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Abstract—Human gait is an important biometric feature for
automatic people recognition. Biometric methodologies are gen-
erally intrusive and require the collaboration of the subject
in order to perform accurate data acquisition. Gait, instead,
can be captured at a distance and without collaboration. This
makes it an unobtrusive method for recognizing people in
video surveillance systems. In this paper we propose a method
to characterize walking gait using three-dimensional skeleton
information acquired by the Microsoft Kinect sensor. A set
of static and dynamic features correlated to human gait are
extracted by the estimated skeleton joint positions. Moreover, we
proposed to describe joints positions in a coordinate reference
system oriented according to the walking direction to better
represents the movement of human body. Using unsupervised
clustering over a set of 20 subjects we analyze the effectiveness
of the selected features in discriminating people gaits. It turns
out that a few dynamic parameters involving the movement of
knees, elbows and head are good candidates for robust gait
characterization.

I. INTRODUCTION

Systems for automatic identification of persons have im-
portant applications in many fields, such as access control,
surveillance and forensic evaluations. Human recognition can
be performed using biometric techniques based on physio-
logical characteristics like iris, hand, face, fingerprint and on
typical behaviors like handwriting or gait. Most of biometric
techniques require expensive technologies, besides the coop-
eration of the subject. On the other hand, in surveillance
application or forensic analysis, collaboration from the subject
may not be possible or expected; in the forensic case his/her
awareness is not even desired to avoid biasing the acquisition.
Therefore, the design of gait recognition methods using non
intrusive data acquisition, e.g. not requiring the person to wear
markers or follow particular examination procedures, are of
paramount interest. Moreover, especially in video surveillance
application, it is very important to perform data acquisition
remotely using cheap sensors.

As a consequence, in this study we selected the Microsoft
Kinect sensor as a widespread and cheap technology able
to monitor body motion and gestures and satisfying the re-
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quirements discussed above. The Microsoft Kinect, originally
conceived in 2010 as a peripheral for the Xbox 360 gaming
console, has recently attracted a lot of interest from the
scientific community. Given its potential, in 2012 Microsoft
has produced a new sensor expressively devoted to scientific
research.

Kinect is a low-cost, non-intrusive system provided with
an RGB camera, an infrared (IR) emitter and an IR depth
sensor allowing to capture depth image that measures the
distance between an object and the sensor. It also includes
a multi-array microphone to record audio as well as to find
the location of the sound source and the direction of the audio
wave. Moreover, it comprises a tilt motor that changes of ±27o
the vertical range of the field of view (with a viewing angle of
43o vertical by 57o horizontal). Exploiting depth information
one is able to extract in real time the skeleton data [1] in a
map of 20 body joints as shown in Fig. 1.

The major contributions of our work are the definition
and analysis of a set of features act to describing human
gait. Such features can be extracted using the position of the
above mentioned skeleton joints. Moreover, a proper trans-
formation of the sensor reference system is proposed to get
more immediate representation and characterization of joints
trajectories. Our experimental analysis on a set of 20 subjects
show that a few important gait characteristics are very effective
in discriminating among different walking behaviors. Indeed,
using a simple unsupervised clustering algorithm we show that
is possible to characterize people with reasonable accuracy. In
particular, we found out that some gait parameters related to
the dynamic behavior of the knees, elbows and head play a
key role for gait characterization.

The paper is organized as follows. Sect. II presents an
overview of related work in gait recognition systems. In
Sect. III the proposed approach is presented in details, while
in Sect. IV our experiments and the achieved results are
discussed. Our conclusion and future work are outlined in
Sect. V.

II. RELATED WORK

Gait recognition is a relatively new biometric technique [2],
[3] that gained in recent years more interest from Computer
Vision community, due to its advantages compared to other



Fig. 1. Diagram of the set of joints in the skeleton data.

biometrics [4], [5]. There are two main approaches for rec-
ognizing gait: model-based and model-free [6]. Model-based
approaches describe human body by using a stick figure and
a set of joints. During walking it is possible to get some
parameters like trajectories of joints and angles between them,
length of limbs, and other data useful for classification. This
is a robust approach but suffers from some drawbacks, due to
the difficulty in defining the model and estimating parameters,
which may require high computational efforts [4], [5].

The model-free approaches, instead, process the silhouette
of the walking person in order to extract useful features for
characterizing gait. Thanks to low computational costs and
easy implementation, this is a less consuming technique, when
compared to model-based approaches. On the other hand, this
method gives good results only if the input data are noiseless.

In our work, we propose a model-based technique using data
captured by the Microsoft Kinect sensor, that overcomes some
drawbacks typical of these approaches. In fact, creates a body
model represented by a skeleton made up of 20 joints, tracked
it in real time. Thanks to these features, in recent years the use
of Kinect for gait recognition purposes has gained considerable
success, as shown in [7], [8], [9], [10], [11], to mention a few.

Gait analysis is of interest not only for biometric purposes; it
could also be relevant in video surveillance systems [12], [13],
[14], forensics [15], [16], [17] and health care applications.
Other application fields that may have benefit from gait
analysis are in-home rehabilitation therapy [18], monitoring of
elderly population in order to assess the fall risk or medical
frailty [19], [20], [21], and others.

III. PROPOSED METHOD

In this paper we propose a model-based approach to gait
description based on the skeleton model provided by Kinect.
As already mentioned, Kinect computes and tracks human
skeleton in real-time. The sensor is able to manage two
subjects in its field of view, but in our experiments we tracked

TABLE I
SKELETON JOINT NOTATION.

Joint Joint Joint Joint
Label Type Label Type
J0 Hip Center J10 Wrist Right
J1 Spine J11 Hand Right
J2 Shoulder Center J12 Hip Left
J3 Head J13 Knee Left
J4 Shoulder Left J14 Ankle Left
J5 Elbow Left J15 Foot Left
J6 Wrist Left J16 Hip Right
J7 Hand Left J17 Knee Right
J8 Shoulder Right J18 Ankle Right
J9 Elbow Right J19 Foot Right

a single subject for simplicity. Kinect records RGB and depth
videos and extracts the skeleton map. In this work we exploit
only this latter information consisting in:

• the positions of the 20 joints of the skeleton model
shown in Fig 1; the joints coordinates are given in the
3-D coordinate system xyz centered on the sensor, with
x, y and z representing the horizontal, vertical and depth
direction as shown in Fig. 2;

• the floor-clipping-plane vector, which contains the co-
efficients of an estimated floor-plane equation in the
coordinate system of the sensor. The plane is given in
the canonical form Ax + By + Cz + D = 0, where
(A,B,C) is the normal vector to the plane and D is the
height of the camera center with respect to the floor. This
plane is an estimate of the floor plane where the subject
is walking, whose equation clearly depends on the sensor
tilt;

• a time function, that represents the corresponding frame
number, being the frame rate approximatively 30 frames
per second (fps).

In the following the joints will be referred to using the nota-
tion reported in Tab. I. A rich set of biometric measurements
can be defined thanks to the knowledge of the positions of
the 20 joints. Being the joint positions the output of complex
computer vision system, the obtained estimates are potentially
affected by measurement noise. To limit noise effects the
time series corresponding to the positions of a given joint is
processed by a median filter. The size of the median filter has
been selected so as to smooth out anomalous points without
impacting on the dynamic features of the time series.

In the following we will distinguish between static biometric
parameters, e.g., height, and dynamic gait parameters that
depend on the dynamic and mutual positions of one or more
joints.

A. Static parameters

Using skeleton data, we extract standard biometric mea-
sures. In particular, we compute the length of limbs (arms and
legs) calculating the distance between the relevant joints. We
estimate the length of the arm α, averaging all the left and right
arm lengths for each subject acquisition. The same definition
is used to associate a leg length β to each acquisition trial.



Fig. 2. The Kinect 3D coordinate system.

Furthermore, we estimate the average value of the subject
height γ, evaluated as the summation of all the mutual
distances between pairs of joints going from the head to the
left (or right) foot.

B. Dynamic parameters

Since our objective is gait characterization we clearly need
to extract a set of measures related to the dynamic behavior
of the joints.

First of all, we extract standard gait features such as stride
length δ and the walking speed ν. The stride length is defined
as the distance between two stationary positions of the same
foot while walking. To this end we have implemented a simple
stride detection mechanism based on the detection of left (and
right) foot movements. The foot is considered in movement
if its position has changed (with a certain tolerance dtol) with
respect to its position in previous fn frames. The stride length
is estimated as the distance between two stationary positions
of a left (or right) foot. The details of the procedure followed
to estimate the stride length are given in Algorithm 1. Based

Algorithm 1 Stride length estimation
if frameNumber is multiple of fn then
if |previousFootPos− currentFootPos| > dtol then

if !footIsMoving then
footIsMoving ← True;
startFootPos← previousFootPos;

end if
else

if footIsMoving then
footIsMoving ← False;
strideLengh← d(startFootPos, previousFootPos)

end if
end if
previousFootPos← currentFootPos;

end if

on our experimental analysis we set fn = 3 and dtol = 5
cm. The gait feature that in the following will be referred to
as δ is computed as the average of all the available estimates
on both right and left stride lengths. The walking speed ν is
then obtained as the ratio between the distance covered by the

center of mass during a single stride and its duration. Also in
this case we compute a unique gait feature averaging all the
acquired speed estimates.

Beside standard stride length and speed characterization is
quite intuitive that gait can be characterized by a number
of different behaviors involving the movement of the whole
body, e.g. how much one oscillates with the head or the
shoulders, the distance between the legs, etc. To investigate the
impact of such features we define a proper transformation of
Kinect coordinates system so as to be able to project the joint
movements onto 3 planes that are respectively parallel and
normal with respect to the walking direction. Given the limited
depth range allowed by the Kinect any subject can be tracked
only for a limited amount of time (typically corresponding
to three or four strides). It is quite reasonable to assume
that, during such limited observation period, the subject walks
straight. This allows us to define a unique walking direction
per each acquisition.

As a consequence, a novel system of coordinates where the
plane xz coincides with the floor-clipping-plane estimated by
the Kinect, axis y is the normal vector to the floor and axis
z points in the walking direction, is defined. The unit vector
on axis y is therefore ny = (A,B,C). Then we define the
walking direction as the line described by the movement of
the center of mass. To define the unit vector nz of axis z
we project such direction on the floor plane. To make the
estimation of the walking direction automatic and robust a
few positions of the center of mass have been averaged at the
beginning and end of the observed walk, respectively.

Finally, the missing orthogonal x axis is found defining the
normal unit vector nx = ny×nz . Such new orthonormal triple
defines the rotation matrix

R =

 nx
ny
nz


from the Kinect coordinates system to the gait coordinate
system.

From now on we consider all the joints positions expressed
in the novel gait coordinates reference system. During exper-
imentation we noted that different subjects exhibit different
patterns of certain joint positions observed on the plane normal
to the walking direction, i.e. xy plane. As an example, on the
plane xy one can observe the lateral oscillation of the head
or the movement performed with the hands. To characterize
the dynamic behavior on plane xy we computes a set of
features corresponding to average value and variance of the
joint positions along x (and y) axis as follows:

µk,x =
1

n

n∑
i=1

Jk,i(x)

µk,y =
1

n

n∑
i=1

Jk,i(y)

σ2
k,x =

1

n− 1

n∑
i=1

(Jk,i(x)− µk,x)
2



TABLE II
GAIT FEATURES NOTATION.

Label Features
α Length of the arms
β Length of the legs
γ Height of the person
δ The strides length
ν The walking speed
ε Mean distance between the elbows
κ Mean distance between the knees
η Mean distance between the hands
λ Mean distance between the ankles

σ2
J3,x Variance of Head movement in x direction
σ2
J3,y Variance of Head movement in y direction
σ2
J4,x Variance of left Shoulder movement in x direction
σ2
J8,x Variance of right Shoulder movement in x direction
σ2
J5,y Variance of left Elbow movement in y direction
σ2
J9,y Variance of right Elbow movement in y direction

σ2
J13,y Variance of left Knee movement in y direction
σ2
J17,y Variance of right Knee movement in y direction

σ2
k,y =

1

n− 1

n∑
i=1

(Jk,i(y)− µk,y)
2

where Jk,i is the position of the k-th joint at time i with
i = 1, . . . , n.

Finally, we extract as other possible characteristics of human
gait the mutual distance between corresponding left and right
joints, such as elbows, hands, knees and ankles. We decided
not to use feet positions because we noticed that these are very
critical points to be tracked due to occlusion and noise. To
get a single measurement per acquisition we compute global
averages of such distances.

All the features analyzed and evaluated in the following
experimental section have been collected in Tab. II to easy the
task of the reader.

IV. EXPERIMENTAL RESULTS

The goal of our experimental analysis is to find out which
of the parameters defined in Sect. III are more appropriate for
gait description and classification.

To this end, we acquired the skeleton model of 20 subjects
using Kinect for Windows and SDK 1.6. In order to rank the
effectiveness of the gait features for recognition application,
we selected 5 pairs of people having compatible heights. The
subjects comprises 12 males and 8 females. The Kinect sensor
has been placed at about one meter from the ground and
every subject has been asked to walk towards the camera in a
natural manner. Every acquisition has been repeated 10 times,
thus recording a total of 200 gait samples. Each sample has
been analyzed according to method described in Sect. III. In
particular joints positions have been filtered with median filter
with size 7 and all the gait features shown in Tab. II have been
calculated.

In Fig. 3 a sample acquisition is shown where the trajecto-
ries described by the skeleton joints during time are projected
on the xy (front) and zy (sagittal) planes, respectively.

Clustering experiments have been worked out using the K-
means unsupervised algorithm [22] with Euclidean distance.
Given K desired clusters, K-means defines K centroids
and refines them iteratively. At each iteration data samples
are clustered according to their distance with respect to the
centroid. In turn centroids are updated based on the resulting
clusters.

First of all, we tested the ability to discriminate between
two subjects in a pair using K-means with K = 2. To
this end we have formed different sets of features starting
with all static characteristics, e.g. height, arms and legs and
then we have included more dynamic parameters. The goal
is to isolate those features that play an important role in
gait characterization. In Tab. III the results achieved using
different combinations of features are shown. The tested sets of
features have been selected by taking into account the human
locomotion. Producer accuracy, i.e., the ratio between correctly
classified samples over number of trials, has been employed
as a metric of clustering performance. The third column of
Tab. III show the average producer accuracy obtained on all
the 5 pairs of subjects. It can be noted that feature sets 1
to 7, that use different combinations of static and dynamic
characteristics, exhibit generally lower clustering accuracy that
the other sets including only dynamic parameters. The set 8,
using only ε and κ, i.e. the average distance between elbows
and knees, achieves a much higher accuracy than previous
combinations. Adding ankles and hands average distances (see
sets 9, 10, 11) does not help because hands may be less
important gait characteristics whereas Kinect ankles tracking
is not precise. Finally, all other attempts aiming at improving
pair clustering accuracy based on other dynamic features,
e.g. average and variance of selected joints, exhibit minimal
variations (visible only on fractional part) with respect to
combination 8.

Fig. 4 shows an example of the dispersion of 20 gait samples
of one pair of subjects with respect to the corresponding
centroids in the plane εκ, corresponding to the best clustering
features. The top figure refers to a typical case, whereas bottom
figure is the worst experimented situation. It can be noted that
the two pairs can be correctly discriminated in such a plane.

In the second set of experiments we have followed the
same clustering strategy on the whole dataset, comprising 200
samples of 20 different subjects. Executing K-means with
K = 20, the clustering accuracy has been obtained for various
features combinations as shown in Tab. III (fourth column). In
this trickier clustering task the best producer accuracy turns out
to be about 50%, that is significantly better than chance (5%).
The behavior of the different combinations of gait features
is quite similar to that observed for pair classification. In
particular, it is worth pointing out that again the domain ε, κ
yields a high clustering accuracy. Furthermore, also the vertical
and side variance of the head (set 12) and vertical variance of
left and right knees (set 16, 20) seem to improve the results.



Fig. 3. Joint trajectories along time projected on xy front (left) and zy sagittal (right) planes.

TABLE III
CLUSTERING RESULTS (PRODUCER ACCURACY) ON SIMILAR PAIRS AND ALL 20 SUBJECTS.

Set Features Success Rate Pairs Success Rate All Subject
1 α, β, γ 66% 45%
2 α, β, γ, δ, ν 70% 44%
3 α, β, γ, ε, κ 66% 43%
4 α, β, γ, ε, κ, σ2

J3,x, σ2
J3,y 66% 45%

5 α, β, γ, ε, κ, σ2
J3,x, σ2

J3,y , σ2
J4,x, σ2

J8,x 66% 44%
6 α, β, γ, ε, κ, σ2

J3,x, σ2
J3,y , σ2

J13,y , σ2
J17,y 66% 44%

7 α, β, γ, ε, κ, σ2
J3,x, σ2

J3,y , σ2
J4,x, σ2

J8,x, σ2
J13,y , σ2

J17,y 66% 44%
8 ε, κ 88% 51%
9 ε, κ, λ 73% 39%
10 ε, κ, η 67% 30%
11 ε, κ, λ, η 67% 28%
12 ε, κ, σ2

J3,x, σ2
J3,y 88% 52%

13 ε, κ, σ2
J3,x, σ2

J3,y , σ2
J4,x, σ2

J8,x 88% 50%
14 ε, κ, σ2

J3,x, σ2
J3,y , σ2

J13,y , σ2
J17,y 88% 50%

15 ε, κ, σ2
J3,x, σ2

J3,y , σ2
J4,x, σ2

J8,x, σ2
J13,y , σ2

J17,y 88% 50%
16 ε, κ, σ2

J13,y , σ2
J17,y 88% 51%

17 ε, κ, σ2
J5,y , σ2

J9,y 88% 50%
18 ε, κ, σ2

J13,y , σ2
J17,y , σ2

J5,y , σ2
J9,y 88% 49%

19 ε, κ, σ2
J13,y , σ2

J17,y , σ2
J4,x 88% 49%

20 ε, κ, σ2
J13,y , σ2

J17,y , σ2
J8,x 88% 51%

V. CONCLUSIONS AND FUTURE WORK

In this paper we have introduced a rich set of features
allowing one to characterize human gait by means of a tracked
skeleton model. Our experiments, worked out with the Kinect
sensor, show that a few features play a very important role
in gait characterization. In particular, we have found out that
some dynamic characteristics of gait related to the positions of
the knees, elbows and head are very helpful in distinguishing
different walking subjects. On going work is based on the
application of mutual information [23] for the selection of
most important gait characteristics. Future works are the de-
sign of a reliable gait recognition system for video-surveillance

and forensic applications. Moreover, for reproducibility of the
experiments and comparison of research results we plan to
build a public database of gait samples.
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