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Abstract

In epidemiological studies it is often necessargisentangle the pathways that link an exposure to
an outcome. Typically the aim is to identify théalaeffect of the exposure on the outcome, the
effect of the exposure that acts through a givéfsmediators of interest (indirect effect) and th
effect of the exposure unexplained by those santatwes (direct effect). The traditional approach
to mediation analysis is based on adjusting fomtleeiator in standard regression models to
estimate the direct effect. However, several mathagical papers have shown that under a number
of circumstances this traditional approach may pcedlawed conclusions. Through a better
understanding of the causal structure of the viagainvolved in the analysis, with a formal
definition of direct and indirect effects in a coerfactual framework, alternative analytical
methods have been introduced to improve the vglaht interpretation of mediation analysis. In
this paper, we review and discuss the impact oftiteee main sources of potential bias in the
traditional approach to mediation analyses: (i) i@d-outcome confounding;(ii) exposure-
mediator interaction and (iii) mediator-outcome foamding affected by the exposure. We provide
examples and discuss the impact these sourcesrmtarens of bias.
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Introduction

The importance of mediation analysis in epidemimalgstudies relies on the need to disentangle
the different pathways that could explain the dffgan exposure on an outcome. Mediation
analysis is typically applied when a researchertsvemassess the extent to which the effect of an
exposure is explained, or is not explained by amyiset of hypothesized mediators (also called
intermediate variablés In this way, the total effect of an exposureapnoutcome, the effect of the
exposure that is explained by a given set of medidindirect effect) and the effect of the expesur
unexplained by those same mediators (direct eftaat)be defined. Intuitively, one expects that the
total effect can be decomposed into direct andéuotlieffects. Suppose that the total effect of a
binary exposure translates into a risk differenic&s8%; if the direct risk difference is 10%, we
would expect one-third of the total effect to bgleined by the mediator, and the remaining two-
thirds to be explained by alternative pathways.

In this paper, we will address the fact that thisitive expectation of effect decomposition may no
hold true. Also, the concept of the proportion tiéet explained by a mediator can be cumbersome
in some situations. For example, walking to workr@ases both the total amount of physical
activity and the total levels of exposure to ailygeon. In an epidemiological study of incidence o
coronary heart disease (CHD), if exposure to diupon were the mediator, walking to work could
have a protective direct effect on CHD but a siam#us harmful indirect effect on CHD.
Theoretically, in this scenario we could observdatal effect (risk difference = 0) on CHD due to
opposite direct and indirect effects.

Epidemiological studies often require the studyneidiation: for example, in studies of molecular
mechanisms involved in disease causation, studiesotoeconomic inequality, studies of response
to clinical treatments and studies aiming to measiue impact of public health interventions. The



assessment of mediation can be the main aim dttitly, whereas often the goal is to estimate the
total effect, though exploratory mediation analyaesalso conducted.

The traditional approach to mediation analysis a®f comparing two regression models, one
with and one without conditioning on the medidtdihe exposure coefficient is then interpreted as
a direct effect in the model adjusted for the midiand as a total effect in the unadjusted model.
In epidemiological studies, the proportion of thtat effect explained by the mediator is typically
obtained by the ratio of the unadjusted to the stdplirelative risks, and the percent excess risk
explained by the mediator is obtained by a ratiemetthe numerator includes the difference
between the unadjusted (total effect) and the &etjuglirect effect) relative risks, and the
denominator includes the unadjusted excess ris&l @ffect)>* For example, if a study found a
total effect of low vs high socioeconomic statuE$$ on lung cancer risk equal to a relative risk of
2.3 and, after adjustment for smoking, the relatiske decreased to 1.2, the percent excess risk of
SES on lung cancer risk explained by the smokinglevbe 85% [(2.3-1.2)/(2.3-1)*100].

It is now recognized that the traditional approeximediation analysis is prone to bias arising both
from incorrect statistical analysis and suboptistatly design. There is already a large amount of
literature on this issue, both from a theoreticad an applied point of view, and it continues to
grow rapidly. New statistical methods have beerettged, although some are not fully
implemented, and appropriate methods for sometgngsimply do not yet exist. The traditional
approach to mediation analysis is still frequented, and findings from earlier epidemiological
studies that used this approach should not berdisdalt is thus fundamental to understand when,
and to what extent, bias hampers the possibiliys®and interpret traditional mediation analyses.
In this paper we will discuss, describe and proelamples of the three main sources of potential
bias that may cause traditional approaches to medianalyses to give flawed conclusions:(i)
mediator-outcome confounding, (ii) exposure-mediatteraction and iii) mediator-outcome
confounding affected by the exposure. Throughoeiper, if not otherwise specified, we will not
consider issues of random variation, unmeasuredsexp-outcome confounders or measurement
errors. The paper is organized as follows: we fivet discuss mediator-outcome confounding using
the aforementioned conventional definition of direffects (i.e. the direct effect is the effectlod
exposure on the outcome in a model adjusted fomidiator); we will then introduce a formal
definition of direct and indirect effects in a coerfactual framework and discuss exposure-
mediator interaction; finally, we will briefly disss situations in which mediator-outcome
confounders are affected by the exposure.

M ediator -outcome confounding

It is well known that lack of exposure-outcome aanfding is necessary to obtain a valid estimate
of the total effect of a given exposure on a gigatcome. In mediation analysis, lack of mediator-
outcome confounding is also necessary. This isagében discussed several times in the past 20
years, though it was overlooked in early epidengjiial studies:’ The direct acyclic graph (DAG)
shown in Figure 1 clarifies the issue: accordinthecausal graph theory, conditioning on the
mediator M induces a spurious association betweemiediator-outcome confounder U and the
exposure A, where U becomes a confounder of thesexp-outcome association and induces bias
(Figure 1). This is an example of collider biasjetthoccurs frequently in epidemiological studies
(e.g. selection bids A simple example of this situation in the cortekmediation analysis would
be given by a study designed to assess how mutte abtal effect of exposure to environmental
noise on CHD is mediated by hypertension. All Valea that affect both hypertension and CHD
risk, such as body mass index, diet and smokirtggamediator-outcome confounders; therefore
they should be measured and considered in thesesaty validly estimate the direct effect of
noise. For those unfamiliar with DAG langudgmnsider that M in Figure 1 is caused by A and U,
both of which are sufficient causes of M. In thése, collider bias arises because in the stratum M
=1 (e.g. in the stratum of people with hypertenkidf U were not present, A should be present in



order to have hypertension. Therefore, in this gdanfor a given level of M, A and U are
inversely associated even if they are marginaltiependent.

When the mediator is included as a covariate egaassion model to estimate the direct effect of
an exposure on the outcome, adjusting for med@atitcome confounders (U variable in Figure 1)
is needed to avoid bias. If some, or all, of them&founders are unmeasured or unknown, estimate
of the direct effect might be invalid. Thereforeisialways important to assess how the results
obtained from any mediation analysis could be &gy the possible unmeasured/residual
mediator-outcome confounding, the main questiondeihether this source of bias could explain
away the estimated direct effét.

The magnitude of the bias introduced by conditigron a collider, both in a general setting and in
the context of mediation analysis, is an issue llaatbeen addressed by several autHot’.
Vanderweele provided simplified formulas to carog,ainder specific assumptions, a quick
sensitivity analysis for the estimate of the direffect’® On the risk ratio scale, ¥fis defined as the
direct effect of the unmeasured binary confoundenlhe outcome (for given levels of the
exposure A and the mediator M), ang, andn, m are the prevalences of the unmeasured
confounder U among the two exposure leeedsmda* at a given level of the mediator M=under
simplifying assumptions the bias in the direct effiestimate o& vsa* would be obtained by: B =
[1+ (y-1) mand/[1 + (y-1) ma* m]. ASSuming that the unmeasured confounder U istself affected

by the exposure A, the bias-corrected direct eéstimate can be obtained by dividing the risks
ratio adjusted for the mediator by the bias faBtabtained from different scenarios of values for
the parameterg ma mandma m.

For example, in a recent study on the associagtwden ethnicity (Maori women vs women of
European origin) and late stage at diagnosis oficarcancer in New Zealand, it was found that
most of the total effect of Maori ethnicity on lage at diagnosis (OR: 2.71) did not change much
after adjustment for screening practices (direfetatfOR: 2.39)> The study concluded that
ethnicity-related differences in stage at diagno$iservical cancer in New Zealand could not be
explained by ethnic-related differences in scregittendance. It is possible, however, that part of
the estimated direct effect was due to bias inttedlby unmeasured mediator-outcome
confounders. However, in order to explain completetlirect effect estimate of 2.39 among, say,
unscreened women with this source of bias, we wbale to assume, for example, that the
supposed mediator-outcome confounder was assoeutethe outcome with a relative risk)(
equal to 4.0, had a prevalence of 65% among unsededaori women and a prevalence of 10%
among unscreened women of European origin. Thisasmeseems unlikely to occur in real
practice.

Weaker direct effects could however be entirelyl@xed by bias due to mediator-outcome
confounding. For example, there is a great dealtefest in understanding the role of SES
inequalities in morbidity and mortality, and whetliee effects of this variable remain after taking
into account well known risk factot§1n these studies, the direct effect is often yasrhall, as
typically most—but not all—of the association beéneSES and the disease under study can be
explained. Let us consider the hypothetical exardpkeribed in the previous section: a study on
lung cancer yields a total relative risk for lowhigh SES of 2.3, which, after adjustment for
smoking, decreases to 1.2. A mediator-outcome cwrfer (say family history of lung cancer,
assuming that is not itself affected by socioecaoatatus) with, for example, a relative righ {or
lung cancer of 2.5, a prevalence of 20% among mookers with low SES and a prevalence of 5%
among non-smokers with high SES, could entirelyla@rm direct effect of 1.2 among non-
smokers.

It is also of interest to consider the directiortted bias. According to the Vanderweele’s formula,
when, conditioned on the mediator, there is a pas#ssociation between the exposure and the
unmeasured mediator-outcome confounder, whichrmhas a positive direct effect on the
outcome, the estimate of the direct effect of tkigosure on the outcome is biased upwards (i.e. the
unmeasured mediator-outcome confounder becomesitavpaonfounder of the exposure-outcome



association after conditioning on the mediatorjhaugh there are exceptions, conditioning on a
variable (collider) that is affected by two othariables (parents) typically induces a negative
association between the parents if they affecttieer in the same direction (either positive or
negative), whereas the association is positiviedftivo parents affect the collider in opposite
directions*”*® Thus, if an exposure positively affects the mexiaand the supposed mediator-
outcome confounder is positively associated witthlibe outcome and the mediator, the direct
effect for a given level of M is likely to be biasdownwards. Returning to our hypothetical study
on noise (exposure), hypertension (mediator) an® @itcome), many factors, such as smoking
and body mass index, are likely to be positivegoagted with both hypertension and CHD risk.
As noise is also expected to increase the riskypétension, all the associations involved are thus
positive. In this situation, if a positive diredtext of noise on CHD is found, that effect is kely

to be explained by the bias introduced from any eesured mediator-outcome confounders.
Conversely, the magnitude of the positive direttctfis likely to be underestimated.

In the recent literature on mediation analysis,stralled low birthweight paradox, i.e. the ineers
association of maternal smoking on infant mortahgt is typically observed in children with low
birthweight (the mediator), has often been useanasxample of bias introduced by unmeasured
mediator-outcome confoundiftgIn this example, some confounders, such as bétbots, are
positively associated with both low birthweight antant mortality, and at the same time maternal
smoking is positively associated with low birthwtigThe resulting bias is thus downwards,
corresponding to an apparent protective directcefié maternal smoking on infant mortality
among children with low birthweight. In sensitiviyalyses, it has been shown that sensible
assumptions regarding the magnitudes of the aggwwsanvolved could explain away this apparent
associatiorf’

Obviously, the collider bias is not the only souodias affecting mediation analysis althouglsit i
probably the most largely overlooked source in paediation analyses. Misclassification of the
mediator, for example, can also seriously bias le@nns. A trivial example would be a non-
differential misclassification of a binary mediagwr large as to obscure the presence of any indirec
effect. As recently shown, the general rule is thabndifferentially misclassified (binary) mediato
overegimates the magnitude of the direct effedtarderestimates the magnitude of the indirect
effect:

Exposure-mediator interaction

According to the traditional approach to media@malysis, the direct effect is estimated by
conditioning on the mediator M. In the hypothetidata reported in Table 1 there is a total risk
difference for the exposure of 4.8%, which decredase&.3%, after adjustment for the mediator M,
thus indicating the presence of a direct effecivdfestimate the effect of the exposure A in those
without the mediator (M = 0), the risk difference the event associated with the exposure is 2.0%.
As the mediator in this example is a binary vaealtere are two possible direct effects that @an b
estimated: the risk difference (2%) among thosé Wit= 0, and the risk difference (18%) among
those with M = 1. Although the risk difference @sver than the total effect in the stratum M =0, it
is much larger than the total effect in the stratdms 1. In this example, the estimate of the direct
effect depends on the value of the mediator.

Table 1
Hypothetical data on the risk of being a case astmtwith an exposure (A) and a mediator (M)
Exposure (A) Mediator (M) Risk Cases Non-cases Total

0 0 1% 100 9900 10 000

1 0 3% 150 4850 5000

0 1 2% 10 490 500

1 1 20% 200 800 1000



The fact that the estimates of direct effect vampsas different levels of the mediator implies that
the exposure A and the mediator M interact in érpig the outcome. In Table 1, using unexposed
subjects without the mediator as the referencepliserved effect of being exposed with the
mediator (risk difference = 19%) is much largenmttize linear combination of the two effects of
being in the exposed group without the mediatek(difference = 2%) and having the mediator
without the exposure (risk difference = 1%).

If we are interested in estimating the effect okaposure that is not explained by a mediatoren th
presence of exposure-mediator interaction, we te@droduce an alternative formal definition of
direct effect®?*which provides a population summary of the effettdifferent levels of the
mediator. The same applies when the relationshipdsn the exposure and the mediator is not
linear, but here we will not discuss this casetfeirt

The alternative definition uses a counterfactuainfework to define natural direct effects and
natural indirect effects that sum up to the toffga.>° In a counterfactual framework, the
individual causal effect of the exposure on theonrte is defined as the hypothetical contrast
between the outcomes that would be observed isdiree individual at the same time under the
exposure and in the absence of the exposure (oesence of two different levels of the
exposuref>?* According to the counterfactual notation, i¥ the potential outcome under exposure
A = a and Y is the potential outcome under the exposure lavwela*, where g a*. Obviously, as
these are potential outcomes under alternativesxpdevels, it is not possible to observe both Y
and Y;+ in the same individual: only one of the two wobklfactual. The individual causal effect,
defined as ¥-Y -, is unlikely to be the same for all individualsaofiven population. We thus
define the population causal effect as the aveohgfee individual causal effects, i.e. E(Y a+).

In the context of mediation analysis, is the potential outcome under exposure leveladand
mediator level M = m. The natural direct effectiefined as ¥m@+ — Yax Mm@, 1.€. the difference
between the value of the counterfactual outconigeifindividual were exposed to A = a and the
value of the counterfactual outcome if the sameviddal were instead exposed to A = a*, with the
mediator assuming whatever value it would havertaktehe reference value of the exposure A =
a* (Box 1). At the population level, the naturaledit effect is E(¥ m@a* — Ya*m@»). The natural

direct effect captures the effect of A on Y vialpyaays that do not involve M, although the value of
the mediator M is allowed to vary among individuatsording to all the determinants of M, with
the exception of the exposure A. This illustratee of the reasons why a counterfactual framework
is used for the definition of natural direct effgatamely to conceptualize the hypothetical
distribution of the mediator. The natural indireffiect can be defined as, M@ — Yame#), i-€. the
contrast, having set the exposure to a fixed l&vela, between the value of the counterfactual
outcome if the mediator assumed whatever valueitldvhave taken at a level of the exposure A =
a and the value of the counterfactual outcomesifttediator assumed whatever value it would have
taken at a reference level of the exposure A Bax(1). At the population level, the natural
indirect effect is E(¥m@ — Yam@). Intuitively, the natural indirect effect captarthe effect of the
exposure A on the outcome Y due to the effect efetkposure A on the mediator M. The total
causal effect of A on Y can now be decomposedtimtcsum of the natural direct effect and the
natural indirect effect, even in presence of expgsnediator interaction. Note that slightly
different ways to decompose the total effect iriteat and indirect effects have been proposed.

Box 1. Definitions of controlled direct effect, nadal direct effect and natural indirect effect e t
counterfactual framework

Controlled direct effect: Yanr— Yarm

This effect is the contrast between the countantdautcome if the individual were exposed at A =
a and the counterfactual outcome if the same iddaliwere exposed at A = a*, with the mediator
set to a fixed level Mm.



Natural direct effect: Yam@a— Yar Mm@

This effect is the contrast between the countentdautcome if the individual were exposed at A =
a and the counterfactual outcome if the same iddaliwere exposed at A = a*, with the mediator
assuming whatever value it would have taken atdference value of the exposure A = a*.

Natural indirect effect: Yama— Yame¥

This effect is the contrast, having set the expsaiitevel A = a, between the counterfactual
outcome if the mediator agsed whatever value it would have taken at a vafukeoexposure A :

a and the counterfactual outcome if the mediatsuragd whatever value it would have taken at a
reference value of the exposure A = a*.

In mediation analysis, a counterfactual framewsrklso used to define an additional meaningful
effect, the controlled direct effect (Box 1). Cantlied direct effect is defined as¥%— Yarm, 1.€. &
contrast between counterfactual outcomes withredtere exposure values, A = a and A = a*, if the
mediator were set to a fixed value M = m. At thegation level the controlled direct effect is
E(Yam— Yarm). AS a consequence, there are as many contralied @ffects as there are levels of
the mediator. A controlled direct effect thus cepends to a situation in which a hypothetical
intervention controls the mediator to a given valtfawhereas a natural direct effect corresponds to
a situation in which the natural relationship bedwéhe exposure and the mediator is maintained
(i.e. we would intervene on the exposure but nagatliy on the mediator). In the example of a
hypothetical study on noise, hypertension (the atedj and risk of CHD, the controlled direct
effect (for hypertension = 0) would be the effecelimination of noise exposure when controlling
hypertension to be absent, whereas for the nalinedt effect hypertension would be set at the
value that would have been observed in the abss#nu@ise exposure.

In the absence of interaction between the expasuiehe mediator, controlled direct effect and
natural direct effect are equivalent. The intuitesglanation for this equivalence is that if theedt
effect of the exposure is constant for the diffefenels of the mediator, setting the mediator to a
fixed value (controlled direct effect) or consiaeyithe value that the mediator would have taken at
the reference level of the exposure (natural dieffetct) gives the same estimate (i.e. a weighted
average between constant values gives the sanleiresspectively of the weights).

When there is interaction between the exposurdladediator, the natural direct effect and the
natural indirect effect still sum up to the totéket and they represent a sort of interpretable
population average over the levels of the medi®dote that, if exposure-mediator interaction
exists, the estimate of the total effect associaiiéial the exposure in a given population depends on
the population prevalence of the mediator. The sappdies to the natural effects: when exposure-
mediator interaction is present, natural effectslma estimated and interpreted, but their estimates
are population-specific. We would like to propose same example discussed by Judea Pearl to
illustrate the use and interpretation of naturegcti effects. Pearl considered a situation where a
drug could induce headache as a side effect, atige dame time, could interact with aspirin taken
to treat the drug-induced headache on its effacth® outcome. In this situation, the drug is the
exposure and the aspirin is the mediator. Obvigusgirin may be taken in the population for
reasons other than the drug-induced headache. iIN@gjne that the producer of the drug manages
to eliminate headache as a side effect, and wdwddd know what the effect of the drug will be in
the population, knowing that use of the drug willanger be a cause of aspirin intake. The natural
direct effect is the key quantity that answers thisstion, but its estimate depends on the aspirin
use in absence of the exposure in that populafioriurther explore this concept, let us assume
now that the drug does not work when taken wittamirin. If people in the population take aspirin
for reasons other than the drug-induced headalclelrug would still have a natural direct effect,
whereas if people in the population only take asgor the drug-induced headache there would be
no natural direct effect after this headache wasieated. Conversely, controlled direct effect,
when the aspirin intake is set to be 0, would leesime in the two populations.



How can we estimate these effects? Under spea$iaraptions, controlled and natural direct
effects can be estimated using standard regressioiels. Assuming no unmeasured mediator-
outcome confounding and no mediator-outcome cordmgnaffected by the exposure, the
controlled direct effect can be estimated by coodihg the analysis on the mediator. Assuming
also no unmeasured exposure-mediator confoundiegydtural direct effect can be estimated as a
weighted average of the controlled direct effesitl) weights for each level of the mediator given
by the probability that the mediator would havestakhat value if the exposure were set at its
reference level. Going back to the hypotheticahdaported in Table 1, the estimate of the natural
direct effect can be non-parametrically obtainecgbgraging the two controlled direct effects of
2% and 18%, using the frequency of the mediatorrantlbe unexposed subjects as the weighting
function.?® Table 1 shows a 4.76% probability of M being pre# = 1) among the unexposed
subjects, and the natural direct effect can beimddaby the following: [2%*(1- 4.76%) + 18%
*(4.76%)] = 2.8%. More complex methods (see Dismrmgs based on parametric assumptions, are
used when simpler non-parametric estimates aréensible.

As we have shown in this section, the presencemdsure-mediator interaction may introduce
large problems in mediation analysis and in itenmtetation, and therefore should be considered
whenever interpreting the results of traditionadlgses. Let us consider an additional example of a
study that aims to understand to what extent diffees in mortality by SES among cancer patients
are explained by stage at diagnosis. If we asstere is no interaction between SES and stage at
diagnosis, it implies that SES inequalities in rality are the same irrespective of the stage at
diagnosis (even if, for example, low SES is asdediavith later stage at diagnosis), whereas
presence of an interaction would imply that thgestat diagnosis may increase or decrease the
effect of SES on mortality. We assumed a simpliSednario in which, after cancer is diagnosed,
SES has an impact on mortality only through thetgpd quality of treatment received by the
patients. Then, to understand whether standargsesmtesigned to estimate controlled direct
effects can provide interpretable estimates in $esfrmechanisms, one of the key questions that
needs to be posed is whether an interaction dxédtgeen SES and stage at diagnosis on mortality.
For example, for some cancer types SES inequalégarding treatment may occur in patients
diagnosed at an early stage, whereas at very aedatages where effective treatments are lacking,
SES inequalities disappear. For other cancer typES, inequalities might be more constant across
stages.

M ediator -outcome confounding affected by the exposure

Finally, we introduce the third potential sourceb@s. As mentioned previously in the section on
mediator-outcome confounding, it is necessary josador mediator-outcome confounding in
standard regression models to avoid collider bi@svever, there are exceptions in which
adjustment for such confounders in standard reigmressodels still produces flawed estimates.
Figure 2 depicts a scenario where the mediatoreouecconfounder L is now affected by the
exposure (A). In this scenario, L, also referredsantermediate confoundéf,is both a mediator-
outcome confounder and a variable that lies orditeet path from the exposure A to the disease Y
(Figure 2a).

Intermediate confounding is probably not rare irdiagon analysis. Let us consider a hypothetical
study aiming to assess to what extent the effestradking on CHD is mediated by
atherosclerosi€ A number of variables, including blood pressuftect both atherosclerosis and
the risk of CHD, and are also affected by smokiagyre 2b). Adjustment for blood pressure in
traditional regression models would bias the edenoéthe direct effect by blocking the effect of
smoking on CHD acting through blood pressure, lotitatherosclerosis (i.e. the path smoking
blood pressure> CHD). This would induce an attenuation of the clireffect and a consequent
overestimate of the indirect effect. On the othemndy adjustment for blood pressure is necessary to



prevent collider bias (that is inherently introddd®y adjusting for the mediator atherosclerosis). A
discussed in the section on mediator-outcome cawfiog, if we assume that: (i) smoking and
blood pressure both positively affect atherosclierds) smoking positively affects blood pressure;
and (iii) blood pressure positively affects théxrid CHD, adjustment for atherosclerosis would
likely bias the direct effect of smoking on CHD domards, although the determination of the
direction and magnitude of bias may be difficulcmplex DAGS? Interestingly, in this scenario
the bias goes in the same direction whether adgisti not adjusting for blood pressure, implying
that it is not possible to conduct both analyses@mclude that the unbiased estimate lies
somewhere in the middle.

The causal structure depicted in Figure 2 has Oesuissed in depth, first in scenarios of time-
dependent exposures and confounders, and thea frathework of mediation analyses.

Statistical approaches, such as inverse probahitighting®*'and g-computatioff- which are

both based on the counterfactual framework, arergdlg able to adjust for the confounding effect
of L without blocking the corresponding direct p&ibm the exposure A to the outcome Y, and to
estimate controlled direct effects, as well as,anrstronger assumptions, natural direct and intlirec
effects>?2?"*Briefly, these methods model the expected potentictome under exposure A = a
and the mediator M = m, EQY): the inverse probability weighting by regressihg outcome on

the exposure and the mediator and by controllingpéential confounders by re-weighting the
population instead of introducing them in the regren model; the g-computation by an extension
of the standardization using Monte Carlo simulaitn

To assess the amount of bias that traditional aealgould introduce in the presence of
intermediate confounding, the strengths of the @atons between the exposure and the mediator-
outcome confounder L and between L and the outdam@ur example it would be between
smoking and blood pressure and between blood peeasd CHD) should be evaluated. If the
presence of any of these two associations is moigsae of theoretical discussion rather than la rea
threat to the analysis, more advanced methodsalondth intermediate confounding will produce
estimates similar to standard methods. On the aontif, as in our example, both associations are
likely to play an important role, traditional anségs will not provide the correct answers.

Discussion

Research on methods for mediation analysis istagfas/ing field in epidemiology; its
development is related to the need to better utmlsnechanisms, and follows with somewhat
surprising delay earlier discussions on black hmig@miology>> conceptual frameworfSand
molecular epidemiology. Standard or traditional approaches to mediatiaiyais can produce
flawed conclusions and their main limitations haeen addressed at length in the methodological
literature.

Although the investigation of statistical methodshediation analysis is not in the scope of this
paper, we should emphasize that new non-paransgtd@arametric approaches, based on
counterfactual framework, are now available to adgisome of the problems we describe herein,
including the Mediation formula, inverse probaliliteighting and g-formul&?®?"3%333¥rhese
methods are reaching now a wide spread and argrgntke epidemiological literature and
textbooks, though they are still underused in @ppdpidemiology. It should be emphasized that
their implementation may be complex, and that #aeysubject to strong assumptions that need to
be met in order to obtain valid and interpretalsigneates’® Furthermore, there are epidemiological
scenarios for which valid methods are not yet abdé and, for other scenarios, new approaches
have either only recently been suggested, or matierts exist but their performance has not been
fully comparedf.” 394

In this paper, we reviewed some of the most basiblpms that can arise in mediation analysis, the
concepts and the methods that have been developadkde them, and provided some examples.
The rapid development in this field is charactetibg levels of formalism and conceptualization
that may be somewhat difficult for applied epidelogists to integrate. This is probably the main



reason why the new methods are being introducéeémratowly in epidemiological research.
Indeed, one of the recent focuses of research diatien analysis has been the development of
simplified or unified approaches that could be addby a broader group of uséf§* We predict
that the use of new and more correct approachestiation analyses in common epidemiological
studies will increase rapidly in the next years.
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KEY MESSAGES

- Mediation analysis is common in epidemiology; maito disentangle the effect of an
exposure on an outcome explained (indirect effectinexplained (direct effect) by a given
set of mediators.

« Traditional approaches to estimate the direct effexsed on simply adjusting for the
mediator in a standard regression setting, mayym®cthvalid results.

« Potential sources of bias include unmeasured naebattcome confounding, interaction
between exposure and mediator, and presence ohiedgate confounding.

« The validity and interpretation of mediation an&yis enhanced by using the counterfactual
framework to conceptualize the controlled direéeetf the natural direct effect and the
natural indirect effect of the exposure on the onte.

« Research on methods for mediation analysis istagfasving field in epidemiology and
biostatistics.
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