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Abstract

The theoretical probability of misclassification in a mastery test is

exactly computed using the raw score probability distribution (in the

Rasch model) as a function of the examinee’s latent ability. The result-

ing misclassification probability curve, together with the latent ability

distribution in the group of examinees, completely determines the ex-

pected rate of classification errors. It is shown that several distinct

ability thresholds, playing different roles in connection to classifica-

tion reliability, can be associated to a test with a single cut score. In

particular, it is possible to define (and compute) two relevant ability

∗Part of this work has been done within the TARM Project of the University of Turin.
The authors wish to thank prof. Mauro Gasparini for useful discussions, prof. Roger E.
Millsap for drawing their attention to Birnbaums original work, and an Associate Editor
of Psychometrika for suggesting a deeper investigation of the 2PL case.
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intervals, which encapsulate the functioning of a mastery test (about

and far from the cut score, respectively); the dependence of these

intervals on the item difficulty spectrum is investigated. Extension

to the 2PL model is also discussed, with emphasis on the effects of

weighted scoring.

1 Introduction

This article addresses the problem of how many examinees should be ex-

pected to be incorrectly classified in a multiple–choice test leading to a

pass/fail result (i.e., a mastery test). The pass–fail reliability (or classifi-

cation consistency) of multiple–choice tests is a classical subject, which has

been thoroughly discussed in the sixties by Birnbaum (Lord & Novick, 1968)

and subsequently reconsidered, from different viewpoints, in several papers

(see e.g. Wilcox (1977), Huynh (1990), Livingston & Lewis (1995), Young

& Yoon (1998), Rudner (2005), Wainer et al. (2005), Gatti & Buckendahl

(2006), Guo (2006) and references therein). Various methods have been pro-

posed to assess the reliability a posteriori (i.e. after the test has already

been administered, on the basis of the observed results) and/or to define

consistency indexes based on asymptotic statistical inference.

The accuracy of a diagnostic test, in general, is measured by the rate of

examinees being correctly classified. However, for multiple-choice mastery

tests the probability of misclassification is not the same for all individuals:
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any overall correct classification rate depends on the ability distribution in

the examinees’ group, hence such a percentage cannot represent the intrinsic

accuracy of the test.

(Notice that, in general, accuracy would denote the overall rate of correct

classifications, while reliability would more specifically denote the rate of

true positives over all positives: but, in a mastery test, reliability of “fail”

and of “pass” results are often equally important, so “pass-fail reliability”,

“accuracy” and “consistency” are often used as synonyms in this context).

Hence, the starting point is computing the probability of misclassification

for a single individual in a given test. This problem presents at least three

facets:

i) the definition itself of “misclassification”;

ii) the computation of the probability of misclassification for an individual

with a given (latent) ability ;

iii) the computation of the misclassification probability for an individual

who got a specific score in the test.

Posterior assessment of the overall reliability of a test, i.e. estimates of the

total amount of false masters and false non-masters based on observed score

distributions, can be obtained from (iii). In contrast, considerations useful

for test design should stem from (ii). This article deals with (i) and (ii) only.

The definition of misclassification is not quite obvious. Any mastery

test involves a pass-fail criterion, which is represented by a cut score s0 (the
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minimum score required to pass the test); but to claim that an individual

“should have passed the test, and nevertheless failed” (or vice versa) it is

necessary to attribute either a “true score” or a “latent ability” to the exam-

inee. In the true-score approach, it is easy to describe misclassification: an

examinee is incorrectly classified in a test if either failed the test although

his/her theoretical true score lies above the cut score, or passed the test in

spite of having a true score below the cut score (Livingston & Lewis, 1995).

Misclassification could also be defined as a mismatch between the results

obtained, in a sequence of equivalent tests, by the same group of individuals

(test-retest reliability); this, however, entails both theoretical and practical

problems (Huynh, 1990).

Within a latent trait model, instead, one should contrast the pass/fail

criterion (i.e., the cut score) with a “true mastery” criterion formulated in

terms of latent ability. A seemingly natural way to express a mastery criterion

is fixing a threshold ability (or mastery level) θ0: then, denoting by θlat the

latent ability of a subject and by θobs the estimated ability corresponding to

the response to the test, an examinee is misclassified if either θobs < θ0 ≤ θlat

or θlat ≤ θ0 < θobs (Huynh, 1982).

Birnbaum’s original setting of the problem in chap. 17 of Lord & Novick

(1968), in fact, was different: he assumed that two ability thresholds, θ1 and

θ2, were established by the test makers as “definitely low” and “definitely

high”, respectively, in connection to the specific purposes of the test. For

abilities between θ1 and θ2, according to Birnbaum, “neither classification
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is considered erroneous and no error probabilities are considered”. The as-

sumed amplitude of such an “indifference interval” heavily affects the value

of any index of classification reliability, since for abilities within this interval

both pass and fail results are regarded as correct by definition. Once fixed

θ1 and θ2, it is possible to seek the item difficulty distribution and the choice

of the cut score which would minimize the total misclassification probabil-

ity. Birnbaum showed that in general this is achieved (in the 2PL model)

by choosing items with the highest possible discriminating power, and with

difficulties all belonging to the interval (θ1, θ2). In particular, in the limit

θ2 → θ1, all items should have the same difficulty: this distribution is also

the one which maximizes the test information function at θ1.

From Birnbaum’s exposition, it may seem that the “indifference interval”

could be safely shrunk into a single ability threshold. In fact, the “optimal

cut score” is computed using the lower threshold θ1 (to keep the probability

of false masters below a given confidence level), while the upper threshold θ2

is only used to evaluate the probability of false non-masters. Yet, Birnbaum

shows the plot of the misclassification probability curve for the case of a

“large” indifference interval (Lord & Novick, 1968), Fig. 17.4.3, but not the

plot which would result while setting θ1 ≡ θ2. It will be shown below that

exactly such a plot uncovers the problems arising while considering a single

threshold ability.

On the other hand, more recent works on pass-fail reliability make no

reference to two ability levels: the authors refer either to a single mastery
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ability or to a single cut score. In both cases, the relation binding the pass/fail

criterion (i.e., the cut score ) to the mastery level remains concealed.

Here it will be assumed that the mastery test aims at separating the

population of examinees into exactly two ability groups, without devising

any “indifference interval”: accordingly, a single ability threshold will be set

to define “mastery”. To describe the relationship between the cut score s0

and the mastery level θ0, one should distinguish between two situations:

(A) the cut score s0 is set first: the test givers fixed the cut score upon

examination of item content (e.g., using the Angoff procedure), without

reference to any specific latent ability level. In this case, to tell whether

a subject has been correctly classified or not, one should determine

which threshold ability θ0 corresponds, in some appropriate sense, to

the choosen cut score;

(B) the mastery level θ0 is set first: the test is aimed at assessing a prede-

termined ability threshold, which has been fixed on test-independent

grounds (as is assumed in most literature about mastery tests, see

e.g. (Huynh, 1980)) and is supposed to remain the same throughout

test sessions using different item sets. Then, the question is which cut

score s0 should be adopted, for each test set, to decide whether the

sought ability level is reached or not.

In sect. 2 a concrete example, where the different setting in the two cases is

illustrated, is used to motivate a number of useful definitions and to state the
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main problems: predicting the amount of classification errors, and selecting

the test items so to minimize this (expected) amount.

Sect. 3 is devoted to recalling or introducing the definitions and methods

which constitute the core of the present investigation. Sect. 4 deals with

the problem of relating reliability to the item difficulties’ distribution. In

Sect. 2–4 only the Rasch model is considered: Sect. 5 concerns the extension

of the results to the 2PL model.

Sect. 6 draws the conclusions, which point towards a picture which is

somehow reversed with respect to Birnbaum’s setting. Instead of starting

from an indifference interval (which – once associated with a given confidence

level – would determine the choice of the cut score), one can start from

a single mastery level: this generates a pair of nested “critical intervals”.

The largest interval defines a “definitely low” and a “definitely high” ability

(in the sense that outside that interval the misclassification probability is

negligible). The inner interval is instead the neighborhood of the mastery

level where the misclassification probability exceeds 0.5. Both intervals can

be explicitly calculated if the item difficulties are known. It is shown that

only the outer interval is related to the value of the test information function:

this explains why, in a number of cases, the common belief that increasing

the test information function improves the pass-fail accuracy may be wrong.

7



2 Setting of the problem

In this section, some general definitions will be given (or recalled) alongside

the discussion of a specific example. In this way, the motivations for the

definitions themselves and for the subsequent analysis should be clearer.

Suppose that we are dealing with a test set formed by ten items, whose

difficulties are assumed to be:

β1 = −0.89 β2 = −0.65 β3 = −0.64 β4 = −0.58 β5 = −0.33

β6 = −0.28 β7 = −0.06 β8 = 0.04 β9 = 0.35 β10 = 0.81
(1)

As anticipated in the introduction, the same test set can be used in two

different ways. In case (A) the test makers decided that the cut score s0

should be set, for instance, to 6. In case (B), instead, test makers intend to

use the test set (1) to assess a predetermined mastery level, say θ0 = −0.20.

2.1 Case A: predetermined cut score

In our example, the cut score is ab initio set to 6. Then, one has to identify

the ability level which should, in principle, lead to a “correct” pass result.

For a test with N items, it is possible to compute the average (number-

right) raw score expected for a given latent ability. A correspondence between

the score scale and the abiity scale is then given, in the Rasch model, as

follows (Baker, 1992):

Definition 1 The Test Characteristic Curve maps any ability θ to the cor-
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responding expected value S(θ) of the number-right score:

S(θ) =
N∑

i=1

Pi(θ), (2)

where Pi(θ) is the probability of correct response to the i-th item. In the

Rasch model, where

Pi(θ) =
1

1 + e(βi−θ)
, (3)

the maximum likelihood estimate for the ability is the (unique) preimage of

the observed raw score under the TCC; we shall denote this preimage by Θ(s).

Neither of the extremal scores, s = 0 and s = N , corresponds to a

finite ability estimate; in common practice it is customary to assign two

conventional finite ability values to extremal scores, but this is irrelevant

for the present purposes. It is important, instead, to keep in mind that –

since only integer scores can be obtained – estimated abilities can take only

a discrete set of values:

Definition 2 In a given Rasch test, the only observable abilities, i.e. the

possible ability ML estimates, are the TCC preimages Θ(n) of the integer

scores n = 1 . . . (N − 1).

The distance between two consecutive observable abilities is determined

by the slope of the TCC. The latter is given by the sum of the derivatives

of the probabilities (3): each of these derivatives is maximal at θ = βi.

Therefore, the maximum possible slope of a TCC, for a test with N items,
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Figure 1: TCC (Test Characteristic Curve) for the sample test (1)

is attained if all βi are equal to some given value β, is located at θ = β and

equals N
4 , as can be easily checked. The slope at any other point (and at any

point, in the case of a generic item difficulty spectrum) is always lower. It

follows that

Proposition 1 In a Rasch test with N items, the distance between two ob-

servable abilities is always greater than 4
N (in the logit scale).

Intermediate ability values have no chances at all of being attributed to

an examinee when using the given test set. This contrasts, for tests with few

items, with the widespread assumption that the ability estimate be normally

distributed around the true latent ability (this is, instead, the asymptotic

limit for large N).

For the sample test (1), Fig.1 shows the plot of the TCC, and here is the

list of observable abilities Θ(s) (rounded to the second decimal digit), which

correspond to the vertical lines in the figure:
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Θ(1) = −2.51 Θ(4) = −0.66 Θ(7) = 0.67

Θ(2) = −1.68 Θ(5) = −0.23 Θ(8) = 1.23

Θ(3) = −1.12 Θ(6) = 0.20 Θ(9) = 2.08

(4)

The ability corresponding to the cut score s0 = 6 under the TCC is thus

Θ(s0) = 0.20. It might seem natural to regard this ability as the mastery level

associated to the cut score. With that threshold, an individual having ability

below 0.20 and passing the test should be considered a “false master”, while

individuals with ability greater or equal to 0.20 and failing the test would be

regarded as “false non-master”.

On this basis, the theoretical misclassification probability for a given la-

tent ability can be exactly computed, as will be shown later. It turns out

that for an ability of 0.10, for instance, the probability of passing the test

(resulting a false master) is 0.58: such an individual has therefore higher

chances of being classified incorrectly than correctly.

It may seem surprising that the error probability can exceed 0.5. To

ensure that the error probability is nowhere greater than 0.5 one should, in

fact, consider a different ability threshold: namely, the ability level such that

the probability of passing the test exactly equals 0.5.

Definition 3 Given a test set and a cut score, the critical ability, hereby

denoted by θc, is the latent ability giving equal probabilities of passing or

failing the test.

As shown in the next section, the ability θc is uniquely defined in this way.
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For the sample test (1) with cut score at 6, the critical ability turns out

to be θc = −0.024, much lower than the threshold previously considered.

Choosing θc instead of Θ(s0) as the “mastery level” changes the defini-

tion of misclassification for all individuals falling within the ability interval

between these two values. For test set (1), for instance, the chances of mis-

classification for an individual with latent ability 0.18 would drop from 64%

(the probability of passing the test) to 36% (the probability of failing the

test).

Adopting the critical ability as the mastery level for a test with prede-

termined cut score solves the problem of ensuring that the individual mis-

classification probabilities never exceed 0.5. Any other choice of the mastery

threshold will necessarily raise the misclassification probability above 0.5 in

some range of abilities.

2.2 Case B: predetermined mastery level

In contrast with the previous case, a mastery level θ0 = −0.20 has been

assumed a priori. Then, two questions arise: first, which is the appropriate

cut score?

A Rasch ML estimate would attribute an ability level θobs = −0.23 to any

individual scoring 5, and θobs = 0.20 to any individual scoring 6, as shown in

(4). Hence, requiring θobs ≥ θ0 entails setting the cut score equal to 6. More

generally, in case (B) the cut score for the test set is uniquely determined by

the mastery level:

12



Proposition 2 In a given Rasch test, if MLE is used to connect the ability

to the observed score, assuming a threshold ability level θ0 necessarily sets

the cut score s0 to the lowest integer greater than (or equal to) S(θ0).

The next question then becomes: is the test set really apt to assess the

mastery level θ0 = −0.20? As already mentioned, Birnbaum’s analysis shows

that in an optimal mastery test set all items should have the same difficuly.

But in real situations one is unable to produce at will items having a pre-

determined difficulty level. Test makers, in the best possible situation, have

at their disposal a large set of items whose difficulty is known with good ac-

curacy after calibration in previous tests, and can select the test items from

that item pool. The problem is thus selecting a “good” test set, hopefully

the best one, among all concretely available choices.

Now, the average difficulty of the test set (1) is β̄ = −0.223; the standard

measurement error (the square root of the inverse of the test information

function) at θ0 turns out to be σ = 0.65, while for an “ideal” test with 10

items with equal difficulty β = θ0 the standard error would be σ = 0.63.

Thus, judging from the fact that the average difficulty of the test is fairly

close to θ0 (only 0.02 logit higher), and that the expected measurement error

is not far from the “optimal” test, the choice of test set (1) would hardly

seem unreasonable. And yet, it will be shown below that this conclusion is

fallacious: in order to foresee the reliability of the test one should rely on a

different analysis, which is the subject of the next sections.

It should now be clear that the situations depicted as A and B are differ-
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ent, although the test set and the cut score s0 are exactly the same, because

the definition of misclassification depends on whether one assumes the mas-

tery level θ0, in our example, to be equal to Θ(6), to θc or to −0.20 (any

threshold ability greater than −0.23 and not exceeding 0.20 would in fact

yield s0 = 6). The differences in misclassification probabilities only affect

latent abilities in the range between two consecutive observable abilities, in

our case Θ(5) and Θ(6). The disparity would thus disappear upon adopting

Birnbaum’s setting of two mastery thresholds, provided these are separated

by an “indifference interval” large enough to contain both Θ(s0 − 1) and

Θ(s0).

2.3 Evaluating the misclassification probability

Once chosen an appropriate misclassification criterion, theoretical computa-

tion of the probability that an individual with a given ability is incorrectly

classified presents no ambiguity. This is discussed in the next sections; here,

instead, the misclassification frequencies obtained in a computer simulation

for the test set (1) will be confronted with probabilities estimated according

to the method introduced in (Rudner, 2005).

According to this method, the approximate probability of incorrect classi-

fication would be obtained as follows. The ability estimate θobs for an exami-

nee with given latent ability is assumed to be normally distributed, whereby

the mean of the distribution coincides with the latent ability, µ = θlat, and

the variance equals to the inverse of the test information function evaluated
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θlat θ0 = −0.024 θ0 = 0.20 θ0 = −0.20
% obs. % exp. % obs. % exp. % obs. % exp.

-0.723 13.6 14.7 13.6 8.30 13.6 21.6
-0.612 17.9 18.6 17.9 10.9 17.9 26.6
-0.501 21.8 23.3 21.8 14.2 21.8 32.3
-0.390 28.4 28.7 28.4 18.2 28.4 38.5
-0.279 34.4 34.7 34.4 23.0 34.4 45.2
-0.167 40.9 41.3 40.9 28.6 59.1 48.0
-0.056 47.7 48.0 47.7 34.8 52.3 41.3
0.055 44.9 45.2 55.1 41.2 44.9 34.8
0.166 37.8 38.7 62.2 47.9 37.8 29.0
0.277 31.4 32.7 31.4 45.4 31.4 23.9

Table 1: Misclassification rates (observed vs. expected according to Rudner’s
estimate) for test set (1), for different mastery levels compatible with the cut score
s0 = 6.

at the latent ability, σ2 = F (θlat)−1. Then, the probabilty of misclassification

Pm for the ability θlat is given by the value of the corresponding normal cu-

mulative distribution Φµ,σ at the mastery threshold. Namely, Pm = Φµ,σ(θ0)

if θlat ≥ θ0, and Pm = 1 − Φµ,σ(θ0) if θlat < θ0. The highest misclassifi-

cation probability obtained in this way is always 0.5 and occurs when the

latent ability exactly equals the mastery level, independently of the test set.

In Table 1, misclassification rates observed in computer simulation (using a

sample of 10 000 ”virtual individuals” for each ability level) and (Rudner)

expected rates are compared, for the three possible mastery levels considered

in the previous discussion. Ten reference abilities have been chosen at equal

distances, centered on the average item difficulty of the test.

While the expected rates reasonably match the observed rates when θ0 is

set equal to the critical ability θc = −0.024, the disagreement is noticeable

15



in the other two cases. Rates of misclassification higher than 50% cannot

be expected within Rudner’s approach, and nevertheless they occur. Even

outside the ability range (−0.20, 0.20), the discrepancy between observed and

expected rates can exceed 10%. It can be seen that:

• in situation A, i.e. when the mastery level can be chosen to suit the

given test set and cut score, setting it equal to the critical ability θc

produces the lowest misclassification rates; with this choice, moreover,

Rudner’s estimates of such rates turn out to be fairly accurate. In

contrast, regarding Θ(s0) as the mastery level for this test leads to

large misclassification rates (underestimated by Rudner’s method);

• for situation B, observed error rates reveal that test set (1) is actually

unsuited to assess the sought mastery level θ0 = −0.20. This fact

could not be detected from the average difficulty of the test set, nor

from the value of the test information function. Actually, it does not

even depend on the gap between θ0 and Θ(6): as will be shown in the

next section, it is instead the distance between θ0 and θc which matters.

The mere observation that the assumed mastery level θ0 = −0.20 is very

much closer to Θ(5) than to Θ(6) might lead one to guess that, in situation

B, lowering the cut score to 5 would considerably reduce misclassification.

On the contrary, the overall situation would not improve at all: only, the

highest misclassification rates would be shifted to lower abilities. In fact,

with a cut score of 5 and with the same mastery level θ0 = −0.20, the ob-
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served misclassification rates for latent abilities −0.390 and −0.279 become,

respectively, 53.5% and 59.4%. Moreover, fixing the cut score at 5 would be

inconsistent with the fact that Θ(5) < θ0.

In conclusion, in situation A a viable strategy exists in order to minimize,

compatibly with the given test set, both misclassification and error estimation

issues: the strategy consists in choosing the critical ability as the mastery

level corresponding to the given cut score.

In situation B, instead, nothing can be done but changing the test set itself

to match the mastery level, but it is not evident how to do so. Connecting

misclassification with the standard measurement error would suggest that

the test set should be chosen so to maximize the information function at

the examinee’s true ability, which may be endeavored using adaptive testing

(adaptive mastery tests are indeed a particular case of situation B). On the

other hand, it has been proven by Birnbaum that for an “optimal” mastery

test the information function should reach its maximum at the mastery level,

not at the examinee’s ability: this seems to be an argument against the use

of adaptive tests for mastery assessment.

But the example discussed so far shows that the value of the test informa-

tion function at the mastery level does not reveal, by itself, the extent of the

reliability issues: what is more, increasing the information function does not

always improve the pass-fail reliability. Going back to the example, suppose

that test makers manage to substitute both the easiest and the most difficult

item in (1) with two new items having difficulty exactly equal to θ0 = −0.20.
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It can be seen (by computing the TTC) that for the new test set the cut score

is still 6, and the test information function at the threshold is indeed increased

(from 2.361 to 2.443, against a maximum possible value of 2.5 for a 10-item

test set). Performing again a computer simulation (with the same reference

abilities) for the new test set, one finds that the highest misclassification

probability in the table (at θlat = −0.167) is reduced from 59.1% to 57.8%,

and the misclassification probabilities for higher abilities (false non-masters)

are reduced as well, but at the price of raising all the error probabilities for

lower abilities (false masters): for instance, for θlat = −0.390 the misclassifi-

cation probability is raised from 28.4% to 30.8%. Hence, depending on the

ability distribution in the population, the “improved” test might actually

produce a larger amount of misclassifieds.

One would expect such phenomena to fade away for test sets including

a larger number of items. This is only partly true: misclassification, in the

range between the critical ability for the test set and the assumed mastery

level, will always prevail over correct classification. Thus, further theoretical

insight is needed.

3 Misclassification Probability Curve

A recursive procedure to compute exactly the probability P (s|θ) that an

examinee with latent ability θ obtain the raw score s can be found in (Lord

& Novick, 1968) or in (Lord & Wingersky, 1984). An alternative method is
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presented in (Khidr & Abdelnasser, 1982). Summing these probabilities for

all scores s ≥ s0 gives the probability that the examinee pass the test.

Ppass(θ; s0) =
N∑

k=s0

P (k|θ) Pfail(θ; s0) =
s0−1∑

k=0

P (k|θ) = 1−Ppass(θ; s0) (5)

Definition 4 The Pass Probability Curve Ppass(θ; s0) gives the theoretical

probability of getting a score at least equal to s0, as a function of the latent

ability of the examinee.

(Note: as previously recalled, the score probability distribution P (s|θ)

can be straightforwardly translated – through the TCC – into a probability

distribution for the estimated ability. The latter distribution is known to be

asymptotically normal for large N , but normality is nowhere assumed in the

following computations)

The PPC is a close relative to the PPoP curve introduced by Wainer

(Wainer et al. , 2005). There is however a conceptual difference: the PPoP

curve is defined to be a posterior probability curve constructed from the

observed scores, while the PPC is theoretically derived from the assumptions

of the Rasch model and from the knowledge of the item difficulties.

The curve Ppass is always monotone, and so is Pfail: the two curves inter-

sect only at a single critical ability θc. In a sense, for a dichotomous (pass/fail)

test the PPC (not the TCC) plays the same role as the Item Characteristic

Curve for a single item; similarly to 2PL model (although the PPC is not, in

general, a logistic curve), θc plays the role of the difficulty parameter β, and
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the slope of the PPC at θc somehow represents the discriminating power of

the mastery test. Analogous remarks can be found in (Lord & Novick, 1968)

(p. 409) and in (Wainer et al. , 2005). A notable fact, that has already been

used in the previous section, is the following:

Proposition 3 For a Rasch test with cut score s0, the critical ability belongs

to the interval between the observable abilities Θ(s0 − 1) and Θ(s0):

Θ(s0 − 1) < θc ≤ Θ(s0). (6)

In fact, when s(θ) (the expected score) is an integer number, then s(θ) is both

the mean and the mode of the score probability distribution for the ability θ.

From the mean-median-mode inequality and from the definition of median

for discrete distributions, it follows that for the ability θ the probabilities that

the score is strictly less than s(θ) and that the score is strictly greater than

s(θ) are both less than 0.5. Applying this fact to the abilities Θ(s0 − 1) and

Θ(s0), one finds that Ppass(Θ(s0 − 1); s0) < 0.5 and Ppass(Θ(s0); s0) ≥ 0.5,

which proves the proposition.

Now, suppose that a mastery level θ0 has somehow been established,

not necessarily equal to θc. The probability of incorrect classification equals

Ppass(θ; s0) for θ < θ0 and Pfail(θ; s0) for θ ≥ θ0. The plot of these probabil-

ities will be called the misclassification probability curve (MPC). Fig. 2 (b,

c, d) show the MPC (solid curve) for the test set (1) with s0 = 6, under the

three different values of θ0 considered in the previous section. The graphs
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(a) Ppass and Pfail for test set (1) (b) MPC for θ0 = −0.20

(c) MPC for θ0 = 0.20 (d) MPC for θ0 = θc = −0.024

Figure 2: PPC and Misclassification Probability Curves for test set (1). The
location of the critical ability θc is represented by a solid vertical line, while the
dashed vertical lines correspond to the assumed mastery levels θ0. Dotted curves
represent Rudner’s approximation of MPC.

Figure 3: PPC standard deviation range for the sample test (1), assuming a
measurement error of 0.1 logit on the item difficulties.

21



clarify why for examinees ranging in the interval (θ0, θc) the chances of in-

correct classification are always greater than 50%, and why setting θ0 = θc is

the only way to ensure that misclassification probabilities never exceed 0.5.

The values of the computer-simulated frequencies listed in the previous sec-

tion agree with the probability values computed theoretically, and the source

of the discrepancies with the approximate values given by Rudner’s method

when θ0 '= θc becomes evident.

3.1 Effect of item difficulty uncertainty

Throughout this article it is always assumed that the item difficulties are

exactly known. This assumption is common in reliability analysis, as well as

when dealing with adaptive test construction. To judge to what extent the

PPC of the sample test set (1) would be affected by the uncertainty on the

item parameters, assume e.g. a standard measurement error of 0.1 logit for

the items difficulty (roughly, this would be obtained after testing the items

on 400 individuals). Fig. 3 displays the corresponding variability of the PPC

curve (as obtained by adding to each βi a “gaussian noise” with σ = 0.1).

One should be warned, however, that both the cut score and the critical

ability undergo large oscillations if Θ(θ0) is close to an integer value.
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4 Reliability and item difficulty spectrum

4.1 Computational evidence

It is reasonable, at this point, to ask to what extent the above considerations

could help to design a test with optimal pass/fail reliability. To disentangle

the complex interplay between the various relevant factors (including the

population ability distribution) it is useful to look at the examples included

in Tab. 2, produced in the following way.

The mastery ability (determining the cut score) is now assumed to be

θ0 = 0; several test sets have been considered, and a number of reliability–

connected parameters have been computed (and checked against simulated

administration of the tests) for two simulated populations. The first one

(population A) is a sample of 1000 ability levels (virtual individuals) taken

from a standard normal distribution (µ = 0,σ = 1), so that masters and

non-masters are in almost equal number. Population B is instead a sample

of 1000 ability levels taken from a normal distribution with µ = 1 and σ = 1,

so that true non-masters are only 15% of the population. The test sets

have been constructed by varying the number of items, the average difficulty

and the difficulty range of the items, in all possible combinations within the

following scheme:

• The number of items, N , has been set to be either 11, 21, 31 or 41 (the

reason for choosing odd numbers is explained in §4.2).

• The average difficulty of the items has ben set equal to either 0, 1 or -1;
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sets with average difficulty equal to 1 have not been used for population

A, because the results would be substantially symmetric with respect

to sets with average difficulty equal to -1. For population B, two further

sets with N = 11 and average difficulty at 0.5 have been considered.

• The items of each set have been chosen either to have all the same diffi-

culty, or to have a spectrum of difficulties “equidistributed” (i.e. spread

at equal distances) in a range of ±2 logits. Both cases are purely fic-

tional, but can be regarded as the limit cases for highly concentrated

or “wide rectangular” difficulty distributions, respectively.

Table 2 displays the following data:

Columns 4 to 8 contain values which are intrinsic to the set itself, not

involving the population to which the set is administered: the cut score, the

values of the Test Information Function at θ0 and at θc, the critical ability

and the critical interval amplitude. The latter is the width of the ability

range for which the misclassification probability exceeds 0.1: the amplitude

numerically computed from the MPC is followed, in parentheses, by the

approximate amplitude computed using the formula (9) given in sect. 4.3

below.

Columns 9 and 12 show the value of the expected rate of misclassifieds,

for population A and B respectively.

Columns 10 and 13 display the number of expected false non-masters over

the expected number of examinees failing the test, in each population; the

same for false masters in columns 11 and 14. All these values have been
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computed using the MPC; these rates, as well as the total misclassification

rates, are in full agreement with the mean values (not reported) that we have

observed in 50 computer simulations for each test set and for each population.

A number of facts come out from table 2. The overall misclassification

incidence (col. 9 and 12) depends, as expected, on both the test set and

the ability distribution in the population. For each test, the incidence is

always lower for population B. The reason is that the highest misclassification

probability is encountered near to the mastery level: the latter is close to the

population mode for population A, while for population B it falls in left tail

of the distribution.

For each population, the overall misclassification rate primarily depends

on the number of items in the test. However, there are some exceptions

to the rule “the higher the information function, the higher the reliability”:

relevant exceptions are encountered when the critical ability is significantly

different from zero (e.g. set 4/B vs. set 3/B).

The overall misclassification rate, on the other hand, is not necessarily

the most relevant issue, for the cost of misclassification may be different for

false positives and false negatives (van der Linden, 1998). Tests with similar

overall accuracy may behave in quite different ways as far as the reliablity

of false positives (or of false negatives) is concerned. For population A,

test set 1 of table 2 will produce approximately the same number of false

positives and false negatives, while test set 3 yields twice more false non-

masters than false masters. The rates of false positives and false negatives
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strongly differ whenever the population ability distribution is asymmetric

with respect to the mastery ability, and/or whenever the test critical ability

θc differs significantly from θ0. When the two effects have opposite signs (set

5/B) they partially cancel each other.

The relative incidence of false positives or false negatives is also worth

considering. On population B, the test set 1 has an expected overall error

rate of 11.3%: yet, an individual who fails such a test has a chance of almost

40% of having been incorrectly classified. For the test set 3, this probability

raises to 51%: even if the overall error rate is 16%, examinees failing this

test are incorrectly classified in the majority of cases!

As stressed in the introduction, the a priori misclassification probability

for a given latent ability should not be confused with the posterior misclas-

sification probability for an examinee who got a given score in the test. The

latter will be discussed elsewhere, but a comparison is shown in fig. 4, where

the dark vertical columns show the relative frequency of misclassifieds among

examinees who obtained a given score (the columns are located at the cor-

responding estimated abilities): such posterior misclassification rates (which

can exceed 50% as well) depend on the population ability distribution, which

is depicted by the white histogram behind each plot.

4.2 “Optimal” test sets: odd and even N

It has been shown so far that the ideally optimal mastery test (for a given

number N of items) should have both the highest possible PPC slope at θc
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(a) Test set 1, pop. A (b) Test set 1, pop. B

(c) Test set 3, pop. B (d) Test set 5, pop. B

(e) Test set 21, pop. A (f) Test set 21, pop. B

Figure 4: MPC curves, critical ability (vertical dotted line) and (0.1) critical
interval (vertical dashed lines) for some of the test sets of table 2. The white
histograms show the population ability distributions; the grey columns represent
the posterior misclassification probability for a given observed score.
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(a) (b)

Figure 5: MPC for “ideal” test sets with difficulties concentrated at β = θ0 = 0.
(a): test set with 10 items; (b): test set with 11 items

and the critical ability coincident with the assumed mastery level, θc = θ0. If

N is odd, both requirements are met (on Rasch assumptions) if all items have

difficulty equal to θ0: then, the pass and fail probability curves are mutually

symmetric with respect to θ0, and θc lies exactly at that point (fig. 5b).

When N is even, instead, if β = θ0 for all items then the cut score will

be s0 = N
2 . At θ = β the probability of passing the test is then larger than

0.5, hence the critical ability is forcefully lower than β (fig. 5a). Therefore,

with an even number of items the difficulty should not be centered at the

sought mastery level θ0, but at the slightly higher value (numerically com-

putable) such that θc = θ0. More generally, for N even, θc '= θ0 if items are

symmetrically distributed around θ0. In summary,

Proposition 4 For a given mastery ability θ0 and a given number of items

N , a test set where all items have difficulty exactly equal to θ0 is optimal (in

the sense that the PPC slope is maximal and θc = θ0) if and only if N is odd.

The dependence of the critical ability on item parameters is complicated,

and actually discontinuous, as can be seen in fig. 6. Discontinuities occur
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(a) (b)

Figure 6: Discontinuos variation of the critical ability for test sets concentrated
at a single difficulty β. The mastery level is kept fixed, θ0 = 0, while β varies.
The critical ability is undefined at discontinuity points, which correspond to jumps
of the cut score. (a): test set with 10 items; (b): test set with 11 items. With
N = 10, to get θc = θ0, one should set β '= 0.

whenever the mastery level corresponds (through the TCC) to an integer ex-

pected score. About such points, a minimal change of the item distribution

causes the cut score to jump up to the next value, and both the PPC and the

critical ability shift abruptly: hence the cut score itself, the critical ability

and the MPC curve all become highly unstable with respect to measurement

uncertainty. This is why only ideal tests with odd N have been considered

in table 2: for ideal test sets with an even number of items the correspond-

ing values would be unstable, and therefore not representative of real tests’

behavior.

4.3 Critical misclassification interval

In table 2 one can observe a high correlation between the overall error rate

and the width of the interval defined as follows:
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Definition 5 The critical (misclassification) interval for the probability level

α is the ability range for which the value of the misclassification probability

(MPC) is greater than or equal to α.

In other terms, any individual with ability belonging to the critical interval

has a probability at least equal to α of being misclassified. The critical ampli-

tude, the PPC slope and the information function value at the critical ability

are strongly correlated to each other: the latter is much easier to compute,

but the critical interval provides more direct information on which portion of

the population has significant chances of being incorrectly classified.

Computing the critical interval for a given test amounts to finding at

which points the PPC equals α and 1 − α, respectively. In general, this

should be done numerically. The minimal critical amplitude for a test with

N items corresponds to the highest possible slope of the PPC at the critical

ability, which occurs (for N odd) for ideal tests with all items concentrated

at the mastery ability. For ideally “concentrated” tests with β = θ0 = θc (N

odd), the slope of the PPC at θc is exactly given by the following formula

(Tannoia, 2011):

P ′(θc) =
N

2N+1

(
(N − 1)

N−1
2

)
(7)

Since all items have the same difficulty, the score probability has a binomial

distribution; then, the PPC is very well approximated by a normal ogive

having at the critical ability the same slope as the PPC, i.e. with µ = θc and

σ = 1√
2πP ′(θc)

. Therefore, the critical misclassification interval for an ideal
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test with N items of equal difficulty coincident with the mastery level, for N

odd, can be estimated to be

θc ±
2N+1probit(α)√

2πN
(N−1

N−1
2

) (8)

where probit(x) denotes the standard normal quantile, i.e., the inverse of the

standard normal cumulative distribution. For even N , an analogous deriva-

tion would be much more complicated, but an equally accurate estimate can

be obtained by interpolation.

Using Stirling formula, one can see that for large N the critical amplitude

is asymptotically proportional to 1√
N

, i.e. to the standard measurement error

at θc. Empirically, it turns out that this holds also for non-ideal tests, pro-

vided the probability level α is chosen such that MPC(θ0) > α, i.e., provided

θ0 is contained in the critical interval. This is confirmed in all computations

made by the authors, as well as the fact that the PPC slope at θc is ap-

proximately equal to
√

F (θc)
2π , F (θc) being the value of the test information

function at θc. Even in the absence of a formal proof, it can thus be said

that for a generic test the critical misclassification interval (for α ) 0.5) is

approximately given by

θc ±
probit(α)√

I(θc)
(9)

(for computational ease, probit(α) can be approximated, up to a factor, by

the logistic cumulative function: probit(α) ≈ logit(α)
1.7 ).
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The critical interval for α = 0.5, instead, is found in a different way (as

already explained), and thus deserves a separate name:

Definition 6 The supercritical interval is the ability range, bounded by the

critical ability θc and the mastery level θ0, where misclassification probability

exceeds 0.5. It is always contained in the interval between Θ(s0 − 1) and

Θ(s0) (by Prop. 3), and vanishes only if θc = θ0.

5 Generalisation to 2PL model

So far, the discussion has been restricted to the Rasch model; it is legitimate

to ask to which extent it holds true if the item responses are assumed to

be described by a more general IRT model. In particular, the 2PL model is

commonly regarded as a more realistic description of the response process.

The probability of correct response to the i-th item is then given by the

formula

Pi(θ) =
1

1 + eαi(βi−θ)
(10)

where αi is the discrimination parameter.

It is known that in the 2PL model the number-right raw score is no

longer a sufficient statistic for the examinee’s ability; nevertheless, in the

literature the TCC curve (still defined by TCC(θ) =
∑

i Pi(θ), which gives

the expectation value of the score for each ability θ) is used, for instance, for

test equating purposes (Baker, 1992). In common practice, the pass criterion
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in mastery tests is often given by a number-right score, no matter which IRT

model is assumed: this happens, a fortiori, whenever a cut score is fixed

without reference to the ability scale (situation A in the previous sections).

Now, as long as number-right scoring is used, the sources of misclassifica-

tion remain the same as described in the previous sections, even if the item

response probability is given by (10). There are still only N − 1 observable

abilities, the PPC can be computed as in the Rasch case, only using the 2PL

probability (10) for the correct response. If the item discrimination parame-

ters αi is lower than 1 for most items, then the PPC has a lower slope at the

critical ability w.r. to a Rasch test with the same difficulty spectrum, which

entails a larger amplitude of the critical interval, in accordance with Birn-

baum’s statement that in an optimal test set the discrimination parameters

should be the highest possible for all items.

However, assuming in the 2PL model a one-to-one correspondence be-

tween number-right scores and estimated abilities is incorrect. In fact, it is

easy to prove (Baker, 1992) that the maximum likelihood estimate for the

examinee’s ability for a given response vector {ui} (whereby ui = 1 if the

answer to the i-th item is correct, and ui = 0 otherwise) corresponds to the

ability θ such that
∑

i

αiui =
∑

i

αiPi(θ). (11)

Hence, the appropriate score-ability correspondence is given by equating the

weighted score on the l.h.s. of (11) to the weighted TCC given on the r.h.s.
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The weighted score will be different for each response pattern: generically

(namely, if the discrimination parameters αi are all different, and if the sum

of them over any item subset never coincides with the sum over a different

subset) the weighted score can assume 2N different values, in contrast with

the number-right score which can take only N +1 values. For a given mastery

ability θ0, the (weighted) cut score still corresponds to the nearest observable

ability on the right of θ0. If the variance within the αi is very little, the

observable abilities will cluster around N +1 values; but if the discrimination

variance is large enough, the observable abilities will instead tightly fill a large

portion of the ability scale. In this case, the critical ability θc will always be

very close to θ0 and the supercritical interval will be negligible.

To illustrate the situation, assume for the items of the test set (1) the

following discrimination parameters (instead of αi ≡ 1 as in sect. 2):

α1 = 1.30 α2 = 1.09 α3 = 0.46 α4 = 1.21 α5 = 0.66

α6 = 0.86 α7 = 0.89 α8 = 0.79 α9 = 0.90 α10 = 0.71
(12)

The average discrimination parameter is ᾱ = 0.89. The mastery level is now

assumed to be θ0 = 0.20; the following plots allow to compare the graphs for

the TCC, the PPC and the MPC obtained, respectively, for

1. (solid curves): the 2PL test set with discrimination parameters (12),

upon weighted scoring, with a (weighted) cut score of 6.19 (NOTE: to allow

comparison with number-right scores, all weighted scores have been linearly

rescaled – dividing them by ᾱ – so that the maximum score is always N=10);
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2. (dashed curves): the same 2PL test set, but assuming ordinary number-

right scoring (the proper cut score turns out to be 6)

3. (dotted curves): a test set with the same difficulties (1) but αi ≡ 1 (Rasch

case); for this test set the number-right and the weighted scores coincide,

and the cut score is also 6 (the MPC for this case is the same as in Fig. 2c).

(a) TCC (b) PPC

Figure 7: Comparison of TCC and PPC for the 2PL test with parameters given
by (1) and (12), under weighted scoring (solid) and number-right scoring (dashed).
Dotted curves refer to a test set with the same difficulties βi but αi ≡ 1.

(a) MPC for the 2PL test set of Fig. 7 (b) MPC for another 2PL test set

Figure 8: Comparison of Misclassification Probability Curves

The figures show that the TCC is very close for the three cases. As long as
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number-right scoring is used, in this example the effect of the αi distribution

on the Pass Probability Curve only amounts to a lower slope (due to ᾱ < 1);

a noticeable shift of the PCC occurs instead if weighted scoring is used.

The truly relevant differences, however, can be seen in the MPC (Fig. 8.a):

under weighted scoring, the critical ability becomes close to θ0, and the MPC

discontinuity almost disappears. In this case, the MPC curve would be well

approximated by Rudner’s method. This does not mean that the overall

misclassification rate would decrease for any population: weighted scoring

yields, in this example, a lower amount of false masters but a larger amount

of false non-masters.

The inspection of MPC plots allows to answer some relevant questions,

that it is important to keep distinct. If the variance of the discrimination

parameters of the items is significant, then adopting the appropriate weighted

scoring produces a misclassification probability curve which is much closer to

Rudner’s curve. To this purpose, it is the scoring formula that matters, not

just the use of the 2PL probabilities (10). The result of the test (pass or fail)

will be different for some examinees while using a different scoring formula:

therefore, it is the actual reliability of the test – not only its estimate –

which changes (yet, the overall reliability will not necessarily be higher under

weighted scoring).

A separate question is the following: if number-right scoring is used, to

which extent ignoring the variation of the discriminating parameter among

items, and thus applying the Rasch model to compute misclassification prob-
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abilities, would lead to an incorrect assessment of the classification consis-

tency? The difference between the dotted and the dashed curve in Fig. 8.a

is little and is actually due to the fact that the average discrimination pa-

rameter of the test set (12) is lower than 1. But it is not always true that

the MPC for a 2PL test, under number-right scoring, is close to the MPC of

a Rasch test with the same difficulty spectrum. With a different simulated

distribution of the discrimination parameters (with ᾱ = 1.08, still leaving

difficulties unchanged), the (unweighted) cut score for θ0 = 0.20 jumps to 7,

and the MPCs become as in Fig. 8.b: the supercritical interval shifts to the

right of the mastery ability. The large difference between the dotted and the

dashed curve is due to the discontinuous dependence of the cut score on the

item parameters. Such a discrepancy, therefore, may occur when the TCC

score corresponding to the mastery ability is close to an integer value (a fact

that could be detected already in the Rasch setup).

Weighted scoring does reduce such instabilities, and might therefore seem

to yield more robust results, but actually raises a different problem. Weighted

scoring rests on the knowledge of the αi: in the discussion it has been as-

sumed so far that the discrimination parameters were exactly known. Any

uncertainty on the values of the αi is reflected in a score indeterminacy, a

situation never met in number-right scoring (which is insensitive to item pa-

rameters): such indeterminacy is a new potential source of misclassification.

To judge its effect size, assume a measurement error of ±0.1 in the αi listed

in (12): numerical computation shows that the resulting score standard de-
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viation (close to the cut score) corresponds to an uncertainty of ±0.09 logit

in the ability scale. This is an additional uncertainty, which has nothing to

do with the standard error of the ability estimate (related to the informa-

tion function value): the latter is indeed much larger, but arises from the

probabilistic nature of the response process, which is exactly represented by

the MPC. The new uncertainty concerns instead the score to be assigned (by

the scoring formula) to a given response pattern, and fails to be rendered in

the MPC. In our example, the width of this “score indeterminacy interval”

is comparable to the width of the supercritical interval that would be found

with number-right scoring. In other terms, the “improvement” of the theo-

retical misclassification curve obtained by adopting weighted scoring in the

2PL model may be somehow fictitious if the discrimination parameters are

not known with good accuracy, for another source of misclassification arises.

6 Conclusions

It has been shown that the intrinsic reliability of a test set is described by

the Misclassification Probability Curve. The overall reliability for a given

population (as measured by the total misclassification incidence) will depend

on the test’s MPC and on the population ability distribution.

A comparison with Birnbaum’s setting of the reliability problem (Lord &

Novick, 1968) helps in focusing the picure emerging from the present discus-

sion. Birnbaum took as starting point a predetermined indifference interval,
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bounded by two reference abilities (“definitely low” and “definitely high”).

Given this interval, Birnbaum extensively discussed (without restricting to a

specific item response model) which scoring rule and which cut score would

minimize the misclassification probability. Here, instead, the starting point

is either the cut score (situation A) or the mastery level (situation B), and

ability intervals related to misclassification issues are derived as a result.

Situation A is relatively simple: if one resists the temptation to identify

the mastery level with Θ(s0) (the estimated ability corresponding to the cut

score), and takes instead the critical ability θc, the misclassification proba-

bility cannot exceed 0.5 for any latent ability. Then, classification accuracy

can be improved by raising the slope of the Pass Probability Curve at θc.

One can expect to get this result by increasing the number of items and/or

by choosing items with difficulties closer to θc. Notice, however, that any

change of the test set alters the value of θc itself; moreover, if the cut score

was decided after some process of item appraisal, this has to be redone if the

test set is modified. What can be safely said is that among different test sets

(each with its own cut score) yielding the same critical ability, and there-

fore assessing the same mastery level, the most reliable is the one which has

the highest PPC slope (or, equivalently, the highest value of the information

function at θc).

A test can be regarded as definitely reliable outside the critical interval

(for a suitably low value of α, such as the standard values α = 0.1 or α =

0.05). The amplitude of the latter is related by (9) to the value of the test
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information function at θc. The boundary points of the critical interval might

thus be regarded as “definitely low” and “definitely high” abilities (relative

to the confidence level α): yet, there is a conceptual difference with respect to

Birnbaum’s approach. The critical interval is not an “indifference interval”:

classification is performed, and misclassification is considered, also within

that interval.

In situation B, the mastery level θ0 being preassigned, the critical ability

θc will often not coincide with it. Then, two ability intervals should be con-

sidered in connection to pass-fail reliability. The critical interval still encodes

the reliability of the test far from the mastery level. Upon narrowing the crit-

ical interval, a larger portion of the population will fall in the “safe” region.

However, misclassification is much more likely to occur for abilities close to

the mastery level: in situation B the supercritical interval may become the

primary locus of misclassification. The width of this interval is unrelated to

the test information function: for instance, if one takes an “optimal” test

set with an odd number of items, and adds a further item with difficulty

equal to θ0, this will actually enlarge the supercritical interval, thus reduc-

ing the reliability around the threshold, although the information function is

increased.

In conclusion, the critical and the supercritical interval, together, allow

to foresee the overall functioning of the mastery test for a given population,

and to judge whether reliability issues should be confronted by increasing the

test information function, or rather by trying to match the critical ability of
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the test with the sought mastery level.

Which test design would be optimal actually depends on the popula-

tion, and the possibly different “costs” of false masters and false non-masters

should also be taken into account. There is no simple recipe to single out the

most reliable test set from a finite pool of calibrated items. Computing for a

test set the critical ability θc and the value of the test information function

at θc is quite viable, and allows to compare a number of different test sets

and select the one having both the narrowest critical and the narrowest su-

percritical interval: this is likely to be the most reliable test set in the group.

To adjust for asymmetries in the population distribution with respect to the

mastery level, the expected misclassification rates should be computed and

compared as well, provided a reliable estimate of the ability distribution in

the population is available.

If the 2PL model is considered instead of the Rasch model, the picture

remains similar as long as unweighted scoring is used. If, instead, the proper

(weighted) scoring is implemented and a weighted cut score is fixed accord-

ingly, the distance between consecutive observable abilities is drastically re-

duced and the supercritical interval becomes negligible. However, in this

case a different source of misclassification in the vicinity of the cut score may

arise – the uncertainty in the score to be assigned to each response pattern

– unless the item discrimination parameters are known with high accuracy:

this requires item calibration on a larger population (for this reason we did

not consider here the 3PL model, where the accuracy of item parameter
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estimates is a delicate issue).
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