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Abstract 
In epidemiological studies it is often necessary to disentangle the pathways that link an exposure to 
an outcome. Typically the aim is to identify the total effect of the exposure on the outcome, the 
effect of the exposure that acts through a given set of mediators of interest (indirect effect) and the 
effect of the exposure unexplained by those same mediators (direct effect). The traditional approach 
to mediation analysis is based on adjusting for the mediator in standard regression models to 
estimate the direct effect. However, several methodological papers have shown that under a number 
of circumstances this traditional approach may produce flawed conclusions. Through a better 
understanding of the causal structure of the variables involved in the analysis, with a formal 
definition of direct and indirect effects in a counterfactual framework, alternative analytical 
methods have been introduced to improve the validity and interpretation of mediation analysis. In 
this paper, we review and discuss the impact of the three main sources of potential bias in the 
traditional approach to mediation analyses: (i) mediator-outcome confounding;(ii) exposure-
mediator interaction and (iii) mediator-outcome confounding affected by the exposure. We provide 
examples and discuss the impact these sources have in terms of bias.  
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Introduction 
The importance of mediation analysis in epidemiological studies relies on the need to disentangle 
the different pathways that could explain the effect of an exposure on an outcome. Mediation 
analysis is typically applied when a researcher wants to assess the extent to which the effect of an 
exposure is explained, or is not explained by a given set of hypothesized mediators (also called 
intermediate variables1). In this way, the total effect of an exposure on an outcome, the effect of the 
exposure that is explained by a given set of mediators (indirect effect) and the effect of the exposure 
unexplained by those same mediators (direct effect) can be defined. Intuitively, one expects that the 
total effect can be decomposed into direct and indirect effects. Suppose that the total effect of a 
binary exposure translates into a risk difference of 15%; if the direct risk difference is 10%, we 
would expect one-third of the total effect to be explained by the mediator, and the remaining two-
thirds to be explained by alternative pathways.  
In this paper, we will address the fact that this intuitive expectation of effect decomposition may not 
hold true. Also, the concept of the proportion of effect explained by a mediator can be cumbersome 
in some situations. For example, walking to work increases both the total amount of physical 
activity and the total levels of exposure to air pollution. In an epidemiological study of incidence of 
coronary heart disease (CHD), if exposure to air pollution were the mediator, walking to work could 
have a protective direct effect on CHD but a simultaneous harmful indirect effect on CHD. 
Theoretically, in this scenario we could observe no total effect (risk difference = 0) on CHD due to 
opposite direct and indirect effects.  
Epidemiological studies often require the study of mediation: for example, in studies of molecular 
mechanisms involved in disease causation, studies of socioeconomic inequality, studies of response 
to clinical treatments and studies aiming to measure the impact of public health interventions. The 



assessment of mediation can be the main aim of the study, whereas often the goal is to estimate the 
total effect, though exploratory mediation analyses are also conducted.  
The traditional approach to mediation analysis consists of comparing two regression models, one 
with and one without conditioning on the mediator.2 The exposure coefficient is then interpreted as 
a direct effect in the model adjusted for the mediator and as a total effect in the unadjusted model. 
In epidemiological studies, the proportion of the total effect explained by the mediator is typically 
obtained by the ratio of the unadjusted to the adjusted relative risks, and the percent excess risk 
explained by the mediator is obtained by a ratio where the numerator includes the difference 
between the unadjusted (total effect) and the adjusted (direct effect) relative risks, and the 
denominator includes the unadjusted excess risk (total effect).3,4 For example, if a study found a 
total effect of low vs high socioeconomic status (SES) on lung cancer risk equal to a relative risk of 
2.3 and, after adjustment for smoking, the relative risk decreased to 1.2, the percent excess risk of 
SES on lung cancer risk explained by the smoking would be 85% [(2.3-1.2)/(2.3-1)*100].  
It is now recognized that the traditional approach to mediation analysis is prone to bias arising both 
from incorrect statistical analysis and suboptimal study design. There is already a large amount of 
literature on this issue, both from a theoretical and an applied point of view, and it continues to 
grow rapidly. New statistical methods have been developed, although some are not fully 
implemented, and appropriate methods for some situations simply do not yet exist. The traditional 
approach to mediation analysis is still frequently used, and findings from earlier epidemiological 
studies that used this approach should not be discarded. It is thus fundamental to understand when, 
and to what extent, bias hampers the possibility to use and interpret traditional mediation analyses.  
In this paper we will discuss, describe and provide examples of the three main sources of potential 
bias that may cause traditional approaches to mediation analyses to give flawed conclusions:(i) 
mediator-outcome confounding, (ii) exposure-mediator interaction and iii) mediator-outcome 
confounding affected by the exposure. Throughout the paper, if not otherwise specified, we will not 
consider issues of random variation, unmeasured exposure-outcome confounders or measurement 
errors. The paper is organized as follows: we will first discuss mediator-outcome confounding using 
the aforementioned conventional definition of direct effects (i.e. the direct effect is the effect of the 
exposure on the outcome in a model adjusted for the mediator); we will then introduce a formal 
definition of direct and indirect effects in a counterfactual framework and discuss exposure-
mediator interaction; finally, we will briefly discuss situations in which mediator-outcome 
confounders are affected by the exposure.  
 
Mediator-outcome confounding 
It is well known that lack of exposure-outcome confounding is necessary to obtain a valid estimate 
of the total effect of a given exposure on a given outcome. In mediation analysis, lack of mediator-
outcome confounding is also necessary. This issue has been discussed several times in the past 20 
years, though it was overlooked in early epidemiological studies.5–7 The direct acyclic graph (DAG) 
shown in Figure 1 clarifies the issue: according to the causal graph theory, conditioning on the 
mediator M induces a spurious association between the mediator-outcome confounder U and the 
exposure A, where U becomes a confounder of the exposure-outcome association and induces bias 
(Figure 1). This is an example of collider bias, which occurs frequently in epidemiological studies 
(e.g. selection bias8). A simple example of this situation in the context of mediation analysis would 
be given by a study designed to assess how much of the total effect of exposure to environmental 
noise on CHD is mediated by hypertension. All variables that affect both hypertension and CHD 
risk, such as body mass index, diet and smoking, act as mediator-outcome confounders; therefore 
they should be measured and considered in the analyses to validly estimate the direct effect of 
noise. For those unfamiliar with DAG language,9 consider that M in Figure 1 is caused by A and U, 
both of which are sufficient causes of M. In this case, collider bias arises because in the stratum M 
= 1 (e.g. in the stratum of people with hypertension), if U were not present, A should be present in 



order to have hypertension. Therefore, in this example, for a given level of M, A and U are 
inversely associated even if they are marginally independent.  
When the mediator is included as a covariate in a regression model to estimate the direct effect of 
an exposure on the outcome, adjusting for mediator-outcome confounders (U variable in Figure 1) 
is needed to avoid bias. If some, or all, of these confounders are unmeasured or unknown, estimate 
of the direct effect might be invalid. Therefore, it is always important to assess how the results 
obtained from any mediation analysis could be affected by the possible unmeasured/residual 
mediator-outcome confounding, the main question being whether this source of bias could explain 
away the estimated direct effect.10 
The magnitude of the bias introduced by conditioning on a collider, both in a general setting and in 
the context of mediation analysis, is an issue that has been addressed by several authors.11–14 
Vanderweele provided simplified formulas to carry out, under specific assumptions, a quick 
sensitivity analysis for the estimate of the direct effect.13 On the risk ratio scale, if γ is defined as the 
direct effect of the unmeasured binary confounder U on the outcome (for given levels of the 
exposure A and the mediator M), and πa,m and πa*,m are the prevalences of the unmeasured 
confounder U among the two exposure levels a and a* at a given level of the mediator M=m, under 
simplifying assumptions the bias in the direct effect estimate of a vs a* would be obtained by: B = 
[1 + (γ-1) πa,m]/[1 + (γ-1) πa*,m]. Assuming that the unmeasured confounder U is not itself affected 
by the exposure A, the bias-corrected direct effect estimate can be obtained by dividing the risks 
ratio adjusted for the mediator by the bias factor B obtained from different scenarios of values for 
the parameters γ, πa,m and πa*,m.  
For example, in a recent study on the association between ethnicity (Maori women vs women of 
European origin) and late stage at diagnosis of cervical cancer in New Zealand, it was found that 
most of the total effect of Maori ethnicity on late stage at diagnosis (OR: 2.71) did not change much 
after adjustment for screening practices (direct effect OR: 2.39).15 The study concluded that 
ethnicity-related differences in stage at diagnosis of cervical cancer in New Zealand could not be 
explained by ethnic-related differences in screening attendance. It is possible, however, that part of 
the estimated direct effect was due to bias introduced by unmeasured mediator-outcome 
confounders. However, in order to explain completely a direct effect estimate of 2.39 among, say, 
unscreened women with this source of bias, we would have to assume, for example, that the 
supposed mediator-outcome confounder was associated with the outcome with a relative risk (γ) 
equal to 4.0, had a prevalence of 65% among unscreened Maori women and a prevalence of 10% 
among unscreened women of European origin. This scenario seems unlikely to occur in real 
practice.  
Weaker direct effects could however be entirely explained by bias due to mediator-outcome 
confounding. For example, there is a great deal of interest in understanding the role of SES 
inequalities in morbidity and mortality, and whether the effects of this variable remain after taking 
into account well known risk factors.16 In these studies, the direct effect is often fairly small, as 
typically most—but not all—of the association between SES and the disease under study can be 
explained. Let us consider the hypothetical example described in the previous section: a study on 
lung cancer yields a total relative risk for low vs high SES of 2.3, which, after adjustment for 
smoking, decreases to 1.2. A mediator-outcome confounder (say family history of lung cancer, 
assuming that is not itself affected by socioeconomic status) with, for example, a relative risk (γ) for 
lung cancer of 2.5, a prevalence of 20% among non-smokers with low SES and a prevalence of 5% 
among non-smokers with high SES, could entirely explain a direct effect of 1.2 among non-
smokers.  
It is also of interest to consider the direction of the bias. According to the Vanderweele’s formula, 
when, conditioned on the mediator, there is a positive association between the exposure and the 
unmeasured mediator-outcome confounder, which in turn has a positive direct effect on the 
outcome, the estimate of the direct effect of the exposure on the outcome is biased upwards (i.e. the 
unmeasured mediator-outcome confounder becomes a positive confounder of the exposure-outcome 



association after conditioning on the mediator). Although there are exceptions, conditioning on a 
variable (collider) that is affected by two other variables (parents) typically induces a negative 
association between the parents if they affect the collider in the same direction (either positive or 
negative), whereas the association is positive if the two parents affect the collider in opposite 
directions.17,18 Thus, if an exposure positively affects the mediator, and the supposed mediator-
outcome confounder is positively associated with both the outcome and the mediator, the direct 
effect for a given level of M is likely to be biased downwards. Returning to our hypothetical study 
on noise (exposure), hypertension (mediator) and CHD (outcome), many factors, such as smoking 
and body mass index, are likely to be positively associated with both hypertension and CHD risk. 
As noise is also expected to increase the risk of hypertension, all the associations involved are thus 
positive. In this situation, if a positive direct effect of noise on CHD is found, that effect is unlikely 
to be explained by the bias introduced from any unmeasured mediator-outcome confounders. 
Conversely, the magnitude of the positive direct effect is likely to be underestimated.  
In the recent literature on mediation analysis, the so-called low birthweight paradox, i.e. the inverse 
association of maternal smoking on infant mortality that is typically observed in children with low 
birthweight (the mediator), has often been used as an example of bias introduced by unmeasured 
mediator-outcome confounding.19 In this example, some confounders, such as birth defects, are 
positively associated with both low birthweight and infant mortality, and at the same time maternal 
smoking is positively associated with low birthweight. The resulting bias is thus downwards, 
corresponding to an apparent protective direct effect of maternal smoking on infant mortality 
among children with low birthweight. In sensitivity analyses, it has been shown that sensible 
assumptions regarding the magnitudes of the associations involved could explain away this apparent 
association.20 
Obviously, the collider bias is not the only source of bias affecting mediation analysis although it is 
probably the most largely overlooked source in past mediation analyses. Misclassification of the 
mediator, for example, can also seriously bias conclusions. A trivial example would be a non-
differential misclassification of a binary mediator so large as to obscure the presence of any indirect 
effect. As recently shown, the general rule is that a nondifferentially misclassified (binary) mediator 
overestimates the magnitude of the direct effect and underestimates the magnitude of the indirect 
effect.21 
 
Exposure-mediator interaction 
According to the traditional approach to mediation analysis, the direct effect is estimated by 
conditioning on the mediator M. In the hypothetical data reported in Table 1 there is a total risk 
difference for the exposure of 4.8%, which decreases to 2.3%, after adjustment for the mediator M, 
thus indicating the presence of a direct effect. If we estimate the effect of the exposure A in those 
without the mediator (M = 0), the risk difference for the event associated with the exposure is 2.0%. 
As the mediator in this example is a binary variable, there are two possible direct effects that can be 
estimated: the risk difference (2%) among those with M = 0, and the risk difference (18%) among 
those with M = 1. Although the risk difference is lower than the total effect in the stratum M = 0, it 
is much larger than the total effect in the stratum M = 1. In this example, the estimate of the direct 
effect depends on the value of the mediator.  
 
Table 1  
Hypothetical data on the risk of being a case associated with an exposure (A) and a mediator (M) 
Exposure (A) Mediator (M) Risk Cases Non-cases Total 

0 0 1% 100 9900 10 000 

1 0 3% 150 4850 5000 

0 1 2% 10 490 500 

1 1 20% 200 800 1000 



 
The fact that the estimates of direct effect vary across different levels of the mediator implies that 
the exposure A and the mediator M interact in explaining the outcome. In Table 1, using unexposed 
subjects without the mediator as the reference, the observed effect of being exposed with the 
mediator (risk difference = 19%) is much larger than the linear combination of the two effects of 
being in the exposed group without the mediator (risk difference = 2%) and having the mediator 
without the exposure (risk difference = 1%).  
If we are interested in estimating the effect of an exposure that is not explained by a mediator in the 
presence of exposure-mediator interaction, we need to introduce an alternative formal definition of 
direct effect,5,6,22 which provides a population summary of the effects at different levels of the 
mediator. The same applies when the relationship between the exposure and the mediator is not 
linear, but here we will not discuss this case further.  
The alternative definition uses a counterfactual framework to define natural direct effects and 
natural indirect effects that sum up to the total effect.5,6 In a counterfactual framework, the 
individual causal effect of the exposure on the outcome is defined as the hypothetical contrast 
between the outcomes that would be observed in the same individual at the same time under the 
exposure and in the absence of the exposure (or in presence of two different levels of the 
exposure).23,24 According to the counterfactual notation, Ya is the potential outcome under exposure 
A = a and Ya* is the potential outcome under the exposure level A = a*, where a ≠ a*. Obviously, as 
these are potential outcomes under alternative exposure levels, it is not possible to observe both Ya 
and Ya* in the same individual: only one of the two would be factual. The individual causal effect, 
defined as Ya -Ya*, is unlikely to be the same for all individuals of a given population. We thus 
define the population causal effect as the average of the individual causal effects, i.e. E(Ya -Ya*).  
In the context of mediation analysis, Ya,m is the potential outcome under exposure level A = a and 
mediator level M = m. The natural direct effect is defined as Ya,M(a*) – Ya*,M(a*), i.e. the difference 
between the value of the counterfactual outcome if the individual were exposed to A = a and the 
value of the counterfactual outcome if the same individual were instead exposed to A = a*, with the 
mediator assuming whatever value it would have taken at the reference value of the exposure A = 
a* (Box 1). At the population level, the natural direct effect is E(Ya,M(a*) – Ya*,M(a*)). The natural 
direct effect captures the effect of A on Y via pathways that do not involve M, although the value of 
the mediator M is allowed to vary among individuals according to all the determinants of M, with 
the exception of the exposure A. This illustrates one of the reasons why a counterfactual framework 
is used for the definition of natural direct effects, namely to conceptualize the hypothetical 
distribution of the mediator. The natural indirect effect can be defined as Ya,M(a) – Ya,M(a*), i.e. the 
contrast, having set the exposure to a fixed level A = a, between the value of the counterfactual 
outcome if the mediator assumed whatever value it would have taken at a level of the exposure A = 
a and the value of the counterfactual outcome if the mediator assumed whatever value it would have 
taken at a reference level of the exposure A = a* (Box 1). At the population level, the natural 
indirect effect is E(Ya,M(a) – Ya,M(a*)). Intuitively, the natural indirect effect captures the effect of the 
exposure A on the outcome Y due to the effect of the exposure A on the mediator M. The total 
causal effect of A on Y can now be decomposed into the sum of the natural direct effect and the 
natural indirect effect, even in presence of exposure-mediator interaction. Note that slightly 
different ways to decompose the total effect into direct and indirect effects have been proposed.5,25  
 
Box 1. Definitions of controlled direct effect, natural direct effect and natural indirect effect in the 
counterfactual framework 
 
Controlled direct effect: Ya,m – Ya*,m 

This effect is the contrast between the counterfactual outcome if the individual were exposed at A = 
a and the counterfactual outcome if the same individual were exposed at A = a*, with the mediator 
set to a fixed level M=m.  



Natural direct effect: Ya,M(a*)– Ya*,M(a*) 

This effect is the contrast between the counterfactual outcome if the individual were exposed at A = 
a and the counterfactual outcome if the same individual were exposed at A = a*, with the mediator 
assuming whatever value it would have taken at the reference value of the exposure A = a*.  

Natural indirect effect: Ya,M(a)– Ya,M(a*) 

This effect is the contrast, having set the exposure at level A = a, between the counterfactual 
outcome if the mediator assumed whatever value it would have taken at a value of the exposure A = 
a and the counterfactual outcome if the mediator assumed whatever value it would have taken at a 
reference value of the exposure A = a*.  
 
In mediation analysis, a counterfactual framework is also used to define an additional meaningful 
effect, the controlled direct effect (Box 1). Controlled direct effect is defined as Ya,m – Ya*,m, i.e. a 
contrast between counterfactual outcomes with alternative exposure values, A = a and A = a*, if the 
mediator were set to a fixed value M = m. At the population level the controlled direct effect is 
E(Ya,m – Ya*,m). As a consequence, there are as many controlled direct effects as there are levels of 
the mediator. A controlled direct effect thus corresponds to a situation in which a hypothetical 
intervention controls the mediator to a given value,6,22 whereas a natural direct effect corresponds to 
a situation in which the natural relationship between the exposure and the mediator is maintained 
(i.e. we would intervene on the exposure but not directly on the mediator). In the example of a 
hypothetical study on noise, hypertension (the mediator) and risk of CHD, the controlled direct 
effect (for hypertension = 0) would be the effect of elimination of noise exposure when controlling 
hypertension to be absent, whereas for the natural direct effect hypertension would be set at the 
value that would have been observed in the absence of noise exposure.  
In the absence of interaction between the exposure and the mediator, controlled direct effect and 
natural direct effect are equivalent. The intuitive explanation for this equivalence is that if the direct 
effect of the exposure is constant for the different levels of the mediator, setting the mediator to a 
fixed value (controlled direct effect) or considering the value that the mediator would have taken at 
the reference level of the exposure (natural direct effect) gives the same estimate (i.e. a weighted 
average between constant values gives the same result irrespectively of the weights).  
When there is interaction between the exposure and the mediator, the natural direct effect and the 
natural indirect effect still sum up to the total effect and they represent a sort of interpretable 
population average over the levels of the mediator. Note that, if exposure-mediator interaction 
exists, the estimate of the total effect associated with the exposure in a given population depends on 
the population prevalence of the mediator. The same applies to the natural effects: when exposure- 
mediator interaction is present, natural effects can be estimated and interpreted, but their estimates 
are population-specific. We would like to propose the same example discussed by Judea Pearl to 
illustrate the use and interpretation of natural direct effects.6 Pearl considered a situation where a 
drug could induce headache as a side effect, and, at the same time, could interact with aspirin taken 
to treat the drug-induced headache on its effects on the outcome. In this situation, the drug is the 
exposure and the aspirin is the mediator. Obviously, aspirin may be taken in the population for 
reasons other than the drug-induced headache. Now, imagine that the producer of the drug manages 
to eliminate headache as a side effect, and would like to know what the effect of the drug will be in 
the population, knowing that use of the drug will no longer be a cause of aspirin intake. The natural 
direct effect is the key quantity that answers this question, but its estimate depends on the aspirin 
use in absence of the exposure in that population. To further explore this concept, let us assume 
now that the drug does not work when taken without aspirin. If people in the population take aspirin 
for reasons other than the drug-induced headache, the drug would still have a natural direct effect, 
whereas if people in the population only take aspirin for the drug-induced headache there would be 
no natural direct effect after this headache was eliminated. Conversely, controlled direct effect, 
when the aspirin intake is set to be 0, would be the same in the two populations.  



How can we estimate these effects? Under specific assumptions, controlled and natural direct 
effects can be estimated using standard regression models. Assuming no unmeasured mediator-
outcome confounding and no mediator-outcome confounding affected by the exposure, the 
controlled direct effect can be estimated by conditioning the analysis on the mediator. Assuming 
also no unmeasured exposure-mediator confounding, the natural direct effect can be estimated as a 
weighted average of the controlled direct effects, with weights for each level of the mediator given 
by the probability that the mediator would have taken that value if the exposure were set at its 
reference level. Going back to the hypothetical data reported in Table 1, the estimate of the natural 
direct effect can be non-parametrically obtained by averaging the two controlled direct effects of 
2% and 18%, using the frequency of the mediator among the unexposed subjects as the weighting 
function. 26 Table 1 shows a 4.76% probability of M being present (M = 1) among the unexposed 
subjects, and the natural direct effect can be obtained by the following: [2%*(1- 4.76%) + 18% 
*(4.76%)] = 2.8%. More complex methods (see Discussion), based on parametric assumptions, are 
used when simpler non-parametric estimates are not feasible.  
As we have shown in this section, the presence of exposure-mediator interaction may introduce 
large problems in mediation analysis and in its interpretation, and therefore should be considered 
whenever interpreting the results of traditional analyses. Let us consider an additional example of a 
study that aims to understand to what extent differences in mortality by SES among cancer patients 
are explained by stage at diagnosis. If we assume there is no interaction between SES and stage at 
diagnosis, it implies that SES inequalities in mortality are the same irrespective of the stage at 
diagnosis (even if, for example, low SES is associated with later stage at diagnosis), whereas 
presence of an interaction would imply that the stage at diagnosis may increase or decrease the 
effect of SES on mortality. We assumed a simplified scenario in which, after cancer is diagnosed, 
SES has an impact on mortality only through the type and quality of treatment received by the 
patients. Then, to understand whether standard analyses designed to estimate controlled direct 
effects can provide interpretable estimates in terms of mechanisms, one of the key questions that 
needs to be posed is whether an interaction exists between SES and stage at diagnosis on mortality. 
For example, for some cancer types SES inequalities regarding treatment may occur in patients 
diagnosed at an early stage, whereas at very advanced stages where effective treatments are lacking, 
SES inequalities disappear. For other cancer types, SES inequalities might be more constant across 
stages.  
 
 
 
Mediator-outcome confounding affected by the exposure 
Finally, we introduce the third potential source of bias. As mentioned previously in the section on 
mediator-outcome confounding, it is necessary to adjust for mediator-outcome confounding in 
standard regression models to avoid collider bias. However, there are exceptions in which 
adjustment for such confounders in standard regression models still produces flawed estimates. 
Figure 2 depicts a scenario where the mediator-outcome confounder L is now affected by the 
exposure (A). In this scenario, L, also referred to as intermediate confounder, 27 is both a mediator-
outcome confounder and a variable that lies on the direct path from the exposure A to the disease Y 
(Figure 2a).  
Intermediate confounding is probably not rare in mediation analysis. Let us consider a hypothetical 
study aiming to assess to what extent the effect of smoking on CHD is mediated by 
atherosclerosis.28 A number of variables, including blood pressure, affect both atherosclerosis and 
the risk of CHD, and are also affected by smoking (Figure 2b). Adjustment for blood pressure in 
traditional regression models would bias the estimate of the direct effect by blocking the effect of 
smoking on CHD acting through blood pressure, but not atherosclerosis (i.e. the path smoking → 
blood pressure → CHD). This would induce an attenuation of the direct effect and a consequent 
overestimate of the indirect effect. On the other hand, adjustment for blood pressure is necessary to 



prevent collider bias (that is inherently introduced by adjusting for the mediator atherosclerosis). As 
discussed in the section on mediator-outcome confounding, if we assume that: (i) smoking and 
blood pressure both positively affect atherosclerosis; (ii) smoking positively affects blood pressure; 
and (iii) blood pressure positively affects the risk of CHD, adjustment for atherosclerosis would 
likely bias the direct effect of smoking on CHD downwards, although the determination of the 
direction and magnitude of bias may be difficult in complex DAGs.29 Interestingly, in this scenario 
the bias goes in the same direction whether adjusting or not adjusting for blood pressure, implying 
that it is not possible to conduct both analyses and conclude that the unbiased estimate lies 
somewhere in the middle.  
The causal structure depicted in Figure 2 has been discussed in depth, first in scenarios of time-
dependent exposures and confounders, and then in the framework of mediation analyses.30 
Statistical approaches, such as inverse probability weighting30,31 and g-computation,32 which are 
both based on the counterfactual framework, are generally able to adjust for the confounding effect 
of L without blocking the corresponding direct path from the exposure A to the outcome Y, and to 
estimate controlled direct effects, as well as, under stronger assumptions, natural direct and indirect 
effects.5,22,27,33 Briefly, these methods model the expected potential outcome under exposure A = a 
and the mediator M = m, E(Ya,m): the inverse probability weighting by regressing the outcome on 
the exposure and the mediator and by controlling for potential confounders by re-weighting the 
population instead of introducing them in the regression model; the g-computation by an extension 
of the standardization using Monte Carlo simulations.34 
To assess the amount of bias that traditional analyses could introduce in the presence of 
intermediate confounding, the strengths of the associations between the exposure and the mediator-
outcome confounder L and between L and the outcome (in our example it would be between 
smoking and blood pressure and between blood pressure and CHD) should be evaluated. If the 
presence of any of these two associations is more an issue of theoretical discussion rather than a real 
threat to the analysis, more advanced methods to deal with intermediate confounding will produce 
estimates similar to standard methods. On the contrary, if, as in our example, both associations are 
likely to play an important role, traditional analyses will not provide the correct answers.  
 
Discussion 
Research on methods for mediation analysis is a fast growing field in epidemiology; its 
development is related to the need to better understand mechanisms, and follows with somewhat 
surprising delay earlier discussions on black box epidemiology,35 conceptual frameworks36 and 
molecular epidemiology.37 Standard or traditional approaches to mediation analysis can produce 
flawed conclusions and their main limitations have been addressed at length in the methodological 
literature.  
Although the investigation of statistical methods for mediation analysis is not in the scope of this 
paper, we should emphasize that new non-parametric and parametric approaches, based on 
counterfactual framework, are now available to address some of the problems we describe herein, 
including the Mediation formula, inverse probability weighting and g-formula.5,26,27,30,33,34 These 
methods are reaching now a wide spread and are entering the epidemiological literature and 
textbooks, though they are still underused in applied epidemiology. It should be emphasized that 
their implementation may be complex, and that they are subject to strong assumptions that need to 
be met in order to obtain valid and interpretable estimates.38 Furthermore, there are epidemiological 
scenarios for which valid methods are not yet available and, for other scenarios, new approaches 
have either only recently been suggested, or more options exist but their performance has not been 
fully compared.27,39,40 
In this paper, we reviewed some of the most basic problems that can arise in mediation analysis, the 
concepts and the methods that have been developed to tackle them, and provided some examples. 
The rapid development in this field is characterized by levels of formalism and conceptualization 
that may be somewhat difficult for applied epidemiologists to integrate. This is probably the main 



reason why the new methods are being introduced rather slowly in epidemiological research. 
Indeed, one of the recent focuses of research in mediation analysis has been the development of 
simplified or unified approaches that could be adopted by a broader group of users.26,41 We predict 
that the use of new and more correct approaches to mediation analyses in common epidemiological 
studies will increase rapidly in the next years.  
 
Funding 
Lorenzo Richiardi was partially funded by the Compagnia SanPaolo Foundation and the Italian 
Association for Cancer Research. Rino Bellocco was partially funded by the Italian Ministry of 
University and Research (MIUR), PRIN 2009 X8YCBN 
Conflict of interest: None declared.  
 
KEY MESSAGES 

• Mediation analysis is common in epidemiology; it aims to disentangle the effect of an 
exposure on an outcome explained (indirect effect) or unexplained (direct effect) by a given 
set of mediators.  

• Traditional approaches to estimate the direct effect, based on simply adjusting for the 
mediator in a standard regression setting, may produce invalid results.  

• Potential sources of bias include unmeasured mediator-outcome confounding, interaction 
between exposure and mediator, and presence of intermediate confounding.  

• The validity and interpretation of mediation analysis is enhanced by using the counterfactual 
framework to conceptualize the controlled direct effect, the natural direct effect and the 
natural indirect effect of the exposure on the outcome.  

• Research on methods for mediation analysis is a fast growing field in epidemiology and 
biostatistics. 
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