010; 5: 13-25. 

[52] Ye S. Influence of matrix metalloproteinase genotype on cardiovascular disease susceptibility and outcome. 

Cardiovasc Res 2006; 69: 636-45. 

[53] Ghaderian SM, Akbarzadeh Najar R, Tabatabaei Panah AS. Genetic polymorphisms and plasma levels of matrix 

metalloproteinases and their relationships with developing acute myocardial infarction. Coron Artery Dis 2010; 21: 

330-5. 

[54] Kunz J. Matrix metalloproteinases and atherogenesis in dependence of age. Gerontology 2007; 53: 63-73. 

[55] Romanic AM, Harrison SM, Bao W et al. Myocardial protection from ischemia/reperfusion injury by targeted 

deletion of matrix metalloproteinase-9. Cardiovasc Res 2002; 54: 549-58. 

[56] Matsumura S, Iwanaga S, Mochizuki S, Okamoto H, Ogawa S, Okada Y. Targeted deletion or pharmacological 

inhibition of MMP-2 prevents cardiac rupture after myocardial infarction in mice. J Clin Invest 2005; 115: 599-609. 



[57] Longo GM, Xiong W, Greiner TC, Zhao Y, Fiotti N, Baxter BT. Matrix metalloproteinases 2 and 9 work in 

concert to produce aortic aneurysms. J Clin Invest 2002; 110: 625-32. 

[58] Galt SW, Lindemann S, Allen L et al. Outside-in signals delivered by matrix metalloproteinase-1 regulate platelet 

function. Circ Res 2002; 90: 1093-9. 

[59] Sawicki G, Sanders EJ, Salas E, Wozniak M, Rodrigo J, Radomski MW. Localization and translocation of MMP-2 

during aggregation of human platelets. Thromb Haemost 1998; 80: 836-9. 

[60] Fedak PW, Smookler DS, Kassiri Z et al. TIMP-3 deficiency leads to dilated cardiomyopathy. Circulation 2004; 

110: 2401-9. 

[61] Insull W Jr. The pathology of atherosclerosis: plaque development and plaque responses to medical treatment. Am 

J Med 2009; 122: S3-14. 

[62] Loftus I, Thompson M. Plaque biology: interesting science or pharmacological treasure trove? Eur J Vasc 

Endovasc Surg 2008; 36: 507-16. 

[63] Aikawa M, Libby P. The vulnerable atherosclerotic plaque: pathogenesis and therapeutic approach. Cardiovasc 

Pathol 2004; 13: 125-38. 

[64] Virmani R, Kolodgie FD, Burke AP, Farb A, Schwartz SM. Lessons from sudden coronary death: a comprehensive 

morphological classification scheme for atherosclerotic lesions. Arterioscler Thromb Vasc Biol 2000; 20: 1262-75. 

[65] Virmani R, Burke AP, Farb A, Kolodgie FD. Pathology of the vulnerable plaque. J Am Coll Cardiol 2006; 47: 

C13-8. 

[66] Halvorsen B, Otterdal K, Dahl TB et al. Atherosclerotic plaque stability--what determines the fate of a plaque? 

Prog Cardiovasc Dis 2008; 51: 183-94. 

[67] Buffon A, Biasucci LM, Liuzzo G, D'Onofrio G, Crea F, Maseri A. Widespread coronary inflammation in unstable 

angina. N Engl J Med 2002; 347: 5-12. 

[68] Clarke MC, Figg N, Maguire JJ et al. Apoptosis of vascular smooth muscle cells induces features of plaque 

vulnerability in atherosclerosis. Nat Med 2006; 12: 1075-80. 

[69] Tabas I. Consequences and therapeutic implications of macrophage apoptosis in atherosclerosis: the importance of 

lesion stage and phagocytic efficiency. Arterioscler Thromb Vasc Biol 2005; 25: 2255-64. 

[70] Dickson BC, Gotlieb AI. Towards understanding acute destabilization of vulnerable atherosclerotic plaques. 

Cardiovasc Pathol 2003; 12: 237-48. 

[71] Lutgens E, van Suylen RJ, Faber BC et al. Atherosclerotic plaque rupture: local or systemic process? Arterioscler 

Thromb Vasc Biol 2003; 23: 2123-30. 

[72] Nakamura M, Lee DP, Yeung AC. Identification and treatment of vulnerable plaque. Rev Cardiovasc Med 2004; 2: 

S22-33. 

[73] Wang LX, Lü SZ, Zhang WJ, Song XT, Chen H, Zhang LJ. Coronary spasm, a pathogenic trigger of vulnerable 

plaque rupture. Chin Med J (Engl) 2011; 124: 4071-8. 

[74] Gijsen F, van der Giessen A, van der Steen A, Wentzel J. Shear stress and advanced atherosclerosis in human 

coronary arteries. J Biomech 2013; 46: 240-7. 

[75] Toutouzas K, Synetos A, Nikolaou C, Tsiamis E, Tousoulis D, Stefanadis C. Matrix metalloproteinases and 

vulnerable atheromatous plaque. Curr Top Med Chem 2012; 12: 1166-80. 

[76] Loftus IM, Naylor AR, Bell PR, Thompson MM. Matrix metalloproteinases and atherosclerotic plaque instability. 

Br J Surg 2002; 89: 680-94. 



[77] Bäck M, Ketelhuth DF, Agewall S. Matrix metalloproteinases in atherothrombosis. Prog Cardiovasc Dis 2010; 52: 

410-28. 

[78] Newby AC. Metalloproteinase expression in monocytes and macrophages and its relationship to atherosclerotic 

plaque instability. Arterioscler Thromb Vasc Biol 2008; 28: 2108-14. 

[79] Reel B, Sala-Newby GB, Huang WC, Newby AC. Diverse patterns of cyclooxygenase-independent 

metalloproteinase gene regulation in human monocytes. Br J Pharmacol 2011; 163: 1679-90. 

[80] Amorino GP, Hoover RL. Interactions of monocytic cells with human endothelial cells stimulate monocytic 

metalloproteinase production. Am J Pathol 1998; 152: 199-207. 

[81] Galt SW, Lindemann S, Medd D et al. Differential regulation of matrix metalloproteinase-9 by monocytes adherent 

to collagen and platelets. Circ Res 2001; 89: 509-16. 

[82] Galis ZS, Sukhova GK, Kranzhöfer R, Clark S, Libby P. Macrophage foam cells from experimental atheroma 

constitutively produce matrix-degrading proteinases. Proc Natl Acad Sci USA 1995; 92: 402-6. 

[83] Chase AJ, Bond M, Crook MF, Newby AC. Role of nuclear factor-kappa B activation in metalloproteinase-1, -3, 

and -9 secretion by human macrophages in vitro and rabbit foam cells produced in vivo. Arterioscler Thromb Vasc Biol 

2002; 22: 765-71. 

[84] Feinberg MW, Jain MK, Werner F et al. Transforming growth factor-beta 1 inhibits cytokine-mediated induction 

of human metalloelastase in macrophages. J Biol Chem 2000; 275: 25766-73. 

[85] Mach F, Schönbeck U, Bonnefoy JY, Pober JS, Libby P. Activation of monocyte/macrophage functions related to 

acute atheroma complication by ligation of CD40: induction of collagenase, stromelysin, and tissue factor. Circulation 

1997; 96: 396-9. 

[86] Schönbeck U, Mach F, Sukhova GK et al. Expression of stromelysin-3 in atherosclerotic lesions: regulation via 

CD40-CD40 ligand signaling in vitro and in vivo. J Exp Med 1999; 189: 843-53. 

[87] Wu L, Fan J, Matsumoto Si, Watanabe T. Induction and regulation of matrix metalloproteinase-12 by cytokines 

and CD40 signaling in monocyte/macrophages. Biochem Biophys Res Commun 2000; 269: 808-15. 

[88] Herman MP, Sukhova GK, Libby P et al. Expression of neutrophil collagenase (matrix metalloproteinase-8) in 

human atheroma: a novel collagenolytic pathway suggested by transcriptional profiling. Circulation 2001; 104: 1899-

904. 

[89] Moreau M, Brocheriou I, Petit L, Ninio E, Chapman MJ, Rouis M. Interleukin-8 mediates downregulation of tissue 

inhibitor of metalloproteinase-1 expression in cholesterol-loaded human macrophages: relevance to stability of 

atherosclerotic plaque. Circulation 1999; 99: 420-6. 

[90] George SJ, Zaltsman AB, Newby AC. Surgical preparative injury and neointima formation increase MMP-9 

expression and MMP-2 activation in human saphenous vein. Cardiovasc Res 1997; 33: 447-59. 

[91] Johnson JL, van Eys GJ, Angelini GD, George SJ. Injury induces dedifferentiation of smooth muscle cells and 

increased matrix-degrading metalloproteinase activity in human saphenous vein. Arterioscler Thromb Vasc Biol 2001; 

21: 1146-51. 

[92] Galis ZS, Muszynski M, Sukhova GK et al. Cytokine-stimulated human vascular smooth muscle cells synthesize a 

complement of enzymes required for extracellular matrix digestion. Circ Res 1994; 75: 181-9. 

[93] Fabunmi RP, Baker AH, Murray EJ, Booth RF, Newby AC. Divergent regulation by growth factors and cytokines 

of 95 kDa and 72 kDa gelatinases and tissue inhibitors or metalloproteinases-1, -2, and -3 in rabbit aortic smooth 

muscle cells. Biochem J 1996; 315: 335-42. 



[94] Bond M, Chase AJ, Baker AH, Newby AC. Inhibition of transcription factor NF-kappaB reduces matrix 

metalloproteinase-1, -3 and -9 production by vascular smooth muscle cells. Cardiovasc Res 2001; 50: 556-65. 

[95] Schönbeck U, Mach F, Sukhova GK et al. Regulation of matrix metalloproteinase expression in human vascular 

smooth muscle cells by T lymphocytes: a role for CD40 signaling in plaque rupture? Circ Res 1997; 81: 448-54. 

[96] Galis ZS, Sukhova GK, Lark MW, Libby P. Increased expression of matrix metalloproteinases and matrix 

degrading activity in vulnerable regions of human atherosclerotic plaques. J Clin Invest 1994; 94: 2493-503. 

[97] Yakubenko VP, Lobb RR, Plow EF, Ugarova TP. Differential induction of gelatinase B (MMP-9) and gelatinase A 

(MMP-2) in T lymphocytes upon alpha(4)beta(1)-mediated adhesion to VCAM-1 and the CS-1 peptide of fibronectin. 

Exp Cell Res 2000; 260: 73-84. 

[98] Baram D, Vaday GG, Salamon P, Drucker I, Hershkoviz R, Mekori YA. Human mast cells release 

metalloproteinase-9 on contact with activated T cells: juxtacrine regulation by TNF-alpha. J Immunol 2001; 167: 4008-

16. 

[99] Hanemaaijer R, Koolwijk P, le Clercq L, de Vree WJ, van Hinsbergh VW. Regulation of matrix metalloproteinase 

expression in human vein and microvascular endothelial cells. Effects of tumour necrosis factor alpha, interleukin 1 and 

phorbol ester. Biochem J 1993; 296: 803-9. 

[100] Hojo Y, Ikeda U, Takahashi M et al. Matrix metalloproteinase-1 expression by interaction between monocytes 

and vascular endothelial cells. J Mol Cell Cardiol 2000; 32: 1459-68. 

[101] Newby AC. Matrix metalloproteinase inhibition therapy for vascular diseases. Vascul Pharmacol 2012; 56: 232-

44. 

[102] Mach F, Schönbeck U, Fabunmi RP et al. T lymphocytes induce endothelial cell matrix metalloproteinase 

expression by a CD40L-dependent mechanism: implications for tubule formation. Am J Pathol 1999; 154: 229-38. 

[103] Huang Y, Song L, Wu S, Fan F, Lopes-Virella MF. Oxidized LDL differentially regulates MMP-1 and TIMP-1 

expression in vascular endothelial cells. Atherosclerosis 2001; 156: 119-25. 

[104] Santos-Martínez MJ, Medina C, Jurasz P, Radomski MW. Role of metalloproteinases in platelet function. 

Thromb Res 2008; 121: 535-42. 

[105] Gresele P, Falcinelli E, Momi S. Potentiation and priming of platelet activation: a potential target for antiplatelet 

therapy. Trends Pharmacol Sci 2008; 29: 352-60. 

[106] Xu XP, Meisel SR, Ong JM et al. Oxidized low-density lipoprotein regulates matrix metalloproteinase-9 and its 

tissue inhibitor in human monocyte-derived macrophages. Circulation 1999; 99: 993-8. 

[107] Rajavashisth TB, Xu XP, Jovinge S et al. Membrane type 1 matrix metalloproteinase expression in human 

atherosclerotic plaques: evidence for activation by proinflammatory mediators. Circulation 1999; 99: 3103-9. 

[108] Huang Y, Mironova M, Lopes-Virella MF. Oxidized LDL stimulates matrix metalloproteinase-1 expression in 

human vascular endothelial cells. Arterioscler Thromb Vasc Biol 1999; 19: 2640-7. 

[109] Silence J, Collen D, Lijnen HR. Reduced atherosclerotic plaque but enhanced aneurysm formation in mice with 

inactivation of the tissue inhibitor of metalloproteinase-1 (TIMP-1) gene. Circ Res 2002; 90: 897-903. 

[110] Lemaître V, Soloway PD, D'Armiento J. Increased medial degradation with pseudo-aneurysm formation in 

apolipoprotein E-knockout mice deficient in tissue inhibitor of metalloproteinases-1. Circulation 2003; 107: 333-8. 

[111] Gough PJ, Gomez IG, Wille PT, Raines EW. Macrophage expression of active MMP-9 induces acute plaque 

disruption in apoE-deficient mice. J Clin Invest 2006; 116: 59-69. 



[112] de Nooijer R, Verkleij CJ, von der Thüsen JH et al. Lesional overexpression of matrix metalloproteinase-9 

promotes intraplaque hemorrhage in advanced lesions but not at earlier stages of atherogenesis. Arterioscler Thromb 

Vasc Biol 2006; 26: 340-6. 

[113] Lemaître V, O'Byrne TK, Borczuk AC, Okada Y, Tall AR, D'Armiento J. ApoE knockout mice expressing human 

matrix metalloproteinase-1 in macrophages have less advanced atherosclerosis. J Clin Invest 2001; 107: 1227-34. 

[114] Fukumoto Y, Deguchi JO, Libby P et al. Genetically determined resistance to collagenase action augments 

interstitial collagen accumulation in atherosclerotic plaques. Circulation 2004; 110: 1953-9. 

[115] Deguchi JO, Aikawa E, Libby P et al. Matrix metalloproteinase-13/collagenase-3 deletion promotes collagen 

accumulation and organization in mouse atherosclerotic plaques. Circulation 2005; 112: 2708-15. 

[116] Kuzuya M, Nakamura K, Sasaki T, Cheng XW, Itohara S, Iguchi A. Effect of MMP-2 deficiency on 

atherosclerotic lesion formation in apoE-deficient mice. Arterioscler Thromb Vasc Biol 2006; 26: 1120-5. 

[117] Silence J, Lupu F, Collen D, Lijnen HR. Persistence of atherosclerotic plaque but reduced aneurysm formation in 

mice with stromelysin-1 (MMP-3) gene inactivation. Arterioscler Thromb Vasc Biol 2001; 21: 1440-5. 

[118] Luttun A, Lutgens E, Manderveld A et al. Loss of matrix metalloproteinase-9 or matrix metalloproteinase-12 

protects apolipoprotein E-deficient mice against atherosclerotic media destruction but differentially affects plaque 

growth. Circulation 2004; 109: 1408-14. 

[119] Johnson JL, George SJ, Newby AC, Jackson CL. Divergent effects of matrix metalloproteinases 3, 7, 9, and 12 on 

atherosclerotic plaque stability in mouse brachiocephalic arteries. Proc Natl Acad Sci USA 2005; 102: 15575-80. 

[120] Johnson JL, Dwivedi A, Somerville M, George SJ, Newby AC. Matrix metalloproteinase (MMP)-3 activates 

MMP-9 mediated vascular smooth muscle cell migration and neointima formation in mice. Arterioscler Thromb Vasc 

Biol 2011; 31: e35-44. 

[121] Williams H, Johnson JL, Jackson CL, White SJ, George SJ. MMP-7 mediates cleavage of N-cadherin and 

promotes smooth muscle cell apoptosis. Cardiovasc Res 2010; 87: 137-46. 

[122] Johnson JL, Devel L, Czarny B et al. A selective matrix metalloproteinase-12 inhibitor retards atherosclerotic 

plaque development in apolipoprotein E-knockout mice. Arterioscler Thromb Vasc Biol 2011; 31: 528-35. 

[123] Liang J, Liu E, Yu Y et al. Macrophage metalloelastase accelerates the progression of atherosclerosis in 

transgenic rabbits. Circulation 2006; 113: 1993-2001. 

[124] Laxton RC, Hu Y, Duchene J et al. A role of matrix metalloproteinase-8 in atherosclerosis. Circ Res 2009; 105: 

921-9. 

[125] Schneider F, Sukhova GK, Aikawa M et al. Matrix-metalloproteinase-14 deficiency in bone-marrow-derived cells 

promotes collagen accumulation in mouse atherosclerotic plaques. Circulation 2008; 117: 931-9. 

[126] Galis ZS, Khatri JJ. Matrix metalloproteinases in vascular remodeling and atherogenesis: the good, the bad, and 

the ugly. Circ Res 2002; 90: 251-62. 

[127] Newby AC. Matrix metalloproteinases regulate migration, proliferation, and death of vascular smooth muscle 

cells by degrading matrix and non-matrix substrates. Cardiovasc Res 2006; 69: 614-24. 

[128] Cho A, Reidy MA. Matrix metalloproteinase-9 is necessary for the regulation of smooth muscle cell replication 

and migration after arterial injury. Circ Res 2002; 91: 845-51. 

[129] Galis ZS, Johnson C, Godin D et al. Targeted disruption of the matrix metalloproteinase-9 gene impairs smooth 

muscle cell migration and geometrical arterial remodeling. Circ Res 2002; 91: 852-9. 



[130] Choi ET, Collins ET, Marine LA et al. Matrix metalloproteinase-9 modulation by resident arterial cells is 

responsible for injury-induced accelerated atherosclerotic plaque development in apolipoprotein E-deficient mice. 

Arterioscler Thromb Vasc Biol 2005; 25: 1020-5. 

[131] Filippov S, Koenig GC, Chun TH et al. MT1-matrix metalloproteinase directs arterial wall invasion and 

neointima formation by vascular smooth muscle cells. J Exp Med 2005; 202: 663-71. 

[132] Wu YJ, Bond M, Sala-Newby GB, Newby AC. Altered S-phase kinase-associated protein-2 levels are a major 

mediator of cyclic nucleotide-induced inhibition of vascular smooth muscle cell proliferation. Circ Res 2006; 98: 1141-

50. 

[133] Johnson JL, Baker AH, Oka K et al. Suppression of atherosclerotic plaque progression and instability by tissue 

inhibitor of metalloproteinase-2: involvement of macrophage migration and apoptosis. Circulation 2006; 113: 2435-44. 

[134] Johnson JL, Fritsche-Danielson R, Behrendt M et al. Effect of broad-spectrum matrix metalloproteinase inhibition 

on atherosclerotic plaque stability. Cardiovasc Res 2006; 71: 586-95. 

[135] Tedgui A, Mallat Z. Cytokines in atherosclerosis: pathogenic and regulatory pathways. Physiol Rev 2006; 86: 

515-81. 

[136] Katsuda S, Kaji T. Atherosclerosis and extracellular matrix. J Atheroscler Thromb 2003; 10: 267-74. 

[137] Choudhary S, Higgins CL, Chen IY et al. Quantitation and localization of matrix metalloproteinases and their 

inhibitors in human carotid endarterectomy tissues. Arterioscler Thromb Vasc Biol 2006; 26: 2351-8. 

[138] Sluijter JP, Pulskens WP, Schoneveld AH et al. Matrix metalloproteinase 2 is associated with stable and matrix 

metalloproteinases 8 and 9 with vulnerable carotid atherosclerotic lesions: a study in human endarterectomy specimen 

pointing to a role for different extracellular matrix metalloproteinase inducer glycosylation forms. Stroke 2006; 37: 235-

9. 

[139] Sukhova GK, Schönbeck U, Rabkin E et al. Evidence for increased collagenolysis by interstitial collagenases-1 

and -3 in vulnerable human atheromatous plaques. Circulation 1999; 99: 2503-9. 

[140] Monaco C, Gregan SM, Navin TJ, Foxwell BM, Davies AH, Feldmann M. Toll-like receptor-2 mediates 

inflammation and matrix degradation in human atherosclerosis. Circulation 2009; 120: 2462-9. 

[141] Thomas AC, Sala-Newby GB, Ismail Y, Johnson JL, Pasterkamp G, Newby AC. Genomics of foam cells and 

nonfoamy macrophages from rabbits identifies arginase-I as a differential regulator of nitric oxide production. 

Arterioscler Thromb Vasc Biol 2007; 27: 571-7. 

[142] Johnson JL, Sala-Newby GB, Ismail Y, Aguilera CM, Newby AC. Low tissue inhibitor of metalloproteinases 3 

and high matrix metalloproteinase 14 levels defines a subpopulation of highly invasive foam-cell macrophages. 

Arterioscler Thromb Vasc Biol 2008; 28: 1647-53. 

[143] Ikeda U, Shimada K. Matrix metalloproteinases and coronary artery diseases. Clin Cardiol 2003; 26: 55-9. 

[144] Orbe J, Fernandez L, Rodríguez JA et al. Different expression of MMPs/TIMP-1 in human atherosclerotic 

lesions. Relation to plaque features and vascular bed. Atherosclerosis 2003; 170: 269-76. 

[145] Noji Y, Kajinami K, Kawashiri MA et al. Circulating matrix metalloproteinases and their inhibitors in premature 

coronary atherosclerosis. Clin Chem Lab Med 2001; 39: 380-4. 

[146] Beaudeux JL, Giral P, Bruckert E, Bernard M, Foglietti MJ, Chapman MJ. Serum matrix metalloproteinase-3 and 

tissue inhibitor of metalloproteinases-1 as potential markers of carotid atherosclerosis in infraclinical hyperlipidemia. 

Atherosclerosis 2003; 169: 139-46. 

[147] Partridge CR, Hawker JR Jr, Forough R. Overexpression of a secretory form of FGF-1 promotes MMP-1-

mediated endothelial cell migration. J Cell Biochem 2000; 78: 487-99. 



[148] Holnthoner W, Kerenyi M, Gröger M, Kratochvill F, Petzelbauer P. Regulation of matrilysin expression in 

endothelium by fibroblast growth factor-2. Biochem Biophys Res Commun 2006; 342: 725-33. 

[149] Burbridge MF, Cogé F, Galizzi JP, Boutin JA, West DC, Tucker GC. The role of the matrix metalloproteinases 

during in vitro vessel formation. Angiogenesis 2002; 5: 215-26. 

[150] Duhamel-Clérin E, Orvain C, Lanza F, Cazenave JP, Klein-Soyer C. Thrombin receptor-mediated increase of two 

matrix metalloproteinases, MMP-1 and MMP-3, in human endothelial cells. Arterioscler Thromb Vasc Biol 1997; 17: 

1931-8. 

[151] Lafleur MA, Hollenberg MD, Atkinson SJ, Knäuper V, Murphy G, Edwards DR. Activation of pro-(matrix 

metalloproteinase-2) (pro-MMP-2) by thrombin is membrane-type-MMP-dependent in human umbilical vein 

endothelial cells and generates a distinct 63 kDa active species. Biochem J 2001; 357: 107-15. 

[152] Rybakowski JK. Matrix metalloproteinase-9 (MMP9)-A mediating enzyme in cardiovascular disease, cancer, and 

neuropsychiatric disorders. Cardiovasc Psychiatry Neurol 2009; 2009: 904836. 

[153] Pöllänen PJ, Karhunen PJ, Mikkelsson J et al. Coronary artery complicated lesion area is related to functional 

polymorphism of matrix metalloproteinase 9 gene: an autopsy study. Arterioscler Thromb Vasc Biol 2001; 21: 1446-50. 

[154] Morgan AR, Zhang B, Tapper W, Collins A, Ye S. Haplotypic analysis of the MMP-9 gene in relation to 

coronary artery disease. J Mol Med (Berl) 2003; 81: 321-6. 

[155] Blankenberg S, Rupprecht HJ, Poirier O et al. Plasma concentrations and genetic variation of matrix 

metalloproteinase 9 and prognosis of patients with cardiovascular disease. Circulation 2003; 107: 1579-85. 

[156] Johnson C, Galis ZS. Matrix metalloproteinase-2 and -9 differentially regulate smooth muscle cell migration and 

cell-mediated collagen organization. Arterioscler Thromb Vasc Biol 2004; 24: 54-60.  

[157] Loftus IM, Naylor AR, Goodall S et al. Increased matrix metalloproteinase-9 activity in unstable carotid plaques. 

A potential role in acute plaque disruption. Stroke 2000; 31: 40-7. 

[158] Chen F, Eriksson P, Hansson GK et al. Expression of matrix metalloproteinase 9 and its regulators in the unstable 

coronary atherosclerotic plaque. Int J Mol Med 2005; 15: 57-65. 

[159] Brown DL, Hibbs MS, Kearney M, Loushin C, Isner JM. Identification of 92-kD gelatinase in human coronary 

atherosclerotic lesions. Association of active enzyme synthesis with unstable angina. Circulation 1995; 91: 2125-31. 

[160] Hojo Y, Ikeda U, Katsuki Ta, Mizuno O, Fujikawa H, Shimada K. Matrix metalloproteinase expression in the 

coronary circulation induced by coronary angioplasty. Atherosclerosis 2002; 161: 185-92. 

[161] Mathapati S, Arumugam SB, Verma RS. High cholesterol diet increases MMP9 and CD40 immunopositivity in 

early atherosclerotic plaque in rabbits. Acta Histochem 2010; 112: 618-23. 

[162] Fukuda D, Shimada K, Tanaka A et al. Comparison of levels of serum matrix metalloproteinase-9 in patients with 

acute myocardial infarction versus unstable angina pectoris versus stable angina pectoris. Am J Cardiol 2006; 97: 175-

80. 

[163] Alvarez B, Ruiz C, Chacón P, Alvarez-Sabin J, Matas M. Serum values of metalloproteinase-2 and 

metalloproteinase-9 as related to unstable plaque and inflammatory cells in patients with greater than 70% carotid artery 

stenosis. J Vasc Surg 2004; 40: 469-75. 

[164] Eldrup N, Grønholdt ML, Sillesen H, Nordestgaard BG. Elevated matrix metalloproteinase-9 associated with 

stroke or cardiovascular death in patients with carotid stenosis. Circulation 2006; 114: 1847-54. 

[165] Jefferis BJ, Whincup P, Welsh P et al. Prospective study of matrix metalloproteinase-9 and risk of myocardial 

infarction and stroke in older men and women. Atherosclerosis 2010; 208: 557-63. 



[166] Ferroni P, Basili S, Martini F et al. Serum metalloproteinase 9 levels in patients with coronary artery disease: a 

novel marker of inflammation. J Investig Med 2003; 51: 295-300. 

[167] Konstantino Y, Nguyen TT, Wolk R, Aiello RJ, Terra SG, Fryburg DA. Potential implications of matrix 

metalloproteinase-9 in assessment and treatment of coronary artery disease. Biomarkers 2009; 14: 118-29. 

[168] Li L, Renier G. The oral anti-diabetic agent, gliclazide, inhibits oxidized LDL-mediated LOX-1 expression, 

metalloproteinase-9 secretion and apoptosis in human aortic endothelial cells. Atherosclerosis 2009; 204: 40-6. 

[169] Hua Y, Xue J, Sun F, Zhu L, Xie M. Aspirin inhibits MMP-2 and MMP-9 expressions and activities through 

upregulation of PPARalpha/gamma and TIMP gene expressions in ox-LDL-stimulated macrophages derived from 

human monocytes. Pharmacology 2009; 83: 18-25. 

[170] Kang JH, Kim JK, Park WH et al. Ascochlorin suppresses oxLDL-induced MMP-9 expression by inhibiting the 

MEK/ERK signaling pathway in human THP-1 macrophages. J Cell Biochem 2007; 102: 506-14. 

[171] Kalela A, Koivu TA, Höyhtyä M et al. Association of serum MMP-9 with autoantibodies against oxidized LDL. 

Atherosclerosis 2002; 160: 161-5. 

[172] Garenc C, Julien P, Levy E. Oxysterols in biological systems: the gastrointestinal tract, liver, vascular wall and 

central nervous system. Free Radic Res 2010; 44: 47-73. 

[173] Leonarduzzi G, Poli G, Sottero B, Biasi F. Activation of the mitochondrial pathway of apoptosis by oxysterols. 

Front Biosci 2007; 12: 791-9. 

[174] Sottero B, Gamba P, Gargiulo S, Leonarduzzi G, Poli G. Cholesterol oxidation products and disease: an emerging 

topic of interest in medicinal chemistry. Curr Med Chem 2009; 16: 685-705. 

[175] Poli G, Sottero B, Gargiulo S, Leonarduzzi G. Cholesterol oxidation products in the vascular remodeling due to 

atherosclerosis. Mol Aspects Med 2009; 30: 180-9. 

[176] Leonarduzzi G, Gamba P, Sottero B et al. Oxysterol-induced up-regulation of MCP-1 expression and synthesis in 

macrophage cells. Free Radic Biol Med 2005; 39: 1152-61. 

[177] Leonarduzzi G, Vizio B, Sottero B et al. Early involvement of ROS overproduction in apoptosis induced by 7-

ketocholesterol. Antioxid Redox Signal 2006; 8: 375-80. 

[178] Leonarduzzi G, Gamba P, Gargiulo S et al. Oxidation as a crucial reaction for cholesterol to induce tissue 

degeneration: CD36 overexpression in human promonocytic cells treated with a biologically relevant oxysterol mixture. 

Aging Cell 2008; 7: 375-82. 

[179] Leonarduzzi G, Gargiulo S, Gamba P et al. Molecular signaling operated by a diet-compatible mixture of 

oxysterols in up-regulating CD36 receptor in CD68 positive cells. Mol Nutr Food Res 2010; 54: S31-41. 

[180] Gargiulo S, Sottero B, Gamba P, Chiarpotto E, Poli G, Leonarduzzi G. Plaque oxysterols induce unbalanced up-

regulation of matrix metalloproteinase-9 in macrophagic cells through redox-sensitive signaling pathways: Implications 

regarding the vulnerability of atherosclerotic lesions. Free Radic Biol Med 2011; 51: 844-55. 

[181] Lim CS, Shalhoub J, Gohel MS, Shepherd AC, Davies AH. Matrix metalloproteinases in vascular disease--a 

potential therapeutic target? Curr Vasc Pharmacol 2010; 8: 75-85. 

[182] Upchurch GR Jr, Ford JW, Weiss SJ et al. Nitric oxide inhibition increases matrix metalloproteinase-9 expression 

by rat aortic smooth muscle cells in vitro. J Vasc Surg 2001; 34: 76-83. 

[183] Uría JA, Jiménez MG, Balbín M, Freije JM, López-Otín C. Differential effects of transforming growth factor-beta 

on the expression of collagenase-1 and collagenase-3 in human fibroblasts. J Biol Chem 1998; 273: 9769-77. 



[184] Grzela T, Brawura-Biskupski-Samaha R, Jelenska MM, Szmidt J. Low molecular weight heparin treatment 

decreases MMP-9 plasma activity in patients with abdominal aortic aneurysm. Eur J Vasc Endovasc Surg 2008; 35: 

159-61. 

[185] Schieffer B, Bünte C, Witte J et al. Comparative effects of AT1-antagonism and angiotensin-converting enzyme 

inhibition on markers of inflammation and platelet aggregation in patients with coronary artery disease. J Am Coll 

Cardiol 2004; 44: 362-8. 

[186] Yamamoto D, Takai S, Miyazaki M. Inhibitory profiles of captopril on matrix metalloproteinase-9 activity. Eur J 

Pharmacol 2008; 588: 277-9. 

[187] Galis ZS, Asanuma K, Godin D, Meng X. N-acetyl-cysteine decreases the matrix-degrading capacity of 

macrophage-derived foam cells: new target for antioxidant therapy? Circulation 1998; 97: 2445-53. 

[188] Lutgens E, Gorelik L, Daemen MJ et al. Requirement for CD154 in the progression of atherosclerosis. Nat Med 

1999; 5: 1313-6. 

[189] Miralles M, Wester W, Sicard GA, Thompson R, Reilly JM. Indomethacin inhibits expansion of experimental 

aortic aneurysms via inhibition of the cox2 isoform of cyclooxygenase. J Vasc Surg 1999; 29: 884-92. 

[190] Walton LJ, Franklin IJ, Bayston T et al. Inhibition of prostaglandin E2 synthesis in abdominal aortic aneurysms: 

implications for smooth muscle cell viability, inflammatory processes, and the expansion of abdominal aortic 

aneurysms. Circulation 1999; 100: 48-54. 

[191] Cipollone F, Fazia ML, Iezzi A et al. Association between prostaglandin E receptor subtype EP4 overexpression 

and unstable phenotype in atherosclerotic plaques in human. Arterioscler Thromb Vasc Biol 2005; 25: 1925-31. 

[192] Pavlovic S, Du B, Sakamoto K et al. Targeting prostaglandin E2 receptors as an alternative strategy to block 

cyclooxygenase-2-dependent extracellular matrix-induced matrix metalloproteinase-9 expression by macrophages. J 

Biol Chem 2006; 281: 3321-8. 

[193] Zucker S, Cao J, Chen WT. Critical appraisal of the use of matrix metalloproteinase inhibitors in cancer 

treatment. Oncogene 2000; 19: 6642-50. 

[194] Rouis M, Adamy C, Duverger N et al. Adenovirus-mediated overexpression of tissue inhibitor of 

metalloproteinase-1 reduces atherosclerotic lesions in apolipoprotein E-deficient mice. Circulation 1999; 100: 533-40. 

[195] George SJ, Lloyd CT, Angelini GD, Newby AC, Baker AH. Inhibition of late vein graft neointima formation in 

human and porcine models by adenovirus-mediated overexpression of tissue inhibitor of metalloproteinase-3. 

Circulation 2000; 101: 296-304. 

[196] George SJ, Wan S, Hu J, MacDonald R, Johnson JL, Baker AH. Sustained reduction of vein graft neointima 

formation by ex vivo TIMP-3 gene therapy. Circulation 2011; 124: S135-42. 

[197] Forrester JS, Libby P. The inflammation hypothesis and its potential relevance to statin therapy. Am J Cardiol 

2007; 99: 732-8. 

[198] Bellosta S, Via D, Canavesi M et al. HMG-CoA reductase inhibitors reduce MMP-9 secretion by macrophages. 

Arterioscler Thromb Vasc Biol 1998; 18: 1671-8. 

[199] Aikawa M, Rabkin E, Okada Y et al. Lipid lowering by diet reduces matrix metalloproteinase activity and 

increases collagen content of rabbit atheroma: a potential mechanism of lesion stabilization. Circulation 1998; 97: 2433-

44. 

[200] Crisby M, Nordin-Fredriksson G, Shah PK, Yano J, Zhu J, Nilsson J. Pravastatin treatment increases collagen 

content and decreases lipid content, inflammation, metalloproteinases, and cell death in human carotid plaques: 

implications for plaque stabilization. Circulation 2001; 103: 926-33. 



[201] Luan Z, Chase AJ, Newby AC. Statins inhibit secretion of metalloproteinases-1, -2, -3, and -9 from vascular 

smooth muscle cells and macrophages. Arterioscler Thromb Vasc Biol 2003; 23: 769-75. 

[202] Fukumoto Y, Libby P, Rabkin E et al. Statins alter smooth muscle cell accumulation and collagen content in 

established atheroma of watanabe heritable hyperlipidemic rabbits. Circulation 2001; 103: 993-9. 

[203] Scalia R, Gooszen ME, Jones SP et al. Simvastatin exerts both anti-inflammatory and cardioprotective effects in 

apolipoprotein E-deficient mice. Circulation 2001; 103: 2598-603. 

[204] Jialal I, Stein D, Balis D, Grundy SM, Adams-Huet B, Devaraj S. Effect of hydroxymethyl glutaryl coenzyme a 

reductase inhibitor therapy on high sensitive C-reactive protein levels. Circulation 2001; 103: 1933-5. 

[205] Ridker PM, Rifai N, Lowenthal SP. Rapid reduction in C-reactive protein with cerivastatin among 785 patients 

with primary hypercholesterolemia. Circulation 2001; 103: 1191-3. 

[206] Devy L, Dransfield DT. New strategies for the next generation of matrix-metalloproteinase inhibitors: selectively 

targeting membrane-anchored MMPs with therapeutic antibodies. Biochem Res Int 2011; 2011: 191670. 

[207] Hu J, Van den Steen PE, Sang QX, Opdenakker G. Matrix metalloproteinase inhibitors as therapy for 

inflammatory and vascular diseases. Nat Rev Drug Discov 2007; 6: 480-98. 

[208] Rosenberg GA, Estrada EY, Mobashery S. Effect of synthetic matrix metalloproteinase inhibitors on 

lipopolysaccharide-induced blood-brain barrier opening in rodents: Differences in response based on strains and 

solvents. Brain Res 2007; 1133: 186-92. 

[209] Denis LJ, Verweij J. Matrix metalloproteinase inhibitors: present achievements and future prospects. Invest New 

Drugs 1997; 15: 175-85. 

[210] Parsons SL, Watson SA, Brown PD, Collins HM, Steele RJ. Matrix metalloproteinases. Br J Surg 1997; 84: 160-

6. 

[211] Sood RR, Taheri S, Candelario-Jalil E, Estrada EY, Rosenberg GA. Early beneficial effect of matrix 

metalloproteinase inhibition on blood-brain barrier permeability as measured by magnetic resonance imaging countered 

by impaired long-term recovery after stroke in rat brain. J Cereb Blood Flow Metab 2008; 28: 431-8. 

[212] Nagel S, Heinemann PV, Heiland S, Koziol J, Gardner H, Wagner S. Selective MMP-inhibition with Ro 28-2653 

in acute experimental stroke--a magnetic resonance imaging efficacy study. Brain Res 2011; 1368: 264-70. 

[213] Maquoi E, Sounni NE, Devy L et al. Anti-invasive, antitumoral, and antiangiogenic efficacy of a pyrimidine-

2,4,6-trione derivative, an orally active and selective matrix metalloproteinases inhibitor. Clin Cancer Res 2004; 10: 

4038-47. 

[214] Shono T, Motoyama M, Tatsumi K et al. A new synthetic matrix metalloproteinase inhibitor modulates both 

angiogenesis and urokinase type plasminogen activator activity. Angiogenesis 1998; 2: 319-29. 

[215] Wojtowicz-Praga S. Clinical potential of matrix metalloprotease inhibitors. Drugs R D 1999; 1: 117-29. 

[216] Quillard T, Tesmenitsky Y, Croce K et al. Selective inhibition of matrix metalloproteinase-13 increases collagen 

content of established mouse atherosclerosis. Arterioscler Thromb Vasc Biol 2011; 31: 2464-72. 

[217] Franco C, Ho B, Mulholland D et al. Doxycycline alters vascular smooth muscle cell adhesion, migration, and 

reorganization of fibrillar collagen matrices. Am J Pathol 2006; 168: 1697-709. 

[218] Sapadin AN, Fleischmajer R. Tetracyclines: nonantibiotic properties and their clinical implications. J Am Acad 

Dermatol 2006; 54: 258-65. 

[219] Axisa B, Loftus IM, Naylor AR et al. Prospective, randomized, double-blind trial investigating the effect of 

doxycycline on matrix metalloproteinase expression within atherosclerotic carotid plaques. Stroke 2002; 33: 2858-64. 



[220] Brown DL, Desai KK, Vakili BA, Nouneh C, Lee HM, Golub LM. Clinical and biochemical results of the 

metalloproteinase inhibition with subantimicrobial doses of doxycycline to prevent acute coronary syndromes (MIDAS) 

pilot trial. Arterioscler Thromb Vasc Biol 2004; 24: 733-8. 

[221] Dodd BR, Spence RA. Doxycycline inhibition of abdominal aortic aneurysm growth: a systematic review of the 

literature. Curr Vasc Pharmacol 2011; 9: 471-8. 

[222] Golledge J, Norman PE. Current status of medical management for abdominal aortic aneurysm. 2011; 217: 57-63. 

[223] Bendeck MP, Conte M, Zhang M, Nili N, Strauss BH, Farwell SM. Doxycycline modulates smooth muscle cell 

growth, migration, and matrix remodeling after arterial injury. Am J Pathol 2002; 160: 1089-95. 

[224] Cowan KN, Jones PL, Rabinovitch M. Elastase and matrix metalloproteinase inhibitors induce regression, and 

tenascin-C antisense prevents progression, of vascular disease. J Clin Invest 2000; 105: 21-34. 

[225] Eriksson EE. Intravital microscopy on atherosclerosis in apolipoprotein e-deficient mice establishes microvessels 

as major entry pathways for leukocytes to advanced lesions. Circulation 2011; 124: 2129-38. 

[226] Forbes JM, Cooper ME. Mechanisms of diabetic complications. Physiol Rev 2013; 93: 137-88. 

[227] Chung AW, Hsiang YN, Matzke LA, McManus BM, van Breemen C, Okon EB. Reduced expression of vascular 

endothelial growth factor paralleled with the increased angiostatin expression resulting from the upregulated activities 

of matrix metalloproteinase-2 and -9 in human type 2 diabetic arterial vasculature. Circ Res 2006; 99: 140-8. 

[228] Hao F, Yu JD. High glucose enhance expression of matrix metalloproteinase-2 in smooth muscle cells. Acta 

Pharmacol Sin 2003; 24: 534-8. 

[229] Tarallo S, Beltramo E, Berrone E, Dentelli P, Porta M. Effects of high glucose and thiamine on the balance 

between matrix metalloproteinases and their tissue inhibitors in vascular cells. Acta Diabetol 2010; 47: 105-11. 

[230] Sun J, Xu Y, Dai Z, Sun Y. Intermittent high glucose enhances proliferation of vascular smooth muscle cells by 

upregulating osteopontin. Mol Cell Endocrinol 2009; 313: 64-9. 

[231] Uemura S, Matsushita H, Li W et al. Diabetes mellitus enhances vascular matrix metalloproteinase activity: role 

of oxidative stress. Circ Res 2001; 88: 1291-8. 

[232] Worley JR, Hughes DA, Dozio N, Gavrilovic J, Sampson MJ. Low density lipoprotein from patients with Type 2 

diabetes increases expression of monocyte matrix metalloproteinase and ADAM metalloproteinase genes. Cardiovasc 

Diabetol 2007; 6: 21. 

[233] Wilmer WA, Cosio FG. DNA binding of activator protein-1 is increased in human mesangial cells cultured in 

high glucose concentrations. Kidney Int 1998; 53: 1172-81. 

[234] Pascal MM, Knott RM, Forrester JV. Glucose mediated regulation of transforming growth factor beta in human 

retinal endothelial cells. Biochem Soc Trans 1996; 24: 228S. 

[235] Brownlee M. Biochemistry and molecular cell biology of diabetic complications. Nature 2001; 414: 813-20. 

[236] Jormsjö S, Ye S, Moritz J et al. Allele-specific regulation of matrix metalloproteinase-12 gene activity is 

associated with coronary artery luminal dimensions in diabetic patients with manifest coronary artery disease. Circ Res 

2000; 86: 998-1003. 

[237] Yan SF, Ramasamy R, Naka Y, Schmidt AM. Glycation, inflammation, and RAGE: a scaffold for the 

macrovascular complications of diabetes and beyond. Circ Res 2003; 93: 1159-69. 

[238] Cipollone F, Iezzi A, Fazia M et al. The receptor RAGE as a progression factor amplifying arachidonate-

dependent inflammatory and proteolytic response in human atherosclerotic plaques: role of glycemic control. 

Circulation 2003; 108: 1070-7. 



[239] Jacob SS, Shastry P, Sudhakaran PR. Influence of non-enzymatically glycated collagen on monocyte-macrophage 

differentiation. Atherosclerosis 2001; 159: 333-41. 

[240] Federici M, Menghini R, Mauriello A et al. Insulin-dependent activation of endothelial nitric oxide synthase is 

impaired by O-linked glycosylation modification of signaling proteins in human coronary endothelial cells. Circulation 

2002; 106: 466-72. 

[241] Dandona P, Aljada A, Mohanty P, Ghanim H, Bandyopadhyay A, Chaudhuri A. Insulin suppresses plasma 

concentration of vascular endothelial growth factor and matrix metalloproteinase-9. Diabetes Care 2003; 26: 3310-4. 

[242] Sundström J, Evans JC, Benjamin EJ et al. Relations of plasma matrix metalloproteinase-9 to clinical 

cardiovascular risk factors and echocardiographic left ventricular measures: the Framingham Heart Study. Circulation 

2004; 109: 2850-6. 

[243] Marx N, Froehlich J, Siam L et al. Antidiabetic PPAR gamma-activator rosiglitazone reduces MMP-9 serum 

levels in type 2 diabetic patients with coronary artery disease. Arterioscler Thromb Vasc Biol 2003; 23: 283-8. 

[244] Gonçalves FM, Jacob-Ferreira AL, Gomes VA et al. Increased circulating levels of matrix metalloproteinase 

(MMP)-8, MMP-9, and pro-inflammatory markers in patients with metabolic syndrome. Clin Chim Acta 2009; 403: 

173-7. 

[245] Signorelli SS, Malaponte G, Libra M. Plasma levels and zymographic activities of matrix metalloproteinases 2 

and 9 in type II diabetics with peripheral arterial disease. Vasc Med 2005; 10: 1-6. 

[246] Derosa G, D'Angelo A, Scalise F. Comparison between metalloproteinases-2 and -9 in healthy subjects, diabetics, 

and subjects with acute coronary syndrome. Heart Vessels 2007; 22: 361-70. 

[247] Zayani Y, Allal-Elasmi M, Jacob MP et al. Abnormal circulating levels of matrix metalloproteinases and their 

inhibitors in diabetes mellitus. Clin Lab 2012; 58: 779-85. 

[248] Baugh MD, Gavrilovic J, Davies IR, Hughes DA, Sampson MJ. Monocyte matrix metalloproteinase production in 

Type 2 diabetes and controls--a cross sectional study. Cardiovasc Diabetol 2003; 2: 3. 

[249] Portik-Dobos V, Anstadt MP, Hutchinson J, Bannan M, Ergul A. Evidence for a matrix metalloproteinase 

induction/activation system in arterial vasculature and decreased synthesis and activity in diabetes. Diabetes 2002; 51: 

3063-8. 

[250] Das A, McGuire PG, Eriqat C et al. Human diabetic neovascular membranes contain high levels of urokinase and 

metalloproteinase enzymes. Invest Ophthalmol Vis Sci 1999; 40: 809-13. 

[251] Salzmann J, Limb GA, Khaw PT et al. Matrix metalloproteinases and their natural inhibitors in fibrovascular 

membranes of proliferative diabetic retinopathy. Br J Ophthalmol 2000; 84: 1091-6. 

[252] Lauhio A, Sorsa T, Srinivas R et al. Urinary matrix metalloproteinase -8, -9, -14 and their regulators (TRY-1, 

TRY-2, TATI) in patients with diabetic nephropathy. Ann Med 2008; 40: 312-20. 

[253] Thrailkill KM, Clay Bunn R, Fowlkes JL. Matrix metalloproteinases: their potential role in the pathogenesis of 

diabetic nephropathy. Endocrine 2009; 35: 1-10. 

[254] Phillips AO, Steadman R, Morrisey K, Martin J, Eynstone L, Williams JD. Exposure of human renal proximal 

tubular cells to glucose leads to accumulation of type IV collagen and fibronectin by decreased degradation. Kidney Int 

1997; 52: 973-84. 

[255] McLennan SV, Martell SK, Yue DK. Effects of mesangium glycation on matrix metalloproteinase activities: 

possible role in diabetic nephropathy. Diabetes 2002; 51: 2612-8. 

[256] Zhuang S, Kinsey GR, Rasbach K, Schnellmann RG. Heparin-binding epidermal growth factor and Src family 

kinases in proliferation of renal epithelial cells. Am J Physiol Renal Physiol 2008; 294: F459-68. 



[257] Haffner SM, Greenberg AS, Weston WM, Chen H, Williams K, Freed MI. Effect of rosiglitazone treatment on 

nontraditional markers of cardiovascular disease in patients with type 2 diabetes mellitus. Circulation 2002; 106: 679-

84. 

[258] Goldstein BJ, Weissman PN, Wooddell MJ, Waterhouse BR, Cobitz AR. Reductions in biomarkers of 

cardiovascular risk in type 2 diabetes with rosiglitazone added to metformin compared with dose escalation of 

metformin: an EMPIRE trial sub-study. Curr Med Res Opin 2006; 22: 1715-23. 

[259] Lee CS, Kwon YW, Yang HM et al. New mechanism of rosiglitazone to reduce neointimal hyperplasia: 

activation of glycogen synthase kinase-3beta followed by inhibition of MMP-9. Arterioscler Thromb Vasc Biol 2009; 

29: 472-9. 

[260] Forst T, Karagiannis E, Lübben G et al. Pleiotrophic and anti-inflammatory effects of pioglitazone precede the 

metabolic activity in type 2 diabetic patients with coronary artery disease. Atherosclerosis 2008; 197: 311-7. 

[261] Game BA, Xu M, Lopes-Virella MF, Huang Y. Regulation of MMP-1 expression in vascular endothelial cells by 

insulin sensitizing thiazolidinediones. Atherosclerosis 2003; 169: 235-43. 

[262] Ruilope LM, Segura J. Losartan and other angiotensin II antagonists for nephropathy in type 2 diabetes mellitus: a 

review of the clinical trial evidence. Clin Ther 2003; 25: 3044-64. 

[263] Papadakis JA, Milionis HJ, Press M, Mikhailidis DP. Treating dyslipidaemia in non-insulin-dependent diabetes 

mellitus -- a special reference to statins. J Diabetes Complications 2001; 15: 211-26. 

[264] Athyros VG, Papageorgiou AA, Symeonidis AN. Early benefit from structured care with atorvastatin in patients 

with coronary heart disease and diabetes mellitus. Angiology 2003; 54: 679-90. 

[265] Collins R, Armitage J, Parish S, Sleigh P, Peto R. MRC/BHF Heart Protection Study of cholesterol-lowering with 

simvastatin in 5963 people with diabetes: a randomised placebo-controlled trial. Lancet 2003; 361: 2005-16. 

[266] Bellosta S, Ferri N, Arnaboldi L, Bernini F, Paoletti R, Corsini A. Pleiotropic effects of statins in atherosclerosis 

and diabetes. Diabetes Care 2000; 23: B72-8. 

[267] Luan Z, Chase AJ, Newby AC. Statins inhibit secretion of metalloproteinases-1, -2, -3, and -9 from vascular 

smooth muscle cells and macrophages. Arterioscler Thromb Vasc Biol 2003; 23: 769-75. 

[268] Song Y, Li C, Cai L. Fluvastatin prevents nephropathy likely through suppression of connective tissue growth 

factor-mediated extracellular matrix accumulation. Exp Mol Pathol 2004; 76: 66-75. 

[269] Furman C, Copin C, Kandoussi M. Rosuvastatin reduces MMP-7 secretion by human monocyte-derived 

macrophages: potential relevance to atherosclerotic plaque stability. Atherosclerosis 2004; 174: 93-8. 

[270] Balk EM, Lau J, Goudas LC. Effects of statins on nonlipid serum markers associated with cardiovascular disease: 

a systematic review. Ann Intern Med 2003; 139: 670-82. 

[271] Sager PT, Melani L, Lipka L. Effect of coadministration of ezetimibe and simvastatin on high-sensitivity C-

reactive protein. Am J Cardiol 2003; 92: 1414-8. 

[272] Ridker PM, Rifai N, Clearfield M. Measurement of C-reactive protein for the targeting of statin therapy in the 

primary prevention of acute coronary events. N Engl J Med 2001; 344: 1959-65. 

[273] Elisaf M, Mikhailidis DP. Statins and renal function. Angiology 2002; 53: 493-502. 

[274] Daskalopoulou SS, Athyros VG, Elisaf M, Mikhailidis DP. Uric acid levels and vascular disease. Curr Med Res 

Opin 2004; 20: 951-4. 

[275] Athyros VG, Elisaf M, Papageorgiou AA. Effect of statins versus untreated dyslipidemia on serum uric acid 

levels in patients with coronary heart disease: a subgroup analysis of the GREek Atorvastatin and Coronary-heart-

disease Evaluation (GREACE) study. Am J Kidney Dis 2004; 43: 589-99. 



[276] Francis GA, Annicotte JS, Auwerx J. PPAR agonists in the treatment of atherosclerosis. Curr Opin Pharmacol 

2003; 3: 186-91. 

[277] Marx N, Schönbeck U, Lazar MA, Libby P, Plutzky J. Peroxisome proliferator-activated receptor gamma 

activators inhibit gene expression and migration in human vascular smooth muscle cells. Circ Res 1998; 83: 1097-103. 

[278] Shu H, Wong B, Zhou G. Activation of PPARalpha or gamma reduces secretion of matrix metalloproteinase 9 but 

not interleukin 8 from human monocytic THP-1 cells. Biochem Biophys Res Commun 2000; 267: 345-9. 

[279] Rizos E, Bairaktari E, Ganotakis E, Tsimihodimos V, Mikhailidis DP, Elisaf M. Effect of ciprofibrate on 

lipoproteins, fibrinogen, renal function, and hepatic enzymes. J Cardiovasc Pharmacol Ther 2002; 7: 219-26. 

[280] Tsimihodimos V, Kostoula A, Kakafika A. Effect of fenofibrate on serum inflammatory markers in patients with 

high triglyceride values. J Cardiovasc Pharmacol Ther 2004; 9: 27-33. 

[281] Wierzbicki AS, Mikhailidis DP, Wray R. Statin-fibrate combination: therapy for hyperlipidemia: a review. Curr 

Med Res Opin 2003; 19: 155-68. 

[282] Kim YS, Joh TH. Microglia, major player in the brain inflammation: their roles in the pathogenesis of Parkinson's 

disease. Exp Mol Med 2006; 38: 333-47. 

[283] Block ML, Zecca L, Hong JS. Microglia-mediated neurotoxicity: uncovering the molecular mechanisms. Nat Rev 

Neurosci 2007; 8: 57-69. 

[284] Candelario-Jalil E, Yang Y, Rosenberg GA. Diverse roles of matrix metalloproteinases and tissue inhibitors of 

metalloproteinases in neuroinflammation and cerebral ischemia. Neuroscience 2009; 158: 983-94. 

[285] Rosenberg GA. Matrix metalloproteinases and their multiple roles in neurodegenerative diseases. Lancet Neurol 

2009; 8: 205-16. 

[286] Yang Y, Hill JW, Rosenberg GA. Multiple roles of metalloproteinases in neurological disorders. Prog Mol Biol 

Transl Sci 2011; 99: 241-63. 

[287] Yang Y, Estrada EY, Thompson JF, Liu W, Rosenberg GA. Matrix metalloproteinase-mediated disruption of 

tight junction proteins in cerebral vessels is reversed by synthetic matrix metalloproteinase inhibitor in focal ischemia in 

rat. J Cereb Blood Flow Metab 2007; 27: 697-709. 

[288] Lo EH, Dalkara T, Moskowitz MA. Mechanisms, challenges and opportunities in stroke. Nat Rev Neurosci 2003; 

4: 399-415. 

[289] Asahi M, Wang X, Mori T et al. Effects of matrix metalloproteinase-9 gene knock-out on the proteolysis of 

blood-brain barrier and white matter components after cerebral ischemia. J Neurosci 2001; 21: 7724-32. 

[290] Gasche Y, Copin JC, Sugawara T, Fujimura M, Chan PH. Matrix metalloproteinase inhibition prevents oxidative 

stress-associated blood-brain barrier disruption after transient focal cerebral ischemia. J Cereb Blood Flow Metab 2001; 

21: 1393-400. 

[291] Chang DI, Hosomi N, Lucero J et al. Activation systems for latent matrix metalloproteinase-2 are upregulated 

immediately after focal cerebral ischemia. J Cereb Blood Flow Metab 2003; 23: 1408-19. 

[292] Liu W, Hendren J, Qin XJ, Shen J, Liu KJ. Normobaric hyperoxia attenuates early blood-brain barrier disruption 

by inhibiting MMP-9-mediated occludin degradation in focal cerebral ischemia. J Neurochem 2009; 108: 811-20. 

[293] Gurney KJ, Estrada EY, Rosenberg GA. Blood-brain barrier disruption by stromelysin-1 facilitates neutrophil 

infiltration in neuroinflammation. Neurobiol Dis 2006; 23: 87-96. 

[294] Asahi M, Asahi K, Jung JC, del Zoppo GJ, Fini ME, Lo EH. Role for matrix metalloproteinase 9 after focal 

cerebral ischemia: effects of gene knockout and enzyme inhibition with BB-94. J Cereb Blood Flow Metab 2000; 20: 

1681-9. 



[295] Rosenberg GA, Estrada EY, Dencoff JE, Stetler-Stevenson WG. Tumor necrosis factor-alpha-induced gelatinase 

B causes delayed opening of the blood-brain barrier: an expanded therapeutic window. Brain Res 1995; 703: 151-5. 

[296] Candelario-Jalil E, Taheri S, Yang Y et al. Cyclooxygenase inhibition limits blood-brain barrier disruption 

following intracerebral injection of tumor necrosis factor-alpha in the rat. J Pharmacol Exp Ther 2007; 323: 488-98. 

[297] Kauppinen TM, Swanson RA. Poly(ADP-ribose) polymerase-1 promotes microglial activation, proliferation, and 

matrix metalloproteinase-9-mediated neuron death. J Immunol 2005; 174: 2288-96. 

[298] del Zoppo GJ, Milner R, Mabuchi T et al. Microglial activation and matrix protease generation during focal 

cerebral ischemia. Stroke 2007; 38: 646-51. 

[299] Wang L, Zhang ZG, Zhang RL et al. Matrix metalloproteinase 2 (MMP2) and MMP9 secreted by erythropoietin-

activated endothelial cells promote neural progenitor cell migration. J Neurosci 2006; 26: 5996-6003. 

[300] Lee SR, Kim HY, Rogowska J et al. Involvement of matrix metalloproteinase in neuroblast cell migration from 

the subventricular zone after stroke. J Neurosci 2006; 26: 3491-5. 

[301] Harkness KA, Adamson P, Sussman JD, Davies-Jones GA, Greenwood J, Woodroofe MN. Dexamethasone 

regulation of matrix metalloproteinase expression in CNS vascular endothelium. Brain 2000; 123: 698-709. 

[302] Gottschall PE, Yu X. Cytokines regulate gelatinase A and B (matrix metalloproteinase 2 and 9) activity in 

cultured rat astrocytes. J Neurochem 1995; 64: 1513-20. 

[303] Lee WJ, Shin CY, Yoo BK et al. Induction of matrix metalloproteinase-9 (MMP-9) in lipopolysaccharide-

stimulated primary astrocytes is mediated by extracellular signal-regulated protein kinase 1/2 (Erk1/2). Glia 2003; 41: 

15-24. 

[304] Hsieh HL, Yen MH, Jou MJ, Yang CM. Intracellular signalings underlying bradykinin-induced matrix 

metalloproteinase-9 expression in rat brain astrocyte-1. Cell Signal 2004; 16: 1163-76. 

[305] Wu CY, Hsieh HL, Jou MJ, Yang CM. Involvement of p42/p44 MAPK, p38 MAPK, JNK and nuclear factor-

kappa B in interleukin-1beta-induced matrix metalloproteinase-9 expression in rat brain astrocytes. J Neurochem 2004; 

90: 1477-88. 

[306] Woo CH, Lim JH, Kim JH. Lipopolysaccharide induces matrix metalloproteinase-9 expression via a 

mitochondrial reactive oxygen species-p38 kinase-activator protein-1 pathway in Raw 264.7 cells. J Immunol 2004; 

173: 6973-80. 

[307] Rangaswami H, Bulbule A, Kundu GC. JNK1 differentially regulates osteopontin-induced nuclear factor-

inducing kinase/MEKK1-dependent activating protein-1-mediated promatrix metalloproteinase-9 activation. J Biol 

Chem 2005; 280: 19381-92. 

[308] Han S, Ritzenthaler JD, Sitaraman SV, Roman J. Fibronectin increases matrix metalloproteinase 9 expression 

through activation of c-Fos via extracellular-regulated kinase and phosphatidylinositol 3-kinase pathways in human 

lung carcinoma cells. J Biol Chem 2006; 281: 29614-24. 

[309] Wang HH, Hsieh HL, Wu CY, Sun CC, Yang CM. Oxidized low-density lipoprotein induces matrix 

metalloproteinase-9 expression via a p42/p44 and JNK-dependent AP-1 pathway in brain astrocytes. Glia 2009; 57: 24-

38. 

[310] Keller JN, Hanni KB, Markesbery WR. Oxidized low-density lipoprotein induces neuronal death: implications for 

calcium, reactive oxygen species, and caspases. J Neurochem 1999; 72: 2601-9. 

[311] Kim JA, Tran ND, Berliner JA, Fisher MJ. Minimally oxidized low-density lipoprotein regulates hemostasis 

factors of brain capillary endothelial cells. J Neurol Sci 2004; 217: 135-41. 



[312] Lupo G, Nicotra A, Giurdanella G et al. Activation of phospholipase A(2) and MAP kinases by oxidized low-

density lipoproteins in immortalized GP8.39 endothelial cells. Biochim Biophys Acta 2005; 1735: 135-50. 

[313] Vos CM, Sjulson L, Nath A et al. Cytotoxicity by matrix metalloprotease-1 in organotypic spinal cord and 

dissociated neuronal cultures. Exp Neurol 2000; 163: 324-30. 

[314] Deb S, Gottschall PE. Increased production of matrix metalloproteinases in enriched astrocyte and mixed 

hippocampal cultures treated with beta-amyloid peptides. J Neurochem 1996; 66: 1641-7. 

[315] Rosenberg GA, Cunningham LA, Wallace J et al. Immunohistochemistry of matrix metalloproteinases in 

reperfusion injury to rat brain: activation of MMP-9 linked to stromelysin-1 and microglia in cell cultures. Brain Res 

2001; 893: 104-12. 

[316] Kim KS, Kim HY, Joe EH, Jou I. Matrix metalloproteinase-3 induction in rat brain astrocytes: focus on the role 

of two AP-1 elements. Biochem J 2008; 410: 605-11. 

[317] Crocker SJ, Milner R, Pham-Mitchell N, Campbell IL. Cell and agonist-specific regulation of genes for matrix 

metalloproteinases and their tissue inhibitors by primary glial cells. J Neurochem 2006; 98: 812-23. 

[318] Wells GM, Catlin G, Cossins JA et al. Quantitation of matrix metalloproteinases in cultured rat astrocytes using 

the polymerase chain reaction with a multi-competitor cDNA standard. Glia 1996; 18: 332-40. 

[319] Anthony DC, Ferguson B, Matyzak MK, Miller KM, Esiri MM, Perry VH. Differential matrix metalloproteinase 

expression in cases of multiple sclerosis and stroke. Neuropathol Appl Neurobiol 1997; 23: 406-15. 

[320] Rosenberg GA, Sullivan N, Esiri MM. White matter damage is associated with matrix metalloproteinases in 

vascular dementia. Stroke 2001; 32: 1162-8. 

[321] Kim YS, Kim SS, Cho JJ et al. Matrix metalloproteinase-3: a novel signaling proteinase from apoptotic neuronal 

cells that activates microglia. J Neurosci 2005; 25: 3701-11. 

[322] Kim YS, Choi DH, Block ML et al. A pivotal role of matrix metalloproteinase-3 activity in dopaminergic 

neuronal degeneration via microglial activation. FASEB J 2007; 21: 179-87. 

[323] Woo MS, Park JS, Choi IY, Kim WK, Kim HS. Inhibition of MMP-3 or -9 suppresses lipopolysaccharide-

induced expression of proinflammatory cytokines and iNOS in microglia. J Neurochem 2008; 106: 770-80. 

[324] Kim EM, Hwang O. Role of matrix metalloproteinase-3 in neurodegeneration. J Neurochem 2011; 116: 22-32. 

[325] Kim EM, Shin EJ, Choi JH et al. Matrix metalloproteinase-3 is increased and participates in neuronal apoptotic 

signaling downstream of caspase-12 during endoplasmic reticulum stress. J Biol Chem 2010; 285: 16444-52. 

[326] Tan HK, Heywood D, Ralph GS, Bienemann A, Baker AH, Uney JB. Tissue inhibitor of metalloproteinase 1 

inhibits excitotoxic cell death in neurons. Mol Cell Neurosci 2003; 22: 98-106. 

[327] Tejima E, Guo S, Murata Y et al. Neuroprotective effects of overexpressing tissue inhibitor of metalloproteinase 

TIMP-1. J Neurotrauma 2009; 26: 1935-41. 

[328] Rosenberg GA. Inflammation and white matter damage in vascular cognitive impairment. Stroke 2009; 40: S20-3. 

[329] Semenza GL. Vasculogenesis, angiogenesis, and arteriogenesis: mechanisms of blood vessel formation and 

remodeling. J Cell Biochem 2007; 102: 840-7. 

[330] Nakaji K, Ihara M, Takahashi C et al. Matrix metalloproteinase-2 plays a critical role in the pathogenesis of white 

matter lesions after chronic cerebral hypoperfusion in rodents. Stroke 2006; 37: 2816-23. 

[331] Chandler S, Coates R, Gearing A, Lury J, Wells G, Bone E. Matrix metalloproteinases degrade myelin basic 

protein. Neurosci Lett 1995; 201: 223-6. 

[332] Forsythe JA, Jiang BH, Iyer NV et al. Activation of vascular endothelial growth factor gene transcription by 

hypoxia-inducible factor 1. Mol Cell Biol 1996; 16: 4604-4613. 



[333] Huang RQ, Cheng HL, Zhao XD et al. Preliminary study on the effect of trauma-induced secondary cellular 

hypoxia in brain injury. Neurosci Lett 2010; 473: 22-7. 

[334] Ihara M, Tomimoto H, Kinoshita M et al. Chronic cerebral hypoperfusion induces MMP-2 but not MMP-9 

expression in the microglia and vascular endothelium of white matter. J Cereb Blood Flow Metab 2001; 21: 828-34. 

[335] Adair JC, Charlie J, Dencoff JE et al. Measurement of gelatinase B (MMP-9) in the cerebrospinal fluid of patients 

with vascular dementia and Alzheimer disease. Stroke 2004; 35: e159-62. 

[336] Fernandez-Patron C, Radomski MW, Davidge ST. Vascular matrix metalloproteinase-2 cleaves big endothelin-1 

yielding a novel vasoconstrictor. Circ Res 1999; 85: 906-11. 

[337] He S, Prasanna G, Yorio T. Endothelin-1-mediated signaling in the expression of matrix metalloproteinases and 

tissue inhibitors of metalloproteinases in astrocytes. Invest Ophthalmol Vis Sci 2007; 48: 3737-45. 

[338] Zhang WW, Badonic T, Höög A et al. Structural and vasoactive factors influencing intracerebral arterioles in 

cases of vascular dementia and other cerebrovascular disease: a review. Immunohistochemical studies on expression of 

collagens, basal lamina components and endothelin-1. Dementia 1994; 5: 153-62. 

[339] Fritsch T, Smyth KA, Wallendal MS, Hyde T, Leo G, Geldmacher DS. Parkinson disease: research update and 

clinical management. South Med J 2012; 105: 650-6. 

[340] Sung JY, Park SM, Lee CH et al. Proteolytic cleavage of extracellular secreted {alpha}-synuclein via matrix 

metalloproteinases. J Biol Chem 2005; 280: 25216-24. 

[341] McClain JA, Phillips LL, Fillmore HL. Increased MMP-3 and CTGF expression during lipopolysaccharide-

induced dopaminergic neurodegeneration. Neurosci Lett 2009; 460: 27-31. 

[342] Choi DH, Kim EM, Son HJ et al. A novel intracellular role of matrix metalloproteinase-3 during apoptosis of 

dopaminergic cells. J Neurochem 2008; 106: 405-15. 

[343] Levin J, Giese A, Boetzel K et al. Increased alpha-synuclein aggregation following limited cleavage by certain 

matrix metalloproteinases. Exp Neurol 2009; 215: 201-8. 

[344] Kortekaas R, Leenders KL, van Oostrom JC et al. Blood-brain barrier dysfunction in parkinsonian midbrain in 

vivo. Ann Neurol 2005; 57: 176-9. 

[345] Carvey PM, Zhao CH, Hendey B et al. 6-Hydroxydopamine-induced alterations in blood-brain barrier 

permeability. Eur J Neurosci 2005; 22: 1158-68. 

[346] Zhao C, Ling Z, Newman MB, Bhatia A, Carvey PM. TNF-alpha knockout and minocycline treatment attenuates 

blood-brain barrier leakage in MPTP-treated mice. Neurobiol Dis 2007; 26: 36-46. 

[347] Ji KA, Eu MY, Kang SH, Gwag BJ, Jou I, Joe EH. Differential neutrophil infiltration contributes to regional 

differences in brain inflammation in the substantia nigra pars compacta and cortex. Glia 2008; 56: 1039-47. 

[348] Selkoe DJ. Alzheimer's disease: genes, proteins, and therapy. Physiol Rev 2001; 81: 741-66. 

[349] Honjo K, Black SE, Verhoeff NP. Alzheimer’s disease, cerebrovascular disease, and the β-amyloid cascade. Can 

J Neurol Sci 2012; 39: 712-28. 

[350] Cavallucci V, D'Amelio M, Cecconi F. Aβ toxicity in Alzheimer's disease. Mol Neurobio 2012; 45: 366-78. 

[351] LaFerla FM, Green KN, Oddo S. Intracellular amyloid-beta in Alzheimer's disease. Nat Rev Neurosci 2007; 8: 

499-509. 

[352] Ahmad M, Takino T, Miyamori H, Yoshizaki T, Furukawa M, Sato H. Cleavage of amyloid-beta precursor 

protein (APP) by membrane-type matrix metalloproteinases. J Biochem 2006; 139: 517-26. 

[353] Allinson TM, Parkin ET, Turner AJ, Hooper NM. ADAMs family members as amyloid precursor protein alpha-

secretases. J Neurosci Res 2003; 74: 342-52. 



[354] Endres K, Fahrenholz F. Upregulation of the alpha-secretase ADAM10--risk or reason for hope? FEBS J 2010; 

277: 1585-96. 

[355] Saftig P, Reiss K. The "A Disintegrin And Metalloproteases" ADAM10 and ADAM17: novel drug targets with 

therapeutic potential? Eur J Cell Biol 2011; 90: 527-35. 

[356] Weskamp G, Cai H, Brodie TA et al. Mice lacking the metalloprotease-disintegrin MDC9 (ADAM9) have no 

evident major abnormalities during development or adult life. Mol Cell Biol 2002; 22: 1537-44. 

[357] Cong L, Jia J. Promoter polymorphisms which regulate ADAM9 transcription are protective against sporadic 

Alzheimer's disease. Neurobiol Aging 2011; 32: 54-62. 

[358] Cissé MA, Sunyach C, Lefranc-Jullien S, Postina R, Vincent B, Checler F. The disintegrin ADAM9 indirectly 

contributes to the physiological processing of cellular prion by modulating ADAM10 activity. J Biol Chem 2005; 280: 

40624-31. 

[359] Tousseyn T, Thathiah A, Jorissen E et al. ADAM10, the rate-limiting protease of regulated intramembrane 

proteolysis of Notch and other proteins, is processed by ADAMS-9, ADAMS-15, and the gamma-secretase. J Biol 

Chem 2009; 284: 11738-47. 

[360] Parkin E, Harris B. A disintegrin and metalloproteinase (ADAM)-mediated ectodomain shedding of ADAM10. J 

Neurochem 2009; 108: 1464-79. 

[361] Postina R, Schroeder A, Dewachter I et al. A disintegrin-metalloproteinase prevents amyloid plaque formation 

and hippocampal defects in an Alzheimer disease mouse model. J Clin Invest 2004; 113: 1456-64. 

[362] Schmitt U, Hiemke C, Fahrenholz F, Schroeder A. Over-expression of two different forms of the alpha-secretase 

ADAM10 affects learning and memory in mice. Behav Brain Res 2006; 175: 278-84. 

[363] Bell KF, Zheng L, Fahrenholz F, Cuello AC. ADAM-10 over-expression increases cortical synaptogenesis. 

Neurobiol Aging 2008; 29: 554-65. 

[364] Schroeder A, Fahrenholz F, Schmitt U. Effect of a dominant-negative form of ADAM10 in a mouse model of 

Alzheimer's disease. J Alzheimers Dis 2009; 16: 309-14. 

[365] Chen YY, Hehr CL, Atkinson-Leadbeater K, Hocking JC, McFarlane S. Targeting of retinal axons requires the 

metalloproteinase ADAM10. J Neurosci 2007; 27: 8448-56. 

[366] Jangouk P, Dehmel T, Meyer Zu Hörste G, Ludwig A, Lehmann HC, Kieseier BC. Involvement of ADAM10 in 

axonal outgrowth and myelination of the peripheral nerve. Glia 2009; 57: 1765-74. 

[367] Hattori M, Osterfield M, Flanagan JG. Regulated cleavage of a contact-mediated axon repellent. Science 2000; 

289: 1360-5. 

[368] Janes PW, Saha N, Barton WA et al. Adam meets Eph: an ADAM substrate recognition module acts as a 

molecular switch for ephrin cleavage in trans. Cell 2005; 123: 291-304. 

[369] Buxbaum JD, Liu KN, Luo Y et al. Evidence that tumor necrosis factor alpha converting enzyme is involved in 

regulated alpha-secretase cleavage of the Alzheimer amyloid protein precursor. J Biol Chem 1998; 273: 27765-7. 

[370] Merlos-Suárez A, Fernández-Larrea J, Reddy P, Baselga J, Arribas J. Pro-tumor necrosis factor-alpha processing 

activity is tightly controlled by a component that does not affect notch processing. J Biol Chem 1998; 273: 24955-62. 

[371] Slack BE, Ma LK, Seah CC. Constitutive shedding of the amyloid precursor protein ectodomain is up-regulated 

by tumour necrosis factor-alpha converting enzyme. Biochem J 2001; 357: 787-94. 

[372] Endres K, Anders A, Kojro E, Gilbert S, Fahrenholz F, Postina R. Tumor necrosis factor-alpha converting 

enzyme is processed by proprotein-convertases to its mature form which is degraded upon phorbol ester stimulation. 

Eur J Biochem 2003; 270: 2386-93. 



[373] Skovronsky DM, Fath S, Lee VM, Milla ME. Neuronal localization of the TNFalpha converting enzyme (TACE) 

in brain tissue and its correlation to amyloid plaques. J Neurobiol 2001; 49: 40-6. 

[374] Gottschall PE, Deb S. Regulation of matrix metalloproteinase expressions in astrocytes, microglia and neurons. 

Neuroimmunomodulation 1996; 3: 69-75. 

[375] Oh LY, Larsen PH, Krekoski CA et al. Matrix metalloproteinase-9/gelatinase B is required for process outgrowth 

by oligodendrocytes. J Neurosci 1999; 19: 8464-75. 

[376] Leake A, Morris CM, Whateley J. Brain matrix metalloproteinase 1 levels are elevated in Alzheimer's disease. 

Neurosci Lett 2000; 291: 201-3. 

[377] Yin KJ, Cirrito JR, Yan P et al. Matrix metalloproteinases expressed by astrocytes mediate extracellular amyloid-

beta peptide catabolism. J Neurosci 2006; 26: 10939-48. 

[378] Walsh DM, Minogue AM, Sala Frigerio C, Fadeeva JV, Wasco W, Selkoe DJ. The APP family of proteins: 

similarities and differences. Biochem Soc Trans 2007; 35: 416-20. 

[379] Deb S, Gottschall PE. Increased production of matrix metalloproteinases in enriched astrocyte and mixed 

hippocampal cultures treated with beta-amyloid peptides. J Neurochem 1996; 66: 1641-7. 

[380] Yan P, Hu X, Song H et al. Matrix metalloproteinase-9 degrades amyloid-beta fibrils in vitro and compact 

plaques in situ. J Biol Chem 2006; 281: 24566-74. 

[381] Ito S, Kimura K, Haneda M, Ishida Y, Sawada M, Isobe K. Induction of matrix metalloproteinases (MMPM3, 

MP12 and MMP13) expression in the microglia by amyloid-beta stimulation via the PI3K/Akt pathway. Exp Gerontol 

2007; 42: 532-7. 

[382] Talamagas AA, Efthimiopoulos S, Tsilibary EC, Figueiredo-Pereira ME, Tzinia AK. Abeta(1-40)-induced 

secretion of matrix metalloproteinase-9 results in sAPPalpha release by association with cell surface APP. Neurobiol 

Dis 2007; 28: 304-15. 

[383] White AR, Du T, Laughton KM et al. Degradation of the Alzheimer disease amyloid beta-peptide by metal-

dependent up-regulation of metalloprotease activity. J Biol Chem 2006; 281: 17670-80. 

[384] Caragounis A, Du T, Filiz G et al. Differential modulation of Alzheimer's disease amyloid beta-peptide 

accumulation by diverse classes of metal ligands. Biochem J 2007; 407: 435-50. 

[385] Filiz G, Price KA, Caragounis A, Du T, Crouch PJ, White AR. The role of metals in modulating metalloprotease 

activity in the AD brain. Eur Biophys J 2008; 37: 315-21. 

[386] Selkoe DJ. Biochemistry and molecular biology of amyloid beta-protein and the mechanism of Alzheimer's 

disease. Handb Clin Neurol 2008; 89: 245-60. 

[387] Yoshiyama Y, Asahina M, Hattori T. Selective distribution of matrix metalloproteinase-3 (MMP-3) in 

Alzheimer's disease brain. Acta Neuropathol 2000; 99: 91-5. 

[388] Horstmann S, Budig L, Gardner H et al. Matrix metalloproteinases in peripheral blood and cerebrospinal fluid in 

patients with Alzheimer's disease. Int Psychogeriatr 2010; 22: 966-72. 

[389] Stomrud E, Björkqvist M, Janciauskiene S, Minthon L, Hansson O. Alterations of matrix metalloproteinases in 

the healthy elderly with increased risk of prodromal Alzheimer's disease. Alzheimers Res Ther 2010; 2: 20. 

[390] Backstrom JR, Lim GP, Cullen MJ, Tökés ZA. Matrix metalloproteinase-9 (MMP-9) is synthesized in neurons of 

the human hippocampus and is capable of degrading the amyloid-beta peptide (1-40). J Neurosci 1996; 16: 7910-9. 

[391] Lorenzl S, Albers DS, Relkin N et al. Increased plasma levels of matrix metalloproteinase-9 in patients with 

Alzheimer's disease. Neurochem Int 2003; 43: 191-6. 



[392] Brown PD. Synthetic inhibitors of matrix metalloproteinases. In: Parks WC, Mecham RP. Eds. Matrix 

metalloproteinases. San Diego, CA: Academic Press 1998; pp. 243-262. 

[393] Rosenberg GA, Kornfeld M, Estrada E, Kelley RO, Liotta LA, Stetler-Stevenson WG. TIMP-2 reduces 

proteolytic opening of blood-brain barrier by type IV collagenase. Brain Res 1992; 576: 203-7. 

[394] Gijbels K, Galardy RE, Steinman L. Reversal of experimental autoimmune encephalomyelitis with a hydroxamate 

inhibitor of matrix metalloproteases. J Clin Invest 1994; 94: 2177-82. 

[395] Hewson AK, Smith T, Leonard JP, Cuzner ML. Suppression of experimental allergic encephalomyelitis in the 

Lewis rat by the matrix metalloproteinase inhibitor Ro31-9790. Inflamm Res 1995; 44: 345-9. 

[396] Clements JM, Cossins JA, Wells GM et al. Matrix metalloproteinase expression during experimental autoimmune 

encephalomyelitis and effects of a combined matrix metalloproteinase and tumour necrosis factor-alpha inhibitor. J 

Neuroimmunol 1997; 74: 85-94. 

[397] Mun-Bryce S, Rosenberg GA. Gelatinase B modulates selective opening of the blood-brain barrier during 

inflammation. Am J Physiol 1998; 274: R1203-11. 

[398] Sood RR, Taheri S, Candelario-Jalil E, Estrada EY, Rosenberg GA. Early beneficial effect of matrix 

metalloproteinase inhibition on blood-brain barrier permeability as measured by magnetic resonance imaging countered 

by impaired long-term recovery after stroke in rat brain. J Cereb Blood Flow Metab 2008; 28: 431-8. 

[399] Leib SL, Clements JM, Lindberg RL et al. Inhibition of matrix metalloproteinases and tumour necrosis factor 

alpha converting enzyme as adjuvant therapy in pneumococcal meningitis. Brain 2001; 124: 1734-42. 

[400] Gu Z, Cui J, Brown S et al. A highly specific inhibitor of matrix metalloproteinase-9 rescues laminin from 

proteolysis and neurons from apoptosis in transient focal cerebral ischemia. J Neurosci 2005; 25: 6401-8. 

[401] Lapchak PA, Chapman DF, Zivin JA. Metalloproteinase inhibition reduces thrombolytic (tissue plasminogen 

activator)-induced hemorrhage after thromboembolic stroke. Stroke 2000; 31: 3034-40. 

[402] Pfefferkorn T, Rosenberg GA. Closure of the blood-brain barrier by matrix metalloproteinase inhibition reduces 

rtPA-mediated mortality in cerebral ischemia with delayed reperfusion. Stroke 2003; 34: 2025-30. 

[403] Fisher JF, Mobashery S. Recent advances in MMP inhibitor design. Cancer Metastasis Rev 2006; 25: 115-36. 

[404] Puerta DT, Mongan J, Tran BL, McCammon JA, Cohen SM. Potent, selective pyrone-based inhibitors of 

stromelysin-1. J Am Chem Soc 2005; 127: 14148-9. 

[405] Corbitt CA, Lin J, Lindsey ML. Mechanisms to inhibit matrix metalloproteinase activity: where are we in the 

development of clinically relevant inhibitors? Recent Pat Anticancer Drug Discov 2007; 2: 135-42. 

[406] Coussens LM, Fingleton B, Matrisian LM. Matrix metalloproteinase inhibitors and cancer: trials and tribulations. 

Science 2002; 295: 2387-92. 

[407] Cho Y, Son HJ, Kim EM et al. Doxycycline is neuroprotective against nigral dopaminergic degeneration by a 

dual mechanism involving MMP-3. Neurotox Res 2009; 16: 361-71. 

[408] Du Y, Ma Z, Lin S et al. Minocycline prevents nigrostriatal dopaminergic neurodegeneration in the MPTP model 

of Parkinson's disease. Proc Natl Acad Sci USA 2001; 98: 14669-74. 

[409] Tikka T, Fiebich BL, Goldsteins G, Keinanen R, Koistinaho J. Minocycline, a tetracycline derivative, is 

neuroprotective against excitotoxicity by inhibiting activation and proliferation of microglia. J Neurosci 2001; 21: 2580-

8. 

[410] Wu DC, Jackson-Lewis V, Vila M et al. Blockade of microglial activation is neuroprotective in the 1-methyl-4-

phenyl-1,2,3,6-tetrahydropyridine mouse model of Parkinson disease. J Neurosci 2002; 22: 1763-71. 



[411] Matsukawa N, Yasuhara T, Hara K et al. Therapeutic targets and limits of minocycline neuroprotection in 

experimental ischemic stroke. BMC Neurosci 2009; 10: 126. 

[412] Moon M, Kim HG, Hwang L et al. Neuroprotective effect of ghrelin in the 1-methyl-4-phenyl-1,2,3,6-

tetrahydropyridine mouse model of Parkinson's disease by blocking microglial activation. Neurotox Res 2009; 15: 332-

47. 

[413] Lee J, Lim E, Kim Y, Li E, Park S. Ghrelin attenuates kainic acid-induced neuronal cell death in the mouse 

hippocampus. J Endocrinol 2010; 205: 263-70. 

[414] Lee EJ, Kim SY, Hyun JW, Min SW, Kim DH, Kim HS. Glycitein inhibits glioma cell invasion through down-

regulation of MMP-3 and MMP-9 gene expression. Chem Biol Interact 2010; 185: 18-24. 

[415] Kim S, Moon M, Park S. Exendin-4 protects dopaminergic neurons by inhibition of microglial activation and 

matrix metalloproteinase-3 expression in an animal model of Parkinson's disease. J Endocrinol 2009; 202: 431-9. 

[416] Kojro E, Gimpl G, Lammich S, Marz W, Fahrenholz F. Low cholesterol stimulates the nonamyloidogenic 

pathway by its effect on the alpha -secretase ADAM 10. Proc Natl Acad Sci USA 2001; 98: 5815-20. 

[417] Matthews V, Schuster B, Schütze S et al. Cellular cholesterol depletion triggers shedding of the human 

interleukin-6 receptor by ADAM10 and ADAM17 (TACE). J Biol Chem 2003; 278: 38829-39. 

[418] Felson DT. Developments in the clinical understanding of osteoarthritis. Arthritis Res Ther 2009; 11: 203. 

[419] Goldring MB, Goldring SR. Articular cartilage and subchondral bone in the pathogenesis of osteoarthritis. Ann 

NY Acad Sci 2010; 1192: 230-7. 

[420] Blom AB, van Lent PL, Holthuysen AE et al. Synovial lining macrophages mediate osteophyte formation during 

experimental osteoarthritis. Osteoarthritis Cartilage 2004; 12: 627-35. 

[421] Goldring MB, Goldring SR. Osteoarthritis. J Cell Physiol 2007; 213: 626-34. 

[422] Heinegård D, Saxne T. The role of the cartilage matrix in osteoarthritis. Nat Rev Rheumatol 2011; 7: 50-6. 

[423] Nagase H, Kashiwagi M. Aggrecanases and cartilage matrix degradation. Arthritis Res Ther 2003; 5: 94-103. 

[424] Billinghurst RC, Dahlberg L, Ionescu M et al. Enhanced cleavage of type II collagen by collagenases in 

osteoarthritic articular cartilage. J Clin Invest 1997; 99: 1534-45. 

[425] Lohmander LS, Atley LM, Pietka TA, Eyre DR. The release of crosslinked peptides from type II collagen into 

human synovial fluid is increased soon after joint injury and in osteoarthritis. Arthritis Rheum 2003; 48: 3130-9. 

[426] Lee JH, Fitzgerald JB, Dimicco MA, Grodzinsky AJ. Mechanical injury of cartilage explants causes specific 

time-dependent changes in chondrocyte gene expression. Arthritis Rheum 2005; 52: 2386-95. 

[427] Guo D, Tan W, Wang F et al. Proteomic analysis of human articular cartilage: identification of differentially 

expressed proteins in knee osteoarthritis. Joint Bone Spine 2008; 75: 439-44. 

[428] Kuno K, Okada Y, Kawashima H et al. ADAMTS-1 cleaves a cartilage proteoglycan, aggrecan. FEBS Lett 2000; 

478: 241-5. 

[429] Somerville RP, Longpre JM, Jungers KA et al. Characterization of ADAMTS-9 and ADAMTS-20 as a distinct 

ADAMTS subfamily related to Caenorhabditis elegans GON-1. J Biol Chem 2003; 278: 9503-13. 

[430] Collins-Racie LA, Flannery CR, Zeng W et al. ADAMTS-8 exhibits aggrecanase activity and is expressed in 

human articular cartilage. Matrix Biol 2004; 23: 219-30. 

[431] Zeng W, Corcoran C, Collins-Racie LA, Lavallie ER, Morris EA, Flannery CR. Glycosaminoglycan-binding 

properties and aggrecanase activities of truncated ADAMTSs: comparative analyses with ADAMTS-5, -9, -16 and -18. 

Biochim Biophys Acta 2006; 1760: 517-24. 



[432] Gendron C, Kashiwagi M, Lim NH et al. Proteolytic activities of human ADAMTS-5: comparative studies with 

ADAMTS-4. J Biol Chem 2007; 282: 18294-306. 

[433] Sandy JD, Verscharen C. Analysis of aggrecan in human knee cartilage and synovial fluid indicates that 

aggrecanase (ADAMTS) activity is responsible for the catabolic turnover and loss of whole aggrecan whereas other 

protease activity is required for C-terminal processing in vivo. Biochem J 2001; 358: 615-26. 

[434] Sandy JD. A contentious issue finds some clarity: on the independent and complementary roles of aggrecanase 

activity and MMP activity in human joint aggrecanolysis. Osteoarthritis Cartilage 2006; 14: 95-100. 

[435] Little CB, Meeker CT, Golub SB et al. Blocking aggrecanase cleavage in the aggrecan interglobular domain 

abrogates cartilage erosion and promotes cartilage repair. J Clin Invest 2007; 117: 1627-36. 

[436] Bau B, Gebhard PM, Haag J, Knorr T, Bartnik E, Aigner T. Relative messenger RNA expression profiling of 

collagenases and aggrecanases in human articular chondrocytes in vivo and in vitro. Arthritis Rheum 2002; 46: 2648-

57. 

[437] Bondeson J, Wainwright SD, Lauder S, Amos N, Hughes CE. The role of synovial macrophages and 

macrophage-produced cytokines in driving aggrecanases, matrix metalloproteinases, and other destructive and 

inflammatory responses in osteoarthritis. Arthritis Res Ther 2006; 8: R187. 

[438] Glasson SS, Askew R, Sheppard B et al. Deletion of active ADAMTS5 prevents cartilage degradation in a murine 

model of osteoarthritis. Nature 2005; 434: 644-8. 

[439] Stanton H, Rogerson FM, East CJ et al. ADAMTS5 is the major aggrecanase in mouse cartilage in vivo and in 

vitro. Nature 2005; 434: 648-52. 

[440] Glasson SS, Askew R, Sheppard B et al. Characterization of and osteoarthritis susceptibility in ADAMTS-4-

knockout mice. Arthritis Rheum 2004; 50: 2547-58. 

[441] Song RH, Tortorella MD, Malfait AM et al. Aggrecan degradation in human articular cartilage explants is 

mediated by both ADAMTS-4 and ADAMTS-5. Arthritis Rheum 2007; 56: 575-85. 

[442] Naito S, Shiomi T, Okada A et al. Expression of ADAMTS4 (aggrecanase-1) in human osteoarthritic cartilage. 

Pathol Int 2007; 57: 703-11. 

[443] Pratta MA, Scherle PA, Yang G, Liu RQ, Newton RC. Induction of aggrecanase 1 (ADAM-TS4) by interleukin-1 

occurs through activation of constitutively produced protein. Arthritis Rheum 2003; 48: 119-33. 

[444] Rogerson FM, Stanton H, East CJ et al. Evidence of a novel aggrecan-degrading activity in cartilage: Studies of 

mice deficient in both ADAMTS-4 and ADAMTS-5. Arthritis Rheum 2008; 58: 1664-73. 

[445] Mitchell PG, Magna HA, Reeves LM et al. Cloning, expression, and type II collagenolytic activity of matrix 

metalloproteinase-13 from human osteoarthritic cartilage. J Clin Invest 1996; 97: 761-8. 

[446] Kevorkian L, Young DA, Darrah C et al. Expression profiling of metalloproteinases and their inhibitors in 

cartilage. Arthritis Rheum 2004; 50: 131-41. 

[447] Little CB, Barai A, Burkhardt D et al. Matrix metalloproteinase 13-deficient mice are resistant to osteoarthritic 

cartilage erosion but not chondrocyte hypertrophy or osteophyte development. Arthritis Rheum 2009; 60: 3723-33. 

[448] Inada M, Wang Y, Byrne MH et al. Critical roles for collagenase-3 (Mmp13) in development of growth plate 

cartilage and in endochondral ossification. Proc Natl Acad Sci USA 2004; 101: 17192-7. 

[449] Stickens D, Behonick DJ, Ortega N et al. Altered endochondral bone development in matrix metalloproteinase 

13-deficient mice. Development 2004; 131: 5883-95. 

[450] Zack MD, Malfait AM, Skepner AP et al. ADAM-8 isolated from human osteoarthritic chondrocytes cleaves 

fibronectin at Ala(271). Arthritis Rheum 2009; 60: 2704-13. 



[451] van Meurs J, van Lent P, Stoop R et al. Cleavage of aggrecan at the Asn341-Phe342 site coincides with the 

initiation of collagen damage in murine antigen-induced arthritis: a pivotal role for stromelysin 1 in matrix 

metalloproteinase activity. Arthritis Rheum 1999; 42: 2074-84. 

[452] Kubota E, Imamura H, Kubota T, Shibata T, Murakami K. Interleukin 1 beta and stromelysin (MMP3) activity of 

synovial fluid as possible markers of osteoarthritis in the temporomandibular joint. J Oral Maxillofac Surg 1997; 55: 

20-7. 

[453] Garner BC, Stoker AM, Kuroki K, Evans R, Cook CR, Cook JL. Using animal models in osteoarthritis biomarker 

research. J Knee Surg 2011; 24: 251-64. 

[454] Tetlow LC, Adlam DJ, Woolley DE. Matrix metalloproteinase and proinflammatory cytokine production by 

chondrocytes of human osteoarthritic cartilage: associations with degenerative changes. Arthritis Rheum 2001; 44: 585-

94. 

[455] Sofat N. Analysing the role of endogenous matrix molecules in the development of osteoarthritis. Int J Exp Pathol 

2009; 90: 463-79. 

[456] Klatt AR, Paul-Klausch B, Klinger G et al. A critical role for collagen II in cartilage matrix degradation: collagen 

II induces pro-inflammatory cytokines and MMPs in primary human chondrocytes. J Orthop Res 2009; 27: 65-70. 

[457] Fichter M, Körner U, Schömburg J, Jennings L, Cole AA, Mollenhauer J. Collagen degradation products 

modulate matrix metalloproteinase expression in cultured articular chondrocytes. J Orthop Res 2006; 24: 63-70. 

[458] Jennings L, Wu L, King KB, Hämmerle H, Cs-Szabo G, Mollenhauer J. The effects of collagen fragments on the 

extracellular matrix metabolism of bovine and human chondrocytes. Connect Tissue Res 2001; 42: 71-86. 

[459] Pelletier JP, Martel-Pelletier J, Abramson SB. Osteoarthritis, an inflammatory disease: potential implication for 

the selection of new therapeutic targets. Arthritis Rheum 2001; 44: 1237-47. 

[460] Benito MJ, Veale DJ, FitzGerald O, van den Berg WB, Bresnihan B. Synovial tissue inflammation in early and 

late osteoarthritis. Ann Rheum Dis 2005; 64: 1263-7. 

[461] Goldring MB, Otero M, Tsuchimochi K, Ijiri K, Li Y. Defining the roles of inflammatory and anabolic cytokines 

in cartilage metabolism. Ann Rheum Dis 2008; 67: 75-82. 

[462] Heinegård D, Saxne T. The role of the cartilage matrix in osteoarthritis. Nat Rev Rheumatol 2011; 7: 50-6. 

[463] Kapoor M, Martel-Pelletier J, Lajeunesse D, Pelletier JP, Fahmi H. Role of proinflammatory cytokines in the 

pathophysiology of osteoarthritis. Nat Rev Rheumatol 2011; 7: 33-42. 

[464] Haynes MK, Hume EL, Smith JB. Phenotypic characterization of inflammatory cells from osteoarthritic 

synovium and synovial fluids. Clin Immunol 2002; 105: 315-25. 

[465] Sawaji Y, Hynes J, Vincent T, Saklatvala J. Fibroblast growth factor 2 inhibits induction of aggrecanase activity 

in human articular cartilage. Arthritis Rheum 2008; 58: 3498-509. 

[466] Tortorella MD, Malfait AM, Deccico C, Arner E. The role of ADAM-TS4 (aggrecanase-1) and ADAM-TS5 

(aggrecanase-2) in a model of cartilage degradation. Osteoarthritis Cartilage 2001; 9: 539-52. 

[467] Yamanishi Y, Boyle DL, Clark M et al. Expression and regulation of aggrecanase in arthritis: the role of TGF-

beta. J Immunol 2002; 168: 1405-12. 

[468] Koshy PJ, Lundy CJ, Rowan AD et al. The modulation of matrix metalloproteinase and ADAM gene expression 

in human chondrocytes by interleukin-1 and oncostatin M: a time-course study using real-time quantitative reverse 

transcription-polymerase chain reaction. Arthritis Rheum 2002; 46: 961-7. 

[469] Zwerina J, Redlich K, Polzer K et al. TNF-induced structural joint damage is mediated by IL-1. Proc Natl Acad 

Sci USA 2007; 104: 11742-7. 



[470] Séguin CA, Bojarski M, Pilliar RM, Roughley PJ, Kandel RA. Differential regulation of matrix degrading 

enzymes in a TNFalpha-induced model of nucleus pulposus tissue degeneration. Matrix Biol 2006; 25: 409-18. 

[471] Kobayashi M, Squires GR, Mousa A et al. Role of interleukin-1 and tumor necrosis factor alpha in matrix 

degradation of human osteoarthritic cartilage. Arthritis Rheum 2005; 52: 128-35. 

[472] Page Thomas DP, King B, Stephens T, Dingle JT. In vivo studies of cartilage regeneration after damage induced 

by catabolin/interleukin-1. Ann Rheum Dis 1991; 50: 75-80. 

[473] Barksby HE, Hui W, Wappler I et al. Interleukin-1 in combination with oncostatin M up-regulates multiple genes 

in chondrocytes: implications for cartilage destruction and repair. Arthritis Rheum 2006; 54: 540-50. 

[474] Vuolteenaho K, Moilanen T, Jalonen U et al. TGFbeta inhibits IL-1 -induced iNOS expression and NO 

production in immortalized chondrocytes. Inflamm Res 2005; 54: 420-7. 

[475] Glasson SS. In vivo osteoarthritis target validation utilizing genetically-modified mice. Curr Drug Targets 2007; 

8: 367-76. 

[476] Van den Berg WB. Lessons from animal models of arthritis. Curr Rheumatol Rep 2002; 4: 232-9. 

[477] van der Kraan PM, Blaney Davidson EN, van den Berg WB. A role for age-related changes in TGFbeta signaling 

in aberrant chondrocyte differentiation and osteoarthritis. Arthritis Res Ther 2010; 12: 201. 

[478] Blaney Davidson EN, Remst DF, Vitters EL et al. Increase in ALK1/ALK5 ratio as a cause for elevated MMP-13 

expression in osteoarthritis in humans and mice. J Immunol 2009; 182: 7937-45. 

[479] Hoff P, Buttgereit F, Burmester GR et al. Osteoarthritis synovial fluid activates pro-inflammatory cytokines in 

primary human chondrocytes. Int Orthop 2013; 37: 145-51. 

[480] Pulai JI, Chen H, Im HJ et al. NF-kappa B mediates the stimulation of cytokine and chemokine expression by 

human articular chondrocytes in response to fibronectin fragments. J Immunol 2005; 174: 5781-8. 

[481] Appleton CT, Pitelka V, Henry J, Beier F. Global analyses of gene expression in early experimental osteoarthritis. 

Arthritis Rheum 2007; 56: 1854-68. 

[482] Brühl H, Mack M, Niedermeier M, Lochbaum D, Schölmerich J, Straub RH. Functional expression of the 

chemokine receptor CCR7 on fibroblast-like synoviocytes. Rheumatology (Oxford) 2008; 47: 1771-4. 

[483] Brew K, Nagase H. The tissue inhibitors of metalloproteinases (TIMPs): an ancient family with structural and 

functional diversity. Biochim Biophys Acta 2010; 1803: 55-71. 

[484] Hashimoto G, Aoki T, Nakamura H, Tanzawa K, Okada Y. Inhibition of ADAMTS4 (aggrecanase-1) by tissue 

inhibitors of metalloproteinases (TIMP-1, 2, 3 and 4). FEBS Lett 2001; 494: 192-5. 

[485] Kashiwagi M, Tortorella M, Nagase H, Brew K. TIMP-3 is a potent inhibitor of aggrecanase 1 (ADAM-TS4) and 

aggrecanase 2 (ADAM-TS5). J Biol Chem 2010; 276: 12501-4.  

[486] Wayne GJ, Deng SJ, Amour A et al. TIMP-3 inhibition of ADAMTS-4 (Aggrecanase-1) is modulated by 

interactions between aggrecan and the C-terminal domain of ADAMTS-4. J Biol Chem 2007; 282: 20991-8. 

[487] Gendron C, Kashiwagi M, Hughes C, Caterson B, Nagase H. TIMP-3 inhibits aggrecanase-mediated 

glycosaminoglycan release from cartilage explants stimulated by catabolic factors. FEBS Lett 2003; 555: 431-6. 

[488] Sahebjam S, Khokha R, Mort JS. Increased collagen and aggrecan degradation with age in the joints of Timp3(-/-) 

mice. Arthritis Rheum 2007; 56: 905-9. 

[489] Mahmoodi M, Sahebjam S, Smookler D, Khokha R, Mort JS. Lack of tissue inhibitor of metalloproteinases-3 

results in an enhanced inflammatory response in antigen-induced arthritis. Am J Pathol 2005; 166: 1733-40. 

[490] Morris KJ, Cs-Szabo G, Cole AA. Characterization of TIMP-3 in human articular talar cartilage. Connect Tissue 

Res 2010; 51: 478-90. 



[491] Burrage PS, Brinckerhoff CE. Molecular targets in osteoarthritis: metalloproteinases and their inhibitors. Curr 

Drug Targets 2007; 8: 293-303. 

[492] Yao W, Wasserman ZR, Chao M et al. Design and synthesis of a series of (2R)-N(4)-hydroxy-2-(3-

hydroxybenzyl)-N(1)-[(1S,2R)-2-hydroxy-2,3-dihydro-1H-inden-1-yl]butanediamide derivatives as potent, selective, 

and orally bioavailable aggrecanase inhibitors. J Med Chem 2001; 44: 3347-50. 

[493] Cherney RJ, Mo R, Meyer DT et al. Potent and selective aggrecanase inhibitors containing cyclic P1 substituents. 

Bioorg Med Chem Lett 2003; 13: 1297-300. 

[494] Gilbert AM, Bursavich MG, Lombardi S et al. 5-((1H-pyrazol-4-yl)methylene)-2-thioxothiazolidin-4-one 

inhibitors of ADAMTS-5. Bioorg Med Chem Lett 2007; 17: 1189-92. 

[495] Bursavich MG, Gilbert AM, Lombardi S et al. Synthesis and evaluation of aryl thioxothiazolidinone inhibitors of 

ADAMTS-5 (Aggrecanase-2). Bioorg Med Chem Lett 2007; 17: 1185-8. 

[496] Glaser KB, Li J, Aakre ME et al. Transforming growth factor beta mimetics: discovery of 7-[4-(4-

cyanophenyl)phenoxy]-heptanohydroxamic acid, a biaryl hydroxamate inhibitor of histone deacetylase. Mol Cancer 

Ther 2002; 1: 759-68. 

[497] Zhang H, Zou K, Tesseur I, Wyss-Coray T. Small molecule tgf-beta mimetics as potential neuroprotective factors. 

Curr Alzheimer Res 2005; 2: 183-6. 

[498] Bernard DJ, Lee KB, Santos MM. Activin B can signal through both ALK4 and ALK7 in gonadotrope cells. 

Reprod Biol Endocrinol 2006; 4: 52. 

[499] Bondeson J, Lauder S, Wainwright S et al. Adenoviral gene transfer of the endogenous inhibitor IkappaBalpha 

into human osteoarthritis synovial fibroblasts demonstrates that several matrix metalloproteinases and aggrecanases are 

nuclear factor-kappaB-dependent. J Rheumatol 2007; 343: 523-33. 

[500] Bondeson J, Wainwright S, Hughes C, Caterson B. The regulation of the ADAMTS4 and ADAMTS5 

aggrecanases in osteoarthritis: a review. Clin Exp Rheumatol 2008; 26: 139-45. 

[501] Pattoli MA, MacMaster JF, Gregor KR, Burke JR. Collagen and aggrecan degradation is blocked in interleukin-1-

treated cartilage explants by an inhibitor of IkappaB kinase through suppression of metalloproteinase expression. J 

Pharmacol Exp Ther 2005; 315: 382-8. 

[502] Pelletier JP, Martel-Pelletier J, Raynauld JP. Most recent developments in strategies to reduce the progression of 

structural changes in osteoarthritis: today and tomorrow. Arthritis Res Ther 2006; 8: 206. 

 

 

 

 

Figure legend 

Figure 1.. Several stimuli induce specific activated cells to release metalloproteinases which are involved in the 

pathogenesis of age-related chronic diseases. 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 



 

 


