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Abstract 

In order to better understand the growth mechanisms involving the aragonite in both geological and 

biological systems, a detailed study of its surfaces was performed. By adopting a two dimensional 

slab model and performing empirical calculations, we determined the equilibrium geometry at 0K 

of the (100), (010), (001), (110), (101), (011), (111), (102), (012), (021), (112), (121), (122), (031) 

and (130) surfaces, both in anhydrous and hydrated conditions. Furthermore, the equilibrium 

geometry at 0K of the (110) twin boundary interface was also determined. 

The dry and solvated surface energies at 0K of the crystal faces were also calculated, as well 

as the (110) twinning energy at 0K, a key thermodynamical quantity for the determination of the 

equilibrium morphology of twins, and the estimation of their most probable mechanism of 

formation during growth. As concerns the (110) twin, the interface elastic energy was also 

evaluated. 

The solvated equilibrium shape (ES) of aragonite is drawn and compared to the dry one; a 

comparison with the previous dry and solvated ES calculated at 0K is also performed. Furthermore, 

the surface structure modifications due to the presence of water is discussed. 

Our calculations explain the high occurrence of twinned crystals in case of  nucleation and 

growth in inorganic environments. On the contrary, in living organism the crystallization route, the 

crystal sizes and morphologies are deeply modified by the adhesion on organic substrates and 

adsorption of organic molecules. 
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1. Introduction 

 

Aragonite (space group Pmcn; a0 = 4.9614, b0 = 7.9671, c0 = 5.7404 Å;  α = β = γ = 90°)1 is one of 

the two common, naturally occurring polymorphs of the calcium carbonate (CaCO3) (the other one 

is calcite) found in geological and biological systems. In particular, aragonite is the main 

component of nacre (mother-of-pearl) that is found in the innermost part of many mollusk shells. 

Indeed, nacre is composed of approximately 95 vol.% brittle inorganic aragonite and a small 

percentage of organic biopolymer.2 This material has a brick-and-mortar-like structure with highly 

organized polygonal aragonite platelets of a thickness ranging from 200 to 500 nm and an edge 

length of about 5 μm sandwiched with a 5–20 nm thick organic biopolymer interlayer, which 

assembles the aragonite platelets together.3 

Recently, it has been shown by means of high resolution TEM images and electronic 

diffraction that single-crystal-like aragonite platelets of Haliotis rufescens, Haliotis discus hannai 

and Omphalius rusticus (belonging to the class of gastropoda) are essentially assembled with 

aragonite nanoparticles with very similar crystallographic orientation.4,5 The unique crystal 

structure of aragonite and the arrangement of the aragonite nanoparticles in nacre’s platelets make 

the diffraction patterns of individual platelets exhibit single-crystal characteristics.4,5 AFM 

observations on Haliotis rufescens and Pinctada maxima (a giant oyster) have also shown that 

individual aragonite platelets consist of a large number of nanoparticles.3,6,7 

Interestingly, the aragonite nacre’s platelets analysed in the works above cited do not show 

heavy {110} twinning, which was instead observed into other shell structures8 and into acicular 

aragonite crystals forming the fibrous layer between the inner nacreous and outer calcite layers of 

Haliotis discus hannai and Omphalius rusticus.4,5 Instead, simple aragonite crystals of inorganic 

origin are rare, as twinning about the 110 plane is nearly always present. When the triplet twinning 

occurred (i.e., repeated twinning about the 110 plane), the resulting crystal becomes pseudo-

hexagonal, which is almost indistinguishable from simple hexagonal one.  

Furthermore, it is interesting to note that growing aragonite crystals from the nacre of some 

mollusks are round, while aragonite crystals produced by other species of mollusks are polygonal in 

shape. A beautiful example of such a morphological difference is reported by Mukai et al.,4 which 

observed pseudo-hexagonal aragonite tablets (composed by the {110}, {010} and {001} forms) in 

Haliotis discus hannai and platelets with elliptical shape in Omphalius rusticus, where the only 

recognizable crystallographic form is the {001}. As reported by Wada,9 these morphological 

differences may be either seasonal or intrinsic of each species. However, in both cases the 
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morphology of the crystals should be dictated by the interaction between organic matter 

(interlamellar organic sheet) and the aragonite crystals growing inside it. Indeed, TEM studies of 

the growing nacre have demonstrated that the interlamellar matrix is formed prior to mineral 

deposition.10 This means that the aragonite crystals nucleate and grow in a preformed compartment 

composed by organic matter, which should be able to facilitate the formation of aragonite crystals 

with a peculiar growth shape (i.e., tabular habit), completely different from that observed in 

aragonite crystals of inorganic origin, where a prismatic or acicular (needle-like) habit is usually 

displayed. The pseudo-hexagonal tabular morphology of the biogenic crystals in nacre is probably a 

consequence of the preferential adsorption of the organic matter on the {001} form with respect to 

the {110} and {010} ones. Indeed, this adsorption selectivity should entail a lower growth rate of 

the {001} faces than those of the {110} and {010} faces, with consequent formation of a tabular 

growth shape. 

The determination of the most probable surface structure is of fundamental importance to gain 

more insights on impurities adsorption, epitaxy and twinning. Indeed, the modelling and 

interpretation of such phenomena require the knowledge of the structure of the interface on which 

the phenomenon occurs. Therefore, in order to better understand the growth mechanisms involving 

the aragonite in both geological and biological systems, a detailed study of its surfaces is essential. 

Interestingly, at variance with the case of calcite (see Bruno et al.11 and references therein), a very 

few computational studies on the surfaces of the aragonite were until now performed.12-15 In 

addition, only one of these papers took into account the effect of the water on the structural 

modification of the crystal faces.14 

Therefore, in order to gain more insights on the structure and energy of the crystal faces of 

aragonite, in this work, by adopting a two dimensional slab model and performing empirical 

calculations, we aimed at the determination of the equilibrium geometry at 0K of the (100), (010), 

(001), (110), (101), (011), (111), (102), (012), (021), (112), (121), (122), (031) and (130) surfaces, 

both in anhydrous (dry) and hydrated (solvated) conditions. Furthermore, the equilibrium geometry 

at 0K of (110) twin boundary interface was also determined. We decided for empirical calculations 

since, due to the complexity of our system, the quantum-mechanical approach would be too 

demanding. 

The dry and solvated surface energies at 0K of the (100), (010), (001), (110), (101), (011), 

(111), (102), (012), (021), (112), (121), (122), (031) and (130) faces were also calculated, as well as 

the (110) twinning energy at 0K (the work required to form a unit area of the twin interface), a key 

thermodynamical quantity for the determination of the equilibrium morphology of twins, and the 
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estimation of their most probable mechanism of formation during growth. As concerns the (110) 

twin, the elastic energy was also evaluated. 

In order to determine the equilibrium geometries of solvated crystal faces and solvated surface 

energies at 0K, the COSMIC method16 was applied. Then, the solvated equilibrium shape (ES) of 

aragonite is drawn and compared to the dry one; a comparison with the previous dry and solvated 

ES calculated at 0K is also performed. Furthermore, the surface structure modifications due to the 

presence of water is discussed. In order to estimate how our results are affected by the COSMIC 

parameters, we tested the algorithm by using different computational parameters. As in the case of 

calcite,11 we will show that different choices of the COSMIC parameters do not affect significantly 

the surface structures and the ES at 0K of aragonite. At the best of our knowledge, these are the first 

COSMIC calculations performed on the aragonite surfaces. 

The structure of the paper is as follows: (1) description of the computational parameters used to 

determine the equilibrium geometry of the crystal surfaces and twinning interface; (2) presentation 

of the results, together with their interpretation; (3) main conclusions and perspectives. 

 

2. Computational details 

Calculations (optimizations of slab geometries, dry and solvated surface energies and twinning 

energy estimates) were performed by using the inter-atomic potential for calcite developed by Rohl 

et al.17 (Rohl potential hereinafter). The solvated equilibrium geometries and solvated surface 

energies were obtained by using the COSMIC model,16 which is implemented in the 4.0 release of 

GULP (General Utility Lattice Program) simulation code,18 a computational program based on 

force field methods allowing the calculation of structures and properties of minerals from a given 

set of empirical potentials.  

The parameters of the Rohl potential were obtained by fitting structural data for both calcite 

and aragonite, as well as physical properties (elastic and dielectric constants) and phonon 

frequencies. The COSMIC model allows the calculation of the solvation energy at T=0K of a 2D 

periodic system like a surface; it is an extension of the well-established COSMO solvation model.19 

Calculations were performed by considering the aqueous solvent having a dielectric constant equal 

to 78.4. Water radius (Rsolv) was set to 1.4 Å and the radius shift of water (δSC) was set equal to the 

water radius (δSC = Rsolv), as it is usually done.16,19 The van der Waals radii of the Ca, C and O 

atoms were set to the standard values of 2.75, 1.70 and 1.52 Å, respectively.20 The number of points 

per atom for the basic sphere used to build the solvent-accessible surface (SAS) was set to 974, 

whereas the number of segments per atom for the SAS was set to 110. A smoothing range of 0.1 Å 
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was used to ensure a continuous behavior of the energy surface. In order to estimate how our results 

are affected by the COSMIC parameters, the calculations were also performed by considering (i) 

δSC = Rsolv = 1 Å and (ii) the default van der Waals radii implemented in GULP: 2.75, 1.53 and 1.36 

Å for Ca, C and O, respectively (see Table S1 in the Supporting Information). 

 

2.1 Surface geometry optimization 

All the surfaces were studied by using the 2D-slab model.21 Slabs of varying thickness were 

generated by separating the bulk structure along the hkl plane of interest. Calculations were 

performed by considering the original 1×1 surface cell and the slab partitioned into two regions: 

- region 1, containing both the surface and the underlying layers that are allowed to relax; 

- region 2, having the same number of layers as region 1 and containing the rest of the slab material 

where no relaxation, with respect to the bulk crystal structure, is assumed to occur. 

Calculations were done by considering slabs with thickness up to sixteen layers (eight for each 

region), which are sufficient to reproduce bulk-like properties at the centre of the slab and to obtain 

a careful description of the surface. GULP output files listing lattice parameters and atomic 

coordinates of the optimized dry and solvated slabs are freely available at 

http://mabruno.weebly.com/download. 

Bulk and slab geometry optimizations were performed by means of the Newton-Raphson 

method and were considered converged when the gradient tolerance and the function tolerance (gtol 

and ftol adimensional parameters in GULP) were smaller than 0.0001 and 0.00001, respectively. 

 

2.2 Twin interface geometry optimization 

To investigate the (110) twin boundary, a 2D-slab model was adopted.21 A twinned slab (bi-crystal), 

made by the slabs P and T, was generated in the following way: 

(i) the slab P of a given thickness was made by cutting the bulk structure parallel to the 110 

twin plane;  

(ii) the slab T was made by applying the appropriate twin law (mirror plane parallel to the 

110 one) to the atomic coordinates of the slab P. 

Then, the twinned slab geometry (atomic coordinates) was optimized by considering all the atoms 

free to move. The calculation was done by considering the original 1×1 surface cell and the (110) 

twinned slab with thickness up to forty layers, which are sufficient to obtain an accurate description 

of the twinned interface. The slab thickness is considered appropriate when the relaxation of the 

outermost layers of the twinned slab does not affect the equilibrium geometry of the twin boundary 
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interface or, in other words, when the bulk-like properties are reproduced at the centre of the slabs P 

and T.   

GULP output file listing lattice parameters and atomic coordinates of the optimized twinned slab is 

freely available at http://mabruno.weebly.com/download. 

 

2.3 Calculation of surface and attachment energies at 0K 

According to the standard two-regions strategy22 employed by GULP, surface energy (γhkl) 

values were found starting from the energy of the surface block (Us, region 1) and the energy of a 

portion of bulk crystal (Ub, region 2) containing the same number of atoms as the surface block. 

Both energies have been referred to Ahkl, the common surface area of the primitive unit cell: 

 

γhkl = (Us – Ub) / Ahkl  (1) 

 

Evaluating the surface energy values and successively applying the Gibbs-Wulff theorem23 

allows to draw the theoretical equilibrium shape (ES) of a crystal. 

On the contrary, the attachment energy, hkl
attE , is needed to predict the theoretical growth shape 

of a crystal. This is the energy released when a stoichiometric layer of material is added on to the 

surface cut: 
hkl
attE  = 1+n

totU  − n
totU  − 1

totU   (2) 

where n
totU  represents the total internal energy of a surface model consisting of n growth layers, 

and 1
totU  is the energy of the growth layer alone. The calculation of this exothermic quantity is 

obtained from the interaction energy of the growth layer at the surface with the rest of the 

underlying structure.  

 

2.4 Twinning energy 

The twinning energy, TEγ  (J/m2), is the excess energy required to form a unit area of the twin 

boundary interface and reads: 

 

hkl

NTT
TE A

EE −
=γ   (3) 
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where TE  and NTE  are the energies of the optimized twinned and not twinned slabs, respectively. 

As for the equilibrium geometry, a twinned slab thickness of forty layers is sufficient to reach 

convergence on TEγ . 

 

 

3. Results and discussion 

The initial crystal structure (space group Pmcn; a0 = 4.9614, b0 = 7.9671, c0 = 5.7404 Å;  

α = β = γ = 90°)1 was allowed to relax, giving a0 = 4.9609, b0 = 7.9936, c0 = 5.7020 Å  and 

α = β = γ = 90°. The crystal was then cut taking inspiration from Aquilano et al. (1997)15 who 

classified the crystallographic forms of aragonite by the occurrence frequency derived from 

Goldschmidt.24 The investigated surfaces are (100), (010), (001), (110), (101), (011), (111), (102), 

(012), (021), (112), (121), (122), (031) and (130). The (010) and (110) are cleavage planes, while 

the (110) is a common twin plane as well, giving lamellar twins parallel to the z axis or repeated 

twins leading to pseudo-hexagonal crystals. 

Apart from the (100), each surface can be cut in more than one way, resulting in planes 

terminated by either calcium or carbonate ions; it is necessary to point out that we used for this 

work identifying the coordinates of each carbonate group with those of its central carbon. 

It is important to stress that our calculations were carried out at 0K by considering an implicit aqueous 

solvent rather than explicit water molecules. This work can be considered as a preliminary study on the 

structural modifications of the main aragonite surfaces due to solvation. For a more reliable treatment, MD 

simulations at T > 0K should be performed. In this way, it should be possible to accurately investigate the 

structural reorganization of the surfaces in contact with water molecules and to take into account the possible 

ions tendency to dissolve into the solvent. However, in an our previous work carried out by means of the 

COSMIC strategy and Rohl potential on calcite surfaces at 0K,11 we obtained structural modifications of the 

surfaces in good agreement with those experimentally observed in water. Therefore, we consider the 

COSMIC method able to reproduce the surface structural modifications. 

 

3.1 Structure of surfaces 

Here, we focus our attention on the structural modifications at T=0K due to geometry 

optimization both in vacuo and in the presence of the solvent. In particular, we analyze the relaxed 

surface structures of the {011}, {112}, {110}, {102}, {010}, {121} and {101}, that is the forms 

entering the equilibrium shape of the crystal, as discussed in the next paragraph. The equilibrium 
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geometries were drawn and reported in the Supporting Information (Figures S1-S14); the 

calculation output files are freely available at http://mabruno.weebly.com/download. 

In order to do this, we examine how the z-coordinates of the uppermost Ca ions and CO3 

groups move when the most stable surfaces relax (see Table 1). On the (011) face, the Ca atom in 

the outermost layer is found to relax into the surface by 0.309 Å in vacuo and 0.261 Å in water, 

while the C atom relaxes out of the surface by 0.025 and 0.031 Å in the absence and in the presence 

of the solvent, respectively. 

On the (110) and (010) surfaces, the highest relaxation for calcium is observed both in vacuo 

and in water. In fact, the Ca atom relaxes into the surfaces by 0.391 and 0.394 Å in vacuo and by 

0.400 and 0.388 Å in water, respectively. On the other hand, the (110) C atom moves outward by 

0.109 Å in vacuo and by 0.120 Å in water. The corresponding values for the wet (010) C atom are 

0.045 and 0.047. 

The lowest relaxation values related to calcium ions are registered for the (112) and (121) 

surfaces. The calculated displacements are always towards the inner bulk. In detail: 0.242 and 0.182 

Å for the first surface and 0.236 and 0.176 for the second, without and with the solvent effect 

respectively. The carbon atoms, in contrast, tend to move outward the surfaces: by 0.059/0.062 and 

0.172/0.154 for the vacuum/water cases in the (112) and (121), respectively. 

The strongest changes in the C atom position concern the (102) and (101) faces: such ion move 

outward by 0.220 and 0.194 Å for the first surface, and by 0.264 and 0.246 Å for the second, 

without and with water respectively. On the contrary, the Ca ions tend to move inward by 

0.328/0.286 and 0.344/0.307 for the vacuum/water cases in the (102) and (101), respectively. 

 
Table 1. Ions displacements on the surfaces belonging to the seven crystallographic forms that enter the final 
equilibrium morphology of aragonite. Positive and negative values refer to movements inward and outward the 
surfaces, respectively. 

surface cut Ca CO3 
Δd Δw Δw - Δd Δd Δw Δw - Δd 

(0 1 1) 3 0.309 0.261 -0.047 -0.025 -0.031 -0.005 
(1 1 2) 3 0.242 0.182 -0.060 -0.059 -0.062 -0.003 
(1 1 0) 2 0.391 0.400 0.009 -0.109 -0.120 -0.011 
(1 0 2) 2 0.328 0.286 -0.041 -0.220 -0.194 0.026 
(0 1 0) 1 0.394 0.388 -0.006 -0.045 -0.047 -0.002 
(1 2 1) 2 0.236 0.176 -0.061 -0.172 -0.154 0.018 
(1 0 1) 1 0.344 0.307 -0.036 -0.264 -0.246 0.019 

 

Looking at the data reported in Table 1, one can easily deduce that in vacuo relaxation drive Ca 

ions towards the internal structure, while carbonate groups are moved outwards. By adding water 
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molecules, calcium results to be slightly attracted outwards, except for the (110) surface. A stronger 

attraction outside the surface is calculated as well for the carbonate groups belonging to the (011), 

(112), (110) and (010) faces. 

The {011}, {112}, {110}, {102}, {010}, {121} and {101} surface structures are only slightly 

affected by the COSMIC parameters. Indeed, by performing the structure optimizations with (i) δSC 

= Rsolv = 1 Å and with (ii) δSC = Rsolv = δSC = 1.4 Å (both with van der Waals radii of Ca, C and O 

equal to 2.75, 1.53 and 1.36 Å, respectively), we observe very weak variations of the z-coordinates 

of the uppermost Ca and C atoms, as recently registered on calcite by Bruno et al.11 

 

3.2 Dry and wet surface energies 

Table 2 reports data concerning all the forty-four cuts coming from the fifteen investigated 

crystallographic forms. One can read information about the single cut, the ionic species outcropping 

on the surface, the surface energies calculated in vacuo (γd) and in aqueous solvent (γw) with the 

related percent difference Δ defined as  (γw - γd) / γd, and the attachment energies (Eatt) calculated for 

dry surfaces. We only report and discuss the relaxed values of the surface energy, since, as 

demonstrated by Bruno et al.,25 the unrelaxed surface energies calculated at empirical level are 

physically ungrounded for another polymorph of calcium carbonate: the calcite. 

 
Table 2. Termination, anhydrous (γd) and hydrated (γw) surface energy values, energy difference percentage between 
anhydrous and hydrated surface energies, Δ(%), and attachment energies (Eatt) of dry surfaces belonging to the main 
crystal forms of aragonite are reported. Calculations were performed at T=0K using the Rohl et al.17 carbonates force 
field and the COSMIC method16 using the following parameters: δSC = Rsolv = 1.4 Å and van der Waals radii for Ca, C 
and O atoms equal to 2.75, 1.70 and 1.52 Å, respectively. The underlined indexes refer to the cuts characterizing the 
final ES. Bold energy values are the lowest among cuts belonging to the different crystallographic forms. The γd and γw 
data calculated by de Leeuw and Parker,14 Akiyama et al.13 and Sekkal and Zaoui12 for some surfaces are reported as 
well. All the γ and Eatt values are expressed in Jm-2 and kJ/mol, respectively. 

form cut 
surface 
species 

γd          
[this work] 

γw          
[this work] ∆ (%) Eatt        

[this work] γd
14 γw

14
 γd

13 γd
12 

{0 1 1} 1 CO3 0.801 0.690 -13.9 -217.8 0.99 0.25 - 1.33, 1.20  
{0 1 1} 2 CO3 0.918 0.818 -10.9 -370.6 1.13 0.50 - -  
{0 1 1} 3 Ca 0.578 0.527 -8.8 -125.6 0.69 1.07 - 0.90, 0.84  
{0 1 1} 4 Ca 1.219 0.991 -18.7 -345.0 1.16 1.15 - 1.09, 1.33  
{1 0 2} 1 CO3 0.635 0.570 -10.2 -345.6 - - - -  
{1 0 2} 2 Ca 0.607 0.552 -9.1 -331.5 - - - -  
{1 1 2} 1 CO3 0.815 0.730 -10.4 -548.3 - - - -  
{1 1 2} 2 CO3 0.972 0.824 -15.2 -786.5 - - - -  
{1 1 2} 3 Ca 0.612 0.543 -11.3 -386.5 - - - -  
{1 1 2} 4 Ca 0.820 0.721 -12.1 -709.3 - - - -  
{1 1 0} 1 CO3 0.797 0.761 -4.5 -657.1 1.04 0.81 0.73 1.30, 0.92  
{1 1 0} 2 Ca 0.730 0.693 -5.1 -218.3 0.88 0.56 0.64 1.03, 0.73  
{1 2 2} 1 Ca 0.784 0.664 -15.3 -651.9 - - - -  
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{1 2 2} 2 Ca 0.829 0.732 -11.7 -668.1 - - - -  
{1 2 2} 3 CO3 0.847 0.782 -7.7 -556.3 - - - -  
{1 2 2} 4 CO3 0.730 0.680 -6.8 -721.2 - - - -  
{1 0 1} 1 Ca 0.752 0.682 -9.3 -479.9 0.99 0.53 - 1.19, 0.90  
{1 0 1} 2 CO3 0.856 0.772 -9.8 -781.8 1.08 0.62 - 1.31, 1.00  
{1 1 1} 1 CO3 0.760 0.684 -10.0 -344.1 0.84 0.64 - 1.09, 0.83  
{1 1 1} 2 CO3 0.875 0.787 -10.1 -527.2 1.02 0.72 - -  
{1 1 1} 3 Ca 1.040 0.965 -7.2 -636.8 1.40 1.03 - 1.30, 0.94  
{1 1 1} 4 Ca 0.877 0.787 -10.3 -466.3 1.03 0.79 - -  
{0 1 2} 1 Ca 0.886 0.779 -12.1 -596.1 - - - -  
{0 1 2} 2 Ca 0.767 0.726 -5.3 -1227.6 - - - -  
{0 1 2} 3 CO3 1.188 0.993 -16.4 -612.4 - - - -  
{0 1 2} 4 CO3 1.128 1.027 -9.0 -883.2 - - - -  
{0 0 1} 1 CO3 0.779 0.721 -7.4 -257.9 0.85 0.90 0.58 1.01, 0.78  
{0 0 1} 2 Ca 1.077 1.044 -3.1 -524.3 1.05 0.62 0.89 1.59, 1.36  
{1 2 1} 1 CO3 0.866 0.773 -10.7 -636.3 - - - -  
{1 2 1} 2 CO3 0.797 0.723 -9.3 -564.2 - - - -  
{1 2 1} 3 Ca 0.822 0.753 -8.4 -660.2 - - - -  
{0 2 1} 1 CO3 1038 0.868 -16.4 -464.4 - - - -  
{0 2 1} 2 Ca 0.803 0.745 -7.2 -793.8 - - - -  
{0 2 1} 3 CO3 1.416 1.265 -10.7 -669.5 - - - -  
{0 2 1} 4 Ca 0.971 0.896 -7.7 -639.5 - - - -  
{0 1 0} 1 Ca 0.808 0.749 -7.3 -241.8 0.96 0.24 0.73 1.14, 0.80  
{0 1 0} 2 CO3 0.868 0.821 -5.4 -600.6 1.50 1.77 0.84 1.57, 1.10  
{1 3 0} 1 CO3 0.978 0.847 -13.4 -1013.5 - - - -  
{1 3 0} 2 Ca 0.956 0.878 -8.2 -792.4 - - - -  
{0 3 1} 1 Ca 0.984 0.915 -7.0 -1102.2 - - - -  
{0 3 1} 2 CO3 1.081 1.011 -6.5 -985.5 - - - -  
{0 3 1} 3 Ca 1.075 0.985 -8.4 -997.1 - - - -  
{0 3 1} 4 CO3 1.093 0.985 -9.9 -1024.3 - - - -  
{1 0 0}  Ca/CO3 1.028 0.900 -12.5 -840.7 1.50 0.93 - 1.71, 1.23

 

The {011} has four different cuts: two Ca-terminated and two CO3-terminated. Their surface 

energy values vary from 0.578 Jm-2 (the lowest for aragonite) to 1.219 Jm-2 both for Ca-terminated 

surfaces. In the presence of water molecules, the γ of the most stable surface reduces to 0.527 Jm-2, 

with a delta of -8.8%. 

The {112} has four different cuts as well: again two Ca-terminated and two CO3-terminated. 

Their γ values vary from 0.612 Jm-2 for a Ca-terminated surface to 0.972 Jm-2 for a CO3-terminated 

one. With solvation, the lowest energy value moves to 0.543 Jm-2 reducing by 11.3%. 

The {110} has two different cuts with the two different terminations. The Ca-terminated one is 

the most stable with a γ value of 0.730 Jm-2, while 0.797 Jm-2 is the value for the CO3-terminated 

surface. The energies of the same morphological cuts become 0.693 and 0.761 Jm-2 after hydration. 
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The {102} has two different cuts with the two different terminations. The Ca-terminated one is 

the most stable with a gamma value of 0.607 Jm-2, while 0.635 Jm-2 is the value for the CO3-

terminated surface. With solvation, we obtain 0.552 and 0.570 Jm-2, respectively. 

The {010} has two different cuts with the two different terminations. The Ca-terminated one is 

the most stable with a gamma value of 0.808 Jm-2, while 0.868 Jm-2 is the value for the CO3-

terminated surface. Such energies reduce to 0.749 and 0.821 Jm-2 considering the effect of the water 

molecules. 

The {121} has three different cuts as well: two CO3-terminated and one Ca-terminated. The 

lowest γ values are of a CO3-terminated one: 0.797 and 0.723 Jm-2 for anhydrous and hydrated 

conditions, respectively. 

The {101} has two different cuts with the two different terminations.. The Ca-terminated one is 

the most stable with a gamma value of 0.752 Jm-2, while 0.856 Jm-2 is the value for the CO3-

terminated surface; after a lowering by 9.3%, the lowest energy surface results to be affected by the 

presence of water, its γw reaching 0.682 Jm-2. 

As expected, all the γw values are lower than the equivalent γd, this is due to stabilization of the 

interface by the solvent. Besides, as calculated for calcite by Bruno et al.,11 one can observe a slight 

decrease of the surface energies, the average reduction related to the most stable cuts being 

9.2±2.9%. The highest reduction is observed for one cut of the (011) face (18.7%), whereas the 

lowest one is found for a (110) cut  (4.5 %).  

As already mentioned, we recalculated the solvated surface energies by considering: (i) Rsolv = 

δSC = 1 and van der Waals radii of Ca, C and O equal to 2.75, 1.53 and 1.36 Å, respectively, and (ii) 

Rsolv = δSC = 1.4 with the same van der Waals radii. All the related results are reported in Table S1 

(Supporting Information). Here, it is noteworthy pointing out that changes in the equilibrium 

morphology are negligible, since γw values undergo a somewhat homogeneous variation: in the case 

(i) we have an average reduction of 13.5±3.7% with respect to the dry values, whereas in the case 

(ii) the average reduction is 10.2±3.9%. This demonstrates that the solvated ES of aragonite at 0K is 

not affected by the COSMIC parameters. 

As a comparison, Table 2 reports as well the dry and wet surface energies calculated by de 

Leeuw and Parker,14 and the dry surface energies calculated by Akiyama et al.13 at DFT level and 

Sekkal and Zaoui12 at empirical level (by using both the Raiteri et al.26 and Xiao et al.27 force fields) 

for some of the forms we investigated. It is necessary to point out that it is not possible to make 

direct comparison between our and the de Leeuw and Parker’s results as the authors do not provide 

detailed structural information about the surface cuts they have considered. Nevertheless, looking at 
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the ion termination, the dry energy values seem to follow the same trend even if our values are 

generally lower. For what concerns the γw, as better examined later in the paragraph, our values do 

not move away too much from the γd case as in the work by de Leeuw and Parker. Furthermore, it is 

essential to underline that our γd values are more concordant with Akiyama and coworkers’ ab initio 

calculations, even if these authors focused their attention only on the few cuts originating from the 

{001}, {110} and {010} forms. 

Instead, as it concerns the Sekkal and Zaoui's results,12 it is important to stress here that they 

performed the calculations by using the recent calcite's force fields developed by Raiteri et al.26 and 

Xiao et al.,27 which were designed to reproduce the thermodynamics of the aqueous calcium 

carbonate system at room temperature within molecular dynamics simulations and not to reproduce 

the properties of the dry crystal surfaces at 0K. For this reason we believe that the dry surface 

energy values obtained by Sekkal and Zaoui12 are not reliable and, therefore, not comparable with 

our and previous estimates.  

By applying the Gibbs–Wulff’s theorem23 and considering the surface energy values in Table 2, 

we drawn the solvated and dry equilibrium shape at 0K (Figure 1). The seven crystallographic 

forms that enter the vacuum equilibrium morphology are the same registered in water. One, for 

accurately studying the few differences occurring between the dry shape and the solvated one, can 

take into account the morphological relevance index MRI for all the {hkl} forms, defined as the 

percent ratio between the total area of the faces belonging to a {hkl} form and the total surface area 

of the crystal. It is noteworthy that the solvent effect is rather moderate. The morphological 

relevance order for the anhydrous shape is {011}, {112}, {110}, {102}, {010}, {121} and {101},  

having MRIs of 31.4, 25.7, 24.4, 10.6, 5.5, 1.4 and 1.0%, respectively. The morphological relevance 

order for the hydrated shape changes to {112}, {011}, {110}, {102}, {010}, {121} and {101}; the 

MRIs are 35.6, 28.8, 19.5, 5.8, 5.2, 3.5 and 1.7%, respectively. Here, some considerations: 

− water slightly lowers the MRI of the stable {011} dry form; 

− solvent act more strongly on the {112} form which, as a consequence, becomes more relevant 

than the {011} in the final solvated morphology;  

− the {110} and {102} MRIs reduce by ∼5% after solvation, while there are not substantial MRI 

variations for the {010}, {121} and {101}.  
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Figure 1.  (a) Dry and (b) solvated equilibrium shape of aragonite at 0K.
 

The relative MRIs allow to estimate the weighted value, ( ) ∑∑ ⋅ hkl
d
hklhkl

d
weighted AγA=γ / = 0.644 

Jm–2, of the athermal relaxed surface energy of aragonite in vacuo; Ahkl is the surface area of the 

{hkl} form. This value is reduced by -8.8%, being ( ) ∑∑ ⋅ hkl
w
hklhkl

w
weighted AγA=γ / = 0.587 Jm–2, 

when taking into account the hydration. It is worth considering this is not so a sensible difference 

when predicting the 3D nucleation frequency of aragonite, even if one should look at a more 

realistic ES, in which configurational and vibrational entropies are taken into account. 

 Finally, we calculated for each surface cut the attachment energies in vacuo and at T=0K as 

well (see Table 2). Looking at the results we can conclude that the {011}, {110}, {010} and {001} 

forms are expected to be the most relevant in controlling the growth morphology, their Eatt being 

equal to -125.6, -218.3, -241.8 and -257.9 kJ/mol, respectively.  

 

3.3 The (110) twin boundary interface 

The equilibrium geometry of the (110) twin boundary interface obtained with the force field method 

is reported in Figure 2. According to the (110) twin law, the two parts of the twin are related by a 

mirror parallel to the 110 plane. The latter is also named “original composition plane”: OCP, a 

lattice plane on which a stacking fault of growth units in twinned position may occur at some stage 

of the growth.28,29  

Before to describe the structural modifications induced by the presence of the twin boundary 

interface, we define the positions of atoms in the bi-crystal (twinned slab) by expressing them in the 

common orthogonal base: the axis are [001] perpendicular to Y which, in turn, coincides with 
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[110];  Z is parallel to the reciprocal vector *
2

*
1 ττ +− . The transformation matrix from the standard 

ortonormal reference to the one chosen is: 
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Figure 2. [001] view of the equilibrium geometry of the (110) twin boundary interface. The solid black line is the 110 
plane (the original composition plane, OCP). 
 

 

Then, in order to describe the expansion (relaxation) of the interface between the two crystals (P 

and T) composing the twinned slab, variables l
3Δ  are defined as follows.  Let be:  

 

∑
=

−=
kn

i

lk
k

lk xnX
1

3
1

3   (5)  
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where lkx3  are the atomic coordinates measured along [-1 1 0], the index k designates the atom 

species, l the layer number within the column representing the repeat 3D cell generating the twinned 

slab by translation, nk the number of atom of specie k in every layer l.  

The lkX 3  are then lumped together in a collective variable, lC3 , expressing the mean coordinates 

associated to layer l: 

 

∑
=

=
3

1
33 3

1
K

lkl XC   (6) 

 

Finally lll CC 3
1

33 −=Δ +  represents the translation in the Z direction of layer l+1 in respect to l. Due to 

the 2D periodic boundary conditions, no lattice deformations occurs in 110 planes; the fractional 

coordinates of the C atoms laying on the OCP, are intermediate between those in the T and P 

crystals. l
3Δ  values representing mean relative layers translations in direction Z, then 

020

3

d

lΔ  values 

correspond to the layer decomposition (some example are reported in the paper by Müller and 

Saul30) of the intrinsic strain due to the interface relaxation as discussed in the following. 

 

 
Figure 3. Distribution of normal strain in the slab, from the surface of the parent to that of the twinned crystal. 

 

The interface deformations caused by the breaking of the symmetry of the forces through the 

interface, correspond to a new equilibrium characterized by an excess energy of the bi-crystal: the 
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twinning energy, which is calculated by means of eq. (3) and results to be 0.017 Jm-2. A component 

of this excess can be ascribed to the elastic energy associated to the interface intrinsic strain in 

direction Z, represented in Fig.3. 

The mean elastic energy, in matrix notation, is: 

 

l

i
ii

e N
VE

∑
=

εσ

2
1   (7) 

 

where V is the volume of a non deformed cell and σi, εi are the stress and strain tensors calculated in 

every cell. In order to estimate the stress tensor we use, as an approximation to the slab elastic 

constants,  those measured and reported by Liu et al.31  

The summation is over the number of cells in the slab close to the interface between the two 

twinned crystals. The strain is measured with reference to the non deformed crystal. In the case of 

aragonite, the estimated mean elastic energy, eE , amounts to about 4% of the twinning energy, 

6.8×10-4 Jm-2.  

We cannot perform a finer analysis for, as shown by Dingreville et al.,32 the accurate evaluation of 

the distribution of the stress in the layers requires the calculation of the derivatives of the energy of 

the twin in respect to the inter-atomic distances. As a matter of fact, in an our previous work on 

gypsum (010) penetration twin33 the calculated stress perpendicular to the surface layers is not nil, 

as required by the equilibrium in the absence of bulk forces. One can suppose that at the twin 

interface the stress is inhomogeneous, however the calculation performed are not satisfactory to 

describe this situation. To assess the stress distribution in twins will be the object of future works. 

 

 

4. Conclusions 

In this work we determined at empirical level the equilibrium geometry at 0K of the (i) (100), 

(010), (001), (110), (101), (011), (111), (102), (012), (021), (112), (121), (122), (031) and (130) 

surfaces of aragonite, both in dry and solvated conditions, and (ii) (110) twin boundary interface. 

Furthermore, the dry and solvated surface energies at 0K of the (100), (010), (001), (110), (101), 

(011), (111), (102), (012), (021), (112), (121), (122), (031) and (130) faces were calculated, as well 

as the (110) twinning energy at 0K. 

The entire work let us to deduce some general conclusions: 
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(i) In vacuo relaxations differently drive the two ionic species involved in aragonite crystal surfaces: 

the Ca ions result to be more attracted towards the bulk crystal while the CO3 groups outwards; by 

considering water on the surfaces, Ca ions result to be generally less attracted inwards, while the 

CO3 ions behavior depends on the crystal face.  

(ii) Surface energies decrease in the presence of the aqueous solvent. The relaxation degree after 

solvation vary from a few percent units up to a maximum of 18.7% for one of the high energy cuts 

of the (011) surface. Taking into account the most stable cuts, an average of 8.3±2.0% is registered. 

Such a small reduction of the γ after hydration originates weak differences in the final equilibrium 

shape. 

(iii) Among the surfaces that enter the final ES, calculations demonstrate that each cut which has 

the lowest energy in vacuo, has the lowest energy in hydrated conditions as well. 

(iv) By excluding the {121} form, the typical surfaces of the ES are characterized by a calcium ions 

termination. 

(v) By analyzing the modeled crystalline surfaces before and after geometry optimization, one can 

observe that all the CO3-terminated cuts have a common feature: the carbonate groups tends to 

rotate in order to lie flat on the surfaces, as a relaxation result. This behavior was already observed 

by de Leeuw and Parker.14  

(vi) We estimated very low values for twinning energy (0.017 Jm-2) and elastic energy (6.8×10-4 Jm-

2), this latter being stored by the twinned crystal as a consequence of the interface strain. These very 

low values are due to the strong similarity among the equilibrium structure of the 110 twin and that 

of the normal crystal (see Figure 2). The same relation between energy and structure was observed 

for the (0001) contact twin of calcite34,35 and (100)36,37 contact twin of gypsum (CaSO4·2H2O), 

where the following twinning energies were estimated: 0.001-0.047 and 0.014 Jm-2, respectively. 

From a genetic point of view, the lower is the twinning energy the higher is the probability to obtain 

a twinned crystal. Then, the extremely low value of the twinning energy we obtained allows to 

explain the facility of formation of aragonite twinned crystals. Indeed, according to the classical 

nucleation theory, the lower is the twinning energy the lower is also the supersaturation of the 

mother solution (from which the crystals nucleate) for overcoming the nucleation barrier to form 

twinned crystals. 

Here, it is important to stress that our estimate of twinning energy was obtained at 0 K. In order to 

calculate the twinning energy a T > 0 K, it is necessary to take into account the vibrational motion 

of atoms (vibrational entropy). This is a thermodynamical quantity that may affect slightly the 

values of γTE, as it depends on the difference of entropy between a twinned crystal and a perfect one.  
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(vii) The tabular habit of aragonite crystals in nacre may be: (a) a growth habit, which is a 

consequence of the lower growth rate of the {001} faces with respect to that of the other 

crystallographic forms, or (b) an equilibrium habit, where the somewhat different shape of the 

crystal with respect to that we calculated, is due to the different energies of the interfaces between 

the crystal faces and the organic environment in which the crystal nucleates and grows. However, in 

both cases, there is a strong affinity (likely also an epitaxial relationship) between the organic 

matter and the {001} form of aragonite.  

 

 

Supporting Information Available. Drawings of the optimized geometries of the {011}, {112}, 
{110}, {102}, {010}, {121} and {101} forms entering into the equilibrium shape of aragonite at 0K 
(Figures S1-S14). Dry and solvated relaxed surface energies at 0K of the main faces of aragonite 
({011}, {102}, {112}, {110}, {122}, {101}, {111}, {012}, {001}, {121}, {021}, {010}, {130}, 
{031} and {100}) (Table S1) calculated by means of the Rohl et al.17 force field and by considering 
different COSMIC parameters: (i) Rsolv = δSC =1, r(Ca) = 2.75 Å, r(C) = 1.53 Å, r(O) = 1.36 Å; (ii) 
Rsolv = δSC =1.4, r(Ca) = 2.75 Å, r(C) = 1.53 Å, r(O) = 1.36 Å; (iii) Rsolv = δSC =1.4, r(Ca) = 2.75 Å, 
r(C) = 1.70 Å, r(O) = 1.52 Å; r(Ca), r(C) and r(O) are van der Waals radii of Ca, C and O, 
respectively. This material is available free of charge via the Internet at http://pubs.acs.org. 
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Synopsis 

In order to better understand the growth mechanisms involving the aragonite in both geological and 

biological systems, a detailed study of its surfaces was performed. The dry and solvated surface 

energies at 0K of the crystal faces were calculated, as well as the (110) twinning energy and the 

interface elastic energy at 0K. 


